Synthesis User Guide
(UG018)

All Achronix Devices

Achronix

Data Acceleration

UUUUU

UuGo18 Synthesis User Guide

Copyrights, Trademarks and Disclaimers

Copyright © 2024 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and
ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks
are the property of their respective owners. All specifications subject to change without notice.

Notice of Disclaimer

The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor
Corporation does not give any representations or warranties as to the completeness or accuracy of such information
and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation
reserves the right to make changes to this document and the information contained herein at any time and without
notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at http://
www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

uGo18

Synthesis User Guide

Table of Contents

Chapter1:

Chapter 2:

Chapter 3:

(01 =T T 2
SYNTNESIS FIOWS ...ttt s st s bbbt b s s s sessssssensnans 2
ACE-Driven Integrated Synthesis.....ccccoieeeeeieireiecceeecrceeecceeeeceeeeceneenn. 4
SyNthesis ProjeCt SETUP iN ACKE...... et se s sesssss s sesssssesssssesanens 4

Create AN ACE PrOJECT ..ottt ssss st ssss st ssss s sssssssssssssssssssssssssssssssnssssssssnssnsen 4

Add the Design Files and Set PrOJECt OPLIONSeoeeeeroosoerresssceesessscessesssessesssessssseesesssseesessseeesssse 5
Synthesis OptioNs CONFIBUIAtION ...t sessneas 7
Running Synthesis to ComMPpile the DESI8N ...t 8
Synthesis Reports aNd MESSAEES. ...ttt sssssss s sssassesessssns 10
Opening Synplify Project File in Synplify Pro..... e 12
Synplify-Pro-Driven Integrated Synthesiscccccecevurvinirninernncnnnne. 14
Configuring the Synthesis Project in Synplify Pro ... 14
Synthesis Project SEtUP iNACE...... ettt aes 14

CIEALE BN ACE PIOJECT evverrreeeeeeeesseesseoeeeseesssssesesssssssseeeesessssssssessesssssesesssssssssssessesssssessessssssssssessessssssseesee 15

Add the Design Files and Set Project OPTiONS ...ttt ssesse e ssssneen 15
Synthesis Options CoNFIGUIAtiON ...ttt aes 17
Running Synthesis to Compile the DeSI8N ...t 18
Synthesis Reports and MESSAEES. ...ttt ssssssssens 20

uGo18

Synthesis User Guide

Chapter 4:

Chapter 5:

Chapter 6 :

Chapter 7:

Opening Synplify Project File in Synplify Pro.... e 22
Stand-Alone Synthesis in Synplify Procceoeeeveecceencceecseecneecnneenne 23
Configuring the Synthesis Project in Synplify Pro ..., 23
RUNNINE SYNTNESIS ...ttt st sttt s s sssssees 23
Adding the Synthesized Netlist to ACE for Place and Route........ccevevevveereerecenennnnns 23
Synthesis Integration with Multiprocess Option Exploration.............. 25
Managing Projects in Synplify Pro........cceeecennernennenneensencencenenens 27
Creating and Setting UP @ PrOjJECT ...ttt sssneas 27
Adding the Synthesis Library INCIUAE Fil@......c ettt sessenesennes 29
Adding Source Files t0 the ProjECT ...ttt 30
IMPIEMENTATION OPLIONS ..ottt s et s s s senas 31
VBIHIOE ettt ettt ettt bt s een 31
PlaC @NT ROULE ..ttt st ettt sttt s st st s s ansssesanaes 32
TIMINE REPOIM ettt ettt ettt et b et e st s e ssssssnsssssanans 32
IMNPIEMENTATION RESUITS ottt s s s s s s s s sanses 33
CONSTIAINTS ettt e e et baes 34
OPTIONS ettt ettt e bbb bbbt 35
SYNPlify Pro FEAtUreScuiiicieeeeceeeceeecceeeccteeccneecsneessaeessneessnessssesssneenns 37
SYNPLITY WANINES ..ttt ettt sttt s s ses 37
Synthesis Hierarchical REPOI ...t nes 37
HIerarchical Area REPOIT ...ttt es sttt s st saenae 38

uGo18

Synthesis User Guide

Chapter 8:

HDL ANalySt SCHEMATICS ...cuiuieeeeeeceee sttt s s s s senes 39
WACN WINAOW ...ttt ssesessesseas s ssesseaeas s sss s secsssssenne 40
Validating CONSTIIAINTS ..ottt ettt s s st ssssssessnsssesanans 42
USINE HEIP ottt sttt sttt sttt be st s s e aens 42
Synthesis Constraints..........cceieicceencceiicreeccceeccceeeccseeeeesneeecsseeesennen . 44
TIMINE CONSIIAINTS ..ttt s ettt bbb sas b senassesanens 44
CTEATE _CIOCK ceteertreeetreeeeieeecieceete ettt s e ettt s st santne 44
Syntax 44
Command Examples 45
Create_geNerateU _CIOCK ...ttt ettt seas st nas 45
Syntax 46
Command Examples 46
SET_CIOCK _BIOUPS ettt st sas s st ss s st ss s s st s s s s s s s sssssssssesssssssessnsessnsnsnssnsanes 46
Syntax 46
Command Example 46

SO _TAISE _PATN e s 46
Syntax 47
Command Examples 47
SET_INPUE _AEIAY ettt sae sttt ss s s s s s s s s s s s ssssensssenssssnsnsns 47
Syntax 47
Command Examples 47

SEE _OULPUL _AEIAY ..ttt ettt b e nae 48
Syntax 48
Command Examples 48
SET_IMNAX_ABIAY ettt s st ss s st s st s s s s s s s a s s s st naesnes 48

uGo18 Synthesis User Guide

Syntax 48
Command Examples 48

SET _MNUILICYCIE _PATN ettt bt s s s s sansnes 48
Syntax 49
Command Examples 49
SEE_CIOCK _IGEENCY ettt ittt e 49
Syntax 49
Command Example 49
SET_CIOCK _UNCEITAINTY oottt st sss s s s s s s s s s s s s s sassnsessssenes 49
Syntax 49
Command Example 49
NON-tIMINE CONSTrAINTS....ciueiierieeecire ettt s s sees 50
COMPIIE POINTS oottt ettt e bbb saes 50
AETTDULES ¢ttt sttt en 51
Chapter 9: Synthesis Optimizationsccciiiiiiiiiiiiicerccreeccereccee e 53
Preventing Objects from Being Optimized AWaYccenenencenecenensenersecenescenennenens 53
DANEING NETS .ottt st bbbttt seaaeb s 53
Dangling SEQUENTIAI LOZIC ...uuiuiureureereiriereireiseiseireise ettt sses st eb s s st 53
UNCONNECTEA INSTANCES «..ceteieeieeeicireicsee ettt 53
Speedster Output Pad 54
Speedcore Output Pin 54

Prevent ACE Optimizing ODJECTS AWAYcocuiucecucececicieeeneeeiaeeenieeseesseaseaseasessessessessessessessesessessessesae 54
PIDEINING ettt sttt bttt s s ansees 54
RETIMING oottt sttt st ss bt s st st nsssees 54
Forward Annotation of RTL Attributes to the Netlist......c.oonceee 55

Vi

uGo18

Synthesis User Guide

EXAIMIPIE Lottt ettt sttt bbbt b st bt a s st ebanaene 55
EXQIMIPIE 2 ettt ettt sttt nanaene 55
EXQIMIPIE 3 ettt sttt ettt ettt b e aene 56
EXQMIPIE 4 oottt s s s st s 56
EXAMIPIE B ettt e 57
EXGIMIPIE B ettt sttt ettt a e s A st et s s a s b aene 58
EXAIMIPIE 7ttt ettt sttt bttt bbbt a s st sanane 59
COMPIIE POINES ..ttt sttt 60
Finite State MAChINES ...t sssaees 62
GENErating Better RESUIS ..ottt en 62
Debugging the State MaChINES. ...ttt ea s s st 62
FSM ENCOQING ettt ettt as s s st a s s s s s s s s s s s sessesassnsesantans 62

In VHDL 63

In Verliog 63
Replication of States With High FaN-iNS ...t senenaes 63
Fanout Limit 64
Chapter 10 : Synthesis User Guide Revision HiStory.........cccoovieevveinccveeeecceeeecneeeenne. 65

vii

UuGo18 Synthesis User Guide

2.2 www.achronix.com

http://www.achronix.com

uGo18 Synthesis User Guide

Chapter 1: Overview

This user guide describes how to synthesize an RTL design to generate a synthesized gate-level netlist for
implementation in an Achronix device. Suggested optimization techniques are also included.

A high-level overview of the Achronix design flow is shown in figure below.

Integrated Simulation
at Multiple Flow Steps

Third-Party Design

Entry Tools, HLS RTL Simulation

Netlist
Simulation

3 &

3
o O
0]
o
:,('D
2
o 3
3=
23
L

Netlist
Simulation

Fullchip
Bitstream
Simulation

Bitstream
Generation
Silicon

In-system

Debugging Support for VCS, QuestaSim,
Xcelium, Riviera

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

|
| |
| |
| |
| |
| |

|
| |
| |
| |
l 1
I Post-Route }
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

|
| |
| |
| |
| |
| |
| |
| |
| |
| |

70541507-01.2024.11.21

Figure 1 - Achronix Design Flow

Synthesis Flows

There are three main synthesis flows supported by the ACE tools suite:

- ACE-Driven Integrated Synthesis (page 4), where ACE owns and manages the synthesis project definition, and
synthesis is run via the built-in ACE flow step.

- Synplify-Pro-Driven Integrated Synthesis (page 14), where Synplify Pro owns and manages the synthesis project
definition, and synthesis is run via the built-in ACE flow step.

- Stand-Alone Synthesis in Synplify Pro (page 23), where Synplify Pro is run completely outside of ACE to generate
the synthesized gate-level netlist, which is then added to the ACE project. The built-in ACE synthesis flow step
is not run in this case.

2.2 www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

® Synplify Pro does not support batch mode with node-locked licenses In order to run the integrated
synthesis flow steps, a floating license setup is required for Synplify Pro since ACE calls Synplify Pro in
batch mode.

2.2 www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 2 : ACE-Driven Integrated Synthesis

As of ACE version 10.0, synthesis is now a fully integrated flow step in ACE. For designers, the simplest and easiest
synthesis flow to use is the ACE-driven integrated synthesis flow. In this flow, end users do not need to leave ACE to
configure or run synthesis. Users can stay in ACE and manage all aspects of design synthesis, including synthesis
project setup, synthesis options configuration, running synthesis to compile the design, error reporting and log
viewing, and report viewing.

In this scenario, ACE is the master of the Synplify Pro project and runs Synplify Pro from within the ACE Run
Synthesis flow step.

A Caution!

Users should not open the ACE-generated Synplify project file and make changes in Synplify Pro in this
flow, because ACE will re-generate the Synplify project file from the ACE project file settings each time
synthesis is run, and any changes made in Synplify Pro will be lost. To manage a Synplify project file using
Synplify Pro, refer to section. Synplify-Pro-Driven Integrated Synthesis (page 14).

Synthesis Project Setup in ACE
To simplify the download, install, and licensing process, Synplify Pro is now included in the base ACE install package.
Users no longer need to find the compatible version of Synplify Pro, and download it separately from ACE.

The ACE installer on Windows, and the ACE installer script on Linux have been updated to automatically install
Synplify Pro as part of the ACE installation. Users no longer need to install Synplify Pro separately. In addition, some
of the ACE and Synplify Pro license installation and configuration is now automated in the ACE install process. See

the ACE Installation and Licensing Guide (UG002)1 for more details.

As of ACE 10.2 users no longer need to set the SACX_SYNPLIFY_TOOL_PATH environment variable. ACE now
searches for the Synplify Pro installation according to the following order of precedence:

1. If ACX_SYNPLIFY_TOOL_PATH is set, use it, otherwise;
2. Check if SSYNPLIFY_HOME is set, and search for it there, otherwise;

3. Check to see if synplify_pro is available inside the ACE install at <ace_install>/Synplify/bin/synplify _pro(.exe
on Windows), otherwise;

4. Check to see if synplify_pro is available on the SPATH env variable, otherwise;
5. Error out

Now launch ACE to get started.

Create an ACE Project

In the Projects View, click the (L) create Project toolbar button. Follow these steps to create the project:

1. Inthe Create Project Dialog, enter (or browse to) the desired path to the ACE project top-level directory in the
Project Directory field.

1 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

2.2 www.achronix.com 4

https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
http://www.achronix.com
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

UuGo18 Synthesis User Guide

2. Enter the desired ACE project name in the Project Name field and click Finish.

The new project will now appear in the Projects view. See "Creating Projects" or "Working with Projects and
Implementations" in the ACE Users Guide (UGD70)? for more details.

Add the Design Files and Set Project Options

In the Projects view, click the project to select it. Follow these steps to add the design source files for synthesis and
place and route:

1. Click the (Z/) Add Source Files toolbar button and select Add RTL Files.

2. Inthe Add RTL Files dialog, browse to the source RTL directory and select all of the RTL files by holding down
the CTRL key and clicking each file name.

3. Click the Open button to add the RTL files to the project. Repeat this process as needed until all the RTL files are
added to the project.

4. Click the (=) Add Source Files toolbar button and select Add Synthesis Constraint Files.

5. Inthe "Add Synthesis Constraint Files" dialog, browse to the constraints directory and select all of the synthesis
constraints files by holding down the CTRL key and clicking each file name.

6. Click the Open button to add the synthesis constraint files to the project. Repeat this process as needed until all
the synthesis constraints files are added to the project.

7. Click the (=) Add Source Files toolbar button and select Add Place and Route Constraint Files.

() Notes

> This and the following steps to add place-and-route constraint Files are optional and are not
required for running synthesis. These instructions only apply to continue running the flow through
Place and Route.

° |f a previously generated a synthesized gate level netlist exists and has been added it as a place-
and-route netlist file in the ACE project, remove the netlist from the ACE project prior to running
the integrated synthesis flow in ACE. ACE will automatically add the generated synthesized netlist
to the ACE project as part of the Run Synthesis flow step.

8. Inthe "Add Place and Route Constraint Files" dialog, browse to the place-and-route constraints directory and
select all of the files by holding down the CTRL key and clicking each file name.

9. Click the Open button to add the place-and-route constraint files to the project. Repeat this process as needed
until all the place-and-route constraint files are added to the project.

For instructions on adding simulation files to the ACE project, please see the Simulation User Guide (UG072)° or the
"ACE Quickstart Tutorial" in the ACE Users Guide (UG070)".

