Synthesis User Guide
(UG018)

All Achronix Devices

Achronix

Data Acceleration

UUUUU

UuGo18 Synthesis User Guide

Copyrights, Trademarks and Disclaimers

Copyright © 2024 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and
ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks
are the property of their respective owners. All specifications subject to change without notice.

Notice of Disclaimer

The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor
Corporation does not give any representations or warranties as to the completeness or accuracy of such information
and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation
reserves the right to make changes to this document and the information contained herein at any time and without
notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at http://
www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

uGo18

Synthesis User Guide

Table of Contents

Chapter1:

Chapter 2:

Chapter 3:

Chapter 4:

(01 =T T 2
SYNTNESIS FIOWS ...ttt s st s bbbt b s s s sessssssensnans 2
ACE-Driven Integrated Synthesis.....ccccoieeeeeieireiecceeecrceeecceeeeceeeeceneenn. 3
SyNthesis ProjeCt SETUP iN ACKE...... et se s sesssss s sesssssesssssesanens 3

Create AN ACE PrOJECT ..ottt ssss st ssss st ssss s sssssssssssssssssssssssssssssssnssssssssnssnsen 3

Add the Design Files and Set ProjEct OPtiONScuuueeeeresesersessmsessessssesssssssssssssssssssssssssssssssessssees 3
Synthesis OptioNs CONFIBUIAtION ...t sessneas 6
Running Synthesis to ComMPpile the DESI8N ...t 8
Synthesis Reports aNd MESSAEES. ...ttt sssssss s sssassesessssns 10
Synplify-Driven Integrated Synthesis.......cccccoecvevirvciniinicirisiiscncecnncnne 13
Configuring the Synthesis Project in Synplify Pro ... 13
Synthesis Project SETUP iN ACE....... ettt es 13

CrEALE AN ACE PIOJECT cooievverreeeeerssseeeesssssssessssssssessesssssssesesssssssseee 13

Add the Design Files and Set Project OPtioNS ...t sssssssssssssssssssnes 14
Synthesis Options CONFIBUIAtioN ...ttt s aes 16
Running Synthesis to Compile the DeSigN ...t 17
Synthesis Reports and MESSAEES ...ttt ses 19
Stand-Alone Synthesis in Synplify Pro.......cccvenvnnivninncnninicnnenne 22

uGo18

Synthesis User Guide

Chapter 5:

Chapter 6 :

Chapter 7:

Configuring the Synthesis Project in Synplify Pro ... 22
RUNNINE SYNTNESIS ..ttt ettt sssen s senas 22
Adding the Synthesized Netlist to ACE for Place and Route........ccoeeeveveveereerecennnnnnas 23
Synthesis Integration with Multiprocess Option Exploration.............. 25
Managing Projects in Synplify Pro........cceeecennennenneeneecsencencenenens 27
Creating and Setting UP @ PrOjJECT ...ttt ssseens 27
Adding the Synthesis Library INCIUAE Fil@......c ettt senenesennes 29
Adding Source Files t0 the ProjECT ...ttt 30
IMPIEMENTATION OPLIONS ..ottt s et s s s senes 31
VBIHIOE ettt ettt ettt ettt bRttt sttt 32
PlACE @NT ROULE ...ttt sttt s sttt en 33
TIMINE REPOIM ettt bbbt et s st st et as st e asssssnsssssennns 33
IMNPIEMENTATION RESUITS .ttt st s s s s s s s s s sansnes 34
CONSTIAINTS ettt e e bbbt baes 35
OPTIONS ettt s bbb bbb 36
SYNPlify Pro FEAtUreScuiiiieeceecceeecceeecceeeccteeccneeccneecsneessneesssessssesssneenes 38
SYNPLITY WATNINES ..ottt sttt sttt 38
Synthesis Hierarchical REPOI ...ttt 38
HIerarchiCal Area REPOIT ...ttt ettt s st nae 39
HDL ANAlySt SCHEMATICS ...cvivieeieeceeeeteete ettt se s senees 40
WALCN WINAOW ...ttt sttt et st 42
Validating CONSTIAINTS ..ottt se st sss s senassesanans 44

uGo18 Synthesis User Guide

USINE HEID ettt sttt b st 44
Chapter 8 : Synthesis CONStraints.....ccccccecveeeverrreerreecreecreeesreeecseeecseeesseessseesssaesssnens 47
TIMING CONSTIAINTS .ottt 47
CFATE _CIOCK ettt s bttt bt nae 47
Syntax 47
Command Examples 48

Create _8ENEIrated _ClOCK .ttt s s s s s s s s s s snes 48
Syntax 49
Command Examples 49
SEE_CIOCK _BIOUPS c.ereereeenectreectcaeteteasc ettt ettt sanae 49
Syntax 49
Command Example 49
SET_TAISE _PATN et a s 49
Syntax 50
Command Examples 50
SEE_INPUE_ACIQY oottt ettt s 50
Syntax 50
Command Examples 50
SET_OULPUL _ABIAY ettt sttt sess st ss e ss s s s s s s s s s ssssessssensnsnssansns 51
Syntax 51
Command Examples 51
SEE_MAX_AEIAY ettt 51
Syntax 51
Command Examples 51
SET_MNUILICYCIE _PATN ettt sttt s s se s s s s nssssssnens 51
Syntax 52

uGo18 Synthesis User Guide

Command Examples 52
SEE_CIOCK _IAEENCY ettt et ettt sttt ss st s s besssassenns 52
Syntax 52
Command Example 52
SEE_CIOCK _UNCEITAINTY .ottt ea s sea st e 52
Syntax 52
Command Example 52
NON-TIMING CONSTIAINTS. ...ttt ese e seeaees 53
COMPIIE POINTS ..ottt bbb a s s bbb s s st as s s s s s s s s s sesas s s sesansens 53
ATEFIDUTES et 54
Chapter 9: Synthesis Optimizationsccucvviiiireiiirieircretecceeeecreeecceececceeeessneeeeens DO
Preventing Objects from Being Optimized AWaYcceveeeeerecesreeeeneesessssessesenans 56
DANEINE NETS ...ttt st ss s s s s ss s s ss s sas s s s s ssssses s s ssssessessssessssnsssansens 56
DaNgliNg SEQUENTIAI LOZIC c.vrirererireririreirieiresisessssassesessssessassssssssssssassnssnes 56
UNCONNECTEA INSTANCES ..ot 56
Speedster Output Pad 57
Speedcore Output Pin 57

Prevent ACE Optimizing ODJECTS AWAYc.viuiuiuriereineieieere ettt ssseastssessessessessesse s sssssseen 57
PIDEIINING ettt sttt sttt sese s 57
RETIMINEG oottt ettt sttt ese s 57
Forward Annotation of RTL Attributes to the NetliSt.......co e 58
EXBMIPIE Lottt bt 58
EXQIMIPIE 2 ettt sttt bttt bttt bRt a st b ane 58
EXAIMIPIE 3 ettt ettt ettt bbbttt e s b aene 59
EXQMIPIE 4 oottt st R R AR s A st a et s st s 59

