
UG018 2.2 – December 05, 2024

Synthesis User Guide
(UG018)

All Achronix Devices

UG018 Synthesis User Guide

ii

Copyrights, Trademarks and Disclaimers

Copyright © 2024 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and
ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks
are the property of their respective owners. All specifications subject to change without notice.

Notice of Disclaimer
The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor
Corporation does not give any representations or warranties as to the completeness or accuracy of such information
and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation
reserves the right to make changes to this document and the information contained herein at any time and without
notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at http://
www.achronix.com/legal.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

UG018 Synthesis User Guide

iii

Table of Contents

Chapter 1 : Overview .. 2

Synthesis Flows..2

Chapter 2 : ACE-Driven Integrated Synthesis...4

Synthesis Project Setup in ACE...4

Create an ACE Project ...4

Add the Design Files and Set Project Options ...5

Synthesis Options Configuration .. 7

Running Synthesis to Compile the Design...8

Synthesis Reports and Messages...10

Opening Synplify Project File in Synplify Pro.. 12

Chapter 3 : Synplify-Pro-Driven Integrated Synthesis .. 14

Configuring the Synthesis Project in Synplify Pro ..14

Synthesis Project Setup in ACE...14

Create an ACE Project ...15

Add the Design Files and Set Project Options ...15

Synthesis Options Configuration .. 17

Running Synthesis to Compile the Design...18

Synthesis Reports and Messages.. 20

UG018 Synthesis User Guide

iv

Opening Synplify Project File in Synplify Pro..22

Chapter 4 : Stand-Alone Synthesis in Synplify Pro ..23

Configuring the Synthesis Project in Synplify Pro ... 23

Running Synthesis.. 23

Adding the Synthesized Netlist to ACE for Place and Route... 23

Chapter 5 : Synthesis Integration with Multiprocess Option Exploration..............25

Chapter 6 : Managing Projects in Synplify Pro.. 27

Creating and Setting up a Project ...27

Adding the Synthesis Library Include File.. 29

Adding Source Files to the Project ... 30

Implementation Options ..31

Verilog...31

Place and Route.. 32

Timing Report.. 32

Implementation Results ... 33

Constraints... 34

Options .. 35

Chapter 7 : Synplify Pro Features... 37

Synplify Warnings..37

Synthesis Hierarchical Report ...37

Hierarchical Area Report ... 38

UG018 Synthesis User Guide

v

HDL Analyst Schematics .. 39

Watch Window... 40

Validating Constraints ... 42

Using Help ... 42

Chapter 8 : Synthesis Constraints..44

Timing Constraints ... 44

create_clock.. 44

Syntax ...44

Command Examples ..45

create_generated_clock ... 45

Syntax .. 46

Command Examples ... 46

set_clock_groups .. 46

Syntax .. 46

Command Example ... 46

set_false_path.. 46

Syntax ...47

Command Examples ..47

set_input_delay ..47

Syntax ...47

Command Examples ..47

set_output_delay... 48

Syntax .. 48

Command Examples ... 48

set_max_delay ... 48

UG018 Synthesis User Guide

vi

Syntax .. 48

Command Examples ... 48

set_multicycle_path... 48

Syntax .. 49

Command Examples ... 49

set_clock_latency ... 49

Syntax .. 49

Command Example ... 49

set_clock_uncertainty... 49

Syntax .. 49

Command Example ... 49

Non-timing Constraints... 50

Compile Points .. 50

Attributes...51

Chapter 9 : Synthesis Optimizations ..53

Preventing Objects from Being Optimized Away.. 53

Dangling Nets .. 53

Dangling Sequential Logic... 53

Unconnected Instances ... 53

Speedster Output Pad ...54

Speedcore Output Pin..54

Prevent ACE Optimizing Objects Away ... 54

Pipelining ... 54

Retiming... 54

Forward Annotation of RTL Attributes to the Netlist... 55

UG018 Synthesis User Guide

vii

Example 1 .. 55

Example 2 ... 55

Example 3 ... 56

Example 4 ... 56

Example 5 ..57

Example 6 ... 58

Example 7.. 59

Compile Points ...60

Finite State Machines.. 62

Generating Better Results ... 62

Debugging the State Machines.. 62

FSM Encoding ... 62

In VHDL ... 63

In Verliog ... 63

Replication of States with High Fan-ins.. 63

Fanout Limit... 64

Chapter 10 : Synthesis User Guide Revision History..65

UG018 Synthesis User Guide

2.2 www.achronix.com 1

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 2

•

•

•

Chapter 1 : Overview

This user guide describes how to synthesize an RTL design to generate a synthesized gate-level netlist for
implementation in an Achronix device. Suggested optimization techniques are also included.

A high-level overview of the Achronix design flow is shown in figure below.

Figure 1 • Achronix Design Flow

Synthesis Flows
There are three main synthesis flows supported by the ACE tools suite:

ACE-Driven Integrated Synthesis (page 4), where ACE owns and manages the synthesis project definition, and
synthesis is run via the built-in ACE flow step.

Synplify-Pro-Driven Integrated Synthesis (page 14), where Synplify Pro owns and manages the synthesis project
definition, and synthesis is run via the built-in ACE flow step.

Stand-Alone Synthesis in Synplify Pro (page 23), where Synplify Pro is run completely outside of ACE to generate
the synthesized gate-level netlist, which is then added to the ACE project. The built-in ACE synthesis flow step
is not run in this case.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 3

Synplify Pro does not support batch mode with node-locked licenses In order to run the integrated
synthesis flow steps, a floating license setup is required for Synplify Pro since ACE calls Synplify Pro in
batch mode.



http://www.achronix.com

UG018 Synthesis User Guide

1 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

2.2 www.achronix.com 4

1.

2.

3.

4.

5.

1.

Chapter 2 : ACE-Driven Integrated Synthesis
As of ACE version 10.0, synthesis is now a fully integrated flow step in ACE. For designers, the simplest and easiest
synthesis flow to use is the ACE-driven integrated synthesis flow. In this flow, end users do not need to leave ACE to
configure or run synthesis. Users can stay in ACE and manage all aspects of design synthesis, including synthesis
project setup, synthesis options configuration, running synthesis to compile the design, error reporting and log
viewing, and report viewing.

In this scenario, ACE is the master of the Synplify Pro project and runs Synplify Pro from within the ACE Run
Synthesis flow step.

Synthesis Project Setup in ACE
To simplify the download, install, and licensing process, Synplify Pro is now included in the base ACE install package.
Users no longer need to find the compatible version of Synplify Pro, and download it separately from ACE.

The ACE installer on Windows, and the ACE installer script on Linux have been updated to automatically install
Synplify Pro as part of the ACE installation. Users no longer need to install Synplify Pro separately. In addition, some
of the ACE and Synplify Pro license installation and configuration is now automated in the ACE install process. See
the ACE Installation and Licensing Guide (UG002)1 for more details.

As of ACE 10.2 users no longer need to set the $ACX_SYNPLIFY_TOOL_PATH environment variable. ACE now
searches for the Synplify Pro installation according to the following order of precedence:

If ACX_SYNPLIFY_TOOL_PATH is set, use it, otherwise;

Check if $SYNPLIFY_HOME is set, and search for it there, otherwise;

Check to see if synplify_pro is available inside the ACE install at <ace_install>/Synplify/bin/synplify_pro(.exe
on Windows), otherwise;

Check to see if synplify_pro is available on the $PATH env variable, otherwise;

Error out

Now launch ACE to get started.

Create an ACE Project
In the Projects View, click the () Create Project toolbar button. Follow these steps to create the project:

In the Create Project Dialog, enter (or browse to) the desired path to the ACE project top-level directory in the
Project Directory field.

Caution!

Users should not open the ACE-generated Synplify project file and make changes in Synplify Pro in this
flow, because ACE will re-generate the Synplify project file from the ACE project file settings each time
synthesis is run, and any changes made in Synplify Pro will be lost. To manage a Synplify project file using
Synplify Pro, refer to section. Synplify-Pro-Driven Integrated Synthesis (page 14).



https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
http://www.achronix.com
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

UG018 Synthesis User Guide

2 https://www.achronix.com/documentation/ace-user-guide-ug070
3 https://www.achronix.com/documentation/simulation-user-guide-ug072
4 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com 5

2.

1.

2.

3.

4.
5.

6.

7.

8.

9.

Enter the desired ACE project name in the Project Name field and click Finish.

The new project will now appear in the Projects view. See "Creating Projects" or "Working with Projects and
Implementations" in the ACE Users Guide (UG070)2 for more details.

Add the Design Files and Set Project Options
In the Projects view, click the project to select it. Follow these steps to add the design source files for synthesis and
place and route:

Click the () Add Source Files toolbar button and select Add RTL Files.

