Documentation

Download the latest versions of Achronix application notes, datasheets, product briefs, user guides and white papers.

Select the individual tabs below to browse through each type of documentation. Or use the filter to only see documentation related to your product of interest.

Some documents are restricted (denoted by the lock symbol in the download button) and require a support portal account to access the download. To download a restricted document, enter your support portal account credentials when prompted. Don't have a support portal account? Register for an account here: Achronix Support Account Registration

Title Description Version Released Date Document File
The Achronix Integrated 2D NoC Enables High-Bandwidth Designs (WP028)

Devices aimed at addressing modern algorithm acceleration workloads must be able to efficiently move high-bandwidth data streams between high-speed interfaces and throughout the device. Achronix Speedster®7t FPGAs can process these high-bandwidth data streams via an integrated new and highly innovative two-dimensional network on chip (2D NoC). This white paper discusses two methods of implementing a 2D NoC and presents an example design to show how the Achronix 2D NoC improves performance, reduces area, and reduces design time when compared to a soft 2D NoC implementation.

1.1 Download
Reduce Speech Transcription Costs by up to 90% with CAI (WP030)

Conversational artificial intelligence (CAI) uses deep learning (DL), a subset of machine learning (ML), to automate speech recognition, natural language processing and text to speech using machines. Achronix and Myrtle.ai are teaming up to deliver an ASR platform consisting of a 200W, x16 PCIe Gen4-based accelerator card and the associated software which together can sustain up to 4000 RTS concurrently, processing up to 1 million five-minute transcriptions per 24-hour period — reducing costs by as much as 90% versus cloud-based APIs.

1.3 Download
Achronix FPGAs Optimize AI in Industry 4.0 and 5.0 (WP027)

Industry has come a long way over in the last three hundred years. Machines were first introduced in the 1700s, mainly water and steam driven, introducing the Industrial Revolution in the late 1700s. Automation and computer technology would enter the picture in the late 1960's, paving the way for the eventual automation, artificial intelligence (AI) and networked solutions of today. Although it might appear that humans are no longer in the picture, Industry 5.0 is bringing us full circle by combining the precision and efficiency of robotic systems, driven largely by AI, with the ingenuity and real-time thought of the human mind — all leading to more optimal manufacturing environments.

1.0 Download
FPGAs and eFPGAs Accelerate ML Inference at the Edge (WP026)

With the rapid proliferation of Internet-of-Things (IoT) and billions of connected devices, there is a paradigm shift taking place where big data is not only being processed in the core data center but also at the network edge. Field Programmable Gate Arrays (FPGAs), sitting at the intersection of performance and flexibility, are a promising solution for deep learning edge inference applications.

1.0 Download
Data Orchestration Supports the Next Advance in AI (WP025)

Artificial intelligence (AI) and machine learning (ML) technologies now power a rapidly expanding range of product and applications from deeply embedded systems to hyperscale data-center deployments. Although there is a huge degree of diversity in the hardware designs supporting these applications, all require hardware acceleration. Data orchestration encompasses the pre- and post-processing operations that ensure the data seen by a machine learning engine arrives at an optimal speed and in the most suitable form for efficient processing.

1.0 Download
Title Description Version Released Date Document File
Speedcore User Interface Timing Sign-off Methodology (AN009)

Timing sign-off between the host ASIC and the Speedcore boundary is one of the most crucial steps in ensuring proper integration of a Speedcore instance into a customer's SoC.

1.1 Speedcore_User_Interface_Timing_Sign-off_Methodology_AN009.pdf
SoC-Speedcore Interface Tests (AN022)

The input and output paths between the host SoC and a Speedcore instance are an important test component. It is essential to have a structure that ties seamlessly to the SoC's test flow without requiring special functions such as loading a bitstream in the Speedcore instance.

1.0 SoC-Speedcore_Interface_Tests_AN022.pdf
Migrating to Achronix eFPGA Technology (AN014)

Many users transitioning to Achronix eFPGA technology will be familiar with existing FPGA solutions from other vendors. Although Achronix technology and tools are similar to existing FPGA technology and tools, there are some differences. Understanding these differences are needed to achieve the very best performance and quality of results (QoR).

1.1 Migrating_to_Achronix_eFPGA_Technology_AN014.pdf
ACE ECO Flow Guide (AN015)

This tutorial serves as an introduce to the ACE engineering change order (ECO) suite — a set of Tcl commands that can add or remove instances, nets, pin connections, and more from a placed-and-routed design.

1.0 ACE_ECO_Flow_Guide_AN015.pdf
Pipelining the CPU Interface (AN016)

A Speedcore instance hosted in an SoC supports three different configuration modes: CPU, serial flash and JTAG. In CPU mode, an external CPU acts as the master and controls the programming operations for the Speedcore eFPGA, and offers a high-speed method for loading configuration data.

1.0 Pipelining_the_CPU_Interface_AN016.pdf
Title Description Version Released Date Document File
Achronix Company Backgrounder (PB029)

Achronix Semiconductor Corporation is a privately held, fabless semiconductor corporation based in Santa Clara, California and offers high-performance FPGA solutions. Achronix’s history is one of pushing the boundaries in the high-performance FPGA market.

1.6 Download
Achronix Tool Suite (PB002)

The Achronix Tool Suite works in conjunction with industry-standard synthesis tools, allowing FPGA designers (for both standalone and embedded) to easily map their designs into Achronix FPGA technology. Achronix provides ACE together with an Achronix-optimized version of Synplify Pro from Synopsys, the industry standard for producing high-performance and cost-effective FPGA designs.

5.4 Download
Maximize Hardware Assurance Using Embedded FPGAs (PB035)

Implementing a secure IP solution when developing a custom ASIC involves overcoming many risks along the development, manufacturing and supply chain flow. Hardware assurance continues to become more critical for military and defense applications as worldwide threats increase. By using an eFPGA IP solution to store mission critical IP, supply chain security is greatly simplified compared to the traditional ASIC design flow.

1.0 Download
Speedcore eFPGA Test Chip Evaluation Board (PB030)

The Speedcore eFPGA evaluation board from Achronix contains the 16-nm Speedcore eFPGA test chip. The evaluation board’s Speedcore test chip has been customized with the right blend of resources such as LUTs, BRAMs, DSP64s, DFFs and a number of I/O so as to provide an optimum programmable platform for demonstrating, evaluating and testing Achronix’s Speedcore technology.

1.0 Download
Title Description Version Released Date Document File
Design Flow User Guide (UG106)

This user guide covers various aspects of the Achronix toolchain design flow.

1.1 Download
Software Development Kit User Guide (UG107)

This Guide introduces the Achronix Software Development Kit and details each of the provided structures and functions.

1.2 Download
Getting Started User Guide (UG105)

This guide serves as a concise introduction to the Achronix tool flow using the Quickstart design included with all ACE installations.

1.2 Download
Speedster7t GPIO User Guide (UG112)

This document describes the Speedster7t FPGA GPIO pins, their various features, how to configure them, any design considerations to be taken into account, and the tools required to implement them.

1.1 Download
Speedcore Component Library User Guide (UG065)

This library describes the programmable fabric silicon elements which may be instantiated into a custom design.

2.0 Download