2 https://www.achronix.com/documentation/ace-user-guide-ug070
3 https://www.achronix.com/documentation/simulation-user-guide-ug072
4 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070

uGo18

Synthesis User Guide

@ Projects = 0
s B RRE S R E
\fuéqukkﬂan
w = Source
= 1P
w = RIL
counter.w (work)
|=| quickstart.v (work)
w [Synthesis
w [~ Constraints
£ quickstart.sdc
= Place and Route
= Simulation
[= Output

Ml

L

Figure 2 - Synthesis Project Source Files

In the Options View, follow these steps to configure the project options:

1. Expand the "Project Options" section and select the target device for the design.
2.

In the Project Options section, scroll down and enter the semicolon-separated list for the HDL include path. For
example:

D:/test_dir/src/rtl;D:/test_dir/src/tb

(@ Notes

o The HDL include path applies to both synthesis and simulation.

> The include path does not need to be added to the ACE libraries in <ace_install>/

libraries. The Run Synthesis flow step will automatically add this to the include path in the
generated Synplify Pro project file.

3.

In the "Project Options" section, scroll down and enter the space-separated list of any HDL define symbols
needed for the design in "HDL Defines". For example:

ADDR_WIDTH=16 DATA_WIDTH=8

(@ Note

The HDL defines applies to both synthesis and simulation.

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

|z Options =

Project: quickstart

Implementation: impl_1

= Project Options
Target Device ACTE1500
Package F33
Speed Grade c2
Core Voltage 0.85

Junction Temperature |0

Flow Mode Evaluation
[Enable Industrial Mode
] Auto-Select Top Module

Incremental Compile

[] Enable Incremental Compile

[[JExport All Partitions
[[JEnable Final Timing Checks

HOL Include Path

Difquickstart/sre/rtl
D:/quickstart/src/th

HOL Defines ||

ADDR_WIDTH=16
DATA_ WIDTH=2

Use Default Project Qutput Path
Use Default /0 Ring Design Generation Path
» Simulation

» Synthesis

Figure 3 - Synthesis Project Options

Synthesis Options Configuration

Once the source files are added and the project options are set, the synthesis implementation options must also be
set. In "Options View", scroll down to the "Synthesis" section and click to expand the section to show the synthesis

implementation options. Ensure that the option the ACE-Driven Synthesis is checked.

2.2

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

|i=| Options X = 0
+ Synthesis
ACE-Driven Synthesis

Route Delay Model acx_custom_route_delay_1 ~

Fanout Limit [200 |

[Enable Retiming

Advanced Synplify Options | |

Default Frequency (MHz) | 200 |

Synthesis Constraint Files

File Full Path
quickstart.sdc Dihquickstart\src\constraints\quickstart.sdc

b Place and Route
» Advanced Place and Route
» Timing Analysis

» Report Generation v

Figure 4 - Synthesis Implementation Options

& Caution!

In order to run the ACE-driven integrated synthesis flow, the ACE-Driven Synthesis option must be
checked (syn_ace_driven_synthesis project option is set to 1). If it is not checked, then project is

using the Synplify-Pro-Driven Integrated Synthesis (page 14) flow instead.
Configure the remaining implementation options as needed for the design. Any Synplify Pro options that are not

directly exposed in the ACE GUI can be set using the "Advanced Synplify Options" field. Simply enter a TCL
formatted list of option-value pairs, for example:

{{optionl valuel} {option2 value2}}

Synthesis implementation options can be explored automatically to find the best options for the design by using the
ACE multiprocess feature as described in Synthesis Integration with Multiprocess Option Exploration (page 25).

Running Synthesis to Compile the Design

To run synthesis from within ACE, ensure that the Run Synthesis flow step is enabled (the checkbox is checked):

2.2 www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

b Flow X% | & Multiprocess g I:IF'| g = 0

[m] € IP Configuration
~ [m] & RTL Simulaticn
[& Fun RTL Simulation
~ [m] €} Synthesis
A Run Synthesis ¢
[J # Run Gate-level Metlist Simulation
v [m] &) Place and Route
[m] & Run Prepare
[m] & RunPlace
[J & Run Post-Placement Timing Analysis
[m] & Run Route
A, Run Post-Route Timing Analysis
[] & Generate Post-Route Simulation Metlist
[J & Run Post-Route Metlist Simulation
[m] & Design Completion
[m] & FPGA Programming

Figure 5 - Enabling the Synthesis Flow Step

To run just the Run Synthesis flow step, perform one of the following:

- Double-click on the Run Synthesis flow step

- Right-click on the Run Synthesis flow step and select Run Selected Flow Step

- Call run -step run_synthesis fromthe TCL console

P Flow ¥ | B Multiprocess E= I]F'| £ = 8

[w] €% IP Configuration
~ [m] & RTL Sirmulation
[] & Run RTL Simulation
w [m] €D Synthesis
& Run Sy '

[& RunGa [5 Run Selected Flow Step
v [m] &) Place and Re-Run Flow with "-ic init"
[m] & RunPr
] & RunPl: & Stop Flow
Run P
L1 RunPo Clear Flow
[m] & RunRa
A Run Po Ak, Create Flow Step
[] & Genera Rermove Flow Step
[] & RunPa

[W] &) Design Completion
W] & FPGA Programming

Figure 6 - Running the Run Synthesis Flow Step

2.2

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

The Run Synthesis flow step can be run from within the context of the overall flow by:
- Clicking on the Run Flow toolbar button to run the entire flow
- Call run from the TCL console to run the entire flow

If a subsequent flow step is run, ACE will automatically run all incomplete prerequisite and enabled flow steps
between the selected flow step and the last completed flow step. For example, double-clicking on the Run Post-
Route Timing Analysis flow step and none of the previous steps are complete, ACE will automatically start running
the enabled flow steps in order from the beginning of the flow, including Run Synthesis if it is enabled.

The Run Synthesis flow step runs synthesis using the configuration set in the ACE project options. In this flow ACE is
the master of the synthesis project (the syn_ace_driven_synthesis project option is set to 1).

The source synthesis project file will be automatically generated from the ACE project settings and managed by ACE
in the Project - Output — (impl) - syn directory.

All output from the underlying synthesis tool is streamed to the ACE TCL console and ACE log file. If synthesis fails,
ACE will catch the error and will mark the Run Synthesis flow step state as an error with a red X and stop the flow
from running any further. If synthesis succeeds, ACE will mark the Run Synthesis flow step as complete with a green
check-mark icon.

1 Flow X | B Multiprocess UE'*| £ =0

[m] €% IP Configuration
~ [m] €3 RTL Simulation
[] & Run RTL Simulation
~ [B] ¥ Synthesis
% Run Synthesis
[J 4 Run Gate-level Metlist Simulation
v [m] € Place and Route
[m] & Run Prepare
[m] & RunPlace
[] & Run Post-Placement Timing Analysis
[m] & RunRoute
A, Fun Post-Route Timing Analysis
[& Generate Post-Route Simulation Metlist
[J & Run Post-Route Metlist Simulation
] & Design Completion
] 3 FPGA Programming

Figure 7 - Synthesis Completed Successfully

Synthesis Reports and Messages

Once synthesis completes, ACE will automatically open any relevant synthesis reports and log files in the ACE GUI
Editor Area.

2.2 10

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

@) ACE - Achronix CAD Environment - Version 10.2 - quickstart->impl_1 (AC7t1500) - X
Fie Edit Actions Window Help
@| e Q% QIHPEHEL S o Q
@ Projects X CWm B R G®B| & x § = 0| opons x = 8 | syntmp/quickstartimpl_1_srhtm log file X =0
1 quickstart Export All Parttons o #ss22 START OF TINING REPORT #assa| -
<O Soure SE e e - quikstart fmplLev_acs) 2 Tining report uriteen on Hed Nov 20 14:10:35 2024
it nable Finsl Timing Ched e eyt M
v & R HOL Include Path =] - %Wﬁﬂsl&&m&mﬂ.\
ounter.v (work) -, Sppheator Top view quickstart
- D/ quickstart/src/ 5 Premappine Report : :
2 quickstarty (work) ¥y =] Requested Frequency: 5.0 HHz
v & Synthesis * Clock Conversion tire doad mode: ‘
v (& Constraints. 1 Reg aths requested:
& Constraint Ly Constraint File(s): U:\ACE_RELEASES\latest-rel-v10.2\Achronix-u
(3 Tmige Regext
) quickstartsde A Tuiog B w D:\quickstart\src\constraints\quickstart. sd
(& Place and Route \,‘R'&“” 1020
& Simulation o A e | E9HI320 ¢ | This timing report iz an estimate of place and route
v (= Output HDL Defines 3 Constraint Checker Report N N
< & Reports = e @N:MT322 : | Clock comstraints include only register-to-register
B multiprocess DATA WIDTH=8 (23 Session Log (14:10 20.Nov)
> B synthesis
B simulation Performance Summary
+ B tiing it
@ utiization
(8o 2 Use st Project Output ot Worst slack in designs 123.953
B placement jse Default |/0 Ring Design Generation Path Requested Estimsted Requested Estim
B routing Simuation Storting Clock Frogueny Freaveney period rerto
P | ACE-Driven Synthesis
B Flow X | B Multiprocess P m§=0 Route Delay Model acx_custom_route_delay_1 v
[® @ IP Configuration
2B @ R somton Fanout Limit E3]
O A Run RTL Simulation [Enable Retiming Clock Relationships
v @O syntnesis Advenced Synpity Options |]
[z Clocks | rise to rise | fall to fall |
] A Run Gate-level Netist Simulation Default Frequency (MHz) 200]
v W@ Place and Route. Starting Ending | comstraint slack | constraint slack |
B & FumPrepe Synthesis Constraint Files
] A RonPlace Fie Fall Path dk Ak | 125000 123.953 | No paths -]
LI A Run Post-Placement Timing Analysis [quickstartsde DAquickstarisrc\constraintsquickstart sdc Note: 'No paths' indicates there are no paths in the design for t
g: Run Route ‘Diff grp' indicates that paths exist but the starting cloc
Run Post-Route Timing Anlysis
[A Generate Post-Route Simulation Netlist » Place and Route
[A Run Post-Route Netlist Simulation
6 Design Compiion e Pl Rt Interfece Informetion
[®@ FPGA Programming » Timing Analysis. o .) M
& 7ol Console X S BOB ke 3 =0
The netlist file named: "D:/quickstart/proj/impl_1/syn/rev_acx/quickstart_impl_1.vm" is already a part of the project. ~
Profile run_synthesis Tcpu 51/+42(16+25) Tuck 36:23/+50 Hpk 483/+0.0 Heur 409/+0.0
Flow step "run_synthesis” conpleted in 50 seconds. Peak memory usage is 432 MB. Cputime 50 seconds. .
cnd> ™

W somoisem [

Figure 8 - Synthesis Reports and Messages

These reports can be found later on in the ACE Projects View under the Project — Output —» Reports — synthesis
virtual folder. ACE automatically organizes all reports in a central location for easy access.

2.2

www.achronix.com

11

http://www.achronix.com

UuGo18 Synthesis User Guide

@Projects)(
Clus B a@RE o x
vtgquickstart
v [= Source
= IP
v = RIL

=| counter.w (work)

0
soo | O

= quickstart.v (work)
v [Synthesis
w [= Constraints
5 quickstart.sdc
= Place and Route
(= Simulation
v (= Output
v [Reports
B multiprocess
v [synthesis
= quickstart_impl_1.htm
B simulation
B timing
B utilization
g pins
Bl clocks
B placement
B routing
B others

58 impl_1

Figure 9 - ACE Project Reports Virtual Folders

Opening Synplify Project File in Synplify Pro

As of ACE 10.1, ACE allows the user to open the generated Synplify Pro project file

under Project - Output - (impl) - syn directory in Synplify Pro GUI. To open this file in Synplify Pro, in the Projects
View tree, right-click on the ACE-generated Synplify Pro project file, i.e., Output — <active_impl> - syn -
<project_name_impl_name>.prj and select Open Project in Synplify. For more details, refer to the section Opening
Synplify in ACE in the ACE Users Guide (UG070)°.

& Caution!

Users can use this feature to view project file settings and schematics in Synplify Pro GUI. The ACE-
generated Synplify Pro project file should not be updated in this flow because ACE will re-generate the
Synplify Pro project file from the ACE project file settings each time synthesis is run, and any changes
made in Synplify Pro will be lost. To manage a Synplify Pro project file using Synplify Pro, refer to section.
Synplify-Pro-Driven Integrated Synthesis (page 14).

5 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 12

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

Synthesis User Guide

uGo18
SR R

{* Projects x \

~ i quickstart
» (=Source
~ (= O0utput
» (=»Reports
~ #Fimpl_1
w =5yn
b (=rev_acx
= stdout.log " & Openfile
|= stdout.log.bak Open with...
Show in File Manager
< Open Project in Synplify «
¥ Remove

|2 stdout_job.log
[z synlog.tcl

» Epnr
b Es5im
Figure 10 - Open Project in Synplify Pro for ACE-Driven Integrated Synthesis

www.achronix.com

13

2.2

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 3 : Synplify-Pro-Driven Integrated Synthesis

As of ACE 10.0, synthesis is now a fully integrated flow step in ACE. In this hybrid flow, end users configure and
manage their synthesis project in Synplify Pro and run synthesis from inside ACE. This capability enables users who
are comfortable using the Synplify GUI to take advantage of the integrated Run Synthesis flow step in ACE and the
automated synthesis implementation option exploration offered in the ACE multiprocess feature.

In this scenario, Synplify Pro is the master of the Synplify project file, and ACE calls Synplify Pro from within the ACE
Run Synthesis flow step. In this flow, users must disable (uncheck) the ACE-Driven Synthesis synthesis
implementation option in ACE (syn_ace_driven_synthes1is project option is set to 0), and set the Project
Override Path option to point to the source Synplify project file being managed in Synplify Pro.

When the Run Synthesis flow step is run, ACE reads in the Project Override Path project file, overrides a subset of
the implementation options (to enable multiprocess), and generates a local modified copy of the project file to run
from within ACE. Users should not open the ACE-generated Synplify project file and make changes in Synplify Pro in
this flow because ACE will re-generate the Synplify project file from the ACE project file settings each time
synthesis is run, and any changes made in Synplify Pro will be lost. To manage a Synplify project file using Synplify
Pro, open the Project Override Path project file in Synplify instead. For more details, For more details, refer to the
section Opening Synplify in ACE in the ACE Users Guide (UG070)°.

Configuring the Synthesis Project in Synplify Pro

The first step is to create a new synthesis project and configure the synthesis options as documented in the section,
"Managing Projects in Synplify Pro (page 27)".

Synthesis Project Setup in ACE

To simplify the download, install, and licensing process, Synplify Pro is now included in the base ACE install package.
Users no longer need to find the compatible version of Synplify Pro, and download it separately from ACE.

The ACE installer on Windows, and the ACE installer script on Linux have been updated to automatically install
Synplify Pro as part of the ACE installation. Users no longer need to install Synplify Pro separately. In addition, some
of the ACE and Synplify Pro license installation and configuration is now automated in the ACE install process. See
the ACE Installation and Licensing Guide (UG002)’ for more details.