In the Add RTL Files dialog, browse to the source RTL directory and select all of the RTL files by holding down
the CTRL key and clicking each file name.

Click the Open button to add the RTL files to the project. Repeat this process as needed until all the RTL files are
added to the project.

Click the () Add Source Files toolbar button and select Add Synthesis Constraint Files.
In the "Add Synthesis Constraint Files" dialog, browse to the constraints directory and select all of the synthesis
constraints files by holding down the CTRL key and clicking each file name.

Click the Open button to add the synthesis constraint files to the project. Repeat this process as needed until all
the synthesis constraints files are added to the project.

Click the () Add Source Files toolbar button and select Add Place and Route Constraint Files.

In the "Add Place and Route Constraint Files" dialog, browse to the place-and-route constraints directory and
select all of the files by holding down the CTRL key and clicking each file name.

Click the Open button to add the place-and-route constraint files to the project. Repeat this process as needed
until all the place-and-route constraint files are added to the project.

For instructions on adding simulation files to the ACE project, please see the Simulation User Guide (UG072)3 or the
"ACE Quickstart Tutorial" in the ACE Users Guide (UG070)4.

Notes

This and the following steps to add place-and-route constraint Files are optional and are not
required for running synthesis. These instructions only apply to continue running the flow through
Place and Route.

If a previously generated a synthesized gate level netlist exists and has been added it as a place-
and-route netlist file in the ACE project, remove the netlist from the ACE project prior to running
the integrated synthesis flow in ACE. ACE will automatically add the generated synthesized netlist
to the ACE project as part of the Run Synthesis flow step.



https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070

UG018 Synthesis User Guide

2.2 www.achronix.com 6

1.

2.

3.

Figure 2 • Synthesis Project Source Files

In the Options View, follow these steps to configure the project options:

Expand the "Project Options" section and select the target device for the design.

In the Project Options section, scroll down and enter the semicolon-separated list for the HDL include path. For
example:

D:/test_dir/src/rtl;D:/test_dir/src/tb

In the "Project Options" section, scroll down and enter the space-separated list of any HDL define symbols
needed for the design in "HDL Defines". For example:

ADDR_WIDTH=16 DATA_WIDTH=8

Notes

The HDL include path applies to both synthesis and simulation.

The include path does not need to be added to the ACE libraries in <ace_install>/
libraries. The Run Synthesis flow step will automatically add this to the include path in the
generated Synplify Pro project file.



Note

The HDL defines applies to both synthesis and simulation.


http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 7

Figure 3 • Synthesis Project Options

Synthesis Options Configuration
Once the source files are added and the project options are set, the synthesis implementation options must also be
set. In "Options View", scroll down to the "Synthesis" section and click to expand the section to show the synthesis
implementation options. Ensure that the option the ACE-Driven Synthesis is checked.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 8

Figure 4 • Synthesis Implementation Options

Configure the remaining implementation options as needed for the design. Any Synplify Pro options that are not
directly exposed in the ACE GUI can be set using the "Advanced Synplify Options" field. Simply enter a TCL
formatted list of option-value pairs, for example:

{{option1 value1} {option2 value2}}

Synthesis implementation options can be explored automatically to find the best options for the design by using the
ACE multiprocess feature as described in Synthesis Integration with Multiprocess Option Exploration (page 25).

Running Synthesis to Compile the Design
To run synthesis from within ACE, ensure that the Run Synthesis flow step is enabled (the checkbox is checked):

Caution!

In order to run the ACE-driven integrated synthesis flow, the ACE-Driven Synthesis option must be
checked (syn_ace_driven_synthesis project option is set to 1). If it is not checked, then project is
using the Synplify-Pro-Driven Integrated Synthesis (page 14) flow instead.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 9

•

•

•

Figure 5 • Enabling the Synthesis Flow Step

To run just the Run Synthesis flow step, perform one of the following:

Double-click on the Run Synthesis flow step

Right-click on the Run Synthesis flow step and select Run Selected Flow Step

Call run -step run_synthesis from the TCL console

Figure 6 • Running the Run Synthesis Flow Step

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 10

•

•

The Run Synthesis flow step can be run from within the context of the overall flow by:

Clicking on the Run Flow toolbar button to run the entire flow

Call run from the TCL console to run the entire flow

If a subsequent flow step is run, ACE will automatically run all incomplete prerequisite and enabled flow steps
between the selected flow step and the last completed flow step. For example, double-clicking on the Run Post-
Route Timing Analysis flow step and none of the previous steps are complete, ACE will automatically start running
the enabled flow steps in order from the beginning of the flow, including Run Synthesis if it is enabled.

The Run Synthesis flow step runs synthesis using the configuration set in the ACE project options. In this flow ACE is
the master of the synthesis project (the syn_ace_driven_synthesis project option is set to 1).

The source synthesis project file will be automatically generated from the ACE project settings and managed by ACE
in the Project→Output→(impl)→syn directory.

All output from the underlying synthesis tool is streamed to the ACE TCL console and ACE log file. If synthesis fails,
ACE will catch the error and will mark the Run Synthesis flow step state as an error with a red X and stop the flow
from running any further. If synthesis succeeds, ACE will mark the Run Synthesis flow step as complete with a green
check-mark icon.

Figure 7 • Synthesis Completed Successfully

Synthesis Reports and Messages
Once synthesis completes, ACE will automatically open any relevant synthesis reports and log files in the ACE GUI
Editor Area.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 11

Figure 8 • Synthesis Reports and Messages

These reports can be found later on in the ACE Projects View under the Project→Output→Reports→synthesis
virtual folder. ACE automatically organizes all reports in a central location for easy access.

http://www.achronix.com

UG018 Synthesis User Guide

5 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com 12

Figure 9 • ACE Project Reports Virtual Folders

Opening Synplify Project File in Synplify Pro
As of ACE 10.1, ACE allows the user to open the generated Synplify Pro project file
under Project→Output→(impl)→syn directory in Synplify Pro GUI. To open this file in Synplify Pro, in the Projects
View tree, right-click on the ACE-generated Synplify Pro project file, i.e., Output → <active_impl> → syn →
<project_name_impl_name>.prj and select Open Project in Synplify. For more details, refer to the section Opening
Synplify in ACE in the ACE Users Guide (UG070)5.

Caution!

Users can use this feature to view project file settings and schematics in Synplify Pro GUI. The ACE-
generated Synplify Pro project file should not be updated in this flow because ACE will re-generate the
Synplify Pro project file from the ACE project file settings each time synthesis is run, and any changes
made in Synplify Pro will be lost. To manage a Synplify Pro project file using Synplify Pro, refer to section.
Synplify-Pro-Driven Integrated Synthesis (page 14).



https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG018 Synthesis User Guide

2.2 www.achronix.com 13

Figure 10 • Open Project in Synplify Pro for ACE-Driven Integrated Synthesis

http://www.achronix.com

UG018 Synthesis User Guide

6 https://www.achronix.com/documentation/ace-user-guide-ug070
7 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

2.2 www.achronix.com 14

1.

2.

3.

4.

5.

Chapter 3 : Synplify-Pro-Driven Integrated Synthesis
As of ACE 10.0, synthesis is now a fully integrated flow step in ACE. In this hybrid flow, end users configure and
manage their synthesis project in Synplify Pro and run synthesis from inside ACE. This capability enables users who
are comfortable using the Synplify GUI to take advantage of the integrated Run Synthesis flow step in ACE and the
automated synthesis implementation option exploration offered in the ACE multiprocess feature.

In this scenario, Synplify Pro is the master of the Synplify project file, and ACE calls Synplify Pro from within the ACE
Run Synthesis flow step. In this flow, users must disable (uncheck) the ACE-Driven Synthesis synthesis
implementation option in ACE (syn_ace_driven_synthesis project option is set to 0), and set the Project
Override Path option to point to the source Synplify project file being managed in Synplify Pro.

When the Run Synthesis flow step is run, ACE reads in the Project Override Path project file, overrides a subset of
the implementation options (to enable multiprocess), and generates a local modified copy of the project file to run
from within ACE. Users should not open the ACE-generated Synplify project file and make changes in Synplify Pro in
this flow because ACE will re-generate the Synplify project file from the ACE project file settings each time
synthesis is run, and any changes made in Synplify Pro will be lost. To manage a Synplify project file using Synplify
Pro, open the Project Override Path project file in Synplify instead. For more details, For more details, refer to the
section Opening Synplify in ACE in the ACE Users Guide (UG070)6.

Configuring the Synthesis Project in Synplify Pro
The first step is to create a new synthesis project and configure the synthesis options as documented in the section,
"Managing Projects in Synplify Pro (page 27)".

