

VP815

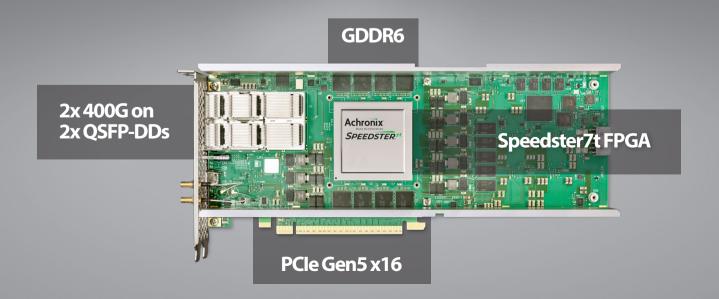
VectorPath™ Accelerator Card

Deliver next-gen AI with scalable FPGA acceleration

High-Performance

AI/ML

Compute


VectorPath 815 leverages the Speedster®7t FPGA architecture, optimized for Al/ML and high-performance computing workloads. Its Machine Learning Processor (MLP) blocks, 2D Network-on-Chip (NoC), GDDR6 memory, and 112G SerDes deliver exceptional Al inferencing performance.

Key benefits:

- Accelerated AI Performance: Tensor-optimized MLP blocks outperform traditional solutions.
- **High Throughput, Low Latency:** NoC architecture provides up to 20 Tbps bandwidth for real-time data delivery.
- **Scalable Architecture:** Predictable latency and scalability for edge and data center deployments.

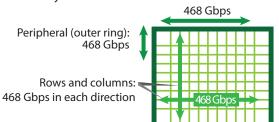
Key Features

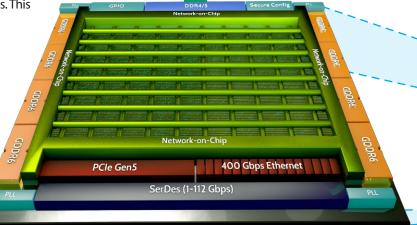
Packed with performance, the VP815 gives you fast GDDR6 memory, 400G networking interfaces (two QSDP-DDs), and PCle Gen5 x16. Of course, it's all driven by the Speedster7t FPGA with advanced 2D NoC, machine learning processors (MLPs), and programmable logic.

400GbE Networking

Speedster7t FPGA

Revolutionary Chip Design by Achronix


The Speedster7t FPGA is highly optimized for AI/ML and high-bandwidth data acceleration and is at the heart of every VectorPath accelerator card.


2D NoC

Two-Dimensional Network-on-Chip

Data Highway Unclogs FPGA Fabric

The 2D Network-on-Chip (NoC) seamlessly interconnects high-speed interfaces such as GDDR6, DDR4/DDR5, Ethernet, and PCle with the core of the FPGA fabric without consuming any fabric resources. This eliminates the need for complex routing through the programmable logic, decouples data movement from fabric resources, and enables true partial reconfiguration. With over 20 Tbps of aggregate bandwidth, the 2D NoC delivers not only speed, but also unmatched design flexibility and modularity.

500GB/s

16x channels

GDDR6

5x

100GB/s

4x banks

DDR4

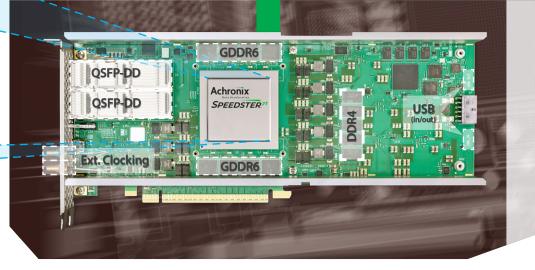
GDDR6 Memory

5x Faster Large Memory

Using high-bandwidth GDDR6 memory, the VP815 gives your application a large memory resource of 32 Gigabytes, but at more than 5 times greater bandwidth.

Plus with the 2D NoC, the GDDR6 is available for read/write from the host over PCIe without using FPGA fabric resources.

The VP815 card offers a range of network interfaces connected to the Speedster7t FPGA fabric. The card supports 112G PAM4, with hard IP MAC and FEC support. On-board jitter cleaners are available for synchronous ethernet (SyncE).


QSFP-DD Interfaces

Two QSFP-DD interfaces with up to 400 Gbps per port. A range of other options including 16x 100G (total) are available using breakout cables.

VP815 FPGA Card

Enterprise-Class Design by BittWare

The VP815 FPGA card delivers a wide range of advanced I/O, including 400G and multiple PCIe interfaces and the high-bandwidth GDDR6 memory.

Customers can get started quickly with the Achronix SDK, including an example project for Linux.