Vi

uGo18 Synthesis User Guide

EXQIMIPIE D ettt ettt sttt bbbttt bbb s st banaene 60
EXQIMIPIE B ettt st ettt bbbttt sttt n st 61
EXAIMIPIE 7ttt sttt ettt b e 62
COMPIIE POINTS ...ttt ettt ettt s s b bt se b sas s s sansssnas 63
FINite STate MaChiNES ...ttt sttt 65
GENErating BettEr RESUILS ..ottt sssansns 65
Debugging the State MaAChINES. ...ttt ss s s s s sensssansnes 65
FSM ENCOQING ettt ess s sss st ss s s ss s s st ss s sss s s s s ssssssssssssssnssnsssnnsece 65

In VHDL 66

In Verliog 66
Replication of States With High Fan=iNS.......cee ettt 66
Fanout Limit. 67
Chapter 10 : Synthesis User Guide Revision History.........cccoveeevveiicnreeeccreeeeccneeennee. 68
REVISION HISTOIY ettt ettt s st a s s ssaes 68

vii

UuGo18 Synthesis User Guide

2.0 www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 1: Overview

This user guide describes how to synthesize a end-user RTL design to generate a synthesized gate-level netlist for
implementation in an Achronix device. Suggested optimization techniques are also included.

A high-level overview of the Achronix design flow is shown in figure below.

IP Configuration

HLS/Mathworks,

RTL Code Entry
Tool, User RTL RTL Simulation
R And Constraints
Schematic Entry

Tool

Synthesis Netlist Simulation

N

Bitstream Generation
and Download

__ -

Post P&R Netlist

\
1
1
1
1
1
1
|
]
|
|
I
I
I
1
1
1
1
|
|
|
|
|
Simulation i
I
1
1
1
1
|
|
|
|
|
I
1
1
1
1
1
1
|
|
|
1
1

[Place and Route Timing Analysis

Fullchip Bitstream
Simulation

Simulation available at
multiple flow steps

Silicon In-system Debugging

Supported simulators

include VCS, QuestaSim,

Q@ Achronix ACE 0 Synplify-Pro from Synopsys N Incisive, and Riviera ,
Supplied by Achronix A .

Figure 1 - Achronix Design Flow

Synthesis Flows

There are three main synthesis flows supported by the ACE tools suite:

- ACE-Driven Integrated Synthesis (page 3), where ACE owns and manages the synthesis project definition, and

synthesis is run via the built-in ACE flow step.

- Synplify-Driven Integrated Synthesis (page 13), where Synplify Pro owns and manages the synthesis project

definition, and synthesis is run via the built-in ACE flow step.

- Stand-Alone Synthesis in Synplify Pro (page 22), where Synplify Pro is run completely outside of ACE to generate

the synthesized gate-level netlist, which is then added to the ACE project. The built-in ACE synthesis flow step
is not run in this case.

2.0

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 2 : ACE-Driven Integrated Synthesis

As of ACE version 10.0, synthesis is now a fully integrated flow step in ACE. For designers, the simplest and easiest
synthesis flow to use is the ACE-driven integrated synthesis flow. In this flow, end users do not need to leave ACE to
configure or run synthesis. Users can stay in ACE and manage all aspects of design synthesis, including synthesis
project setup, synthesis options configuration, running synthesis to compile the design, error reporting and log
viewing, and report viewing.

In this scenario, ACE is the master of the Synplify Pro project and runs Synplify Pro from within the ACE Run
Synthesis flow step.

A Caution!

Users should not open the ACE-generated Synplify project file and make changes in Synplify Pro in this
flow, because ACE will re-generate the Synplify project file from the ACE project file settings each time
synthesis is run, and any changes made in Synplify Pro will be lost. To manage a Synplify project file using
Synplify Pro, refer to section. Synplify-Driven Integrated Synthesis (page 13).

Synthesis Project Setup in ACE

Before launching ACE, ensure that Synplify Pro and preferred simulation tools have been installed, and the
environment variables (such as SACX_SYNPLIFY_TOOL_PATHand SACX_<sim_tool>_TOOL_PATH) are
correctly set by following the instructions in the ACE Installation and Licensing Guide (UG002)}, or the Getting
Started User Guide (UG105)2.

Now launch ACE to get started.

Create an ACE Project

In the Projects View, click the (ﬁ) Create Project toolbar button. Follow these steps to create the project:

1. Inthe Create Project Dialog, enter (or browse to) the desired path to the ACE project top-level directory in the
Project Directory field.

2. Enter the desired ACE project name in the Project Name field and click OK.

The new project will now appear in the Projects view. See "Creating Projects" or "Working with Projects and
Implementations" in the ACE Users Guide (UG070)2 for more details.

Add the Design Files and Set Project Options

In the Projects view, click the project to select it. Follow these steps to add the design source files for synthesis and
place and route:

1 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
2 https://www.achronix.com/documentation/getting-started-user-guide-ugl05
3 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 www.achronix.com

https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
https://www.achronix.com/documentation/getting-started-user-guide-ug105
https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
https://www.achronix.com/documentation/getting-started-user-guide-ug105
https://www.achronix.com/documentation/ace-user-guide-ug070

UuGo18 Synthesis User Guide

1. Click the (:'=i?) Add Source Files toolbar button and select Add RTL Files.

2. Inthe Add RTL Files dialog, browse to the source RTL directory and select all of the RTL files by holding down
the CTRL key and clicking each file name.

3. Click the Open button to add the RTL files to the project. Repeat this process as needed until all the RTL files are
added to the project.
4. Click the (:Ei?) Add Source Files toolbar button and select Add Synthesis Constraint Files.

5. Inthe "Add Synthesis Constraint Files" dialog, browse to the constraints directory and select all of the synthesis
constraints files by holding down the CTRL key and clicking each file name.

6. Click the Open button to add the synthesis constraint files to the project. Repeat this process as needed until all
the synthesis constraints files are added to the project.
7. Click the (=) Add Source Files toolbar button and select Add Place and Route Constraint Files.

8. Inthe "Add Place and Route Constraint Files" dialog, browse to to the place-and-route constraints directory and
select all of the files by holding down the CTRL key and clicking each file name.

9. Click the Open button to add the place-and-route constraint files to the project. Repeat this process as needed
until all the place-and-route constraint files are added to the project.

For instructions on adding simulation files to the ACE project, please see the Simulation User Guide (UG072)* or the
"ACE Quickstart Tutorial" in the ACE Users Guide (UG070)°.