Synthesis Project Setup in ACE
To simplify the download, install, and licensing process, Synplify Pro is now included in the base ACE install package.
Users no longer need to find the compatible version of Synplify Pro, and download it separately from ACE.

The ACE installer on Windows, and the ACE installer script on Linux have been updated to automatically install
Synplify Pro as part of the ACE installation. Users no longer need to install Synplify Pro separately. In addition, some
of the ACE and Synplify Pro license installation and configuration is now automated in the ACE install process. See
the ACE Installation and Licensing Guide (UG002)7 for more details.

As of ACE 10.2 users no longer need to set the $ACX_SYNPLIFY_TOOL_PATH environment variable. ACE now
searches for the Synplify Pro installation according to the following order of precedence:

If ACX_SYNPLIFY_TOOL_PATH is set, use it, otherwise;

Check if $SYNPLIFY_HOME is set, and search for it there, otherwise;

Check to see if synplify_pro is available inside the ACE install at <ace_install>/Synplify/bin/synplify_pro(.exe
on Windows), otherwise;

Check to see if synplify_pro is available on the $PATH env variable, otherwise;

Error out

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

UG018 Synthesis User Guide

8 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com 15

1.

2.

1.

2.

3.

Now launch ACE to get started.

Create an ACE Project
In the Projects View, click the () Create Project toolbar button. Follow these steps to create the project:

In the Create Project Dialog, enter (or browse to) the desired path to the ACE project top-level directory in the
Project Directory field.

Enter the desired ACE project name in the Project Name field and click Finish.

The new project will now appear in the Projects view. See "Creating Projects" or "Working with Projects and
Implementations" in the ACE Users Guide (UG070)8 for more details.

Add the Design Files and Set Project Options
In this flow, RTL files or synthesis constraints files do not need to be added to the ACE project since the synthesis
project is outside of ACE. Also, the HDL Include Path, HDL Defines do not need to be configured. These settings will
all be automatically imported from the Synplify Pro project file specified in the Project Override Path when the Run
Synthesis flow step is run.

In the Projects view, click the project to select it. Follow these steps to add the design source files for synthesis and
place and route:

Click the () Add Source Files toolbar button and select Add Place and Route Constraint Files.

In the "Add Place and Route Constraint Files" dialog, browse to the place-and-route constraints directory and
select all of the files by holding down the CTRL key and clicking each file name.

Click the Open button to add the place-and-route constraint files to the project. Repeat this process as needed
until all the place-and-route constraints files are added to the project.

Caution!

Paths containing environment or TCL variables are not supported as part of the automatic import of
settings from the Synplify Pro project file.



Notes

This and the following steps to add place-and-route constraint Files are optional and are not
required for running synthesis. These instructions only apply to continue running the flow through
Place and Route.

If a previously generated a synthesized gate level netlist exists and has been added it as a place-
and-route netlist file in the ACE project, remove the netlist from the ACE project prior to running
the integrated synthesis flow in ACE. ACE will automatically add the generated synthesized netlist
to the ACE project as part of the Run Synthesis flow step.



https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG018 Synthesis User Guide

9 https://www.achronix.com/documentation/simulation-user-guide-ug072
10 https://www.achronix.com/documentation/ace-user-guide-ug070
11 https://www.achronix.com/documentation/simulation-user-guide-ug072

2.2 www.achronix.com 16

For instructions on adding simulation files to the ACE project, see the Simulation User Guide (UG072)9 or the "ACE
Quickstart Tutorial" in the ACE Users Guide (UG070)10.

Figure 11 • ACE Project Source Files

In the Options View, follow these steps to configure your project options, expand the "Project Options" section and
select the target device for the design.

Note

The HDL Include Path or HDL Defines do not need to be set to run synthesis. These options may need to be
configured if running simulation from within ACE. See the Simulation User Guide (UG072)11 for details.



https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/simulation-user-guide-ug072
http://www.achronix.com
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/simulation-user-guide-ug072

UG018 Synthesis User Guide

2.2 www.achronix.com 17

Figure 12 • Synthesis Project Options

Synthesis Options Configuration
Once the source files are added and the project options are set, the synthesis implementation options must also be
set. In "Options View", scroll down to the "Synthesis" section and click to expand the section to show the synthesis
implementation options. Ensure that the option ACE-Driven Synthesis is unchecked.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 18

Figure 13 • Opening a Synplify Pro Project File that is Specified as Project Override Path

Configure the remaining implementation options as needed for the design.

Synthesis implementation options can be explored automatically to find the best options for the design by using the
ACE multiprocess feature as described in Synthesis Integration with Multiprocess Option Exploration (page 25).

Running Synthesis to Compile the Design
To run synthesis from within ACE, ensure that the Run Synthesis flow step is enabled (the checkbox is checked):

Caution!

In order to run the Synplify-driven integrated synthesis flow, the ACE-Driven Synthesis option must be
unchecked (syn_ace_driven_synthesis project option is set to 0) and have the "Project Override
Path" option set to point to the source Synplify project file. If the ACE-Driven Synthesis checkbox is
checked, then the project is using the ACE-Driven Integrated Synthesis (page 4) flow instead.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 19

•

•

•

Figure 14 • Enabling the Synthesis Flow Step

To run just the Run Synthesis flow step, perform one of the following:

Double-click on the Run Synthesis flow step

Right-click on the Run Synthesis flow step and select Run Selected Flow Step

Call run -step run_synthesis from the TCL console

Figure 15 • Running the Run Synthesis Flow Step

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 20

•

•

The Run Synthesis flow step can be run from within the context of the overall flow by:

Clicking on the Run Flow toolbar button to run the entire flow

Call run from the TCL console to run the entire flow

If a subsequent flow step is run, ACE will automatically run all incomplete prerequisite and enabled flow steps
between the selected flow step and the last completed flow step. For example, double-clicking on the Run Post-
Route Timing Analysis flow step and none of the previous steps are complete, ACE will automatically start running
the enabled flow steps in order from the beginning of the flow, including Run Synthesis if it is enabled.

The Run Synthesis flow step reads in the Project Override Path project file, overrides a subset of the implementation
options (to enable multiprocess), and generates a local modified copy of the project file to run from within ACE. In
this flow Synplify Pro is the master of the synthesis project (the syn_ace_driven_synthesis project option is
set to 0).

All output from the underlying synthesis tool is streamed to the ACE TCL console and ACE log file. If synthesis fails,
ACE will catch the error and will mark the Run Synthesis flow step state as an error with a red X and stop the flow
from running any further. If synthesis succeeds, ACE will mark the Run Synthesis flow step as complete with a green
check-mark icon.

Figure 16 • Synthesis Completed Successfully

Synthesis Reports and Messages
Once synthesis completes, ACE automatically opens any relevant synthesis reports and log files in the ACE GUI
Editor Area.

Note

For each implementation, ACE generates a locally modified copy of the synthesis project file in the
Project→Output->(impl)→syn directory.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 21

Figure 17 • Synthesis Reports and Messages

These reports can be found later on in the ACE Projects View under the Project→Output→Reports→synthesis
virtual folder. ACE automatically organizes all reports in a central location for easy access.

Figure 18 • ACE Project Reports Virtual Folders

http://www.achronix.com

UG018 Synthesis User Guide

12 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com 22

Opening Synplify Project File in Synplify Pro
As of ACE 10.1, users can open the path specified as Project Override Path (implementation option:
syn_project_override_path) by clicking the Open Project in Synplify button next to the path text field in the
Options view. For more details, refer to the section Opening Synplify in ACE in the ACE Users Guide (UG070)12.

Figure 19 • Open Project in Synplify for Synplify-Pro-Driven Integrated Synthesis

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG018 Synthesis User Guide

2.2 www.achronix.com 23

Chapter 4 : Stand-Alone Synthesis in Synplify Pro
In this flow, synthesis is run outside of ACE in Synplify Pro, and the generated gate-level synthesized netlist is added
to the ACE project as a source file. In this flow, the Run Synthesis flow step in ACE is disabled (unchecked).

Configuring the Synthesis Project in Synplify Pro
The first step is to create a new synthesis project and configure the synthesis options as documented in the section,
Managing Projects in Synplify Pro (page 27).

Running Synthesis
After selecting all the options according to the users design, click OK. The user is returned to the Synplify Pro main
window to run the synthesis. From this main window, click RUN button to start synthesis.

Figure 20 • Running Synthesis in Synplify Pro

Adding the Synthesized Netlist to ACE for Place and Route
Once synthesis has successfully completed, add the generated synthesized netlist to the project in ACE. In the

Projects View, Click the () Add Source Files toolbar button and select Add Place and Route Netlist Files. Browse
to the Synplify-generated synthesized netlist file and click Open.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 24

Figure 21 • Adding the Synthesized Netlist to the ACE Project

In this flow, RTL files or synthesis constraints files do not need to be added to the ACE project since the synthesis
project outside of ACE. Also, the HDL Include Path, HDL Defines nor any of the synthesis implementation options in
ACE need to be configured. only the synthesized gate- level netlist needs to be added to the ACE project.

