
The Ideal Solution for AI Applications — Speedcore eFPGAs

December 22, 2017 www.achronix.com 1

Introduction and Background
Artificial intelligence (AI) is reshaping the way the world works, opening up countless opportunities in commercial 
and industrial systems. Applications span diverse markets such as autonomous driving, medical diagnostics, 
home appliances, industrial automation, adaptive websites and financial analytics. Even the communications 
infrastructure linking these systems together is moving towards automated self-repair and optimization. These 
new architectures will perform functions such as load balancing and allocating resources such as wireless 
channels and network ports based on predictions learned from experience.

These applications demand high performance and, in many cases, low latency to respond successfully to real-
time changes in conditions and demands. They also require power consumption to be as low as possible, 
rendering unusable, solutions that underpin machine-learning in cloud servers where power and cooling are 
plentiful. A further requirement is for these embedded systems to be always on and ready to respond even in the 
absence of a network connection to the cloud. This combination of factors calls for a change in the way that 
hardware is designed.

Requirements for Machine Learning
Many algorithms can be used for machine learning, but the most successful ones today are deep neural 
networks — technology that takes advantage of the high computing performance and memory bandwidth 
available in today’s silicon. Inspired by biological processes and structures, a deep neural network can employ 
ten or more layers in a feed-forward arrangement. Each layer uses virtual neurons that perform a weighted sum 
on a set of inputs, and then passing the result to one or more neurons in the next layer.

In the classical neural networks of the 1980s and 1990s, the neurons were generally fully connected. Each 
neuron in a layer processed data from all of the neurons in the layer above. Although these structures were 
capable of classifying objects in images, they proved impractical for data-intensive applications such as image, 
video and audio processing.

The convolutional layer employs far fewer connections per neuron and one that echoes the organization of 
neurons in the visual cortex of the organic brain. Each neuron in a convolutional layer processes data for only a 
subset of the entire image, reducing the computational overhead and demands on memory bandwidth compared 
to fully connected layers.

Pooling layers combine the outputs from multiple neurons, producing a single output. A max-pooling layer, for 
example, takes the maximum value from the inputs and passes the result to the next stage of the deep neural 
network. Such layers are useful for reducing the dimensionality of the data. They are often used in combination 
with convolutional layers to refine the data in stages and move from pixel- or sample-level representations to 
object classifications. Typical of this deep-learning structure is the AlexNet entry to the ImageNet LSCVRC-2010 
contest, which employs five convolution layers, three fully connected layers, and three max-pooling stages.

The Ideal Solution for AI 
Applications — Speedcore 
eFPGAs
December 22, 2017 WP011

http://www.achronix.com


The Ideal Solution for AI Applications — Speedcore eFPGAs

2 www.achronix.com December 22, 2017

Figure 1: Deep-Learning Network using Convolutional, Max-Pooling and Fully Connected Layers to 
Interpret Images from the ImageNet Database

(Source: MIT – )http://vision03.csail.mit.edu/cnn_art/index.html

Although there is a common-core approach to constructing most deep neural networks, research into deep 
learning has pushed the technology in many directions. There is no one-size-fits-all architecture for deep 
learning. For example, the internal structure of a deep-learning system for recognizing and reacting to human 
dialog is quite different to one employed to find road signs in camera images. Increasingly, deep-learning 
applications are incorporating elements that are not based on simulated neurons. Instead, they are making use 
of structures that move beyond the relatively simple feed-forward network exemplified by AlexNet.

Recurrent neural networks, which employ feedback loops to steer outputs back into the input stream to provide 
contextual information, are now commonly used in voice recognition and processing. The memory network 
provides another variant of deep learning that is beginning to yield high-quality results. As its name suggests, the 
memory network adds local, temporary storage to the core neural network to hold short-term information about 
recent dialogs. The neural network relies on this context storage to help determine the best response to the user.

Other types of neural network include adversarial architectures that use two linked networks. Competition 
between the two is used to produce better answers in situations where there is a risk of a single network 
becoming stuck. Cellular networks, self-organizing maps, and support vector machines provide other avenues for 
developing systems that can learn. As the technology continues to develop, other novel architectures will 
emerge. Much like the organic brain itself, plasticity is a major requirement for any organization that aims to build 
machine learning into its product designs.