™ Projects X = O
o2 | B~ & | % 8
v 12 quickstart
w = Source
= 1P
w = RTL
=| counter.w
=| quickstart.w

w = Synthesis
w [Constraints
2 quickstart.sdc
= Place and Route
= Simulation
= Output

Figure 2 - Synthesis Project Source Files

In the Options View, follow these steps to configure the project options:

1. Expand the "Project Options" section and select the target device for the design.

4 https://www.achronix.com/documentation/simulation-user-guide-ug072
5 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 www.achronix.com

https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070

UuGo18 Synthesis User Guide

2. Inthe Project Options section, scroll down and enter the semicolon-separated list for the HDL include path. For
example:

D:/test_dir/src/rtl;D:/test_dir/src/tb

(@ Note
The HDL include path applies to both synthesis and simulation.

3. Inthe "Project Options" section, scroll down and enter the space-separated list of any HDL define symbols
needed for the design needs in "HDL Defines". For example:

ADDR_WIDTH=16 DATA_WIDTH=8

(@ Note

The HDL defines applies to both synthesis and simulation.

2.0 www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

=] Options = O
. . -
Project: quickstart

Implementation: impl_1

= Project Options
Target Device ACTE1500 ~
Package F53 ~
Speed Grade c2 w
Core Voltage 0.35 W
Junction Temperature |0 w
Flow Mode Evaluation W

[v] Auto-Select Top Module

Incrernental Compile

[]Enable Incremental Compile

[] Export All Partitions
[] Enable Final Timing Checks

HOL Include Path | On/test_din/sro/rtlDistest_dir/srofth |

HDL Defines | ADDR_WIDTH=16 DATA_WIDTH=g| |

Use Default Project Output Path
Use Default |70 Ring Design Generation Path

¥ Simulation

= Synthesis ”

Figure 3 - Synthesis Project Options

Synthesis Options Configuration

Once the source files are added and the project options are set, the synthesis implementation options must also be
set. In "Options View", scroll down to the "Synthesis" section and click to expand the section to show the synthesis
implementation options. Ensure that the option the Generate Project File is checked.

2.0 www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

| e

:-| Options 8

=l

||I-'

Generate Project File

Reoute Delay Model acx_custom_route_delay_1 e

Fanout Limit | 200 |

Enable Retiming

Advanced Synplify Options | |

Default Frequency (MHz) | 200 |

Synthesis Constraint Files

File Full Path
guickstart.sdc Disourcelsoftwaredocexample..,

» Place and Route
» Advanced Place and Route
b Timing Analysis

b Report Generation o

Figure 4 - Synthesis Implementation Options

A Caution!

In order to run the ACE-driven integrated synthesis flow, the Generate Project File option must be checked

(syn_use_default_project project option is set to 1). If it is not checked, then you are using the
Synplify-Driven Integrated Synthesis (page 13) flow instead.

Configure the remaining implementation options as needed for the design. Any Synplify Pro options that are not
directly exposed in the ACE GUI can be set using the "Advanced Synplify Options" field. Simply enter a TCL
formatted list of option-value pairs, for example:

{{optionl valuel} {option2 value2}}

Synthesis implementation options can be explored automatically to find the best options for the design by using the
ACE multiprocess feature as described in Synthesis Integration with Multiprocess Option Exploration (page 25).

2.0 www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

Running Synthesis to Compile the Design

To run synthesis from within ACE, ensure that the Run Synthesis flow step is enabled (the checkbox is checked):

1 Flow % | B Multiprocess B O | g

[m] €8 IP Configuration
~ (] E) RTL Simulation
[] & Run FTL Simulation

v (] B} Synthesis
A Run Synthesis ¢
[] & Run Gate-level Netlist Simulation
v [H] £} Place and Route
[m] & Run Prepare
[m] & RunPlace
[] & Run Post-Placement Timing Analysis
[m] & RunRoute
A Run Post-Route Timing Analysis
[] & Generate Post-Route Simulation Metlist
[] & Run Post-Route Metlist Simulation
[m] & Design Completion
[w] ¥ FPGA Programming

Figure 5 - Enabling the Synthesis Flow Step

To run the just the Run Synthesis flow step, perform one of the following:
- Double-click on the Run Synthesis flow step
- Right-click on the Run Synthesis flow step and select Run Selected Flow Step

- Call run -step run_synthesis fromthe TCL console

= 8

2.0 www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

O

P Flow > | B Multiprocess [LlEi"| g =
[m] €8 IP Configuration
v W] Ed FTL Simulation
[] & Run RTL Simulation
v [m] €} Synthesis

A RunSy o'
[] & RunGa E‘i Run Selected Flow Step
v W] @ Place and Re-Run Flow with "-ic init"
m] & RunPr
m] & Run Pl Stop Flow
L1 & RunPo Clear Flow
m] & RunPRo
& RunPo & Create Flow Step
[] & Genera Remove Flow Step
[] & RunPo

[m] & Design Completion
[m] & FPGA Programming

Figure 6 - Running the Run Synthesis Flow Step

The Run Synthesis flow step can be run from within the context of the overall flow by:
- Clicking on the Run Flow toolbar button to run the entire flow
- Call run from the TCL console to run the entire flow

If a subsequent flow step is run, ACE will automatically run all incomplete prerequisite and enabled flow steps
between the selected flow step and the last completed flow step. For example, double-clicking on the Run Post-
Route Timing Analysis flow step and none of the previous steps are complete, ACE will automatically start running
the enabled flow steps in order from the beginning of the flow, including Run Synthesis if it is enabled.

The Run Synthesis flow step runs synthesis using the configuration set in the ACE project options. In this flow ACE is
the master of the synthesis project (the syn_use_default_project project option is set to 1).

The source synthesis project file will be automatically generated from the ACE project settings and managed by ACE
in the Project — Output — (impl) - syn directory.

All output from the underlying synthesis tool is streamed to the ACE TCL console and ACE log file. If synthesis fails,
ACE will catch the error and will mark the Run Synthesis flow step state as an error with a red X and stop the flow
from running any further. If synthesis succeeds, ACE will mark the Run Synthesis flow step as complete with a green
check-mark icon.

2.0 www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

B0 Flow X

B Multiprocess

0| =

g

(=]

| e

8

[m] €8 IP Configuration
~] € RTL Simulation

[] & Run RTL Simulation
v [m] €} Synthesis
%7 Run Synthesis
[] & Run Gate-level Metlist Simulation
~ [m] ¥ Place and Route
[m] & Run Prepare
[m] & RunPlace
[] & Run Post-Placement Timing Analysis
[m] & RunRoute
A Run Post-Route Timing Analysis
[] & Generate Post-Route Simulation Metlist
[] & Run Post-Route Metlist Simulation
[m] & Design Completion
[m] & FPGA Programming

Figure 7 - Synthesis Completed Successfully

Synthesis Reports and Messages

Once synthesis completes, ACE will automatically open any relevant synthesis reports and log files in the ACE GUI

Editor Area.