When running the ACE flow steps, ensure that the option the ACE-Driven Synthesis is unchecked; otherwise, ACE
will error as the project is not configured to run synthesis. If this happens, simply uncheck the Run Synthesis flow
step and try running the ACE flow again.

Figure 22 • Run Synthesis Flow Step Disabled

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 25

1.

2.

Chapter 5 : Synthesis Integration with Multiprocess Option
Exploration

When using the ACE-Driven Integrated Synthesis (page 4) flow or the Synplify-Pro-Driven Integrated Synthesis (page
14) flow, users can take advantage of the automated design option exploration features built in to the ACE
multiprocess tool. This tool can generate implementation option sets which sweep over both synthesis and place-
and-route options to explore fMAX performance variations.

The following items are required to enable synthesis implementation options exploration:

Enable the Run Synthesis flow step (checked in the Flow View)

Figure 23 • Run Synthesis Flow Step Enabled

Uncheck the Exclude Synthesis Option in the Multiprocess View must be unchecked

Note

This option is only supported when using ACE-Driven Integrated Synthesis (page 4) or the Synplify-Pro-
Driven Integrated Synthesis (page 14) flows.



http://www.achronix.com

UG018 Synthesis User Guide

13 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com 26

Figure 24 • Multiprocess View

When these requirements are met, ACE will sweep over synthesis implementation options in addition to the place-
and-route implementation options, which can create a wider range of performance variation and help hone in on the
best options to achieve that last 5% to 10% of fMAX performance boost. Refer to the "Running Multiple Flows in
Parallel" section of the ACE Users Guide (UG070)13. for more details.

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG018 Synthesis User Guide

2.2 www.achronix.com 27

•

•

1.

2.

Chapter 6 : Managing Projects in Synplify Pro
This chapter is only applicable to the following synthesis flows:

Synplify-Pro-Driven Integrated Synthesis (page 14)

Stand-Alone Synthesis in Synplify Pro (page 23)

This guide assumes that Synplify Pro is installed with the synplify_pro command added to the $PATH variable.

Creating and Setting up a Project
In a Linux command shell type synplify_pro to invoke Synplify Pro synthesis. When invoked, the following
window will be displayed:

Figure 25 • Synplify Pro Invoked from the Command Shell

Click the Open Project button on the left side to open the open project dialog-box:.

Note

If using the ACE-Driven Integrated Synthesis (page 4) flow, Synplify Pro does not need to be launched
outside of ACE. ACE will manage all aspects of synthesis automatically, including Synplify Pro project
creation.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 28

3.

Figure 26 • Dialog Box to Select the New Project

Click the New Project button to open the following window:

Figure 27 • Starting a New Project

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 29

•

•

Adding the Synthesis Library Include File
After selecting and saving the project file inside the desired directory path, add the appropriate synthesis library
include file and device specific synthesis constraints file:

 <ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_synplify.sv
<ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_synplify.fdc (page 27)

The first file in the project file list should be the relevant ACE library file.

For the path to ACE libraries, the ACE_INSTALL_DIR environment variable can be used. By manually editing the
Synplify Pro .prj file, a TCL variable that stores the value of an environment variable can be defined. Then, each
time the TCL variable is used, ensure the full string is enclosed in { } rather than " ". For example:

#-- Synopsys, Inc.
#-- Version S-2021.09X-3
#-- Project file /views3/kevinhine/main/hls/PandA-Bambu/designs/pcie_mnist/syn/
pcie_mnist.prj
#-- Written on Thu Aug 31 10:01:41 2023

Custom TCL source
syn_source {
 set ACE_INSTALL_DIR $::env(ACE_INSTALL_DIR)
}

...

add_file -verilog -vlog_std sysv {$ACE_INSTALL_DIR/libraries/device_models/
AC7t1500_synplify.sv}
set_option -include_path {../src/shell/include/;../hls/;$ACE_INSTALL_DIR/libraries/}

...

When the .prj is saved, the entire "syn_source" command written is preserved, as well as any places with the
variable is enclosed with { }.

1.

2.

a.

b.

c.

Notes

Synplify Pro can open multiple projects at once; however only one can be run at time.

A single project supports multiple implementations with each having different:

Device settings

Optimization settings

RTL define for different code builds



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 30

Adding Source Files to the Project
There are two ways to add RTL source files. One is using the Add File button in the left menu bar, and the other one
is to right-click on the project file and select Add Source File. Selecting either option directs the user to a dialog box
listing available RTL files (see the figure below). The same procedure is followed for adding both source and
constraint files.

In the examples that follow, the Speedster 7t technology has been selected, so the file
AC7t1500ES0_synplify.sv is used. From this dialog box, select the desired RTL file(s) and then
click Add followed by OK. The Verilog/VHDL file(s) will now be added to the project for synthesis.

Figure 28 • Add Files to Project

Warning!

If the variable is enclosed with "" instead of { }, the value of the variable will be written into the .prj on the
next save.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 31

Implementation Options
After adding the RTL files and constraint files, the next step is to set the implementation options. Click
Implementation Options to open the window. shown below. This dialog box shows the default options. For example
the "Fanout Guide" defaults to 10,000, but can be overwritten by the user for tuning QoR.

Figure 29 • Implementation Options

 In the "Implementation Options" dialog box, the "Device" tab is selected by default. Each tab presentation additional
options that can be set according to user's needs. Below are some guidelines for these options.

Verilog
Under this tab, the user may designate the top-level design module name. The user can also provide the names of
any parameters existing in the design along with associated values. If parameters are defined in this manner,
Synplify Pro propagates this value throughout the design. In this tab, the user must include the path to needed
libraries under "Include Path Order." Click on the + file icon to add the directory path and select from the
ACE_installation path as shown below.

Note

For Achronix devices, ensure the Disable I/O Insertion option is checked as shown.


http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 32

•

•

Figure 30 • Implementation Options: Include Path Order.

Place and Route
This tab is not presently utilized by ACE.

Timing Report
In the Timing report tab, the number of critical paths and number of start and end points can be specified to appear
in the timing report. Default timing report is available in the synthesis report (.srr) file. The two available options
are:

Number of Critical paths – sets the number of critical paths for the tool to report.

Number of Start/End points – specifies the number of start and end points to see reported in the critical path
sections.

Note

"Library Directories or Files" box can be left empty.


http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 33

Figure 31 • Implementation Options: Timing Report

Implementation Results
Users may set their own implementation name in this tab; the default name is rev_1. The next box is the "Results
Directory," specifying where users want to save the synthesized netlist file. The third box is "Results File Name,"
which sets the synthesized netlist file name.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 34

Figure 32 • Implementation Options: Implementation Results

Constraints
The Constraints tab is used to add synthesis constraint files if they were not added after adding source RTL files.
This tab is also used to set the default clock speed of the design. Achronix highly recommends that a suitable
constraint file be created for the synthesis project, specifying all of the clocks in the design. For details of how to add
constraint files and their syntax see Synthesis Constraints (page 44).

In addition the default frequency should be set to the match the most common system clock frequency (by default it
is set to 200 MHz).

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 35

Figure 33 • Implementation Options: Constraints

Options
The Options tab sets the following optimization switches: FSM Compiler, Resource Sharing, Pipelining and
Retiming — all are enabled by default. Users may change these optimization options according to design needs. For
example, with resource sharing enabled, the software uses the same arithmetic operators for mutually exclusive
statements as in branches of a case statement and hence area is optimized. Conversely, timing can be improved by
disabling resource sharing, but at the expense of increased area.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 36

Figure 34 • Implementation Options: Options

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 37

•

•

•

•

•

•

Chapter 7 : Synplify Pro Features
There are several features in Synplify Pro which can be very useful. This section covers recommendations for:

Synplify Warnings

Synthesis Hierarchical Report

HDL Analyst Schematics

Watch Window

Validating Constraints

Using Help

Synplify Warnings
Users can make use of strong linting and checking capabilities provided by Synplify Pro.

Figure 35 • Warning Messages

Synthesis Hierarchical Report
Synplify Pro has a hierarchical report to show different design statistics. The right-hand pane also shows, Project
build status, Predicted timing, Resource Utilization:

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 38

Figure 36 • Synthesis Hierarchical Report

Hierarchical Area Report
This report is useful to understand utilization of elements in the design, as well as, total sequential utilization for
specific modules. The report is really helpful to understand the utilization hotspots in the design.