One important contrast between the organic brain and AI is the ability to separate activities such as training and 
the inferencing stage when the trained network is called upon to make decisions. The key breakthrough that led 
to the explosion in deep learning over the past decade came in the mid-2000s, when efficient techniques were 
discovered to allow the training of multiple layers at once. Although the techniques are relatively efficient, they 
rely on enormous compute power generally supplied by servers that use many GPUs or processors for the task. 
The training process is performed in the background (often on the cloud) and does not require a result to be 
produced in real time. A further advantage of performing training on cloud servers is that it allows data to be 
combined from numerous systems in the field, providing a much richer source of information for the training 
process.

http://www.achronix.com
http://vision03.csail.mit.edu/cnn_art/index.html


The Ideal Solution for AI Applications — Speedcore eFPGAs

December 22, 2017 www.achronix.com 3

For inferencing, the compute demand is lower than with training but is generally called upon to provide a real-
time response in most real-world applications. Energy-efficient parallel processing is a key requirement for 
inferencing systems because many will not have a permanent external power source.

Some embedded systems for non mission-critical services pass much of the deep-learning workload to remote 
cloud servers. In applications such as advanced driver assistance and robotic control, the system cannot rely on 
the network connection always being available. Therefore, local high-performance support for inferencing is vital. 
Only the training workload is routinely offloaded onto remote cloud servers.

Designers can exploit some features of neural networks to improve processing efficiency on systems used for 
inferencing. Typically, training demands high precision in the floating-point arithmetic used to compute neural 
weights to minimize the errors that could accumulate from multiple rounding errors during passes backwards and 
forwards through the deep layered structure. In most cases, 32-bit floating point has been shown to be sufficient 
in terms of precision.

For inferencing, errors are less likely to accumulate and networks can tolerate much lower precision 
representations for many of the connections. A post-training analysis can show which connections are likely to be 
unaffected by a reduction in precision. Often 8-bit fixed-point arithmetic is sufficient, and, for some connections, 4-
bit resolution does not increase errors significantly. Systems will benefit from the ability to reconfigure datapaths 
so they can process many streams in parallel at 4-bit or 8-bit precision. But designers will want to retain the 
ability to combine execution units for high-precision arithmetic where needed.

Clearly, machine-learning systems call for a hardware substrate that provides a combination of high performance 
and plasticity.

Substrates for Machine Learning (and the Importance of 
the eFPGA)
A number of processing fabrics are available to support high-performance machine learning. But for use in real-
time embedded systems, some will be ruled out at an early stage due to power consumption and performance 
reasons. For example, general-purpose processors offer high flexibility but low overall performance and energy 
efficiency.

When deep learning took hold in the research community in the first half of this decade, the general-purpose 
graphics processing unit (GPGPU) became a popular choice for both training and inferencing. The GPGPU 
provides hundreds of on-chip floating-point units, able to sum the inputs for many neurons in parallel much faster 
than clusters of general-purpose CPUs.

There is a drawback with applying GPGPUs to deep-learning architectures — these devices are designed 
primarily for accelerating 2D and 3D graphics applications, which employ homogeneous and predictable memory 
access patterns. For example, the shader cores in GPGPUs are tightly connected to small local memories 
designed to be filled using block transfers. This structure favors algorithms with arithmetically intensive 
operations on data that can easily be grouped closely together in memory. Such a structure can be used to 
process convolutional neural-network layers reasonably efficiently. However, other types of layers can prove 
troublesome because they place a greater emphasis on data transfers between neurons. These access patterns 
make the local-memory architecture less efficient, reducing both performance and energy efficiency. 
Furthermore, the emphasis on peak floating-point performance in the GPGPU tends to make the architecture 
unsuitable for embedded use. GPGPUs often require sustained power levels that exceed 150W, demanding 
active cooling and a permanent mains supply.

An ASIC implementation armed with custom logic and memory managers can overcome the bottlenecks that 
challenge GPGPUs in the implementation of deep-learning systems. Memory management units that can be 
tuned for the different access patterns encountered in neural-network code can do a much better job of 
enhancing overall speed.

http://www.achronix.com


The Ideal Solution for AI Applications — Speedcore eFPGAs

4 www.achronix.com December 22, 2017

In structures such as convolutional neural network layers, power savings can be achieved by not transferring 
data in and out of local or intermediate memories. Instead, the fabric can adopt the structure of a systolic array 
and pump results directly to the execution units that need them.