2.0

www.achronix.com

10

http://www.achronix.com

uGo18 Synthesis User Guide

() ACE - Achrenix CAD Environment - Version 10.0 - quickstart->impl_1 (ACTE1508) - o x
File Edit Actions Window Help
& | & it ey EME@MS iR QoD “
(& Projects % | Options 3 | = 8 || 2 quickstart_impl_1_ram_rptixt quickstart_impl_.srr syntmp/quickstart_impl_1_srr.htm log file =g
[E} S i:f 5;9 SR § -~ ich . ###44 STRRT OF TIMING REPORT ##$##[
~ 1 quickstart T e S s [JExport All Partitions uq@w&?,n})'*lmjm # Timing report written on Fri Jun 14 13:32:27 2024 A
H
~ (= Source [Enable Final Timing Checks ; %:rﬁ:%lé:m AT
&P HDL Include Path | Di/test_din/sre/rtl; Ds/test dir/sre/th | & Pre-mapping Report . .
~ @ RIL ™ Clock Sumumary Top view: quickstart
countery HDL Defines | ADDR_WIDTH= 16 DATA_WIDTH=& | & Clock Conversion Frequency: 8.0 MHz

(start. Wire load mode: top
Quickstart.y [Use Default Project Output Path Paths requested: 5
v (= Synthesis] Use Default 110 Ring D s tion Path ot (Constraint File(s): D:\ACE_10.0\Achronix\Achronix"
v [Constraints se Defaul ing Uesign Generation Pl * Resource Utllization 5 D:\source\software\doc\example
! {2 Constraint Checker Report (13:32
quickstart.sde » Simulation 14-Jun) . . N]
(2 Place and Route cr I3 Sestion Log (1332 14-Jug) | This timing report is an estimate of pl
VB%’U(S:;‘(”‘“'”” [Generate Project file | Clock constraints include only registe:
~ [Reports Route Delay Model acx_custom_route_delay_1 v
E] multiprocess
synthesis Fanout Limit ‘2()0 | Performance Summary
simulation [A Enable Retiming
E timing
[utilization Advanced Synplify Options | | Worst slack in design: 123.400
Bl pins hd
= = Defaut Frequency (MHz) [200 | Requested Estimated Reque:
% Flow 3 | Multirocess b ® § =0 Synthesis Consiraint Fles Sterting Clock Freguescy Freguemcy Periac
(8] &b 1P Configuration
+ [@@ L Simulation File Full Path elk £.0 MHz 714.1 MHz 125.0¢
[& Run RIL Simulation quickstart.sdc Disourcesoftware\dochexample...
~ [W] €} Synthesis
A, Run Synthesis
[& Run Gate-level Netlist Simulation » Place and Route
v @@ Place and Route
=0 » Advanced Place and Route Clock Relationships
(8] & Run Prepare P ——
[®] & RunPlace » Timing Analysis
[] & Run Post-Placement Timing Analysis » Report Generation Clocks | rise to rise 1 fall

[m] & RunRoute

» Bitstream Generation

A Run Post-Route Timing Analysis Starting Ending | constraint slack | constraiv
[] & Generate Post-Route Simulation Netlist < il o 5 v < >
[d Run Post-Route Netlist Simulation
[E] & Design Completion E] Tel Censole X | B QA BE § =0
(8] & FPGA Programming cmd> save_project -project "quickstart” "
cnd> run -step “"run_synthesis”
Running flow step "run_synthesis”

v
< >
cmd > ™

DAACE_10.0\Designs\quickstart\impl_T\syn\rev_acx\quickstart_impl_1.htm 0 amorsom |

Figure 8 - Synthesis Reports and Messages

These reports can be found later on in the ACE Projects View under the Project — Output — Reports — synthesis
virtual folder. ACE automatically organizes all reports in a central location for easy access.

2.0 11

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

% Projects >

| e

S BB GRE S X

v 2 quickstart
w = Source

= IP
w = RTL
|=| counterw
|=| quickstart.w
w = Synthesis
% [Constraints
quickstart.sdc
» = Place and Route
5 = Simulation

w [= Output

w [Reports
multiprocess
w synthesis
|=| quickstart_impl_1.srr
|=| quickstart_impl_1_ram_rpt.bet
simulation
Ell timing

» oo | O

Figure 9 - ACE Project Reports Virtual Folders

2.0

www.achronix.com

12

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 3 : Synplify-Driven Integrated Synthesis

As of ACE 10.0, synthesis is now a fully integrated flow step in ACE. In this hybrid flow, end users configure and
manage their synthesis project in Synplify Pro and run synthesis from inside ACE. This enables users who are
comfortable using the Synplify GUI to take advantage of the integrated Run Synthesis flow step in ACE and the
automated synthesis implementation option exploration offered in the ACE multiprocess feature.

In this scenario, Synplify Pro is the master of the Synplify project file, and ACE calls Synplify Pro from within the ACE
Run Synthesis flow step. In this flow, users must disable (uncheck) the Generate Project File synthesis
implementation option in ACE (syn_use_default_project project option is set to 0), and set the Project
Override Path option to point to the source Synplify project file being managed in Synplify Pro.

When the Run Synthesis flow step is run, ACE reads in the Project Override Path project file, overrides a subset of
the implementation options (to enable multiprocess), and generates a local modified copy of the project file to run
from within ACE. Users should not open the ACE-generated Synplify project file and make changes in Synplify Pro in
this flow because ACE will re-generate the Synplify project file from the ACE project file settings each time
synthesis is run, and any changes made in Synplify Pro will be lost. To manage a Synplify project file using Synplify
Pro, open the Project Override Path project file in Synplify instead.

Configuring the Synthesis Project in Synplify Pro

The first step is to create a new synthesis project and configure the synthesis options as documented in the section,
"Managing Projects in Synplify Pro (page 27)".

Synthesis Project Setup in ACE

Before launching ACE, ensure that Synplify Pro and preferred simulation tools have been installed, and the
environment variables (such as SACX_SYNPLIFY_TOOL_PATHand $ACX_<sim_tool>_TOOL_PATH) are
correctly set by following the instructions in the ACE Installation and Licensing Guide (UG002)8, or the Getting
Started User Guide (UG105)’.

Now launch ACE to get started.

Create an ACE Project

In the Projects View, click the (L) create Project toolbar button. Follow these steps to create the project:

1. Inthe Create Project Dialog, enter (or browse to) the desired path to the ACE project top-level directory in the
Project Directory field.

2. Enter the desired ACE project name in the Project Name field and click OK.

The new project will now appear in the Projects view. See "Creating Projects" or "Working with Projects and
Implementations" in the ACE Users Guide (UG070)® for more details.