As of ACE 10.2 users no longer need to set the SACX_SYNPLIFY_TOOL_PATH environment variable. ACE now
searches for the Synplify Pro installation according to the following order of precedence:

1. If ACX_SYNPLIFY_TOOL_PATH is set, use it, otherwise;
2. Check if SSYNPLIFY_HOME is set, and search for it there, otherwise;

3. Check to see if synplify_pro is available inside the ACE install at <ace_install>/Synplify/bin/synplify_pro(.exe
on Windows), otherwise;

4. Check to see if synplify_pro is available on the SPATH env variable, otherwise;

5. Error out

6 https://www.achronix.com/documentation/ace-user-guide-ug070
7 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

2.2 14

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

UuGo18 Synthesis User Guide

Now launch ACE to get started.

Create an ACE Project

In the Projects View, click the (1) Create Project toolbar button. Follow these steps to create the project:

1. Inthe Create Project Dialog, enter (or browse to) the desired path to the ACE project top-level directory in the
Project Directory field.

2. Enter the desired ACE project name in the Project Name field and click Finish.

The new project will now appear in the Projects view. See "Creating Projects" or "Working with Projects and
Implementations" in the ACE Users Guide (UG070)® for more details.

Add the Design Files and Set Project Options

In this flow, RTL files or synthesis constraints files do not need to be added to the ACE project since the synthesis
project is outside of ACE. Also, the HDL Include Path, HDL Defines do not need to be configured. These settings will
all be automatically imported from the Synplify Pro project file specified in the Project Override Path when the Run
Synthesis flow step is run.

& Caution!

Paths containing environment or TCL variables are not supported as part of the automatic import of
settings from the Synplify Pro project file.

In the Projects view, click the project to select it. Follow these steps to add the design source files for synthesis and
place and route:

1. Click the (=) Add Source Files toolbar button and select Add Place and Route Constraint Files.

() Notes

> This and the following steps to add place-and-route constraint Files are optional and are not
required for running synthesis. These instructions only apply to continue running the flow through
Place and Route.

o If a previously generated a synthesized gate level netlist exists and has been added it as a place-
and-route netlist file in the ACE project, remove the netlist from the ACE project prior to running
the integrated synthesis flow in ACE. ACE will automatically add the generated synthesized netlist
to the ACE project as part of the Run Synthesis flow step.

2. Inthe "Add Place and Route Constraint Files" dialog, browse to the place-and-route constraints directory and
select all of the files by holding down the CTRL key and clicking each file name.

3. Click the Open button to add the place-and-route constraint files to the project. Repeat this process as needed
until all the place-and-route constraints files are added to the project.

8 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 15

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

uGo18

Synthesis User Guide

For instructions on adding simulation files to the ACE project, see the Simulation User Guide (UG072)° or the "ACE

Quickstart Tutorial" in the ACE Users Guide (UG070).

In the Options View, follow these steps to configure your project options, expand the "Project Options" section and

@Prnjects)(
CeE® B &R
v'[gquickstart

w = Source

= IP
= RTL
w [Synthesis
= Constraints
w = Place and Route
= Metlists
w = Constraints
guickstart.pdc
quickstart.sdc
= Simulation
= Output

Figure 11 - ACE Project Source Files

select the target device for the design.

(@ Note

The HDL Include Path or HDL Defines do not need to be set to run synthesis. These options may need to be
configured if running simulation from within ACE. See the Simulation User Guide (UG072

9 https://www.achronix.com/documentation/simulation-user-guide-ug072
10 https://www.achronix.com/documentation/ace-user-guide-ug070
11 https://www.achronix.com/documentation/simulation-user-guide-ug072

I

a el

)11

for details.

2.2

www.achronix.com

16

https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/simulation-user-guide-ug072
http://www.achronix.com
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/simulation-user-guide-ug072

UuGo18 Synthesis User Guide

|i=| Options = 08

Project: quickstart

Implementation: impl_1

= Project Options
Target Device ACTE1500 ~
Package F53 ~
Speed Grade 2 ~
Core Vaoltage 0.85 ~
Junction Temperature |0 ~
Flow Mode Evaluation ~

[+] Auto-Select Top Module
Incremental Compile
[]Enable Incremental Compile

[Export All Partitions

[] Enable Final Timing Checks

HDL Include Path | |

HDL Defines | |

Use Default Project Qutput Path
Use Default /0 Ring Design Generation Path

¥ Simulation

b Synthesis

Figure 12 - Synthesis Project Options

Synthesis Options Configuration

Once the source files are added and the project options are set, the synthesis implementation options must also be
set. In "Options View", scroll down to the "Synthesis" section and click to expand the section to show the synthesis
implementation options. Ensure that the option ACE-Driven Synthesis is unchecked.

2.2 17

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

j:=| Options X

Project: quickstart
Implementation: impl_1
} Project Options
» Simulation
w Synthesis
[ACE-Driven Synthesis

Project Override Path | D:/test/quickstart.prj 3 || | Open Project in Synplify

Route Delay Model acx_custom_route_delay_1 ~

Fanout Limit [200 |

[] Enable Retiming

Advanced Synplify Options | |

Default Frequency (MHz) |P_00 | ”

Figure 13 - Opening a Synplify Pro Project File that is Specified as Project Override Path

A Caution!

In order to run the Synplify-driven integrated synthesis flow, the ACE-Driven Synthesis option must be

unchecked (syn_ace_driven_synthesis project option is set to 0) and have the "Project Override
Path" option set to point to the source Synplify project file. If the ACE-Driven Synthesis checkbox is
checked, then the project is using the ACE-Driven Integrated Synthesis (page 4) flow instead.

Configure the remaining implementation options as needed for the design.

Synthesis implementation options can be explored automatically to find the best options for the design by using the
ACE multiprocess feature as described in Synthesis Integration with Multiprocess Option Exploration (page 25).

Running Synthesis to Compile the Design

To run synthesis from within ACE, ensure that the Run Synthesis flow step is enabled (the checkbox is checked):

2.2 www.achronix.com 18

http://www.achronix.com

uGo18

Synthesis User Guide

b Flow X% | & Multiprocess g I:IF'| g = 0

[m] € IP Configuration
~ [m] & RTL Simulaticn
[& Fun RTL Simulation
~ [m] €} Synthesis
A Run Synthesis ¢
[J # Run Gate-level Metlist Simulation
v [m] &) Place and Route
[m] & Run Prepare
[m] & RunPlace
[J & Run Post-Placement Timing Analysis
[m] & Run Route
A, Run Post-Route Timing Analysis
[] & Generate Post-Route Simulation Metlist
[J & Run Post-Route Metlist Simulation
[m] & Design Completion
[m] & FPGA Programming

Figure 14 - Enabling the Synthesis Flow Step

To run just the Run Synthesis flow step, perform one of the following:

- Double-click on the Run Synthesis flow step

- Right-click on the Run Synthesis flow step and select Run Selected Flow Step

- Call run -step run_synthesis fromthe TCL console

P Flow ¥ | B Multiprocess E= I]F'| £ = 8

[w] €% IP Configuration
~ [m] & RTL Sirmulation
[] & Run RTL Simulation
w [m] €D Synthesis
& Run Sy '

[& RunGa [5 Run Selected Flow Step
v [m] &) Place and Re-Run Flow with "-ic init"
[m] & RunPr
] & RunPl: & Stop Flow
Run P
L1 RunPo Clear Flow
[m] & RunRa
A Run Po Ak, Create Flow Step
[] & Genera Rermove Flow Step
[] & RunPa

[W] &) Design Completion
W] & FPGA Programming

Figure 15 - Running the Run Synthesis Flow Step

2.2

www.achronix.com

19

http://www.achronix.com

UuGo18 Synthesis User Guide

The Run Synthesis flow step can be run from within the context of the overall flow by:
- Clicking on the Run Flow toolbar button to run the entire flow
- Call run from the TCL console to run the entire flow

If a subsequent flow step is run, ACE will automatically run all incomplete prerequisite and enabled flow steps
between the selected flow step and the last completed flow step. For example, double-clicking on the Run Post-
Route Timing Analysis flow step and none of the previous steps are complete, ACE will automatically start running
the enabled flow steps in order from the beginning of the flow, including Run Synthesis if it is enabled.

The Run Synthesis flow step reads in the Project Override Path project file, overrides a subset of the implementation
options (to enable multiprocess), and generates a local modified copy of the project file to run from within ACE. In

this flow Synplify Pro is the master of the synthesis project (the syn_ace_driven_synthesis project option is
set to 0).

() Note

For each implementation, ACE generates a locally modified copy of the synthesis project file in the
Project — Output->(impl) - syn directory.

All output from the underlying synthesis tool is streamed to the ACE TCL console and ACE log file. If synthesis fails,
ACE will catch the error and will mark the Run Synthesis flow step state as an error with a red X and stop the flow
from running any further. If synthesis succeeds, ACE will mark the Run Synthesis flow step as complete with a green
check-mark icon.

P Flow ¢ | B Multiprocess UE"| i = B

] €% IP Configuration
~ [W] & RTL Simulation
[J 4 Run RTL Simulation
w [B] &y Synthesis
4 Run Synthesis
[J & Run Gate-level Metlist Simulation
~ [W] ¥ Place and Route
[m] & Run Prepare
[m] & RunPlace
[J & Run Post-Placement Timing Analysis
[m] & RunRoute
A, Run Post-Route Timing Analysis
[J & Generate Post-Route Simulation MNetlist
[J & Run Post-Route Metlist Simulation
[m] & Design Completion
] & FPGA Programming

Figure 16 - Synthesis Completed Successfully

Synthesis Reports and Messages

Once synthesis completes, ACE automatically opens any relevant synthesis reports and log files in the ACE GUI
Editor Area.

2.2 20

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

@) ACE - Achronix CAD Environment - Version 10.2 - quickstart->impl_1 (AC7t1500) - X
File Edit Actions Window Help
&| it OO EHAR@MLERBRICD S Q
@ Projects X W E BB GRE|$ % = B[k optns x O] ntmp/quickstart_impl tm log file X =)E
=, Export Al Prtit B 2862 START OF TINING REPORT seees a
e Diexport A Patitons 5 aquickstart-lmpl_1 rev_sex) # Tining report written on Hed Nov 20 14:10:35 2024
v Soue [Enable Final Timing Checks L] 8 e
e nable Final Trning Ched S M
v RIL HOLInclude Path | =) # Comoiler Constramt
 countery (work) e RS Top view: quickstart
B qucistarty (work) el Buspane R Repueseed Frequency: 3.6 1
v & Syheis 3 CitComentn || Mire load mie: o
ot oy ok Gz aths requeste
¥ (& Constraints & Magpes Report Constraint File(s): U:\ACE_RELEASES\latest-rel-vi.2\Achronix-u
() X
) quickstartsde (3 Timine Repost Fvice !
i i, S L 0 \quitkstare\src\constraints\quickstart. sd
> & Smulation P I— @N:NT320 : | This timing report is an estimate of place and route
v & Output HOL Defines Constain Checker Repart
< & Reports T i e @N:NT322 ¢ | Clock constraints include only register-to-register
) multprocess DATAWIDTH=8 (3 Session Log (14:10 20-Nor
> B synthesis
B simulation Performance Sumary
R
> B uilation
B T TS——— Vorst slack in design: 123,953
> B dod
B placement 1 Use Defoult /0 Ring Design Generation Poth Requested Estimsted Requested Estim
B routing Simulation Sterting Clock Frequency Frequency o perio
o = o e e i
P CIACE Driven Synthesis
Ty Flow X | B Multiprocess. P> ®§ =0 Project Override Path | D:/test/quickstart.prj)| | Open Project in Synplify
> B IP Configuration
© @ R Smulston Route Delay Model scx_customroute delay_| 7]
O] A Run RTL Simulation N ™ Clock Relationships
RS e [0 ST
Run Synthesis Enable Retiming))
%:R G"":'fl et St Clocks | rise to rise | fall to fall |
e e ek Siion Advanced Synpty Options | O - -
~ @0 Place and Route Starting Ending | constraint slack | constraint slack |
[A Run Prepare Default Frequency (MHz) 200
[A RunPlace b Constint s ke Ak | 125.000 123.953 | Mo paths - I
[A Run Post-Placement Timing Analysis = == - -
34 funfote e P fote: [l paths indicates there e no gaths In she design Tor ¢
grp’ indicates that paths exist but the starting cloc
1 A Run Post-Route Timing Analysis quickstartsde Diquickstartsr\constraints\quickstat sdc
[& Generate Post-Route Simulation Netist
[A Run Post-Route Netlist imulation
> @ Design Completion + Place and Route. Interface
> @@ FPGA Programming i —— B . K

(2 Tcl Console X

cnd> set_inpl_option -project {quickstart} -impl {impl 1} -- "syn_ace driven_synthesis" "0"

cnd> save_project -project "quickstart’
cmd>

s value 1.880000 greater than remsinder of total portion of substeps in step exec_run

S e[O@&a § =08

s

Figure 17 - Synthesis Reports and Messages

These reports can be found later on in the ACE Projects View under the Project —» Output — Reports — synthesis
virtual folder. ACE automatically organizes all reports in a central location for easy access.

@ Projects |

= g

v 12 quickstart
w [~ Source
= IP
= RTL
w [Synthesis
(= Constraints
w [Place and Route
» (= Netlists
w (= Constraints
quickstart.pdc
quickstart.sdc
» [Simulation
w = Output
w [Reports
E| multiprocess
v !| synthesis

ﬂ] simulation

EER e B RRE SRS

quickstart_impl_1.srr
quickstart_impl_1_rarm_rpt.tet

Figure 18 - ACE Project Reports Virtual Folders

2.2

www.achronix.com

21

http://www.achronix.com

uGo18 Synthesis User Guide

Opening Synplify Project File in Synplify Pro

As of ACE 10.1, users can open the path specified as Project Override Path (implementation option:
syn_project_override_path) by clicking the Open Project in Synplify button next to the path text field in the
Options view. For more details, refer to the section Opening Synplify in ACE in the ACE Users Guide (UG070)'.

|| Options | = 8

~

Project: quickstart
Implementation: impl_1
» Project Options
} Simulation
v Synthesis
[ACE-Driven Synthesis

Praject Override Path | D:/test/quickstart. prj [|} | Open Project in Synplify

Route Delay Model acx_custom_route_delay_1 w~

Fanout Limit [200 |

[~] Enable Retiming

Advanced Synplify Options | |

Default Frequency (MHz) |?_DO | o

Figure 19 - Open Project in Synplify for Synplify-Pro-Driven Integrated Synthesis

12 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 22

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UuGo18 Synthesis User Guide

Chapter 4 : Stand-Alone Synthesis in Synplify Pro

In this flow, synthesis is run outside of ACE in Synplify Pro, and the generated gate-level synthesized netlist is added
to the ACE project as a source file. In this flow, the Run Synthesis flow step in ACE is disabled (unchecked).
Configuring the Synthesis Project in Synplify Pro

The first step is to create a new synthesis project and configure the synthesis options as documented in the section,

Managing Projects in Synplify Pro (page 27).