This custom approach need not bake the neural-network structure into hardware — a potentially wasteful 
approach. For example, the AlexNet implementation employs three different sizes of filters within its convolution 
layers: 11 × 11, 5 × 5, and 3 × 3. There is no need even to create separate execution units to implement these 
filters directly. The smallest filter size can be used as the basis for the convolution with larger filter sizes handled 
by using multiple passes through the smaller 3 × 3 filters with a buffer memory used to cache intermediate 
values. Despite allowing for logic reuse between the different layers, this approach slows down the 
implementation, which has to be compensated for through the deployment of a larger number of filter processors.

Even with elements shared across layers, the problem that faces any ASIC implementation is its relative 
inflexibility compared with software-based processors. It is possible to prototype a wide range of deep-learning 
structures and then choose to optimize one for deployment in silicon. A particular application may need to deploy 
more convolution layers or increase the complexity of the filter kernels to handle a particular kind of input. 
Supporting this complexity may require an increased number of filter-kernel processors relative to other hardware 
accelerators. This structure can be accommodated by an ASIC, but it may prove to be a poor fit for a changing 
algorithm or an adjacent application.

FPGAs provide a way of achieving the benefits of custom processors and memory-management techniques 
without locking the implementation to a specific, immutable hardware structure. Many FPGA architectures today 
provide a mix of fully customizable logic and digital signal processing (DSP) engines that provide support for both 
fixed- and floating-point arithmetic. In many cases, the DSP engines employ a building-block approach, 
composed of 8-bit or 16-bit units, that allows them to be combined to support higher-precision data types. Low 
precision can be accommodated via logic implemented in the fabric's LUTs.

The ability to rework the logic array within an FPGA makes it easy to tune the structure of the parallel processors 
and the routing between them for the specific needs of the application. The freedom remains to make changes 
later when the results from training indicate ways in which layers can be expanded or rearranged to improve 
performance. The disadvantage of the standalone FPGA is the need of suppliers to support many markets with 
the same solution. Suppliers need to provide a standard set of functions that apply as well to network switches as 
they do to deep learning. As a result, vendors find it hard to react to the specific needs of a market sector even 
when opportunities arise for converting common functions into more silicon- and power-efficient hardwired cores.

The relative inefficiency of the programmable logic array may mean a user has to compromise on performance – 
sharing functions among different layers within the neural network when the application really demands 
dedicated functionality for some high-throughput parts of the network. One approach is to augment the FPGA 
with a smaller ASIC that provides acceleration for commonly used functions, such as convolution kernels or max-
pooling calculations.

The ability to harness specialized off-chip devices creates possibilities for novel approaches in dealing with the 
high throughput requirements of neural network. For example, ternary content-addressable memories (TCAMs) 
can not only provide fast, efficient temporary storage they can be employed to perform neuronal operations at 
high speed in Hopfield networks and layers with irregular or changing connectivity. TCAMs are difficult and 
expensive to build using programmable logic. Discrete devices are more silicon efficient but present drawbacks.

However, moving data between discrete devices increases energy consumption and the complexity of design. 
Programmable I/O circuitry used to transfer data off chip accounts for half of the total power consumption of the 
typical high-density standalone FPGA. The need for SerDes I/O to restrict the number of PCB traces further 
increases latency (problematic for many real-time inferencing applications) and increases design complexity 
because of signal-integrity issues.

http://www.achronix.com


The Ideal Solution for AI Applications — Speedcore eFPGAs

December 22, 2017 www.achronix.com 5

Embedding an FPGA fabric in an SoC provides a solution to the drawbacks of both the standalone FPGA and 
ASIC, and the issues of passing data between them. One or more FPGA slices embedded into an ASIC provides 
the ability to tune the performance of the neural network on the fly, delivering the high data-transfer bandwidth 
required to make full use of customized engines. Embedded FPGAs make it possible to achieve the best balance 
between throughput and reprogrammability and deliver the performance that real-world machine-learning 
systems require.

The ability to bring FPGA blocks on-chip also saves significant silicon area by:

Eliminating the large, power hungry I/O associated with a standalone FPGA

Moving fixed functions to more efficient ASIC blocks

Conversion of repetitive functions to Speedcore custom blocks (see the next section).

This die area savings translates into reduced manufacturing cost.