Figure 37 • Hierarchical Area Report

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 39

HDL Analyst Schematics
The Synplify Pro HDL Analyst features enable the user to visualize the end user design in several useful schematic
views, including the hierarchical RTL view and flattened gate level netlist view. There are a variety of features to
help filter and explore the design which can be accessed by the HDL Analyst top level menus or by right click menus
within the schematic.

Browsing back and forth between the RTL view and the Technology (gate-level netlist) view enables users to
visualize how the design RTL was mapped to FPGA primitives such as LUTs and registers.

Figure 38 • HDL Analyst Hierarchical RTL View

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 40

Figure 39 • HDL Analyst Flattened Gate-Level Netlist View

Watch Window
Watch window is useful to view and compare results of multiple implementations. Watch window can be enabled by
the View → Watch Window command. Click in the Log Parameter section of the window and then click the pull-
down arrows to display the parameter choices.

To choose the implementations to watch, use the "Configure Watch" dialog box (right-click on "Log Parameter"
section of the window) and select the implementations to watch.

Note

Only a limited set of design parameters are supported for display.


http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 41

Figure 40 • Watch Window

Figure 41 • Log Watch Configuration

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 42

Validating Constraints
Synplify Pro provides a constraint checker, which runs the preliminary stages of synthesis, and then checks the
project constraint files against the objects in the design. It will report if any constraints cannot be successfully
applied. It is highly recommended that constraint check is run to ensure that all constraints the user requires to be
applied to the design are in fact being applied.

Select Run → Constraint Check to validate a project's constraints.

Figure 42 • Validating Constraints

Using Help
For getting help quickly, Synplify Pro provides very useful context sensitive help. For example, to access more
information about the "Attributes" tab of the Scope editor, click F1 key.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 43

Figure 43 • Attributes Tab Within the Scope Editor

On clicking the F1 key, help will automatically direct to relevant section of the help.

Figure 44 • Sample Help Screen

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 44

•

•

Chapter 8 : Synthesis Constraints
Synplify Pro constraints can be specified in two file types:

Synopsys design constraints (SDC) – normally used for timing (clock) constraints. A second SDC file would be
required for any non-timing constraints.

FPGA design constraints (FDC) – usually used for non-timing constraints; however, can contain timing
constraints as well.

SDC files are usually edited using a text editor, either as part of Synplify Pro or an external editor. FDC files can be
edited in either a text editor or using the Scope editor within Synplify Pro. When using Synplify Pro to edit FDC files,
an assistant tab is available which provides details of available FDC commands and their format.

Timing Constraints
It is highly recommended that the user defines all clocks in the design using an SDC file. If the design has multiple
clocks, clock constraints should be set accordingly, defining either appropriate clock groups or false paths between
asynchronous clocks. In addition, if required, the user can specify specific duty cycles for any particular clock.

Use the create_clock timing constraint to define each input clock signal and the create_generated_clock t
iming constraint to define a clock signal output from clock divider logic. The clock name (set with the -name option)
will be applied to the output signal name of the source register instance. When constraining a differential clock, the
user only needs to constrain the positive input.

For any clock signal that is not defined, Synplify Pro uses a default global frequency, which can be set with
the set_option -frequency Tcl command in the Synplify Pro project file. However, Achronix recommends
defining each clock in the design rather than relying on using this default frequency for undefined clocks.

A list of SDC commands are given below with examples. Refer to
 fpga_reference.pdf
 available in Synplify Pro Tool → Help → PDF documents for the description of the various options of the
remaining SDC commands listed here.

create_clock
This command creates a clock object and defines its waveform in the current design. The options
for create_clock are described in the table following.

Syntax

create_clock -name clockName [-add] {objectList} | -period {Value} [-waveform {riseValue
fallValue}] [-disable] [-comment commentString]

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 45

Command Examples

create_clock -name inclk -period 10 [get_ports {inclk1}]
create_clock -name divclk -period 20 [get_nets {divclk}]
create_clock -name inclkfast -period 5 -add [get_ports {inclk1}]
create_clock -name inclk -period 20 [get_ports {inclk1 inclk2 inclk3}] -waveform {
10 15 }

Table 1 • Option Description for create_clock

Option Descriptions

-name clockName

Specifies the name for the clock being created, enclosed in quotation
marks or curly braces. If this option is not used, the clock is given the name
of the first clock source specified in the objectList option. If the objectList
option is not specified, the -name option must also be used, which creates
a virtual clock not associated with a port, pin, or net. Both the -name and
objectList options can be used to give the clock a more descriptive name
than the first source pin, port, or net. If specifying the -add option, the
-name option must be used, and clocks with the same source must have
different names.

-add

Specifies whether to add this clock to the existing clock or to overwrite it.
Use this option when multiple clocks must be specified on the same source
for simultaneous analysis with different waveforms. When this option is
specified, the -name option must also be used.

-period Value Specifies the clock period in nanoseconds (ns). The value type must be
greater than zero.

-waveform riseValue fallValue

Specifies the rise and fall times for the clock in nanoseconds with respect
to the clock period. The first value is a rising transition, typically the first
rising transition after time zero. There must be two edges, and they are
assumed to be a rise followed by a fall. The edges must be monotonically
increasing. If this option is not specified, a default timing is assumed which
has a rising edge of 0.0 and a falling edge of periodValue/2.

objectList Clocks can be defined on the following objects: pins, ports, and nets.

-disable Disables the constraint.

-comment textString Allows the command to accept a comment string.

create_generated_clock
This command creates a generated clock object.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 46

Syntax

create_generated_clock -name {clockName} [-add] -source {masterPin} -divide_by integer

Command Examples

create_generated_clock -name divclk -source [get_ports {inclk}] -divide_by 2 [get_nets
{divclk}]

create_generated_clock -name clk_div2 -source [get_pins {iPLL.ddr3_pll.iACX_PLL/
ogg_gm_clk[0]}] \
 -divide_by 2 \
 [get_pins
{i_ddr3xN_phy_w_ctrl_core.ddr3_inst\.i_ddr3_macro.x_ddr3.i_ddr3xN_phy_w_controller.i_ddr
3xN_phy.i_phy_sd_clkdiv/clkout}]

The period (.) is used as a separator between levels of hierarchy and instances. The backslash (\) is only used when
referencing what is inside a generate block name. For example, the RTL appears as follows:

generate
 begin: ddr3_inst
 ddr3_macro i_ddr3_macro (...)

set_clock_groups
Specifies clock groups that are mutually exclusive or asynchronous with each other in a design.

Syntax

set_clock_groups -asynchronous -name clockGroupname -group{clockList}

Command Example

set_clock_groups -asynchronous -group {clk1 clk2} -group {clk3 clk4} -name clkgroup

set_false_path
This command removes timing constraints from particular paths.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 47

Syntax

set_false_path [-setup] [-from | -rise_from | -fall_from] [-through] [-to | -rise_to
| -fall_to] value {objectList}

Command Examples

set_false_path -from [get_clocks inclk1] -to [get_clocks inclk2]
set_false_path -from temp2 -to out #(where temp2 is a register and out
is an output port)
set_false_path -from in #(where in is an input port)
set_false_path -from temp1 -to temp2 #(where temp1 and temp2 are
registers)
set_false_path -from in -to temp1 #(where in is an input port and
temp1 is a register)
set_false_path -from {i:temp2[*]} -to {mem_mem_0_0} #(where temp is register bus and
mem_mem_0_0 is a RAM

set_input_delay
Sets input delay on pins or input ports relative to a clock signal.

Syntax

set_input_delay [-clock {clockName}] [-clock_fall] [-rise] [-fall] [-min] [-max] [-
add_delay] {delayValue} {portPinList}

Command Examples

set_input_delay 1.00 -clock clk {at} -max
set_input_delay {1.00} -clock [get_clocks {clk}] -max [get_ports {at}]
set_input_delay 2.00 -clock clk {bt} -min
set_input_delay 1.00 -clock clk -min -add_delay {bt}
set_input_delay 3.00 -clock clk {st}
set_input_delay 4.00 -clock clk -add_delay {st}
set_input_delay 1.00 -clock clk {din2} -clock_fall
set_input_delay 1.50 -clock clk {din1 din2}
set_input_delay 2.00 -clock clk [all_inputs]

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 48

set_output_delay
Sets output delay on pins or output ports relative to a clock signal.

Syntax

set_output_delay [-clock clockName [-clock_fall]] [-rise|[-fall] [-min|-max] [-
add_delay] delayValue {portPinList} [-disable] [-comment commentString]

Command Examples

set_output_delay 1.00 -clock clk {o1} -max
set_output_delay 3.00 -clock clk -max -add_delay {o1}
set_output_delay 2.00 -clock clk {o2} -min

set_max_delay
Specifies a maximum delay target for paths in the current design.