6 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
7 https://www.achronix.com/documentation/getting-started-user-guide-ugl05
8 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 13

www.achronix.com

https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
https://www.achronix.com/documentation/getting-started-user-guide-ug105
https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
https://www.achronix.com/documentation/getting-started-user-guide-ug105
https://www.achronix.com/documentation/ace-user-guide-ug070

UuGo18 Synthesis User Guide

Add the Design Files and Set Project Options

In this flow, RTL files or synthesis constraints files do not need to be added to the ACE project since the synthesis
project outside of ACE. Also, the HDL Include Path, HDL Defines do not need to be configured. These settings will all
be automatically imported from the Synplify Pro project file specified in the Project Override Path when the Run
Synthesis flow step is run.

In the Projects view, click the project to select it. Follow these steps to add the design source files for synthesis and
place and route:

1. Click the (:é?) Add Source Files toolbar button and select Add Place and Route Constraint Files.

2. Inthe "Add Place and Route Constraint Files" dialog, browse to the place-and-route constraints directory and
select all of the files by holding down the CTRL key and clicking each file name.

3. Click the Open button to add the place-and-route constraint files to the project. Repeat this process as needed
until all the place-and-route constraints files are added to the project.

For instructions on adding simulation files to the ACE project, see the Simulation User Guide (UG072)° or the "ACE
Quickstart Tutorial" in the ACE Users Guide (UG070)°.

@ Projects
SR-ATR- TN RAR-IR 2 L =RRER -
v 2 quickstart
w = Source
= 1P
= RIL
w [Synthesis

I
a

Qo0

= Constraints
w = Place and Route
= Metlists
w = Constraints
[Z quickstart.pde
|5 quickstart.sdc
= Simulation
= Output

Figure 10 - ACE Project Source Files

In the Options View, follow these steps to configure your project options, expand the "Project Options" section and
select the target device for the design.

9 https://www.achronix.com/documentation/simulation-user-guide-ug072
10 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 14

www.achronix.com

https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/ace-user-guide-ug070

UuGo18 Synthesis User Guide

(® Note

The HDL Include Path or HDL Defines do not need to be defined run synthesis. These options may need to
be configure if you are running simulation from within ACE. See the Simulation User Guide (UG072)" for

details.
5] Options = O
. . a
Project: guickstart

Implementation: impl_1

~ Project Options
Target Device ACTE1500 v
Package F53 v
Speed Grade c2 v
Core Voltage 0.85 v
Junction Temperature |0 v
Flow Mode Evaluation w

[«] Auto-Select Top Module
Incremental Compile
L[] Enable Incremental Compile
[Export All Partitions
[]Enable Final Timing Checks

HDL Include Path | |

HDL Defines | |

Use Default Project Cutput Path
Use Default |70 Ring Design Generation Path

¥ Simulation

» Synthesis

Figure 11 - Synthesis Project Options

11 https://www.achronix.com/documentation/simulation-user-guide-ug072

2.0 15

www.achronix.com

https://www.achronix.com/documentation/simulation-user-guide-ug072
http://www.achronix.com
https://www.achronix.com/documentation/simulation-user-guide-ug072

UuGo18 Synthesis User Guide

Synthesis Options Configuration

Once the source files are added and the project options are set, the synthesis implementation options must also be
set. In "Options View", scroll down to the "Synthesis" section and click to expand the section to show the synthesis
implementation options. Ensure that the option the Generate Project File is unchecked.

5] Options = O
= Synthesis ~

[] Generate Project File ¢
Project Override Path | Cr/test_dir/src/syn/quickstart.prj @

Route Delay Model acx_custom_route_delay_1 w

Fanout Limit | 200 |

Enable Retiming

Advanced Synplify Options | |

Default Frequency (MHz) | 200 |

Synthesis Constraint Files

File Full Path

» Place and Route

Figure 12 - Synthesis Implementation Options

& Caution!

In order to run the Synplify-driven integrated synthesis flow, the Generate Project File option must be
unchecked (syn_use_default_project project option is set to 0) and have the "Project Override Path"
option set to point to the source Synplify project file. If the Generate Project File checkbox is checked, then
you are using the ACE-Driven Integrated Synthesis (page 3) flow instead.

Configure the remaining implementation options as needed for the design. Any Synplify Pro options that are not
directly exposed in the ACE GUI can be set using the "Advanced Synplify Options" field. Simply enter a TCL
formatted list of option-value pairs, for example:

Configure the remaining implementation options as needed for your design. These options exposed in ACE will
override the option settings in the source Synplify project (specified in the Project Override Path). Any Synplify Pro
options that are not directly exposed in the ACE GUI can be set using the "Advanced Synplify Options" field. Simply
enter a TCL formatted list of option-value pairs, for example:

{{optionl valuel} {option2 value2}}

2.0 16

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Synthesis implementation options can be explored automatically to find the best options for the design by using the
ACE multiprocess feature as described in Synthesis Integration with Multiprocess Option Exploration (page 25).

Running Synthesis to Compile the Design

To run synthesis from within ACE, ensure that the Run Synthesis flow step is enabled (the checkbox is checked):

¥ Flow % | B Multiprocess = DF‘| i = 0

[m] €3 IP Configuration
w [m] & RTL Simulation
[] & Run RTL Simulaticn

~ [H] B} Synthesis
A Run Synthesis ¢
[] & Run Gate-level Metlist Simulation
~ [H] £} Place and Route
[m] & Run Prepare
[m] & RunPlace
[] & Run Post-Placement Timing Analysis
[m] & FRunRoute
& Run Post-Route Timing Analysis
[] & Generate Post-Route Sirmulation Metlist
[] & Run Post-Route Metlist Simulation

[w]) Design Completion
[m] & FPGA Programming

Figure 13 - Enabling the Synthesis Flow Step

To run the just the Run Synthesis flow step, perform one of the following:
- Double-click on the Run Synthesis flow step
- Right-click on the Run Synthesis flow step and select Run Selected Flow Step

- Call run -step run_synthesis fromthe TCL console

2.0 17

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

O

P Flow > | B Multiprocess [LlEi"| g =
[m] €8 IP Configuration
v W] Ed FTL Simulation
[] & Run RTL Simulation
v [m] €} Synthesis

A RunSy o'
[] & RunGa E‘i Run Selected Flow Step
v W] @ Place and Re-Run Flow with "-ic init"
m] & RunPr
m] & Run Pl Stop Flow
L1 & RunPo Clear Flow
m] & RunPRo
& RunPo & Create Flow Step
[] & Genera Remove Flow Step
[] & RunPo

[m] & Design Completion
[m] & FPGA Programming

Figure 14 - Running the Run Synthesis Flow Step

The Run Synthesis flow step can be run from within the context of the overall flow by:
- Clicking on the Run Flow toolbar button to run the entire flow
- Call run from the TCL console to run the entire flow

If a subsequent flow step is run, ACE will automatically run all incomplete prerequisite and enabled flow steps
between the selected flow step and the last completed flow step. For example, double-clicking on the Run Post-
Route Timing Analysis flow step and none of the previous steps are complete, ACE will automatically start running
the enabled flow steps in order from the beginning of the flow, including Run Synthesis if it is enabled.