Figure 2: Embedding Programmable Logic Saves Space Overall by Removing the Need for Large, 
Power-Hungry I/O Circuitry

eFPGA for Machine Learning
Designed specifically to be an embedded in SoCs and ASICs, Achronix Speedcore™ eFPGA IP is a highly 
flexible solution that supports the data throughput required in high-performance machine-learning applications. 
Using its slice-based architecture, Speedcore IP provides designers with the ability to mix and match eFPGA 
functions as required by the application. The core functions include logic based on four-input LUTs, small logic-
oriented memories (LRAMs) for register files and similar uses, larger block RAMs (BRAMs), and configurable 
DSP blocks. The column-based architecture of the Speedcore fabric provides the ability to mix resources exactly 
as required by the application.

http://www.achronix.com


The Ideal Solution for AI Applications — Speedcore eFPGAs

6 www.achronix.com December 22, 2017

The core functions can be augmented with custom blocks that provide more specialized features that are silicon-
intensive in programmable logic, such as TCAMs, ultrawide multiplexers and memory blocks optimized for 
pipelined accesses. One Achronix customer requested a custom processing and RAM blocks with widths 
optimized for CNN-oriented multiply-accumulate functions. Compared to an architecture that employed standard 
arithmetic and RAM blocks, the customer achieved a die size reduction of 38%, achieving a throughput of 1 Gop/s.

Figure 3: A 41% Die Space Saving was Achieved by Using Speedcore Custom Blocks

Table 1: Custom Block Conversion for YOLO Details

  Before After Savings

  Function Logic
Height Count Total

Area Function Logic
Height Count Total

Area  

DSP Block 18 × 27 2 576 1,152 3 × (16 × 8) 2 216 432 63%

RAM 10 × 512 2 288 576 16 × 512 3 144 432 25%

Through the embeddable architecture, access to the programmable fabric is available to custom cores in the 
SoC without the energy and performance penalties of off-chip accesses. With no need for programmable I/O 
buffers around the FPGA fabric, overall die area within the solution is reduced. Moreover, the modular nature of 
the architecture makes it easy to port the technology to a wide variety of process technologies, down to the 
emerging 7 nm nodes.

To enable easy development of systems based around an eFPGA fabric, Speedcore IP fully supports a JTAG-
based test and debug architecture. The Snapshot debug macro provides the ability to capture large quantities of 
on-chip data and deliver it to the software debugger to aid in the development and performance optimization of 
algorithms mapped to the eFPGA fabric.

http://www.achronix.com


The Ideal Solution for AI Applications — Speedcore eFPGAs

December 22, 2017 www.achronix.com 7

The result is an architecture that provides the best possible starting point for real-time AI acceleration for 
embedded systems that range from consumer appliances through to advanced robotics and autonomous 
vehicles.

Conclusion
Machine-learning techniques represent a new frontier for embedded systems. Real-time AI will augment a wide 
variety of applications, but it can only deliver on its promise if it can be performed in a cost-effective, power-
efficient way. Existing solutions such as multi-core CPUs, GPGPU and standalone FPGAs can be used to 
support advanced AI algorithms such as deep learning, but they are poorly positioned to handle the increased 
demands developers are placing on hardware as their machine-learning architectures evolve.

AI requires a careful balance of datapath performance, memory latency, and throughput that requires an 
approach based on pulling as much of the functionality as possible into an ASIC or SoC. But that single-chip 
device needs plasticity to be able to handle the changes in structure that are inevitable in machine-learning 
projects. Adding eFPGA technology provides the mixture of flexibility and support for custom logic that the 
market requires.

Achronix provides not only the building blocks required for an AI-ready eFPGA solution, but also delivers a 
framework that supports design through to debug and test of the final application. Only Achronix Speedcore IP 
has the right mix of features for advanced AI that will support a new generation of real-time, self-learning 
systems.

http://www.achronix.com


The Ideal Solution for AI Applications — Speedcore eFPGAs

8 www.achronix.com December 22, 2017

Phone : 855.GHZ.FPGA (855.449.3742)
Fax : 408.286.3645
E-mail : info@achronix.com

2953 Bunker Hill Lane, Suite 101
Santa Clara, CA 95054
USA

Achronix Semiconductor Corporation

Copyright © 2017 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and ACE are trademarks of 
Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks are the property of their respective owners. All 
specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor 
Corporation does not give any representations or warranties as to the completeness or accuracy of such information and shall have no liability 
for the use of the information contained herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and 
the information contained herein at any time and without notice. All Achronix trademarks, registered trademarks, disclaimers and patents are 
listed at http://www.achronix.com/legal.

http://www.achronix.com

	Introduction and Background
	Requirements for Machine Learning
	Substrates for Machine Learning (and the Importance of the eFPGA)
	eFPGA for Machine Learning
	Conclusion