Syntax

set_max_delay [-from |-rise_from | -fall_from] [-through] [-to | -rise_to | -fall_to]
{delay_value}

Command Examples

set_max_delay 2 -from {a b } -to {o1}
set_max_delay -rise_from {clk} {1}
set_max_delay -through {{n:dout1}} {1}
set_max_delay 1 -fall_to {clk1}

set_multicycle_path
Modifies single-cycle timing relationship of a constrained path.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 49

Syntax

set_multicycle_path [-start |-end] [-from {objectList}] [-through {objectList} [-through
{objectList} ...]] [-to {objectList}] pathMultiplier [-disable] [-comment
commentString]

Command Examples

set_multicycle_path 2 -from [get_clocks inclk1] -to [get_clocks inclk2]
set_multicycle_path 4 -from temp2 -to out

set_clock_latency
Specifies clock network latency.

Syntax

set_clock_latency -source [-clock {clockList}] delayValue {objectList}

Command Example

set_clock_latency 0.2 -source [get_ports clk] -clock [get_clocks {clk}]

set_clock_uncertainty
Specifies the uncertainty or skew of the specified clock networks.

Syntax

set_clock_uncertainty {objectList} -from fromClock |-rise_from riseFromClock |
-fall_from fallFromClock -to toClock |-rise_to riseToClock | -fall_to fallToClock value

Command Example

set_clock_uncertainty 0.4 [get_clocks clk]

Below is an example of clock constraint commands for a multiple clock domain design.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 50

Clock definitions
create_clock -period 10 [get_ports
{pll_refclk_p}] -name
pll_refclk_p
create_clock -period 100 [get_ports
{tck}] -name
tck
create_clock -period 1.527 [get_pins
{i_clock_generator.i_PLL_EN.SW_APLL_0_pll_en_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] -name
en_mac_ref_clk
create_clock -period 3.175 [get_pins
{i_clock_generator.i_PLL_FF.SW_APLL_1_pll_ff_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] -name
ff_clk
create_clock -period 3.448 [get_pins
{i_clock_generator.i_PLL_SYS.SW_APLL_2_pll_sys_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] -name
sys_clk
create_clock -period 62.5 [get_pins
{i_clock_generator.i_PLL_DCC.SW_APLL_3_pll_dcc_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] -name
sbus_clk

By specifying clock group, each of the above clocks will be determined to be
asynchronous to all other clocks
set_clock_groups -asynchronous -name clk_grp1 -group {sbus_clk} \
 -group {en_mac_ref_clk} \
 -group {pll_refclk_p} \
 -group {sys_clk} \
 -group {ff_clk} \
 -group {tck}

Non-timing Constraints
An FDC file is used to specify non-timing constraints, which can be either attributes on an object (global or local),
using the define_attribute statement, or compile points.

Compile Points
To implement compile points, they are specified in the FDC file as follows.

Note

Most timing engines only use up to three decimal places of accuracy; therefore, it is normal to truncate
non-rational values to this level.



Note

For a detailed explanation of compile points how and when to use them, see Compile Points (page 60).


http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 51

To set a single compile point, enter:

define_compile_point {v:work.pac_ddr3_ip} -type {locked}

To find every instance of a module and set as a compile point, enter:

Compile Point syntax

foreach inst [c_list [find -hier -view pac_ddr3_ip*]] {
 define_compile_point $inst -type {locked}
}

Attributes
Attributes provides a mechanism to control how a design is mapped by Synplify Pro. Attributes can be defined both
globally and also applied to individual instances. Attributes can be entered both in HDLs or in the SCOPE attributes
tab, FDC files for project-wide entities. Attributes with syn_* do not affect synthesis and passed to the netlist.

Here is summary and examples of some of these attributes:

Attribute Description

syn_allow_retiming Controls retiming of registers across combinatorial logic on a global
level or to specific register.

syn_dspstyle
Controls the mapping of objects to technology-specific DSP
components. Options are "dsp" and "logic" for DSP64 or LUT/FF,
respectively.

syn_ramstyle
Controls the implementation of an inferred RAM. Options are
"block_ram", "logic_ram", and "registers" for BRAM, LRAM, and
registers, respectively.

syn_romstyle Controls the implementation of an inferred ROM. Options are
"block_rom", "logic_rom" for BRAM and LRAM, respectively.

syn_keep To preserve net in synthesis during optimization.

syn_preserve To prevent sequential optimizations.

syn_noprune To prevent optimization on instances and black boxes when output is
not used.

syn_maxfan To override global fanout guide for an individual port, net, register.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 52

To override the number of available resources in a device, enter the following command. This command can be used
to limit the mapping to certain resources.

define_global_attribute syn_allowed_resources {blockrams=1000}

To synthesize all ROMs using logic, enter:

define_global_attribute {syn_romstyle} {logic}

To ensure that RAMs are only inferred for sufficiently large register sets, enter:

define_global_attribute {syn_max_memsize_reg} {2048}

For more detailed information on all the supported attributes, refer to Synplify Pro online help "Attribute Reference
Manual"

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 53

•

•

•

•

•

•

Chapter 9 : Synthesis Optimizations
There are several optimizations that can be performed by the user during Synplify Pro synthesis. This sections
covers recommendations for:

Preventing Objects from Being Optimized Away (page 53)

Pipelining (page 54)

Retiming (page 54)

Forward Annotation of RTL Attributes to the Netlist (page 55)

Compile Points (page 60)

Finite State Machines (page 62)

Preventing Objects from Being Optimized Away

Dangling Nets
Synplify Pro always performs optimization on redundant or feed-through nets. At times, the user may want to
preserve these nets. In order for these nets not to be optimized away (removed), add the following directive to the
RTL, In this example, synthesis will not optimize away (remove) the logic. Instead, it infers a buffer between the two
wire statements. If it is not specified, the user may not see the buffer insertion by the tool.

wire net1 /* synthesis syn_keep = 1 */ ;
wire net2 ;

assign net2 = net1 ;

Dangling Sequential Logic
For sequential logic the syn_preserve attribute is used.

reg net_reg1 /* synthesis syn_preserve = 1 */ ;

always @ (posedge clk)
 net_reg1 <= some_net;

Unconnected Instances
For input instances when their output pins are unconnected, the syn_noprune attribute is used. The following
examples show how to apply this attribute to both Speedster I/O pads and Speedcore boundary pins.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 54

Speedster Output Pad

PADIN ipad (.padin(in[0])) /* synthesis syn_noprune = 1 */;

Speedcore Output Pin

IPIN ipin (.din(in[0])) /* synthesis syn_noprune = 1 */;

Prevent ACE Optimizing Objects Away
In the above examples, Synplify Pro does not remove the unconnected entity, ensuring that the Synplify Pro netlist
retains these entities. However, when the netlist is read into ACE, ACE performs netlist optimization and resynthesis.
If the objects retained by synthesis are still unconnected, then ACE will remove these entities from the final place-
and-route netlist. To prevent ACE from optimizing these entities, use the ACE must_keep directive in conjunction
with the above attributes. Using the preceding sequential logic example, the must_keep attribute is passed through
Synplify and included in the synthesized netlist. ACE will then recognize this attribute and keep the instance.

(* must_keep=1 *) reg net_reg1 /* synthesis syn_preserve = 1 */ ;

always @ (posedge clk)
 net_reg1 <= some_net;

Pipelining
Pipelining is the process of splitting logic into stages so that the first stage can begin processing new inputs while
the last stage is finishing the previous inputs. Pipelining ensures better throughput and faster circuit performance. If
using selected technologies which use pipelining, also use the related technique of retiming to improve
performance.

When this switch is enabled in a project file, synthesis uses register balancing and pipeline registers on multipliers
and ROMs.This option is equivalent to enabling the Pipelining option on the Options panel of the Implementation
Options dialog box.

Retiming
The retiming process moves storage devices (flip-flops) across computational elements with no memory (only
gates/LUTs) to improve the performance of the circuit.

Note

The attribute must_keep can be applied to both sequential elements and wires.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 55

When this switch is enabled, synthesis tries to improve the timing performance of sequential circuits. This option is
equivalent to enabling the Retiming option on the Options panel of the Implementation Options dialog box. Use the
syn_allow_retiming attribute to enable or disable retiming for individual flip-flops. This option also adds a
retiming report to the log file.

Forward Annotation of RTL Attributes to the Netlist
Synplify Pro supports forward annotation of RTL attributes to the netlist. These user-defined attributes propagate to
the netlist to be used by ACE place and route for optimization. This feature requires the usage of various directives
available in Synplify Pro such as syn_noprune,syn_keep, syn_hier,syn_preserve, etc., to propagate user-
define attributes to the netlist. The table below lists the directives to be set on the mentioned objects in order to
forward annotate the RTL attribute.