The Run Synthesis flow step reads in the Project Override Path project file, overrides a subset of the implementation
options (to enable multiprocess), and generates a local modified copy of the project file to run from within ACE. In

this flow Synplify Pro is the master of the synthesis project (the syn_use_default_project project option is set
to 0).

(@ Note

For each implementation, ACE generates a locally modified copy of the synthesis project file in the
Project — Output->(impl) - syn directory.

All output from the underlying synthesis tool is streamed to the ACE TCL console and ACE log file. If synthesis fails,
ACE will catch the error and will mark the Run Synthesis flow step state as an error with a red X and stop the flow
from running any further. If synthesis succeeds, ACE will mark the Run Synthesis flow step as complete with a green
check-mark icon.

2.0 18

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

B0 Flow X

B Multiprocess

0| =

g

(=]

| e

8

[m] €8 IP Configuration
~] € RTL Simulation

[] & Run RTL Simulation
v [m] €} Synthesis
%7 Run Synthesis
[] & Run Gate-level Metlist Simulation
~ [m] ¥ Place and Route
[m] & Run Prepare
[m] & RunPlace
[] & Run Post-Placement Timing Analysis
[m] & RunRoute
A Run Post-Route Timing Analysis
[] & Generate Post-Route Simulation Metlist
[] & Run Post-Route Metlist Simulation
[m] & Design Completion
[m] & FPGA Programming

Figure 15 - Synthesis Completed Successfully

Synthesis Reports and Messages

Once synthesis completes, ACE automatically opens any relevant synthesis reports and log files in the ACE GUI

Editor Area.

2.0

www.achronix.com

19

http://www.achronix.com

uGo18

Synthesis User Guide

w [Place and Route

SR E-RERE %

[Generate Project File

eport
* RAM Report (13:32 14-Jun]

() ACE - Achronix CAD Environment - Version 10.0 - quickstart->impl_1 (ACT1500) - o X

File Edit Actions Window Help

=1 =] @ FilEMm M EiEe Qic o Q
[@ Projects % | =] Options | = O || [syntmp/quickstart_impl_1_s.htm log file X | [quickstart_impl_1_ram_rpt:ct | = quickstart_impl_1.srr \ =0

4##4## START OF TIMING REPORT #3###([

Project: quickstart |7 quickstart_impl 1 (rev_acx) : : o ~
+ & quickstart temention: gl 1 [Synthesis - I Timing report written on Fri Jun 14 13:32:27 2024
L % Compiler Report
v (& Source = . * Compiler Constraint Applicator
&P » Project Options = Pre-mapping Report
= RIL } Simulatis % Clock Summary Top view: quickstart
v (5 Synthesis o 3+ Clock Conversion Requested Freguency: 8.0 MHz
- (55 Mapper Report Wire load mode: top
(= Constraints ~ Synthesis 3 Timine Rep

Paths requested:

B
Constraint File(s): D:\ACE_10.0\Achronix\Achronix®

* Resource Utilization

Netlist: SESOUTCe UIZaIon
(= Netlists [Constraint Checker Report (13:3)
14-Jan)

[Constraints

D:\source\software\doc\example

Project Override Path [De/test_die/sre/syn/quickstart prj]

quickstart.pdc Route Delay Model acx_custom_route_delay_1 ~ L3 Session Log (1332 14-Jum) @N:MT320 : | This timing report is an estimate of pl
kstart.sd
uicketertsde F: i @N:MT | Clock constraints include only registe:
(= Simulation anout Limit [200] urszz
£ Output

[Enable Retiming

Advanced Synplify Options |] Performance Summary

e

Default Frequency (MHz) | 200]

Synthesis Constraint Files Worst slack in design: 123.600

File Full Path N . es . N
— = equeste. stimate sque:
%, Flow | B Muliprocess > | f 8 Starting Clock Frequency Frequency Perioc
[=] & IP Configuration
+ [{ @ RIL Simulation b Place and Route clk £.0 MHz 714.1 MHz 125.0¢
[& RunRTL Simulation » Advanced Place and Route
~ [m] € Synthesis - -
A Run Synthesis b gl
Run Gate-level Netlist Simulation » Report Generation
PO
~ [@ Place and Route . .
Eg‘ Run Prepare » Bitstream Generation Clock Relationships o
[A RunPlace » FPGA Download
[& Run Post-Placement Timing Analysis < >
5] & Run Route [Tel Console X ElRe N EEE R
A Run Post-Route Timing Analysis ~L Tk — ——————— — —
[4 Generate Post-Route Simulation Netist emd> remove project_source files {{D:/source/software/doc/examples/quickstart/AC7t1500/src/constraints/quickstart_ioring bitstreamd.hex} {D:/source/software/doc/es ™
[& Run Post-Route Netfist Simulation nd> remove_project_source_files {{D:/source/software/doc/examples/quickstart/AC7t1500/src/rtl/counter.v} {D:/source/software/doc/examples/quickstart/ACTE1500/src)
8 © Design Completion emd> remove_project_source files {{D:/source/software/doc/examples/quickstart/AC7t150/src/constraints/quickstart.sdc}} -syn_constraint -project {quickstart}

cnd> save_project -project "quickstart”
cnd> set_impl option -project {quickstart} -impl {impl 1} -- "syn_pi
end> set_project_option -project {quickstart} 1_include_path'
nd> set_project_option -project {quickstart} —- “hdl_defines" "*
emd> enable flow step "run_synthesis”

[® & FPGA Pragramming
ject_override path" "D:/test_dir/src/syn/quickstart.prj”

end> save_project -project "quickstart” v
< >
cmd> ™

D:AACE_10.0\Designsquickstart\quickstart.acxpr

I nmotsizm |

Figure 16 - Synthesis Reports and Messages

These reports can be found later on in the ACE Projects View under the Project — Output — Reports — synthesis
virtual folder. ACE automatically organizes all reports in a central location for easy access.

2.0 20

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

[E Projects <

= 0

S B ®RE S
v 2 quickstart
w = Source
= 1P
= FTL
w [Synthesis
= Constraints
w = Place and Route
v = Metlists
w = Constraints
quickstart.pdc
quickstart.sdc
5 = Simulation
w [Output
v = Reports
multiprocess
w synthesis
|Z| guickstart_impl_1.srr

quickstart_impl_1_ram_rpt.tet
ﬂ] simulation

x 3

~

Figure 17 - ACE Project Reports Virtual Folders

2.0

www.achronix.com

21

http://www.achronix.com

uGo18 Synthesis User Guide

Chapter 4 : Stand-Alone Synthesis in Synplify Pro

In this flow, synthesis is run outside of ACE in Synplify Pro, and the generated gate-level synthesized netlist is added
to the ACE project as a source file. In this flow, the Run Synthesis flow step in ACE is disabled (unchecked).
Configuring the Synthesis Project in Synplify Pro

The first step is to create a new synthesis project and configure the synthesis options as documented in the section,

Managing Projects in Synplify Pro (page 27).