Running Synthesis

After selecting all the options according to the users design, click OK. The user is returned to the Synplify Pro main
window to run the synthesis. From this main window, click RUN button to start synthesis.

> Synplify Pro (R} U-2023.03X-2 - [D:/ACE_10.0/Designs/quickstart/impl_1/syn/quickstart_impl_1.prj <out of date>]
<> &l File Edit View Project Run Analysis HDL-Analyst Options Window Web Help
BB D@ < B QP BY Yow @E

Synplify Pro®
2 Run qg -

|Rur| active implementationi

Design Hierarchy
quickstart_impl_1 : rev_acx - Achronix Speedster7t : ACTH1500E30 : F53 : C2

¥ B [quickstart_impl_1] - DAACE_10.00\Designsiquickstart\impl_T\syn\g

T Open Project...

E. Close Project

Ll > Ifj Verilog
Et,; Change File... » Ifj Logic Constraints (SDC)

» Ef] Logic Constraints (FDC)

% Add Implementation...
rev_acx

{@ Implementation Options...
BR Add P&R Implementation
&, View Log
Frequency (MHz):
@200 Auto Const.

Figure 20 - Running Synthesis in Synplify Pro

Adding the Synthesized Netlist to ACE for Place and Route

Once synthesis has successfully completed, add the generated synthesized netlist to the project in ACE. In the

Projects View, Click the (é}) Add Source Files toolbar button and select Add Place and Route Netlist Files. Browse
to the Synplify-generated synthesized netlist file and click Open.

2.2 23

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

@F‘rujects . = 8

CEE2E@ B G #fE & %3
v & quickstart Add IP Configuration Files
v @ Source Add RTL Files
= P
= RTL Add Synthesis Constraint Files

[= Synthesis
w [~ Place and Route
w = Metlists
|=| quickstart_img.
= Constraints
= Simulation
[= Output

Add Place and Route Metlist Files
Add Place and Route Constraint Files

P TP TP P TP T [

Add Simulation Testbench Files

Figure 21 - Adding the Synthesized Netlist to the ACE Project

In this flow, RTL files or synthesis constraints files do not need to be added to the ACE project since the synthesis
project outside of ACE. Also, the HDL Include Path, HDL Defines nor any of the synthesis implementation options in
ACE need to be configured. only the synthesized gate- level netlist needs to be added to the ACE project.

When running the ACE flow steps, ensure that the option the ACE-Driven Synthesis is unchecked; otherwise, ACE

will error as the project is not configured to run synthesis. If this happens, simply uncheck the Run Synthesis flow
step and try running the ACE flow again.

4 Flow ¥ | B Multiprocess =3 EIF'| £ = 0

[m] €¥ IP Configuration
~ [m] & RTL Simulaticn
[] & Fun RTL Simulation
~ [m] € Synthesis
[] & Run Synthesis
[] & Run Gate-level Metlist Simulation
~ [m] € Place and Route
[m] & Run Prepare
[m] & RunPlace
[] & Run Post-Placement Timing Analysis
[m] & RunRoute
A Run Post-Route Timing Analysis
[] & Generate Post-Route Simulation Metlist
[] & Run Post-Route Metlist Simulation
[m] & Design Completion
[m] & FPGA Programming

Figure 22 - Run Synthesis Flow Step Disabled

2.2 www.achronix.com 24

http://www.achronix.com

uGo18

Synthesis User Guide

Chapter 5 : Synthesis Integration with Multiprocess Option

Exploration

When using the ACE-Driven Integrated Synthesis (page 4) flow or the Synplify-Pro-Driven Integrated Synthesis (page
14) flow, users can take advantage of the automated design option exploration features built in to the ACE
multiprocess tool. This tool can generate implementation option sets which sweep over both synthesis and place-

and-route options to explore fyax performance variations.

The following items are required to enable synthesis implementation options exploration:

1. Enable the Run Synthesis flow step (checked in the Flow View)
D Flow | B Multiprocess [= DF‘|

[m] €% IP Configuration
~ [m] &3 RTL Simulation
] & Run RTL Simulation
~ [€} Synthesis
A Run Synthesis ¢
[1 & Run Gate-level Netlist Simulation
~ [m]) Place and Route
m] & Run Prepare
@] & RunPlace
[1 & Run Post-Placement Timing Analysis
m] & Run Route
Ay Run Post-Route Timing Analysis
] & Generate Post-Route Simulation Metlist
] & Run Post-Route Metlist Simulation
[m] & Design Completion
[m] & FPGA Programming

Figure 23 - Run Synthesis Flow Step Enabled

This option is only supported when using ACE-Driven Integrated Synthesis (page 4) or the Synplify-Pro-
Driven Integrated Synthesis (page 14) flows.

2. Uncheck the Exclude Synthesis Option in the Multiprocess View must be unchecked

2.2

www.achronix.com 25

http://www.achronix.com

UuGo18 Synthesis User Guide

=] Options | B Multiprocess B | i = 0
* Execution Queue Management “
Configure the number of ACE project implementations executed simultaneously, and whether they are executed
locally in the background, or submitted to an external cloud/grid/batch job system.
Enable Job Submission System (configured in Preferences)
Parallel job count: (walid range: 1-99)
= Multiprocess Flow Management
In the Flow View, enable and disable the desired flow steps that all multiprocess implementations should fellow. Then,
in the combo-box below, select how far through the flow the implementations should run, (This provides a means of
stopping the flow early.)
Stop Flow After: | Run Post-Route Timing Analysis ~
= Select Implementations
Select which implementations within the Active Project should be queued for execution. (Option Set Implementations
will be created if they don't already exist, or will overwrite existing implementations with the same name.) When the
"Start Selected” button is pressed, the selected implementations will run using the current Flow configuration. When
Incremental Compile is enabled, the user can optionally choose to copy the Incremental Compile DB file from the
template (active) implementation to all the other implementations before running the flow. This allows you to lock
down the best results from a previous run and copy the unchanged partition place and route data to the other impls.
() Existing Implementations
(®)Generate Implementation Option Sets] Exclude Synthesis Options Refresh Option Sets
() Seed Sweep of prime numbers; seedcount:)
[] Copy Incremental Flow DB From Template Impl
Implermentation Execution State Description
£ impl_1 Selected The template implementaticon itself.
£l impl_1_autegenl_mpgf Selected This aute-generated option set changes the value for max_all
£ impl_1_autogenl_mrpg Selected This auto-generated option set changes the value for mlp_ms
£ impl_1_autogen2 _fprp Selected This aute-generated option set changes the value for fanout_|

Figure 24 - Multiprocess View

When these requirements are met, ACE will sweep over synthesis implementation options in addition to the place-
and-route implementation options, which can create a wider range of performance variation and help hone in on the
best options to achieve that last 5% to 10% of fjyax performance boost. Refer to the "Running Multiple Flows in

Parallel" section of the ACE Users Guide (UG070)3. for more details.

13 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com 26

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

uGo18

Synthesis User Guide

Chapter 6 : Managing Projects in Synplify Pro

This chapter is only applicable to the following synthesis flows:

- Synplify-Pro-Driven Integrated Synthesis (page 14)

- Stand-Alone Synthesis in Synplify Pro (page 23)

(@ Note

If using the ACE-Driven Integrated Synthesis (page 4) flow, Synplify Pro does not need to be launched
outside of ACE. ACE will manage all aspects of synthesis automatically, including Synplify Pro project

creation.

This guide assumes that Synplify Pro is installed with the synplify_pro command added to the $PATH variable.

Creating and Setting up a Project

1. InaLinux command shell type synplify_pro to invoke Synplify Pro synthesis. When invoked, the following

window will be displayed:

S Synplify Pro (R) R-2021.03X - [<no projects loaded>]

T 7 File Edit View Project Run Analysis HDL-Analyst Options Window Web Help

B B & e @ <% A @& ead@By

- o x
=)&)

Run |Synplify Pro®
|Ready

T Open Project... Project Files

Project Status | Implementation Directory | Process View

/T Close Project
[Add File....

Frequency (MHz):
Of O Auto Gonst

B Project Settings.

[Name

|Project Name [

Run Status

|Job Name Status) [A @ JcPu Time Real Time.

Memory Date/Time

P <No projects>

R-2021.03%

-product synplify_pro
e: synplify pro

TCLScript | Messages

Information

Figure 25 - Synplify Pro Invoked from the Command Shell

2. Click the Open Project button on the left side to open the open project dialog-box:.

2.2

www.achronix.com

27

http://www.achronix.com

uGo18

Synthesis User Guide

X - [<no projects loaded>]

[P/ File Edit View Project Run Analysis HDL-Analyst Options Window Web Help

BEBDEBRORAN G OQR BT

| Synplify Pro®

9Run
‘| |Ready

Project Files |

Project Status Directory | Process View |

| Close Project

3 Change File.
Add Implementation.

Project Name Name

Implementation Optians S Open Project

Add P&R Implementation Recent

Real Time Memory Date/Time

i

Existing Project.

2, View Log
Frequency (MHz):

®1 O Auto Const.

B <No projects>

@R

R-2021.03X

Version:

Arguments: -product synplify pro
ProductType: synplify pro

8]

n

TCLScript | Messages |

I = XA =

Figure 26 - Dialog Box to Select the New Project

3. Click the New Project button to open the following window:

S Synplify Pro (R) R-2021.03X - [C:/projects/ quickstart/quickstart pj]

P) File Edit View Project Run Analysis HDL-Analyst Optins Window Web Help

BB E@ O 06 eeeBEE

| &9 ws & FF o

‘Synplify Pro®

2R Add P&R Implementation
3, View Log

Frequency (MHz):
200 ® Auto Const.

“Run
|Done: 0 errors, 6 131 notes
% Open Project Project Files | Design Hierarchy | | Project Status | Implementation Directory | Process View |
Cl B "y i - rev_1 - Achronix Speedster7t : ACTt1500ES0 : F53A0 : C1 |” C: 1
PRSI E & B {[guckstat] - C. o -
g Name Size | Type | Modified
" 4] ram.v [work] >WARNINGS: 5 ->NOTES: 110 @) backup Directory 9:35:23 14-Feb-2022
3 Change File... £ ey 1 &-F) coreip Directory 9:35:23 14-Feb-2022
B Add Impl " - & dm Directory 9:41:44 14-Feb-2022
s mplementation... &) synlog Directory ~ 9:41:48 14-Feb-2022
A & syntmp Directory ~ 9:41:48 14-Feb-2022
® synwork Directery 9:41:51 14-Feb-2022

186bytes sdo File 9:41:50 14-Feb-2022
ram fse 0 bytes ise File 9:41:46 14-Feb-2022
ram.htm 23dbytes htm File 9:41:53 14-Feb-2022
ram.map 28bytes map File 9:41:53 14-Feb-2022

9:41:48 14-Feb-2022

&
g
2
2
AutoGonstraint_ram.
5}
5}
ram.sap 260 bytes sap File
@

ram.sef 924bytes scfFile 9:41:52 14-Feb-2022
ram.srd 12kB Netiist 9:41:50 14-Feb-2022
Automatic Compile Point) B ram.sm 9kE Netlist (G... 0:41:51 14-Feb-2022
Continue on Error & ram.sir 33KB ST File 53 14-Feb-2022
FSM Compiler E ram.sm.db 28kB smdb File 9:41:53 14-Feb-2022
Resource Sharing [@ ram.srs 2kB Netlist (RTL) 9:41:46 14-Feb-2022
Pipslining E 0O ramvm kB Verilog Ne... 9:41:52 14-Feb-2022
[ram_cck.mpt 2kB pt File 9:41:48 14-Feb-2022
Retiming [c ram_cck.mt.do BKB mt.do File 48 14-Feb-2022
Automatic Compile Point ... |[1] ram_ram_mt txt 2kB txt File: 9:41:50 14-Feb-2022
[ram_scck.mpt 1kB it File 9:41:47 14-Feb-2022
[ram_scek.rpt.db 8kB mptdb File 9:41:46 14-Feb-2022
pt_ram 1.areasim 1kB areasr File 9:41:53 14-Feb-2022
mt_rami_areasmhtm 883bytes htm File 9:41:53 14-Feb-2022
[run_options. txt 1kB ixt File 9:41:44 14-Feb-2022
B scratchproject.prs 1kB prs File 9:41:44 14-Feb-2022
[version.log 30 bytes Iog File 9:41:44 14-Feb-2022

' quickstar

Information

Return Code: 1
Run Time:00h:0OM:0Ss

Complete: Map on quickstart|rev_l

Complete: Logic Synthesis on quickstart|rev_l
o

0|

B

K|

TCLScript | Messages |

I = KA =)

Figure 27 - Starting a New Project

2.2

www.achronix.com

28

http://www.achronix.com

UuGo18 Synthesis User Guide

(@ Notes

1. Synplify Pro can open multiple projects at once; however only one can be run at time.
2. A single project supports multiple implementations with each having different:

a. Device settings

b. Optimization settings

c. RTL define for different code builds

Adding the Synthesis Library Include File

After selecting and saving the project file inside the desired directory path, add the appropriate synthesis library
include file and device specific synthesis constraints file:

<ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_synplify.sv
+ <ACE_INSTALL_DIR>/1libraries/device_models/<DEVICE>_synplify.fdc (page 27)

The first file in the project file list should be the relevant ACE library file.

For the path to ACE libraries, the ACE_INSTALL_DIR environment variable can be used. By manually editing the

Synplify Pro . prj file, a TCL variable that stores the value of an environment variable can be defined. Then, each
time the TCL variable is used, ensure the full string is enclosed in { } rather than " ". For example:

#-- Synopsys, Inc.

#-- Version S$-2021.09X-3

#-- Project file /views3/kevinhine/main/hls/PandA-Bambu/designs/pcie_mnist/syn/
pcie_mnist.prj

#-- Written on Thu Aug 31 10:01:41 2023

Custom TCL source
syn_source {

set ACE_INSTALL_DIR $::env(ACE_INSTALL_DIR)
}

add_file -verilog -vlog_std sysv {$SACE_INSTALL_DIR/libraries/device_models/
AC7t1500_synplify.sv}
set_option -include_path {../src/shell/include/;../hls/;$ACE_INSTALL_DIR/libraries/}

When the . prj is saved, the entire "syn_source" command written is preserved, as well as any places with the
variable is enclosed with { }.

2.2 29

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

© Warning!

If the variable is enclosed with "" instead of { }, the value of the variable will be written into the . prj onthe
next save.

Adding Source Files to the Project

There are two ways to add RTL source files. One is using the Add File button in the left menu bar, and the other one
is to right-click on the project file and select Add Source File. Selecting either option directs the user to a dialog box
listing available RTL files (see the figure below). The same procedure is followed for adding both source and
constraint files.