Object Directive Result

Module syn_hier=”hard” Attribute applied on the module will
propagate to the netlist

Instantiated Components syn_noprune Attribute applied on the instantiated
component will propagate to the netlist

Input/Output ports syn_hier="hard" on the module
containing the ports

Attribute applied on ports will propagate to
the input/output port in the netlist

Registers syn_preserve Attribute applied on the registers will
propagate to the netlist

Wire syn_keep Attribute applied on nets/wires will
propagate to the netlist

Below are some examples:

Example 1
The attribute weight="3.0" propagates to my_reg in the netlist. The syntax used is Verilog 2001 style
parenthetical comments.

(* syn_preserve=1, weight="3.0" *) reg my_reg;

Example 2
The syntax used is C-style comment.

Note

Pipelining is automatically enabled when retiming is enabled.


http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 56

reg my_reg /* synthesis syn_preserve=1 weight=4 */;

Example 3
This example illustrate attribute propagation on nets.

(* syn_keep = 1, weight = 3 *) wire n2;

Example 4
This feature of attribute propagation is utilized in flop pushing to boundary pins or I/O pads via the ACE attribute
syn_useioff. The syn_useioff is applied to the input and output ports in the below example.

module flop_push_test1 (
 ina, inb, sel, clk, z0
);

input wire [3:0] ina /* synthesis syn_useioff=1 */;
input wire [3:0] inb /* synthesis syn_useioff=0 */;
input wire sel /* synthesis syn_useioff=1 */;
input wire clk;
output reg z0 /* synthesis syn_useioff=1 */;

 reg sel_r0=1'b0, sel_r1=1'b0;
 reg [3:0] ina_r0=4'h0, ina_r1=4'h0, inb_r0=4'h0, inb_r1=4'h0;

 always @(posedge clk)
 begin
 sel_r0 <= sel;
 sel_r1 <= sel_r0;
 ina_r0 <= ina;
 ina_r1 <= ina_r0;
 inb_r0 <= inb;
 inb_r1 <= inb_r0;

 z0 <= sel_r1 ? & inb_r1 : |ina_r1;
 end

endmodule

Note

When using C-style comment, a comma is not required after syn_preserve=1. When using Verilog 2001
style, a comma is required after syn_preserve=1.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 57

Example 5
This example illustrates attribute propagation on instantiated components:

module att_propagate_instcomp (
 d1, d2, d3, clk, out1
);

input wire d1,d2, d3, clk;
output reg out1;

reg q1,q2;

//Instantiate 2 instances U1 and U2 of module test2
 (* must_keep = 1, syn_noprune = 1 *) test2 U1 (d1,d2,d3, clk,out2);
 (* syn_noprune = 1, must_keep = 1 *) test2 U2 (d1,d2,d3, clk,out2);

 always @(posedge clk)
 q1 <= d1;

 assign combo1 = q1 & d2 & d3;

 always @(posedge clk)
 q2 <= combo1;

Note

In example 4, the module flop_push_test1 is a top module; therefore, syn_hier="hard" is not specified
on the module. If it were a sub module, syn_hier="hard" is required for the attribute on ports to
propagate to the netlist; for example:

module flop_push_test1 (ina, inb, sel, clk, z0) /* synthesis syn_hier="hard" */;



Note

In example 4, the syn_useioff attribute could also be specified in the Verilog 2001 comment style. For
example:

(* syn_useioff=1 *) input [3:0] ina;

However, that style only works correctly when the attribute has a non-zero value. Synplify Pro cannot
distinguish between the value zero and and an attribute that is not present. In that case it will not forward
annotate the attribute to the netlist used by ACE. Therefore, it is recommended to always use the C-style
comment used in example 4.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 58

 assign combo2 = q2 | combo1;

 always @(posedge clk)
 out1 <= combo2;

endmodule

// --

module test2 (
 d1, d2, d3, clk, out1
) /*synthesis syn_hier = hard */;

input wire d1, d2, d3, clk;
output reg out1;

reg q1,q2;

 always @(posedge clk)
 q1 <= d1;

 assign combo1 = q1 | d2 | d3;

 always @(posedge clk)
 q2 <= combo1;

 assign combo2 = q2 & combo1;

 always @(posedge clk)
 out1 <= combo2;

endmodule

Example 6
This example shows attribute propagation on modules:

(* att0=1 *) module top (
 d1, d2, d3, clk, out1, out2
);

input wire d1, d2, d3, clk;
output wire out2;
output wire out1,

 // Instantiate test1

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 59

•

•

•

•

 test1 U1 (d1, d2, d3, clk, out1);

endmodule

// --

(* must_keep=1 *) module test1 (
 d1, d2, d3, clk, out1
) /* synthesis syn_hier="hard" */;

input wire d1, d2, d3, clk;
output reg out1;

reg q1,q2;

 always @(posedge clk)
 q1 <= d1;

 assign combo1 = q1 & d2 & d3;

 always @(posedge clk)
 q2 <= combo1;

 assign combo2 = q2 | combo1;

 always @(posedge clk)
 out1 <= combo2;

endmodule

Example 7
As shown above, flop pushing can take advantage of attribute propagation to control specific I/O pads or boundary
pins. The examples below shows how to control flop pushing from within the RTL, applying the attribute to both
Speedster I/O pads and Speedcore device boundary pins.

This example illustrates the application of the syn_useioff attribute with a value of 0 on, respectively:

A wire

A black-box PAD instance, an IPIN instance, the IPIN input net, the IPIN output net (Speedcore only)

An PADIN instance (Speedster only)

A pair of DFF instances

All of the above are valid instances to which to apply this property:

(* syn_keep=1 *) wire ipad_dout /* synthesis syn_useioff = 0 */;
(* syn_keep=1 *) wire ipin_dout /* synthesis syn_useioff = 0 */;
 wire dff1_q, dff2_q;

http://www.achronix.com

UG018 Synthesis User Guide

14 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com 60

BB_PADIN i_bb_padin (.padin(sc_in) , .dout(bb_pad_dout)) /* synthesis
syn_useioff = 0 */;
PADIN i_padin (.padin(sp_in) , .dout(padin_dout)) /* synthesis
syn_useioff = 0 */;
IPIN i_ipin (.din(ipad_dout), .dout(ipin_dout)) /* synthesis
syn_useioff = 0 */;

ACX_DFF i_dff1 (.d(ipin_dout) , .ck(clk) . .q(dff1_q)) /* synthesis
syn_useioff = 0 */;
ACX_DFF i_dff2 (.d(ipin_dout) , .ck(clk) . .q(dff2_q)) /* synthesis
syn_useioff = 0 */;

For full details on all the options for flop pushing, see the section "Automatic Flop Pushing into I/O Pins" in the ACE
Users Guide (UG070)14.

Compile Points
Compile points are RTL partitions of the design which are defined before synthesizing a design. The advantages of
using compile points is design preservation, runtime savings and improves efficiency of top-down and traditional
bottom-up design flows.

Synplify Pro supports both automatic and manual compile points. The automatic compile-point feature can be
selected from "Implementation Options" dialog box as shown below. When automatic compile points are enabled,
the tool automatically identifies compile points based on various parameters such as size of the design, hierarchical
modules, boundary logic, etc. Refer the
 fpga_user_guide.pdf
 available with Synplify Pro for details on compile points.

Note

As in Example 7, the syn_useioff attribute must be specified with a synthesis directive in a C-style
comment because it has a value of zero. However, the syn_keep=1 attribute on the wire can be specified
in either style.



https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG018 Synthesis User Guide

2.2 www.achronix.com 61

•

•

•

Figure 45 • Setting Compile Points

Although compile points can deliver significant runtime savings, users should be aware that they can have a
detrimental effect on quality of results (QoR) if not used with care. Compile points identify blocks of code that are
repeated, guiding Synplify Pro to only synthesize that block once. The level of optimization between a compile point
and it's enclosing module is defined by the compile point type:

Locked – No optimizations across compile point boundary. Locked compile points are used for the Achronix
incremental compile flow

Hard – Signals can be optimized across the compile point boundary (i.e., back-to-back inverters removed).
However, the actual interface is not optimized — all signals remain. All automatic compile points are set to hard.

Soft – Signals can be optimized across the compile point boundary, and the signals themselves may be
removed, or renamed. Therefore, almost full optimization can occur as though the design did not have compile
points.

The three modes above result in increasing runtimes; however, they also generally result in increased QoR as greater
optimizations can be performed. Users should determine which configuration of compile points, if any, best meet
their needs with regards to performance versus runtime.

Caution!

If automatic compile points are enabled, users must be aware that all automatic compile points are set to
hard. Therefore, it may not be possible to achieve the highest QoR.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 62

•

•

•

•

•

Finite State Machines
The FSM compiler is an automatic tool for encoding state machines. FSM coding style in the RTL design will directly
impact performance. By default Synplify Pro implements the following FSM encoding:

0-4 states is binary encoded

5-40 states is one-hot encoded

>40 states is Gray encoded

FSM compiler is used to generate better results and to debug state machines.