Running Synthesis

After selecting all the options according to the users design, click OK. The user is returned to the Synplify Pro main
window to run the synthesis. From this main window, click RUN button to start synthesis.

> Synplify Pro (R) U-2023.03X-2 - [D:/ACE_10.0/Designs/quickstart/impl_1/syn/quickstart_impl_1.prj <out of date>]
o 'ﬁ File Edit View Project Run Apalysis HDL-Analyst Options Window Web Help

DB O 2D FbQm a4 9@ B3I @w o[

k nplify Pro®

| Run active impl tati
|!} Open Project... | Run active |m;:: ementa mnli T L
“: Close Project |quit:l:start_irrq}l_1 T rev_acx - Achronix Speedster?t | ACTI1500ESD : F53 1 C2
) v &y [quickstart_impl_1] - DMNACE 10.00Designshquickstarthimpl_Thsyn'g
| Lt [[Efj Verilog
By Change File... b [©) Logic Constraints (SDC)

% Add Implementation. ..

rev_acx

% Implementation Options...

BR Add P&R Implementation

|
|
|
I [2 @ Legic Constraints (FDC)
|
|
|

&, View Log
Frequency (MHz):
(8200 | () Auto Const.
Figure 18 - Running Synthesis in Synplify Pro
2.0 22

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

Adding the Synthesized Netlist to ACE for Place and Route

Once synthesis has successfully completed, add the generated synthesized netlist to the project in ACE. In the

Projects View, Click the (.z.ﬁ}') Add Source Files toolbar button and select Add Place and Route Netlist Files. Browse
to the Synplify-generated synthesized netlist file and click Open.

% Projects
=2 |
v 2 quickstart
w = Source
= 1P
= RTL
[= Synthesis
w [= Place and Route
w = Metlists
= quickstart_imp._

s, Eu% Eu% Eu% Eu;b_ Eu;b_ E"Q}.

[|

8

v B EEEE S %

Add IP Configuration Files
Add RTL Files

O0n

Add Synthesis Constraint Files

Add Place and Route Metlist Files
Add Place and Route Constraint Files
Add Simulation Testbench Files

= Constraints
= Simulation
= Output

Figure 19 - Adding the Synthesized Netlist to the ACE Project

In this flow, RTL files or synthesis constraints files do not need to be added to the ACE project since the synthesis
project outside of ACE. Also, the HDL Include Path, HDL Defines nor any of the synthesis implementation options in
ACE need to be configured. only the synthesized gate- level netlist needs to be added to the ACE project.

When running the ACE flow steps, ensure that the option the Generate Project File is unchecked; otherwise, ACE

will error as the project is not configured to run synthesis. If this happens, simply uncheck the Run Synthesis flow
step and try running the ACE flow again.

2.0

www.achronix.com 23

http://www.achronix.com

uGo18

Synthesis User Guide

P Flow X

B Multiprocess

0| =

2

(=]

| e

8

[m] €8 IP Configuration
v W] Ed FTL Simulation
[] & Run RTL Simulation
v [m] € Synthesis
[] & Run Synthesis
[] & Run Gate-level Metlist Simulation
~ [m] € Place and Route
[m] & Run Prepare
[m] & Run Place
[] & Run Post-Placement Timing Analysis
[m] & Run Route
A Fun Post-Route Timing Analysis
[] & Generate Post-Route Simulation Metlist
[] & Run Post-Route MNetlist Simulation
[m] & Design Completion
[m] & FPGA Programming

Figure 20 - Run Synthesis Flow Step Disabled

2.0

www.achronix.com

24

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 5 : Synthesis Integration with Multiprocess Option
Exploration

When using the ACE-Driven Integrated Synthesis (page 3) flow or the Synplify-Driven Integrated Synthesis (page 13)
flow, users can take advantage of the automated design option exploration features built in to the ACE multiprocess
tool. This tool can generate implementation option sets which sweep over both synthesis and place-and-route
options to explore fyax performance variations.

The following items are required to enable synthesis implementation options exploration:
1. Enable the Run Synthesis flow step (checked in the Flow View)
P Flow 3 | B Multiprocess B O | ¢ = 0
[m] €¥ IP Configuration
~ [m] & RTL Simulation
[] & Run RTL Simulation
~ [H] B} Synthesis
A Run Synthesis ¢
[] & Run Gate-level Metlist Simulation
~ [m] &) Place and Route
[m] & Run Prepare
[m] & Run Place
[] & Run Post-Placement Timing Analysis
[m] & Run Route
A Run Post-Route Timing Analysis
[] & Generate Post-Route Sirmulation Metlist
[] & Run Post-Route Metlist Simulation

] & Design Completion
[m] & FPGA Programming

Figure 21 - Run Synthesis Flow Step Enabled

() Note

This option is only supported when using ACE-Driven Integrated Synthesis (page 3) or the Synplify-
Driven Integrated Synthesis (page 13) flows.

2. Uncheck the Exclude Synthesis Option in the Multiprocess View must be unchecked

2.0 25

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

==l

i-| Options | B Multiprocess X B | g = 0
~

* Execution Queue Management
Configure the number of ACE project implementations executed simultaneously, and whether they are executed
locally in the background, or submitted to an external cloud/grid/batch job system.

Enable Job Submission Systemn (configured in Preferences)

Parallel job count: (valid range: 1-99)

= Multiprocess Flow Management
In the Flow Yiew, enable and disable the desired flow steps that all multiprocess implementations should follow, Then,
in the combo-box below, select how far through the flow the implementations should run. (This provides a means of
stopping the flow early.)

Stop Flow After: | Run Post-Route Timing Analysis w

= Select Implementations
Select which implementations within the Active Project should be queued for execution, (Option Set Implementations
will be created if they don't already exist, or will overwrite existing implementations with the same name.) When the
"Start Selected” button is pressed, the selected implementations will run using the current Flow configuration., When
Incrermnental Compile is enabled, the user can optionally choose to copy the Incremental Compile DE file from the
temnplate (active) implementation to all the other implementations before running the flow. This allows you to lock
down the best results from a previous run and copy the unchanged partition place and route data to the other impls,

() Existing Implementations

(®)iGenerate Implementation Option Sets [Exclude Synthesis Options Refresh Option Sets

() Seed Sweep of prime numbers; seedcount:

] Copy Incremental Flow DB From Ternplate Impl

Implermentation Execution State Description

i impl_1 Selected The template implementation itself,

#impl_'l_autu:ugenﬂ_mpgf Selected This auto-generated option set changes the value for max_all
#impl_'l_autu:ugen'l_mrpg Selected This auto-generated option set changes the value for mlp_me

ik impl_1_autogen_fprp Selected This auto-generated option set changes the value for fanout_|
A .. - - . . _ - .