In the examples that follow, the Speedster 7t technology has been selected, so the file

AC7t1500ESO_synplify.sv is used. From this dialog box, select the desired RTL file(s) and then
click Add followed by OK. The Verilog/VHDL file(s) will now be added to the project for synthesis.

e

“> Add Files to Project

Look in: | Z:\Achronix\Achronix-linux\libraries\device_models v| QO Q =]

|} My Computer | | ACD55C0103R0_simmodels.sv
) | | ACO5SCO103R0_synplify.sv
3 sajanverman || ™ AC0DSSCO105R0_simmodels.sv
| | ACO5SCD105R0_synplify.sv
| | ACO5SC0Z01R0O_simmodels.sv
| | ACO5SCOZ01RO_synplify.sv
| | ACTtBODESO_simmodels.sv
| | ACTtBODESO_synplify.sv
| | ACTt1500ES0_simmodels.sv
| ACTt1500ES0_synplify.sv
| | ACTt1550ES0_simmodels.sv
|| ACTt1550ES0_synplify.sv
|| ACTtFSCO4A100R1_simmodels.sv
|| ACTtFSCO4A100R1_synplify.sv
|| ACTtFSCO4ASD0R1_simmodels.sv
| | ACTtFSCO4AS00R1_synplify.sv

File name: ACTH1500ESO_synplify.sv

Files of type: |HDLFiles (*.vhd *.vhdl *.v *.sv *.vma) |

VHDL/Verilog lib: -

Files to add to project: (1 file(s) selected) [¥] Use relative paths [] Add files to Folders
Z\Achronix\Achronix-linwx\libraries\device_models\ACTH1500ES0_synplify.sv <- Add All

Remove All -

Remove ->

OK

Cancel

Figure 28 - Add Files to Project

2.2 30

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Implementation Options

After adding the RTL files and constraint files, the next step is to set the implementation options. Click
Implementation Options to open the window. shown below. This dialog box shows the default options. For example
the "Fanout Guide" defaults to 10,000, but can be overwritten by the user for tuning QoR.

B Implementation Options - quickstart: rev_1 bt

Device | Options | Constraints = Implementation Results |~ Timing Repert | Verlog = GCC | Place amEE] Implementations:
rev_1
Technology: Part: Package: Speed: -

| Achronix Speedster7t ~| | ACTt1500ES0 ~| |F53a0 ~| |1 M

Device Mapping Options

| Option [value |
Fanout Guide 110000
Disable I/O Insertion
Update Compile Point Timing Data (]
Automatic Read/Write Check Insertion for RAM (]
Retime Registers Forward (]
Annctated Properties for Analyst
mem_init_file 0
Resolve Mixed Drivers O
Set the guideline for fanout-based optimizations such as replication
SYNOPSYS
[ok || cancel || Help | s

Figure 29 - Implementation Options

(@ Note

For Achronix devices, ensure the Disable 1/0 Insertion option is checked as shown.

In the "Implementation Options" dialog box, the "Device" tab is selected by default. Each tab presentation additional
options that can be set according to user's needs. Below are some guidelines for these options.

Verilog

Under this tab, the user may designate the top-level design module name. The user can also provide the names of
any parameters existing in the design along with associated values. If parameters are defined in this manner,
Synplify Pro propagates this value throughout the design. In this tab, the user must include the path to needed
libraries under "Include Path Order." Click on the + file icon to add the directory path and select from the
ACE_installation path as shown below.

2.2 31

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

(® Note
"Library Directories or Files" box can be left empty.

Device Options = Constraints | Implementation Results ~ Timing Report =~ Verilog = GCC | Place an{lﬂ Implementations:
rev_1

Top Level Module: Compiler Directives and Parameters
Parameter Name Owerride Value
Verilog Language
Verilog 2001

System Verilog

Push Tristates @

[] Allow Duplicate Modules Extract Parameters
Multiple File Compilation Unit
[] Beta Features for Verilog Compiler Directives: e.g. SIZE=8

-
-

Include Path Order: (Relative to Project File)

C\projects\quickstarttincludet

Library Directories or Files:

Loop Limit | 2000

Library Extensions (space separated)

SYNOPSys

| ok || cancel || Hep

Figure 30 - Implementation Options: Include Path Order.

Place and Route
This tab is not presently utilized by ACE.

Timing Report

In the Timing report tab, the number of critical paths and number of start and end points can be specified to appear

in the timing report. Default timing report is available in the synthesis report (. srr) file. The two available options
are:

- Number of Critical paths - sets the number of critical paths for the tool to report.

- Number of Start/End points - specifies the number of start and end points to see reported in the critical path
sections.

2.2 32

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

B Implementation Options - quickstart : rev_1

Device Constraints | Implementation Results

Options
MNumber of Critical Paths: 100

Number of Start/End Points: 10

Description

Timing Report

Verilog

GCC

Place E"“‘EE] Implementations:

rev_1

Configure the timing report by specifying the number of paths to include in the "Starting/Ending Points with worst

slack" and "Worst Paths" report sections.

OK

|| Cancel ||

SYTOPSYS

Help

Figure 31 - Implementation Options: Timing Report

Implementation Results

Users may set their own implementation name in this tab; the default name is rev_1. The next box is the "Results
Directory," specifying where users want to save the synthesized netlist file. The third box is "Results File Name,"

which sets the synthesized netlist file name.

2.2 www.achronix.com

33

http://www.achronix.com

UuGo18 Synthesis User Guide

B Implementation Options - quickstart: rev_1

Device | Options | Constraints | Implementation Results | Timing Report | Verilbg | GCC | Place E‘“‘EE] Implementations:
rev 1

Implementation Name: =

rev_1

Results Directory:

Cr\projects\quickstartire_1

Result Base Name: Result Format:
quickstart| vm -

Optional Output File Options

Write Mapped Verilog Netlist
[Write Mapped VHDL Netlist
Write Vendor Constraint File

SYNOPSYS

[ok || cancet || Help

Figure 32 - Implementation Options: Implementation Results

Constraints

The Constraints tab is used to add synthesis constraint files if they were not added after adding source RTL files.
This tab is also used to set the default clock speed of the design. Achronix highly recommends that a suitable

constraint file be created for the synthesis project, specifying all of the clocks in the design. For details of how to add
constraint files and their syntax see Synthesis Constraints (page 44).

In addition the default frequency should be set to the match the most common system clock frequency (by default it
is set to 200 MHz).

2.2 www.achronix.com 34

http://www.achronix.com

UuGo18 Synthesis User Guide

B Implementation Options - quickstart : rev_1

Device = Options = Constraints | Implementation Results | Timing Report | Verilog =~ GCC | Place an{E] Implementations:

Frequency (MHz)

200 ® Auto Constrain (Optimize to obtain maximum frequency)

] Use Clock Period for Unconstrained 10
Constraint Files

Check files to apply to this implementation.

FPGA Constraints (FDC) | SDC | Synopsys Safety Format (SSF) |
=click to add file...»

SyOPSys

[ok || cancet || Hep

Figure 33 - Implementation Options: Constraints

Options

The Options tab sets the following optimization switches: FSM Compiler, Resource Sharing, Pipelining and
Retiming — all are enabled by default. Users may change these optimization options according to design needs. For
example, with resource sharing enabled, the software uses the same arithmetic operators for mutually exclusive
statements as in branches of a case statement and hence area is optimized. Conversely, timing can be improved by
disabling resource sharing, but at the expense of increased area.

2.2 www.achronix.com 35

http://www.achronix.com

uGo18 Synthesis User Guide

P Implementation Options - quickstart: rev_1 x

Device = Options | Constraints | Implementation Results | Timing Report | Verilog | GCC | Place anEE] Implementations:

Optimization Switches =

[_] Automatic Compile Point
Continue on Error

FSM Compiler

Resource Sharing

Pipelining

Retiming

[Distributed Compilation

[] Automatic Compile Point with soft

Option Description
Click on an option for a description.

SYNoPsys’

[ok [cancel [Hop | ‘reomesces

Figure 34 - Implementation Options: Options

2.2 36

www.achronix.com

http://www.achronix.com

uGo18 Synthesis User Guide

Chapter 7 : Synplify Pro Features

There are several features in Synplify Pro which can be very useful. This section covers recommendations for:
- Synplify Warnings
- Synthesis Hierarchical Report
- HDL Analyst Schematics
- Watch Window
- Validating Constraints
- Using Help

Synplify Warnings

Users can make use of strong linting and checking capabilities provided by Synplify Pro.

[792 warmnings, 1138 notes]E\nd: l "] I§et F\Iter...llj Apply Filter [] Status Page Filter Group Common IDs
|Type | 1D |Message |Source Lcl Log Location |Tlme |Report =
My 37 CL248 Input port bits 23 to 10 of ovc_avalable_all[23:0] are unused. Assign logic for all port bits or change the input port size. - large top.sir 01:14:52... Compiler Repory ;
A 16 CG133 Object | Is declared but not assigned. Either assign a value or remove the declaration. - large top.sr 01:14:52... Compiler Report—!
Ay 100 CG168 Type of parameter CVw on the instance class_table is not in accordance with the type of parameter on corresponding module. PIL.. - large top.srr 01:14:52... Compiler Report
A 20 clLaar Input port bit 0 of destport[4:0] is unused - large top.sr 01:14:52... Compiler Report
A [64] CG1239 Undriven input neighbors_r_addr on instance the_router mesh t... large top.sm ... 01:14:52... Compiler Report

A CG360 Removing wire refresh_w_counter, as there is no assignment to It routerv... large top.smr... 01:14:52... Compiler Report

Ay 2 CL156 *Input un1[1:0] to expression [ror] has undriven bits; assigning undriven bits to 0. Simulation mismatch possible. Assign all bits o... - large top.srr 01:14:52... Compiler Report

A 8 CL169 Pruning unused register port_Ip[3].ssa_flit_wr_all[5]. Make sure that there are no unused intermediate registers. - large top.sm 01:14:52... Compiler Report

Ay 8 CL168 Removing instance extractor because it does not drive other instances. To preserve this instance, use the syn_noprune synthesis... ss allo... large top.sm 01:14:52... Compiler Report

A2 CL271 Pruning unused bits 4095 to 3584 of filt_in_regd[4095:0]. If this is not the intended behavior, drive the inputs with valid values, ori... large to... large top.sm... 01:14:52... Compiler Report
iy CL177 Sharing sequential element user_|_in_reg ce. Add a syn_preserve attribute to the element to prevent sharing. add c.s... large top.sm... 01:14:52... Compiler Repo {~]

X474 er-specified initial value defined for some sequential elements which can prevent optimum svnthesis re = large too.sm... 01:14:52... Pre-maopina Rey

an L[]

TCL Script Messages

Figure 35 - Warning Messages

Synthesis Hierarchical Report

Synplify Pro has a hierarchical report to show different design statistics. The right-hand pane also shows, Project
build status, Predicted timing, Resource Utilization:

2.2 37

www.achronix.com

http://www.achronix.com

uGo18 Synthesis User Guide

Project Status | Implementation Directory | Process View |

‘

Project Name noc_ref_design_top Device Name rev_1: Achronix Speedster7t : ACTt1500ES0
Implementation Name rev_1 Top Module noc_ref_design_top

Pipelining 1 Retiming 1

Resource Sharing 1 Fanout Guide 10000

Disable /O Insertion 1 Disable Sequential Optimizations 0

Clock Conversion 1 FSM Compiler 1

M

Job Name Status A CPU Time Real Time Memory ime
‘Compile | {compiler) . o24i21
Dehiigi mmmr:m e Complete 278 49 0 00m:06s - 500 PM
Prem: remap) g g 524/
Dmk:pm“’ S Complete 17 £l 0 | Om:04s 0m:05s 381MB em
Map & Optimize 5/24/21
(fpga_mapper) Complete 1580 1335 0 | Om:30s Om:31s 414MB 501 PM
Detailed repart

DFF 11884 of 1382400 (less than 1%) BRAM 2 of 2560 (less than 1%)
LRAM 1 of 2560 (less than 1%) MLP 0 of 2560 (0.00%)

LuT 48401 of 691200 (7.00%) ALUS 73 of 172800 (less than 1%)
Detailed report Hierarchical Area report

ock Name (clock_name) Req Freq (req_freq) Est Freq (est_freq) Slack (slack)

clk_chk 500.0 MHz 341.7 MHz -0.927
clk_send 500.0 MHz 362.2 MHz -0.761
System 500.0 MHz NA NA
Detailed report

‘Combined Clock Conversion 2/ 0 more

Retiming 146 [283 more

Figure 36 - Synthesis Hierarchical Report

Hierarchical Area Report

This report is useful to understand utilization of elements in the design, as well as, total sequential utilization for
specific modules. The report is really helpful to understand the utilization hotspots in the design.

| Area Summary : Hierarchical Area report
Module name [uta |uTs |oFF |ALus |BRAM |LRAM [mp |Paps
B] noc_ref_design_top 47327 47752 11884 73 2 1 0 0

1 axi_bram_responder_Z1500640 27 271 141 5 2 0 0 o

= axi_pkt_chk_Z3124600 71 05 47 19 0 0 0 0

1 axi_pkt_gen_Z1803940 35 27 143 5 0 0 0 0

1 data_stream_pkt_chk_Z1617590 163 223 819 16 0 0 0 o

= data_stream_pkt_chk_Z1626830 176 227 638 16 0 0 0 0

=1 data_stream_pkt_gen 71916190 82 114 385 0 0 0 0 0

1 data_stream_pkt_gen_Z1925430 85 114 388 0 0 0 0 o

j nap_horizontal_wrapper_Z 1461360]]] o)) 0]

j nap_horizontal_wrapper_Z959520]]] o o o o]

h j nap_slave_wrapper_Z4909260 4 0 0 1] 0 0 0 0

j nap_vertical_wrapper_Z1492480]]] o)) 0]

j nap_vertical_wrapper_7Z1494460]]] o o o o]
< i] D]

Figure 37 - Hierarchical Area Report

2.2 38

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

HDL Analyst Schematics

The Synplify Pro HDL Analyst features enable the user to visualize the end user design in several useful schematic

views, including the hierarchica

| RTL view and flattened gate level netlist view. There are a variety of features to

help filter and explore the design which can be accessed by the HDL Analyst top level menus or by right click menus

within the schematic.

Browsing back and forth between the RTL view and the Technology (gate-level netlist) view enables users to
visualize how the design RTL was mapped to FPGA primitives such as LUTs and registers.