Generating Better Results
The software uses optimization techniques that are specifically tuned for FSMs such as reachability analysis. The
FSM compiler examines the design for state machines, converting them to a symbolic form that provides a better
starting point for logic optimization. The FSM compiler may convert an encoded state machine into a different
encoding style (to improve speed and area utilization) without changing the source. This optimization can be
overridden by choosing a particular encoding style through appropriate synthesis attributes in the RTL design.

Debugging the State Machines
State machine description errors can result in unreachable states. The user can also use the FSM viewer to see a
high-level bubble diagrams and cross-probe from the diagram with respect to RTL. The user can then check
whether the source code describes the state(s) correctly.

FSM Encoding
There are two choices to define the encoding via attributes in the RTL code:

Use syn_encoding attribute and enable the FSM compiler.

Use syn_enum_encoding to define the states (sequential, one-hot, gray, and safe) and disable the FSM
compiler. If the user does not disable the FSM compiler, the syn_enum_encoding values are not
implemented. This behavior is because the FSM compiler, which is a mapper operation, overrides any user
attributes for the FSM encoding. The FSM compiler can be disabled via the GUI or the from the Synplify Pro
project file with the following syntax:

set_option -symbolic_fsm_compiler 0

The user may also direct the synthesis process to deploy a user-defined FSM encoding, for example:

Note

Compile points will only have a significant effect on runtime either when used as locked to enable
incremental synthesis (and place and route), or else in designs with a large number of repeating structures.



http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 63

•

•

attribute syn_enum_encoding of state_type: type is "001 010 101" ;

There is a synthesis attribute to turn on/off FSM extraction. By using this attribute the user can see how state
machines are extracted. The attributes is set in the source code as follows:

Specify a state machine for extraction and optimization – syn_state_machine=1
Prevent state machines from being extracted and optimized – syn_state_machine=0

In VHDL

------ Attribute ----

attribute syn_state_machine : boolean;
attribute syn_state_machine of tx_training_cstate : signal is true;

In Verliog
If user does not want to optimize the state machine, add the syn_state_machine directive to the registers in the
Verilog code. Set the value to 0. When synthesized, these registers are not extracted as state machines.

reg [39:0] curstate /* synthesis syn_state_machine=0 */ ;

For greater than 40 states, Synplify Pro performs Gray encoding. For one-hot encoding, specify the syn_encoding
= "onehot" as shown below.

reg [39:0] state /* synthesis syn_encoding = "onehot" */ ;

Replication of States with High Fan-ins
Large and complex state machines present another unique challenge in state machine design. Complex state
machines can be made to run faster by actually making them larger by adding more states. This technique can be
counter intuitive as the number of levels of logic between the states and not the number of states typically limits
state machine performance. The performance of a state machine is limited by both the number of fan‐ins into a
given state and the decisions made in that state. For example, idle-type states can have a large number of inputs
plus increased computational load. With the 6‐input LUT architecture of Achronix devices, once the number of fan‐
ins exceeds six, another level of logic is needed. An easy method to reduce the number of fan‐ins is to replicate these
states. The duplicated high fan‐in states reduce the number of inputs, thus reducing the number of levels of logic.

Both state machines in the figure below are equivalent in function, but State A is duplicated in Version II so that A
and A1 have two or less return inputs. As a result, if each state has to deal with four additional inputs, they can now
be contained in one 6‐input LUT. Although this example is simplistic, the methodology can be applied to larger and
more complex state machines.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 64

Figure 46 • Replicated High Fan-in State Example

Fanout Limit
This fanout limit can also be controller through RTL design. In this case if the user knows about a net with high
fanout and wants to replicate the cell after a certain fanout is reached, the following coding style is needed:

wire net1 /* synthesis syn_maxfan = 8 */ ;

Here Synplify Pro will infer a buffer/logic if the fanout limit on net1 exceeds 8.

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 65

•

•

•

•

•

•

•

•

•

•

Chapter 10 : Synthesis User Guide Revision History

Version Date Description

1.0 17 Jul 2016
Initial revision. Ported document to Confluence and made it Speedcore
specific.

1.1 31 Oct 2016
Fix for minor type and additional clock constraint example.

Updated document template to include confidentiality note.

1.2 31 Mar 2017 Corrected one of the create_generated_clock examples in the code block.

1.3 01 Oct 2018

Synthesis Optimizations (page 53):

Corrected the syn_keep attribute in Example 7 (page 59).

Removed the instantiation templates, referred the user to the Speedcore
IP Component Library User Guide (UG065).

Added details on Compile Points. (page 60)

Updated DSP64 (page 0) .

Updated Block RAM (page 0) .

Managing Projects in Synplify Pro (page 27): Removed references to version
L-2016 limitations.

Example Synplify-Pro Project File: Removed internal paths from file names.

1.4 10 Jun 2019

Synthesis Optimizations (page 53) :

Removed technology specific entries to make the guide suitable for all
technologies. Technology specific parts moved to their appropriate IP
Component Library User Guide

Specifically removed inference templates for Speedster16t parts,
(DSP64, BRAMTDP & BRAMSDP).

Managing Projects in Synplify Pro (page 27):

Combined Speedster and Speedcore differing library files into single
Synthesis library include files table.

Example Synplify-Pro Project File:

Added ACE_INSTALL_DIR environment variable to example project file

http://www.achronix.com

UG018 Synthesis User Guide

2.2 www.achronix.com 66

•

•

•

•

•

•

•

•

Version Date Description

2.0 20 Jun 2024

Overview (page 1): Minor correction.

Added major new content for integrated synthesis flows with ACE 10.0 and
beyond:

ACE-Driven Integrated Synthesis (page 4)

Synplify-Pro-Driven Integrated Synthesis (page 14)

Stand-Alone Synthesis in Synplify Pro (page 23)

Managing Projects in Synplify Pro (page 27)

Added chapter Synthesis Integration with Multiprocess Option
Exploration (page 25)

2.1 20 Aug 2024
Updated screenshots for ACE 10.1.

Added information on new ACE feature to open Synplify Pro projects in the
Synplify Pro GUI from within ACE.

2.2 05 Dec 2024

Updated screenshots for ACE 10.2

Updated information on Synplify Pro installation and environment path setup

Updated content for the name change of synthesis project option "Generate
Project File" to "ACE-Driven Synthesis"

http://www.achronix.com

	Overview
	Synthesis Flows

	ACE-Driven Integrated Synthesis
	Synthesis Project Setup in ACE
	Create an ACE Project
	Add the Design Files and Set Project Options

	Synthesis Options Configuration
	Running Synthesis to Compile the Design
	Synthesis Reports and Messages
	Opening Synplify Project File in Synplify Pro

	Synplify-Pro-Driven Integrated Synthesis
	Configuring the Synthesis Project in Synplify Pro
	Synthesis Project Setup in ACE
	Create an ACE Project
	Add the Design Files and Set Project Options

	Synthesis Options Configuration
	Running Synthesis to Compile the Design
	Synthesis Reports and Messages
	Opening Synplify Project File in Synplify Pro

	Stand-Alone Synthesis in Synplify Pro
	Configuring the Synthesis Project in Synplify Pro
	Running Synthesis
	Adding the Synthesized Netlist to ACE for Place and Route

	Synthesis Integration with Multiprocess Option Exploration
	Managing Projects in Synplify Pro
	Creating and Setting up a Project
	Adding the Synthesis Library Include File
	Adding Source Files to the Project

	Implementation Options
	Verilog
	Place and Route
	Timing Report
	Implementation Results
	Constraints
	Options

	Synplify Pro Features
	Synplify Warnings
	Synthesis Hierarchical Report
	Hierarchical Area Report

	HDL Analyst Schematics
	Watch Window
	Validating Constraints
	Using Help

	Synthesis Constraints
	Timing Constraints
	create_clock
	create_generated_clock
	set_clock_groups
	set_false_path
	set_input_delay
	set_output_delay
	set_max_delay
	set_multicycle_path
	set_clock_latency
	set_clock_uncertainty

	Non-timing Constraints
	Compile Points
	Attributes

	Synthesis Optimizations
	Preventing Objects from Being Optimized Away
	Dangling Nets
	Dangling Sequential Logic
	Unconnected Instances
	Prevent ACE Optimizing Objects Away

	Pipelining
	Retiming
	Forward Annotation of RTL Attributes to the Netlist
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Compile Points
	Finite State Machines
	Generating Better Results
	Debugging the State Machines
	FSM Encoding
	Replication of States with High Fan-ins

	Synthesis User Guide Revision History