FPGA Fabric

Up to 61 TOps (INT-8) Performance

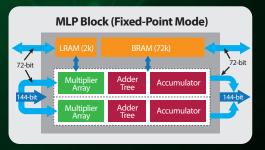
RLB

Reconfigurable Logic Block

The Speedster7t features RLBs: a new reconfigurable logic architecture with 6-input LUTs, 8-bit ALUs, 2 flip-flops per LUT, plus a reformulated multiplier LUT (MLUT) mode based on a modified Booth algorithm which doubles the performance of LUT-based multiplication.

The Speedster 7t1500 FPGA has 692K LUTs.

MLP


Machine Learning Processor

MLP blocks are large-scale matrix-vector and matrix-matrix multiplication engines supporting fixed- and floating-point computations. For integer multiplication, the MLP offers 4x int16, 16x

int8 or 32x int4 modes. For floating point and block floating point (OCP MXINT8) operations, the MLP supports FP16, FP24 or BF16.

MLP blocks include two memory blocks usable individually or with multipliers. Total embedded memory is 195 Mb.

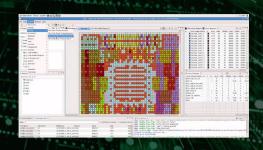
Total MLP blocks: 2,560 capable of 72 MXINT8 TOPS.

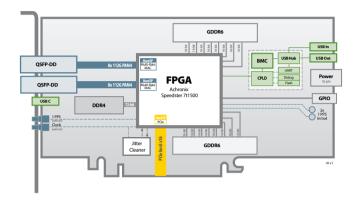
Applications

AI/ML

Achieve an industry-leading tokens per second output with open source LLMs, accelerating text generation, chatbot responses, and Al-powered content creation while delivering significantly lower latency for Al workloads leveraging various size foundational or fine-tuned and task specific LLMs vs. traditional GPU and CPU solutions.

Automated Speech Recognition


Transcribe up to 2,400 simultaneous audio streams with multiple language support, latency under 25ms, and an industry-leading word error rate (WER) of less than 3%, ensuring real-time, low-latency speech-to-text conversion for real-time agent assist in contact centers, voice assistants, transcription services, and real-time conversational Al applications.


Networking

Wire-rate 400 GbE capture, real-time traffic analysis, packet steering and more are all possible. With 16 channels of GDDR6, each operating at 256 Gbps, combined with 16x 100 GbE creates a platform that is uniquely constructed to enable a whole new generation of 400 GbE appliances.

ACE FPGA Development Software

The ACE software from Achronix is the development environment for the Speedster7t FPGA. ACE handles the hardware design workflow, supporting RTL (VHDL and Verilog) input together with industry-standard simulation. ACE also enables using advanced chip features such as the NoC. ACE also ship with an Achronix-optimized version of Synplify Pro from Synopsys.

Additional Card Features

- · Jitter cleaner for SyncE
- · 1 PPS & 100 MHz ext. ref. clock
- · BMC with health monitoring
- · 8x GPIO pins
- · Drivers for Linux and Windows

Software Development Kit: Powerful Tools for Development

The Software Development Kit (SDK) provides drivers, libraries, utilities and an example project for accessing, integrating and developing applications for the VectorPath card.

Card Specifications

FPGA	 Achronix Speedster 7t1500 52.5 x52.5 mm² package 692K 6-input lookup tables (LUTs) 195 Mb embedded RAM 2,560 MLPs
On-board memory	 32 GBytes GDDR6: 8 interfaces, 2 independent 16-bit channels per interface (4 Tbps aggregate b/w) 16 GB (x72) DDR4-3200 Flash memory for booting FPGA
QSFP-DD cages	 2x QSFP-DD cages on front panel 112G PAM4 transceivers 2x 400GbE, 16x 100GbE, and more Hard MAC and FEC for every speed
Host interface	PCI SIG certified to support PCIe Gen5 x16 host interface
External clocking	1 PPS inputs100MHz Ref Clk
USB	 Front and back USB ports for access to BMC, USB- JTAG, USB-UART Additional USB port for daisy chain
GPIO	8 GPIO pins, 3.3V, single ended, direction (Tx, Rx) independently settable by FPGA per GPIO, buffers rated to 200Mbps

Board Management Controller 2.0	 Voltage, current, temperature monitoring Power sequencing and reset Field upgrades FPGA configuration and control Clock configuration I²C bus access USB 2.0
Cooling	Dual-width passive heatsink
Electrical	On-board power from a 12VHPWR (16-pin) connector Power dissipation is application dependent
Form factor	 Standard-height PCle dual-width board Size: 111.15mm x 266.70mm (4.376in x 10.500in) Full-length PCle extender included

Development Tools

System	Software development toolkit including libraries
development	and board monitoring utilities
FPGA development	Achronix tools—ACE Design ToolsFPGA example projects

For more information, visit Achronix.com