S Synplify Pro (R) U-2023.03%-2 - [D:\ACE_10.0\Designs\quickstartiimpl_Tisyn\rev_acx\synwork\quickstart_impl_1_mult.srs] - O x
< [E FEile Edit View Project Run Apalysis |HDL-Analyst| Options Window Web Help =] ®
BB @ 20BE Q@ 4 RTL » @ Hierarchical View
Technology »| Flattened View
b = Fr = i -
@ o B o &4 @ @ @ Mierarchical X Schematic Options | Dataflow View
» L Instances/Groups (3) & Eilter Schematic Flz -
: ; :::5(;? Schematic Options...
¥ L} Primitives (19) Use Legacy HDL Analyst (obsolete)

irent1_countf_reg1 (dff)

irent1_countf_reg2 (dff)

£} irent2_countf_regl (dff)

£} ient2_countf_reg2 (dff)

o ipulsel (or)

T Epulsel_a (andv)

D kpulsel_b (andv)

£1 Epulsel_reg] (dff)

{1 i;pulsel_reg2 (dff)

D ipulse2 orv)

T Epulse2_a (andv)

T Epulse2_b (andv)

£} Epulse2_reg? (dff)

ipulse2_reg2 (dff)

1= i:quickstart_gpio_bank_c

P bunl_pulse_s (inv)

P bunl_pulsel_b (inv)

P bunl_pulse2_s (inv)

1= Eunl_pulse2_b (inv)
I Black Boxes (0)

q

Detail View

G
]

B quickstart_impl_1.prj <out of date>

@ quickstart_impl_1_mult.srs (RTL)[d:0]

un_pulse2_2

- are]
jore]

=

arel

counter_12s 111
ik count [11:81p—

2_countf_rg

3_countf_regl

ole]

are] nrst

internal_counter2

pulsel _reg?

|

pulsel 3

plal

qre]

pulsel_regl

Zoom: Cirl+Scroll Wheel Zoom Area: Ctrl+Drag Pan: Middle Click Drag or Alt+Drag Push: Double Click Cancel Display: Press 'Escape’

kP quickstart_impl_1.srm (Tech)[d:1]

Information a®
project -load D:/ACE_10.0/Designs/quickstart/impl_l/syn/quickstarc_impl_l.pr3

Unrecognized part "AC7t1500" specified for device "AchronixSpesdster7t” in quickstarc_impl_l:rev_acx

Loaded XDM (Hierarchy) data base - elapsed time 0:0 Blocks=4

@N Implementation 'D:\ACE_10.0\Designs\quickstart\impl_ l\syn\guickstart_impl 1.prj|rev_acx' design hierarchy loaded from database =
B 3
TCL Script Messages

Analyze RIL level schematics after compiling = A =]

Figure 38 - HDL Analyst Hierarchical RTL View

2.2

www.achronix.com 39

http://www.achronix.com

UuGo18 Synthesis User Guide

S Synplify Pro (R} U-2023,03X-2 - [DAACE_10.0\Designs\quickstart\impl_T\syn\rev_acx\quickstart_impl_1.5rm] - m} x
(=9 @ Eile Edit View Project Run Apalysis |HDL-Analyst Options Window Web Help = ®

REE DEd R 0B@@m d Q=R
Technology + T Hierarchical View
& o B e 4 @ @ @ = Schematic Options | Dataflow View +

Hierarchical 3 Elattened View

internal_counter\ cour ~ G Filter Schematic Fiz Flattened to Gates View PR v =
Einternal_counter\.courn i

internal_counterl\.coun
internal_counterl\.coun
internal_counterl\.coun
internal_counterl\.coun
internal_counterl.cour
Einternal_counter1\.coun s JJ
internal_counter2\ courr ot
internal_counter2\.court

internal_counter2\.court
internal_counter2\.court
internal_counter2\.court
internal_counter2\.court
iinternal_counter2\.coun
itinternal_counter24.coun -

irinternal_counter2\.courr pulsel b Sl DFFE

internal_counter2\.counm

Schematic Options... Hierarchical Critical Path

Use Legacy HDL Analyst (obsolete) Flattened Critical Path

TesrmE]_counter2\. count[18]

ods e soDFFENL o5 sm
o

[7-07ALUB

(

cout]

nal_counter2

pulsel_regz

LuT4_zF22

_":D— r -—1 ==l pulsel_regi

- DFFE, internal_co

Tnternsl_counterz\ count_cry_a[s]

.

internal_counter 2\ count[3]

.

internal_counter2\.counm
- internal_counter 2\ count 5]
internal_counter2\.counm

illed_counter\.count[0] (T
illed_counter\.count[1] (T o e o BFFE Lo o0c

iled_counter\.led_count_

.

iled_counter\.led_count_

iipulsel_b (LUTA_2F22) intarnal_counter 2\ count[8]

i:pulsel_regl (DFF)

i:pulse]_reg2 (OFF) o [DFFE

ipulse? b (LUT4 2F22) |~
¥

q 7 ek ¥
Detail View Zoom: Ctri+Scroll Wheel Zoom Area: Ctrl+Drag Pan: Middle Click Drag or Alt+Drag Push: Double Click Cancel Display: Press ‘Escape’
B quickstart_impl_1.prj <out of date> @ quickstart_impl_1_mult.srs (RTL)[d:0] | & quickstart_impl_1.srm (Tech){d:1]

Informaticn 3]

project -load D:/ACE_10.0/Designs/quickstart/impl_ 1/syn/quickstart_impl 1.prj

Unrecognized part "ACTtl500" specified for device "AchronixSpeedster7t" in guickstart_impl l:rev_acx

Loaded XDM (Hierarchy) data base - elapsed time 0:0 Blocks=%

BN Implementation 'D:\ACE_10.0\Designs\guickstart\impl_l\syn\guickstart_impl l1.prj|rev_acx' design hierarchy loaded from database

%
TCL Script | Messages
Generate and anzlyze technology specific schematics after mapping and flattening to gates [A)

Figure 39 - HDL Analyst Flattened Gate-Level Netlist View

Watch Window

Watch window is useful to view and compare results of multiple implementations. Watch window can be enabled by
the View — Watch Window command. Click in the Log Parameter section of the window and then click the pull-
down arrows to display the parameter choices.

(@ Note

Only a limited set of design parameters are supported for display.

To choose the implementations to watch, use the "Configure Watch" dialog box (right-click on "Log Parameter"
section of the window) and select the implementations to watch.

2.2

www.achronix.com 40

http://www.achronix.com

uGo18

Synthesis User Guide

'' watch D e e R e R R R e A R R A A A R A A RO
Log Parameter rev_default rev_logic rev_BROM
clk - Estimated Frequency 190.4 MHz 192.4 MHz 210.7 MHz
clk - Requested Frequency 230.0 MHz 230.0 MHz 230.0 MHz
clk - Estimated Period 5.253 5.196 4.747
clk - Requested Period 4.000 4.000 4.000
clk - Slack -1.253 -1.196 0.747
top Part ac7t1500es0f53a0c2 ac7t1500es0f53a0c2 ac711500es0f53a0c2
CPU Time 0Oh:02m:28s Oh:00m:34s Oh:02m:22s
Log Watch
Figure 40 - Watch Window
Log Watch Configuration X
—Watch Selection
['watch Active Implementation
'® Watch Selected Implementations
[Watch All Implementations
Selected Implementations to watch:
rev_default
rev_logic Select All
rev_ BROM
Clear All
QK
Cancel

Figure 41 - Log Watch Configuration

2.2

www.achronix.com

41

http://www.achronix.com

uGo18

Synthesis User Guide

Validating Constraints

Synplify Pro provides a constraint checker, which runs the preliminary stages of synthesis, and then checks the
project constraint files against the objects in the design. It will report if any constraints cannot be successfully
applied. It is highly recommended that constraint check is run to ensure that all constraints the user requires to be

applied to the design are in fact being applied.

Select Run - Constraint Check to validate a project's constraints.

P IE File Edit View

Project | Run | Analysis HDL-Analyst Options Window Web

1=

B 4B 58 @ % | R k6 ves
Resynthesize All =
oY Hu n Compile Only F7 L
Wiite Output Netlist Only
FSM Explorer I
|B’ Open Project... | Translate Vendor IO... —
|L~E Closa Bijec | Post Place & Route Resynthesis... -
|[H Add File. . | syntax Check SHIET |
|a; Change File... | Synthesis Check Shift+F8
|ﬁ Add Implementation... |'{J Constraint Check Shift+F10
- - Armange WVHDL Files
|ﬁ Implementation Options... |@ Launcuh S
|¥ Add P&R Implementation |III Configure and Launch VCS Simulator ...
| & View Log | Run TCL Script...
—Frequency (MHz): Run Implementations Setup...
-.OZ: () Auto Const. Job Status... Ctri+J
Automatic Compile Point |[] Eext.Enn:Waﬂng . ;ﬁlﬁ -
Continue on Eror I A EILLLS SNEE AL -
FSM Compiler Log File Message Filter...
Resource Sharing E ‘I[Il o |
D clicice = 1) =]

Using Help

For getting help quickly, Synplify Pro provides very useful context sensitive help. For example, to access more

Figure 42 - Validating Constraints

information about the "Attributes" tab of the Scope editor, click F1 key.

2.2

www.achronix.com

42

http://www.achronix.com

uGo18

Synthesis User Guide

On clicking the F1 key, help will automatically direct to relevant section of the help.

wampr s

B File Edit View Project Run Analysis HDL-Analyst Opfions Window Web Help
BLBD @R OPAG A QR E TV EE

Current Design: [<Top Level>

5

Enale | Object Type |

Obect [

Altribute | velue

Valua Typa | Description

e e e

s

[=la=]

B

[elelelslsR(a = (R=]5]

“Clocks | Generated Clocks | Collections | InpulsiOuiputs | Registers | Delay Paths | Aftributes | 1O Standards | Compile Poinis | TCL View |

15 noc_23_ref_cssign_top.prj <oud of dste> || [&

Figure 43 - Attributes Tab Within the Scope Editor

Fle Edt View Go Bookmaris Help _Feedback

le-o-ttulDsalaaa

T index | Sookmarks_ Search |

= [Ader

Ka

s bu

— 2] _seoren

utes

Tl e I“h
Il

See Also

+ Fornfonmaion about al SCOPE panels, see SCOPE Tabs.

Figure 44 - Saumple Help Screen

2.2

www.achronix.com

43

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 8 : Synthesis Constraints

Synplify Pro constraints can be specified in two file types:

- Synopsys design constraints (SDC) - normally used for timing (clock) constraints. A second SDC file would be
required for any non-timing constraints.

- FPGA design constraints (FDC) - usually used for non-timing constraints; however, can contain timing
constraints as well.

SDC files are usually edited using a text editor, either as part of Synplify Pro or an external editor. FDC files can be
edited in either a text editor or using the Scope editor within Synplify Pro. When using Synplify Pro to edit FDC files,
an assistant tab is available which provides details of available FDC commands and their format.

Timing Constraints

It is highly recommended that the user defines all clocks in the design using an SDC file. If the design has multiple
clocks, clock constraints should be set accordingly, defining either appropriate clock groups or false paths between
asynchronous clocks. In addition, if required, the user can specify specific duty cycles for any particular clock.

Use the create_clock timing constraint to define each input clock signal and the create_generated_clockt
iming constraint to define a clock signal output from clock divider logic. The clock name (set with the —name option)
will be applied to the output signal name of the source register instance. When constraining a differential clock, the
user only needs to constrain the positive input.

For any clock signal that is not defined, Synplify Pro uses a default global frequency, which can be set with

the set_option —-frequency Tcl command in the Synplify Pro project file. However, Achronix recommends
defining each clock in the design rather than relying on using this default frequency for undefined clocks.

A list of SDC commands are given below with examples. Refer to
fpga_reference.pdf
available in Synplify Pro Tool — Help - PDF documents for the description of the various options of the
remaining SDC commands listed here.

create_clock

This command creates a clock object and defines its waveform in the current design. The options
for create_clock are described in the table following.

Syntax

create_clock -name clockName [-add] {objectList} | -period {Value} [-waveform {riseValue
fallvalue}] [-disable] [-comment commentString]

2.2 44

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Command Examples

create_clock -name 1inclk -period 10 [get_ports {inclkl}]

create_clock -name divclk -period 20 [get_nets {divclk}]

create_clock -name 1inclkfast -period 5 -add [get_ports {inclkl}]

create_clock -name 1inclk -period 20 [get_ports {inclkl inclk2 inclk3}] -waveform {
10 15 }

Table 1 - Option Description for create_clock

“

Specifies the name for the clock being created, enclosed in quotation
marks or curly braces. If this option is not used, the clock is given the name
of the first clock source specified in the objectList option. If the objectList
option is not specified, the -name option must also be used, which creates

-name clockName a virtual clock not associated with a port, pin, or net. Both the -name and
objectList options can be used to give the clock a more descriptive name
than the first source pin, port, or net. If specifying the -add option, the
-name option must be used, and clocks with the same source must have
different names.

Specifies whether to add this clock to the existing clock or to overwrite it.
Use this option when multiple clocks must be specified on the same source

-add for simultaneous analysis with different waveforms. When this option is
specified, the -name option must also be used.
-period Value Specifies the clock period in nanoseconds (ns). The value type must be

greater than zero.

Specifies the rise and fall times for the clock in nanoseconds with respect
to the clock period. The first value is a rising transition, typically the first
rising transition after time zero. There must be two edges, and they are
assumed to be a rise followed by a fall. The edges must be monotonically
increasing. If this option is not specified, a default timing is assumed which
has a rising edge of 0.0 and a falling edge of periodValue/2.

-waveform riseValue fallValue

objectList Clocks can be defined on the following objects: pins, ports, and nets.
-disable Disables the constraint.
-comment textString Allows the command to accept a comment string.

create_generated_clock

This command creates a generated clock object.

2.2 45

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Syntax

create_generated_clock —-name {clockName} [-add] -source {masterPin} -divide_by integer

Command Examples

create_generated_clock -name divclk -source [get_ports {inclk}] -divide_by 2 [get_nets
{divclk}]
create_generated_clock -name clk_div2 -source [get_pins {iPLL.ddr3_pll.7iACX_PLL/
ogg_gm_clk[0]}] \

-divide_by 2 \

[get_pins
{i_ddr3xN_phy_w_ctrl_core.ddr3_inst\.i_ddr3_macro.x_ddr3.i_ddr3xN_phy_w_controller.i_ddr
3xN_phy.i_phy_sd_clkdiv/clkout}]

The period () is used as a separator between levels of hierarchy and instances. The backslash (\) is only used when
referencing what is inside a generate block name. For example, the RTL appears as follows:

generate
begin: ddr3_inst
ddr3_macro i_ddr3_macro (...)

set_clock_groups

Specifies clock groups that are mutually exclusive or asynchronous with each other in a design.

Syntax

set_clock_groups -asynchronous -name clockGroupname -group{clockList}

Command Example

set_clock_groups -asynchronous -group {clkl clk2} -group {clk3 clk4} -name clkgroup

set_false_path

This command removes timing constraints from particular paths.

2.2 46

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Syntax

set_false_path [-setup] [-from | -rise_from | -fall_from] [-through] [-to | -rise_to
| -fall_to] value {objectList}

Command Examples

set_false_path -from [get_clocks inclkl] -to [get_clocks inclk2]

set_false_path -from temp2 -to out #(where temp2 1is a register and out
is an output port)

set_false_path -from 1in #(where in is an 1input port)
set_false_path -from templ -to temp2 #(where templ and temp2 are
registers)

set_false_path -from in -to templ #(where in is an 1input port and

templ is a register)
set_false_path -from {i:temp2[*]} -to {mem_mem_0_0} #(where temp is register bus and
mem_mem_0_0 is a RAM

set_input_delay

Sets input delay on pins or input ports relative to a clock signal.

Syntax

set_input_delay [-clock {clockName}] [-clock_fall] [-rise] [-fall] [-min] [-max] [-
add_delay] {delayValue} {portPinList}

Command Examples

set_input_delay 1.00 -clock clk {at} -max

set_input_delay {1.00} -clock [get_clocks {clk}] -max [get_ports {at}]
set_input_delay 2.00 -clock clk {bt} -min

set_input_delay 1.00 -clock clk -min -add_delay {bt}

set_input_delay 3.00 -clock clk {st}

set_input_delay 4.00 -clock clk -add_delay {st}

set_input_delay 1.00 -clock clk {din2} -clock_fall

set_input_delay 1.50 -clock clk {dinl din2}

set_input_delay 2.00 -clock clk [all_inputs]

N R R DMNWR

2.2 47

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

set_output_delay

Sets output delay on pins or output ports relative to a clock signal.

Syntax

set_output_delay [-clock clockName [-clock_fall]] [-rise|[-fall] [-min|-max] [-
add_delay] delayValue {portPinList} [-disable] [-comment commentString]

Command Examples

set_output_delay 1.00 -clock clk {ol} -max
set_output_delay 3.00 -clock clk -max -add_delay {ol}
set_output_delay 2.00 -clock clk {02} -min

set_max_delay
Specifies a maximum delay target for paths in the current design.

Syntax

set_max_delay [-from |-rise_from | -fall_from] [-through] [-to | -rise_to | -fall_to]
{delay_value}

Command Examples

set_max_delay 2 -from {a b } -to {ol}
set_max_delay -rise_from {clk} {1}
set_max_delay -through {{n:doutl}} {1}
set_max_delay 1 -fall_to {clkl}

set_multicycle_path

Modifies single-cycle timing relationship of a constrained path.

2.2 48

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Syntax

set_multicycle_path [-start |-end] [-from {objectList}] [-through {objectList} [-through
{objectlList} ...]] [-to {objectlList}] pathMultiplier [-disable] [-comment
commentString]

Command Examples

set_multicycle_path 2 -from [get_clocks 1inclkl] -to [get_clocks inclk2]
set_multicycle_path 4 -from temp2 -to out

set_clock_latency

Specifies clock network latency.

Syntax

set_clock_latency -source [-clock {clockList}] delayValue {objectList}

Command Example

set_clock_latency 0.2 -source [get_ports clk] -clock [get_clocks {clk}]

set_clock_uncertainty

Specifies the uncertainty or skew of the specified clock networks.

Syntax

set_clock_uncertainty {objectList} -from fromClock |-rise_from riseFromClock |
-fall_from fallFromClock -to toClock |-rise_to riseToClock | -fall_to fallToClock value

Command Example

set_clock_uncertainty 0.4 [get_clocks clk]

Below is an example of clock constraint commands for a multiple clock domain design.

2.2 49

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

(® Note

Most timing engines only use up to three decimal places of accuracy; therefore, it is normal to truncate
non-rational values to this level.

Clock definitions

create_clock -period 10 [get_ports

{pll_refclk_p}] -name
pll_refclk_p

create_clock -period 100 [get_ports

{tck} 1 -name
tck

create_clock -period 1.527 [get_pins
{i_clock_generator.i_PLL_EN.SW_APLL_O_pll_en_clk_APLL.7iACX_PLL/ogg_gm_clk[0O]}] —-name
en_mac_ref_clk

create_clock -period 3.175 [get_pins
{i_clock_generator.i_PLL_FF.SW_APLL_1_pll_ff_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] -name
ff_clk

create_clock -period 3.448 [get_pins
{i_clock_generator.i_PLL_SYS.SW_APLL_2_pll_sys_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] —-name
sys_clk

create_clock -period 62.5 [get_pins
{i_clock_generator.i_PLL_DCC.SW_APLL_3_pll_dcc_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] —-name
sbus_clk

By specifying clock group, each of the above clocks will be determined to be
asynchronous to all other clocks
set_clock_groups -asynchronous -name clk_grpl -group {sbus_clk} \

-group {en_mac_ref_clk} \

-group {pll_refclk_p} \

-group {sys_clk} \

-group {ff_clk} \

-group {tck}

Non-timing Constraints

An FDC file is used to specify non-timing constraints, which can be either attributes on an object (global or local),
using the define_attribute statement, or compile points.

Compile Points

To implement compile points, they are specified in the FDC file as follows.

() Note

For a detailed explanation of compile points how and when to use them, see Compile Points (page 60).

2.2 www.achronix.com

50

http://www.achronix.com

uGo18

Synthesis User Guide

To set a single compile point, enter:

define_compile_point {v:work.pac_ddr3_ip} -type {locked}

To find every instance of a module and set as a compile point, enter:

Compile Point syntax

foreach inst [c_list [find -hier -view pac_ddr3_ipx]] {
define_compile_point S$inst -type {locked}

}

Attributes

Attributes provides a mechanism to control how a design is mapped by Synplify Pro. Attributes can be defined both
globally and also applied to individual instances. Attributes can be entered both in HDLs or in the SCOPE attributes
tab, FDC files for project-wide entities. Attributes with syn_* do not affect synthesis and passed to the netlist.

Here is summary and examples of some of these attributes:

“

syn_allow_retiming

syn_dspstyle

syn_ramstyle

syn_romstyle

syn_keep

syn_preserve

syn_noprune

syn_maxfan

Controls retiming of registers across combinatorial logic on a global
level or to specific register.

Controls the mapping of objects to technology-specific DSP
components. Options are "dsp" and "logic" for DSP64 or LUT/FF,
respectively.

Controls the implementation of an inferred RAM. Options are
"block_ram", "logic_ram", and "registers" for BRAM, LRAM, and
registers, respectively.

Controls the implementation of an inferred ROM. Options are
"block_rom", "logic_rom" for BRAM and LRAM, respectively.

To preserve net in synthesis during optimization.
To prevent sequential optimizations.

To prevent optimization on instances and black boxes when output is
not used.

To override global fanout guide for an individual port, net, register.

2.2

www.achronix.com o1

http://www.achronix.com

UuGo18 Synthesis User Guide

To override the number of available resources in a device, enter the following command. This command can be used
to limit the mapping to certain resources.

define_global_attribute syn_allowed_resources {blockrams=1000}

To synthesize all ROMs using logic, enter:

define_global_attribute {syn_romstyle} {logic}

To ensure that RAMs are only inferred for sufficiently large register sets, enter:

define_global_attribute {syn_max_memsize_reg} {2048}

For more detailed information on all the supported attributes, refer to Synplify Pro online help "Attribute Reference
Manual"

2.2 www.achronix.com 52

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 9 : Synthesis Optimizations

There are several optimizations that can be performed by the user during Synplify Pro synthesis. This sections
covers recommendations for:

- Preventing Objects from Being Optimized Away (page 53)

- Pipelining (page 54)

-+ Retiming (page 54)

- Forward Annotation of RTL Attributes to the Netlist (page 55)
- Compile Points (page 60)

- Finite State Machines (page 62)

Preventing Objects from Being Optimized Away

Dangling Nets

Synplify Pro always performs optimization on redundant or feed-through nets. At times, the user may want to
preserve these nets. In order for these nets not to be optimized away (removed), add the following directive to the
RTL, In this example, synthesis will not optimize away (remove) the logic. Instead, it infers a buffer between the two
wire statements. If it is not specified, the user may not see the buffer insertion by the tool.

wire netl /x synthesis syn_keep = 1 %/ ;
wire net2 ;

assign net2 = netl ;

Dangling Sequential Logic

For sequential logic the syn_preserve attribute is used.

reg net_regl /* synthesis syn_preserve = 1 x/ ;

always @ (posedge clk)
net_regl <= some_net;

Unconnected Instances

For input instances when their output pins are unconnected, the syn_noprune attribute is used. The following
examples show how to apply this attribute to both Speedster I/0 pads and Speedcore boundary pins.

2.2 53

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Speedster Output Pad

PADIN 1dpad (.padin(in[0])) /* synthesis syn_noprune = 1 x/;

Speedcore Output Pin

IPIN ipin (.din(in[0])) /* synthesis syn_noprune = 1 %/;

Prevent ACE Optimizing Objects Away

In the above examples, Synplify Pro does not remove the unconnected entity, ensuring that the Synplify Pro netlist
retains these entities. However, when the netlist is read into ACE, ACE performs netlist optimization and resynthesis.
If the objects retained by synthesis are still unconnected, then ACE will remove these entities from the final place-
and-route netlist. To prevent ACE from optimizing these entities, use the ACE must_keep directive in conjunction

with the above attributes. Using the preceding sequential logic example, the must_keep attribute is passed through
Synplify and included in the synthesized netlist. ACE will then recognize this attribute and keep the instance.

(@ Note

The attribute must_keep can be applied to both sequential elements and wires.

(* must_keep=1 *) reg net_regl /* synthesis syn_preserve = 1 x/ ;

always @ (posedge clk)
net_regl <= some_net;

Pipelining
Pipelining is the process of splitting logic into stages so that the first stage can begin processing new inputs while
the last stage is finishing the previous inputs. Pipelining ensures better throughput and faster circuit performance. If

using selected technologies which use pipelining, also use the related technique of retiming to improve
performance.

When this switch is enabled in a project file, synthesis uses register balancing and pipeline registers on multipliers
and ROMs.This option is equivalent to enabling the Pipelining option on the Options panel of the Implementation
Options dialog box.

Retiming

The retiming process moves storage devices (flip-flops) across computational elements with no memory (only
gates/LUTs) to improve the performance of the circuit.

2.2 54

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

When this switch is enabled, synthesis tries to improve the timing performance of sequential circuits. This option is
equivalent to enabling the Retiming option on the Options panel of the Implementation Options dialog box. Use the

syn_allow_retiming attribute to enable or disable retiming for individual flip-flops. This option also adds a
retiming report to the log file.

() Note

Pipelining is automatically enabled when retiming is enabled.

Forward Annotation of RTL Attributes to the Netlist

Synplify Pro supports forward annotation of RTL attributes to the netlist. These user-defined attributes propagate to
the netlist to be used by ACE place and route for optimization. This feature requires the usage of various directives
available in Synplify Pro such as syn_noprune,syn_keep, syn_hier,syn_preserve, etc., to propagate user-
define attributes to the netlist. The table below lists the directives to be set on the mentioned objects in order to
forward annotate the RTL attribute.

Attribute applied on the module will

Module syn_hier="hard propagate to the netlist
. Attribute applied on the instantiated
Instantiated Components syn_noprune . .
component will propagate to the netlist
syn_hier="hard" on the module Attribute applied on ports will propagate to

Input/Output ports containing the ports the input/output port in the netlist
Registers SVN._Dreserve Attribute applied on the registers will

g yn-p propagate to the netlist

. Attribut li n nets/wires will
Wire syn_keep bute applied on nets es

propagate to the netlist

Below are some examples:

Example 1

The attribute weight="3.0" propagates to my_reg in the netlist. The syntax used is Verilog 2001 style
parenthetical comments.

(* syn_preserve=1l, weight="3.0" %) reg my_reg;

Example 2

The syntax used is C-style comment.

2.2 55

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

reg my_reg /* synthesis syn_preserve=1l weight=4 x/;

(@ Note

When using C-style comment, a comma is not required after syn_preserve=1. When using Verilog 2001
style, a comma is required after syn_preserve=1.

Example 3

This example illustrate attribute propagation on nets.

(x syn_keep = 1, weight =

Example 4

3 %) wire n2;

This feature of attribute propagation is utilized in flop pushing to boundary pins or I/0 pads via the ACE attribute
syn_useioff.The syn_useioff is applied to the input and output ports in the below example.

module flop_push_testl (

ina, inb, sel, clk, z0O

)

input wire

input wire

input wire

input wire

output reg
reg

reg [3:0] ina_r0=4'h0, ina_rl=4'h0, inb_r0=4'h0, inb_r1=4'ho;

[3:0] ina /x*
[3:0] inb /%

sel /x
clk;
z0 /*

synthesis syn_useioff=1 x/;
synthesis syn_useioff=0 x/;
synthesis syn_useioff=1 x/;

synthesis syn_useioff=1 x/;

sel_r0=1'b0, sel_rl=1'bo;

always @(posedge clk)

begin
sel_r0 <= sel;
sel_rl <= sel_ro0;
ina_r0@ <= fina;
ina_rl <= 1dina_r0;
inb_r0 <= -inb;
inb_rl <= 1dinb_ro0;
z0 <= sel_rl ? & inb_rl : |ina_rl;
end
endmodule

2.2

www.achronix.com

56

http://www.achronix.com

uGo18

Synthesis User Guide

®

Note

In example 4, the module flop_push_testl is a top module; therefore, syn_hier="hard" is not specified
on the module. If it were a sub module, syn_hier="hard" is required for the attribute on ports to
propagate to the netlist; for example:

module flop_push_testl (ina, 1inb, sel, clk, z0) /x synthesis syn_hier="hard" x/;

Note

In example 4, the syn_useioff attribute could also be specified in the Verilog 2001 comment style. For
example:

(* syn_useioff=1 %) dinput [3:0] 1ina;

However, that style only works correctly when the attribute has a non-zero value. Synplify Pro cannot
distinguish between the value zero and and an attribute that is not present. In that case it will not forward
annotate the attribute to the netlist used by ACE. Therefore, it is recommended to always use the C-style
comment used in example 4.

Example 5

This example illustrates attribute propagation on instantiated components:

module att_propagate_instcomp (

)3

di, d2, d3, clk, outl

input wire di,d2, d3, clk;
output reg outl;

reg

91,92;

//Instantiate 2 instances Ul and U2 of module test2

(* must_keep = 1, syn_noprune = 1 %) test2 Ul (di1,d2,d3, clk,out2);
(* syn_noprune = 1, must_keep 1 *) test2 U2 (d1,d2,d3, clk,out2);

always @(posedge clk)
ql <= di;

assign combol = ql & d2 & d3;

always @(posedge clk)
g2 <= combol;

2.2

www.achronix.com

57

http://www.achronix.com

uGo18

Synthesis User Guide

assign combo2 = g2 | combol;

always @(posedge clk)
outl <= combo2;

endmodule

module test2 (
di, d2, d3, clk, outl
) /*synthesis syn_hier = hard x/;

input wire d1, d2, d3, clk;
output reg outl;

reg q1,q92;

always @(posedge clk)
ql <= di;

assign combol = ql1 | d2 | d3;

always @(posedge clk)
g2 <= combol;

assign combo2 = g2 & combol;

always @(posedge clk)
outl <= combo2;

endmodule

Example 6

This example shows attribute propagation on modules:

(* att0=1 *) module top (
di, d2, d3, clk, outl, out2

)3
input wire dl, d2, d3, clk;

output wire out2;
output wire outl,

// Instantiate testl

2.2

www.achronix.com

58

http://www.achronix.com

UuGo18 Synthesis User Guide

testl U1l (d1, d2, d3, clk, outl);

endmodule

(* must_keep=1 *) module testl (
di, d2, d3, clk, outl
) /* synthesis syn_hier="hard" x/;

input wire dl, d2, d3, clk;
output reg outl;

reg q1,q92;

always @(posedge clk)
ql <= di;

assign combol = gl & d2 & d3;

always @(posedge clk)
g2 <= combol;

assign combo2 = g2 | combol;

always @(posedge clk)
outl <= combo2;

endmodule

Example 7

As shown above, flop pushing can take advantage of attribute propagation to control specific I/0 pads or boundary
pins. The examples below shows how to control flop pushing from within the RTL, applying the attribute to both
Speedster |/0 pads and Speedcore device boundary pins.

This example illustrates the application of the syn_useioff attribute with a value of 0 on, respectively:
- Awire
- A black-box PAD instance, an IPIN instance, the IPIN input net, the IPIN output net (Speedcore only)
- An PADIN instance (Speedster only)
- A pair of DFF instances

All of the above are valid instances to which to apply this property:

(* syn_keep=1 *) wire ipad_dout /* synthesis syn_useioff
(* syn_keep=1 *) wire ipin_dout /* synthesis syn_useioff
wire dffl_q, dff2_q;

0 */;
0 */;

2.2 59

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

BB_PADIN 1i_bb_padin (.padin(sc_in) , .dout(bb_pad_dout)) /* synthesis
syn_useioff = 0 *x/;
PADIN i_padin (.padin(sp_in) , .dout(padin_dout)) /* synthesis
syn_useioff = 0 *x/;
IPIN i_dpin (.din(ipad_dout), .dout(ipin_dout)) /* synthesis

syn_useioff = 0 *x/;

ACX_DFF 1d_dff1l (.d(ipin_dout) , .ck(clk) . .q(dffl_q)) /* synthesis
syn_useioff = 0 *x/;
ACX_DFF 1d_dff2 (.d(ipin_dout) , .ck(clk) . .q(dff2_q)) /* synthesis

syn_useioff = 0 *x/;

For full details on all the options for flop pushing, see the section "Automatic Flop Pushing into I/0 Pins" in the ACE
Users Guide (UG070).

(@ Note

As in Example 7, the syn_useioff attribute must be specified with a synthesis directive in a C-style
comment because it has a value of zero. However, the syn_keep=1 attribute on the wire can be specified
in either style.

Compile Points

Compile points are RTL partitions of the design which are defined before synthesizing a design. The advantages of
using compile points is design preservation, runtime savings and improves efficiency of top-down and traditional
bottom-up design flows.

Synplify Pro supports both automatic and manual compile points. The automatic compile-point feature can be
selected from "Implementation Options" dialog box as shown below. When automatic compile points are enabled,
the tool automatically identifies compile points based on various parameters such as size of the design, hierarchical
modules, boundary logic, etc. Refer the
fpga_user_guide.pdf
available with Synplify Pro for details on compile points.

14 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 60

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UuGo18 Synthesis User Guide

5 Run Synplify Pro®
Ready
‘-'.} Open Project... Project Files Design Hierarchy Project Status Implementation Directory

gddr_ref_design_top : rev_1 (gddr_ref_design_top) - Achronix Speedster?t : ACTH1500 : FE

B Close Project | =

EH Add Eile... 1@ Implementation Options - gddr_ref_design_top: rev_1

fa Change File... Device | Options Constraints Implementation Results | Timing Report | Verilog | GCC | Placeamn ¢ | * e Sp A

4 Add Implementation. .. : : rev_l
Optimization Switches
4% Implementation Options...

Automatic Compile Point
BR Add P&R Implementation

v Continue on Error
= v | Validate MIF Files
A Viewlog V| FSM Compiler
Frequency (MHz): v R.esour.ce Sharing
: v| Pipelining
*) 200 Auto Const. Retiming
Distributed Compilation
Autematic Compile Point Automatic Compile Point with soft
Continue on Errar v
F5M Compiler v
Resource Sharing v
Pipelining v
Retirning

Automatic Compile Point wit...

Option Description

Click on an option for 2 description.

Synor

oK Cancel Help

Figure 45 - Setting Compile Points

Although compile points can deliver significant runtime savings, users should be aware that they can have a
detrimental effect on quality of results (QoR) if not used with care. Compile points identify blocks of code that are
repeated, guiding Synplify Pro to only synthesize that block once. The level of optimization between a compile point
and it's enclosing module is defined by the compile point type:

- Locked - No optimizations across compile point boundary. Locked compile points are used for the Achronix
incremental compile flow

- Hard - Signals can be optimized across the compile point boundary (i.e., back-to-back inverters removed).
However, the actual interface is not optimized — all signals remain. All automatic compile points are set to hard.

- Soft - Signals can be optimized across the compile point boundary, and the signals themselves may be
removed, or renamed. Therefore, almost full optimization can occur as though the design did not have compile
points.

The three modes above result in increasing runtimes; however, they also generally result in increased QoR as greater
optimizations can be performed. Users should determine which configuration of compile points, if any, best meet
their needs with regards to performance versus runtime.

& Caution!

If automatic compile points are enabled, users must be aware that all automatic compile points are set to
hard. Therefore, it may not be possible to achieve the highest QoR.

2.2 61

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

(® Note

Compile points will only have a significant effect on runtime either when used as locked to enable
incremental synthesis (and place and route), or else in designs with a large number of repeating structures.

Finite State Machines

The FSM compiler is an automatic tool for encoding state machines. FSM coding style in the RTL design will directly

impact performance. By default Synplify Pro implements the following FSM encoding:
- 0-4 states is binary encoded
- 5-40 states is one-hot encoded

- >40 states is Gray encoded

FSM compiler is used to generate better results and to debug state machines.

Generating Better Results

The software uses optimization techniques that are specifically tuned for FSMs such as reachability analysis. The
FSM compiler examines the design for state machines, converting them to a symbolic form that provides a better
starting point for logic optimization. The FSM compiler may convert an encoded state machine into a different
encoding style (to improve speed and area utilization) without changing the source. This optimization can be
overridden by choosing a particular encoding style through appropriate synthesis attributes in the RTL design.

Debugging the State Machines

State machine description errors can result in unreachable states. The user can also use the FSM viewer to see a
high-level bubble diagrams and cross-probe from the diagram with respect to RTL. The user can then check
whether the source code describes the state(s) correctly.

FSM Encoding

There are two choices to define the encoding via attributes in the RTL code:

- Use syn_encoding attribute and enable the FSM compiler.

- Use syn_enum_encoding to define the states (sequential, one-hot, gray, and safe) and disable the FSM
compiler. If the user does not disable the FSM compiler, the syn_enum_encoding values are not
implemented. This behavior is because the FSM compiler, which is a mapper operation, overrides any user
attributes for the FSM encoding. The FSM compiler can be disabled via the GUI or the from the Synplify Pro
project file with the following syntax:

set_option -symbolic_fsm_compiler 0

The user may also direct the synthesis process to deploy a user-defined FSM encoding, for example:

2.2 www.achronix.com

62

http://www.achronix.com

UuGo18 Synthesis User Guide

attribute syn_enum_encoding of state_type: type 1is "001 010 101" ;

There is a synthesis attribute to turn on/off FSM extraction. By using this attribute the user can see how state
machines are extracted. The attributes is set in the source code as follows:

- Specify a state machine for extraction and optimization - syn_state_machine=1
- Prevent state machines from being extracted and optimized - syn_state_machine=0

In VHDL

—————— Attribute ----

attribute syn_state_machine : boolean;
attribute syn_state_machine of tx_training_cstate : signal 1is true;

In Verliog

If user does not want to optimize the state machine, add the syn_state_machine directive to the registers in the
Verilog code. Set the value to 0. When synthesized, these registers are not extracted as state machines.

reg [39:0] curstate /* synthesis syn_state_machine=0 x/ ;

For greater than 40 states, Synplify Pro performs Gray encoding. For one-hot encoding, specify the syn_encoding
= "onehot" as shown below.

reg [39:0] state /* synthesis syn_encoding = "onehot" x/ ;

Replication of States with High Fan-ins

Large and complex state machines present another unique challenge in state machine design. Complex state
machines can be made to run faster by actually making them larger by adding more states. This technique can be
counter intuitive as the number of levels of logic between the states and not the number of states typically limits
state machine performance. The performance of a state machine is limited by both the number of fan-insinto a
given state and the decisions made in that state. For example, idle-type states can have a large number of inputs
plus increased computational load. With the 6-input LUT architecture of Achronix devices, once the number of fan-
ins exceeds six, another level of logic is needed. An easy method to reduce the number of fan-ins is to replicate these
states. The duplicated high fan-in states reduce the number of inputs, thus reducing the number of levels of logic.

Both state machines in the figure below are equivalent in function, but State A is duplicated in Version Il so that A
and Al have two or less return inputs. As a result, if each state has to deal with four additional inputs, they can now
be contained in one 6-input LUT. Although this example is simplistic, the methodology can be applied to larger and
more complex state machines.

2.2 63

www.achronix.com

http://www.achronix.com

uGo18 Synthesis User Guide

Version | Version |l

State B

State B

vo00.

4229214-01.2023.03.27

Figure 46 - Replicated High Fan-in State Example

Fanout Limit

This fanout limit can also be controller through RTL design. In this case if the user knows about a net with high
fanout and wants to replicate the cell after a certain fanout is reached, the following coding style is needed:

wire netl /* synthesis syn_maxfan = 8 %/ ;

Here Synplify Pro will infer a buffer/logic if the fanout limit on netl exceeds 8.

2.2 www.achronix.com

64

http://www.achronix.com

uGo18

Synthesis User Guide

Chapter 10 : Synthesis User Guide Revision History

“

10

11

12

13

14

17 Jul 2016

31 Oct 2016

31 Mar 2017

01 Oct 2018

10 Jun 2019

- Initial revision. Ported document to Confluence and made it Speedcore

specific.

- Fix for minor type and additional clock constraint example.
- Updated document template to include confidentiality note.

- Corrected one of the create_generated_clock examples in the code block.

- Synthesis Optimizations (page 53):

o Corrected the syn_keep attribute in Example 7 (page 59).

> Removed the instantiation templates, referred the user to the Speedcore
IP Component Library User Guide (UG065).

> Added details on Compile Points. (page 60)
o Updated DSP64 (page 0) .
> Updated Block RAM (page 0) .

- Managing Projects in Synplify Pro (page 27): Removed references to version

L-2016 limitations.

- Example Synplify-Pro Project File: Removed internal paths from file names.

- Synthesis Optimizations (page 53) :

o Removed technology specific entries to make the guide suitable for all
technologies. Technology specific parts moved to their appropriate IP
Component Library User Guide

o Specifically removed inference templates for Speedsterl6t parts,
(DSP64, BRAMTDP & BRAMSDP).

- Managing Projects in Synplify Pro (page 27):

o Combined Speedster and Speedcore differing library files into single
Synthesis library include files table.

- Example Synplify-Pro Project File:

> Added ACE_INSTALL_DIR environment variable to example project file

2.2

www.achronix.com 65

http://www.achronix.com

uGo18 Synthesis User Guide

“

+ Overview (page 1): Minor correction.

- Added major new content for integrated synthesis flows with ACE 10.0 and
beyond:

o ACE-Driven Integrated Synthesis (page 4)

2.0 20 Jun 2024 > Synplify-Pro-Driven Integrated Synthesis (page 14)
o Stand-Alone Synthesis in Synplify Pro (page 23)
> Managing Projects in Synplify Pro (page 27)

- Added chapter Synthesis Integration with Multiprocess Option
Exploration (page 25)

- Updated screenshots for ACE 10.1.

21 20 Aug 2024 - Added information on new ACE feature to open Synplify Pro projects in the
Synplify Pro GUI from within ACE.

- Updated screenshots for ACE 10.2

292 05 Dec 2024 - Updated information on Synplify Pro installation and environment path setup

- Updated content for the name change of synthesis project option "Generate
Project File" to "ACE-Driven Synthesis"

2.2 www.achronix.com 66

http://www.achronix.com

	Overview
	Synthesis Flows

	ACE-Driven Integrated Synthesis
	Synthesis Project Setup in ACE
	Create an ACE Project
	Add the Design Files and Set Project Options

	Synthesis Options Configuration
	Running Synthesis to Compile the Design
	Synthesis Reports and Messages
	Opening Synplify Project File in Synplify Pro

	Synplify-Pro-Driven Integrated Synthesis
	Configuring the Synthesis Project in Synplify Pro
	Synthesis Project Setup in ACE
	Create an ACE Project
	Add the Design Files and Set Project Options

	Synthesis Options Configuration
	Running Synthesis to Compile the Design
	Synthesis Reports and Messages
	Opening Synplify Project File in Synplify Pro

	Stand-Alone Synthesis in Synplify Pro
	Configuring the Synthesis Project in Synplify Pro
	Running Synthesis
	Adding the Synthesized Netlist to ACE for Place and Route

	Synthesis Integration with Multiprocess Option Exploration
	Managing Projects in Synplify Pro
	Creating and Setting up a Project
	Adding the Synthesis Library Include File
	Adding Source Files to the Project

	Implementation Options
	Verilog
	Place and Route
	Timing Report
	Implementation Results
	Constraints
	Options

	Synplify Pro Features
	Synplify Warnings
	Synthesis Hierarchical Report
	Hierarchical Area Report

	HDL Analyst Schematics
	Watch Window
	Validating Constraints
	Using Help

	Synthesis Constraints
	Timing Constraints
	create_clock
	create_generated_clock
	set_clock_groups
	set_false_path
	set_input_delay
	set_output_delay
	set_max_delay
	set_multicycle_path
	set_clock_latency
	set_clock_uncertainty

	Non-timing Constraints
	Compile Points
	Attributes

	Synthesis Optimizations
	Preventing Objects from Being Optimized Away
	Dangling Nets
	Dangling Sequential Logic
	Unconnected Instances
	Prevent ACE Optimizing Objects Away

	Pipelining
	Retiming
	Forward Annotation of RTL Attributes to the Netlist
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Compile Points
	Finite State Machines
	Generating Better Results
	Debugging the State Machines
	FSM Encoding
	Replication of States with High Fan-ins

	Synthesis User Guide Revision History