Figure 22 - Multiprocess View

When these requirements are met, ACE will sweep over synthesis implementation options in addition to the place-
and-route implementation options, which can create a wider range of performance variation and help hone in on the
best options to achieve that last 5% to 10% of f\yax performance boost. Refer to the "Running Multiple Flows in

Parallel" section of the ACE Users Guide (UG070)™2. for more details.

12 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 www.achronix.com 26

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

uGo18

Synthesis User Guide

Chapter 6 : Managing Projects in Synplify Pro

This chapter is only applicable to the following synthesis flows:
- Synplify-Driven Integrated Synthesis (page 13)
- Stand-Alone Synthesis in Synplify Pro (page 22)

(@ Note

If using the ACE-Driven Integrated Synthesis (page 3) flow, Synplify Pro does not need to be launched
outside of ACE. ACE will manage all aspects of synthesis automatically, including Synplify Pro project

creation.

This guide assumes that Synplify Pro is installed with the synplify_pro command added to the $PATH variable.

Creating and Setting up a Project

1. InaLinux command shell type synplify_pro to invoke Synplify Pro synthesis. When invoked, the following

window will be displayed:

S Synplify Pro (R) R-2021.03X - [<no projects loaded>]

=]

5] File Edit View Project Run Analysis HDL-Analyst Options Window Web Help

E 4D o d KR B e o@e @D ¢ w: S
Synplify Pro®

Ready

T Open Project... Project Files Project Status | Implementation Directory | Process View
|1 Close Project.

- o x
&6

B e B

|Project Name 1

Name

A <
g Z?
g =

3 Change File.

|# Add Implementation.
Opti

Run Status

|Job Name Status [A&]cPu Time Real Time

Memory Date/Time

|£ Implementat
BiR Add P&R |

entation
&, View Log

Frequency (MHz):

Ofl Auto Const

Information

Version: R-2021.03X

Arguments: -product synplify_pro
ProductType: synplify_pro

*

TCL Script | Messages

oD

[e}

Figure 23 - Synplify Pro Invoked from the Command Shell

2. Click the Open Project button on the left side to open the open project dialog-box:.

2.0 www.achronix.com

27

http://www.achronix.com

uGo18

Synthesis User Guide

3.

S Synplify Pro (R) R-

P El File Edit View Project Run Analysis HDLAnalyst Optins Window Web Help

X - [<no projects loaded>]

BEBDOE@R0 P60 QPEL O w H o

‘Synplify Pro®

2Run

|Ready

Project Files | Project Status | Directory | Process View |

T Open Project..
B Close Project
(4§ Add File.. Project Name: | Name

B Change File.
@ Add Implementatin...

Real Time

Memory Date/Time

% Implementation Options.. > Open Project X
3R Add P8R Implementation Recent Proj

&, View Log Existing Project. .
Freqsency (i)
1 O Auto Const.

Version: R-2021.05X B
ProductType: synplify_pro =
N =
TCL Script | Messages |

I = A (=

Figure 24 - Dialog Box to Select the New Project

Click the New Project button to open the following window:

2.0

www.achronix.com

28

http://www.achronix.com

UuGo18 Synthesis User Guide

S Synplify Pro (R) R-2021.03X - [C/ projects/quickstart/quickstart.pri] - o X

i/ File Edit View Project Run Analysis HDL-Analyst Options Window Web Help =)=
R B 08I R B ®@ndE T e w: |
Synplify Pro®
Done: 0 errors, 6 warnings, 131 notes
T Open Project... Project Files | Design Hierarchy Project Status Implementation Directory Process View

.

2Run

I

‘ Bl Ciose Project | < rev_1 - Achronix Speedster7t : ACTHS0DESD : F53AD : C1 Ci\projects\quickstartirev_1
ud = @] - C:\projects\quickstart\quickstart.pri Name Size 5 Modified
Add File.... B [Verilog ype
i ram.v [work] ->WARNINGS: 5 >NOTES: 110 backup Directory 9:35:23 14-Feb-2022
By Changs File.. £ rev 1 coreip Directory ~ 9:35:23 14-Feb-2022
ﬁ; Add lmpk ia - dm Directory 9:41:44 14-Feb-2022
P el synlog Directory 9:41:48 14-Feb-2022
£ Implementation Options... syntmp Directory 9:41:48 14-Feb-2022
synwork Directory 14-Feb-2022
BR Add P&R Implementation [0 AutoConstraint_ram... 186 bytes sdc File 14-Feb-2022
[ramfse 0 bytes fse File 14-Feb-2022
Vi L
[rom i Rhbyes HmFle $415 bFebonee
Frequency (MHz): % ram.map 28 bytes map File 9:41:53 14-Feb-2022
...... ram.sap 260 bytes sap File 9:41:48 14-Feb-2022
00 L] -
_ Auto Const O ram.scf 924 bytes scf File 9:41:52 14-Feb-2022
m @ ram.srd 12 kB Netlist 9:41:50 14-Feb-2022
Automatic Compile Paint () 1 ram.sm 9kB Netlist (G... 9:41:51 14-Feb-2022
Continue on Ermor O ram.sm 33 kB st File 14-Feb-2022
FSM Compiler B ram.smdb 28kB sm.db File 14-Feb-2022
Resource Sharing @ ram.srs 2kB Netlist (RTL) 8: 14-Feb-2022
Pipelinin B ramvm 9kB Verilog Ne... 9:41:52 14-Feb-2022
pelining B ram_cck.mt ZkB t File 48 14-Feb-2022
Retiming B ram_cck.mpt.db 8kB mptdb File 9:41:48 14-Feb-2022
Automatic Compile Peint ... [[ram_ram_rpt.txt 2kB txt File 9:41:50 14-Feb-2022
O ram_scck.mpt 1kB pt File 47 14-Feb-2022
[ram_scck.mt.db 8 kB pt.db File 14-Feb-2022
[mt_ram.areasm 1kB areas File 14-Feb-2022
0O mpt_ram1_areasm.him 883 bytes htm File 53 14-Feb-2022
B run_options. txt 1kB txt File :41:44 14-Feb-2022
[B scratchproject.prs 1kB prs File 14-Feb-2022
[B version.log 30 bytes log File 44 14-Feb-2022
=
P quickstart.prj
Information

Return Code: 1

Run Time:00h:00m:0Ss

Complete: Map on gquickstart|rev 1

Complete: Logic Synthesis on quickstartirev_l
]

%

EEE— B

TCL Script | Messages

I o] S (]

Figure 25 - Starting a New Project

() Notes

1. Synplify Pro can open multiple projects at once; however only one can be run at time.
2. Asingle project supports multiple implementations with each having different:

a. Device settings

b. Optimization settings

c. RTL define for different code builds

Adding the Synthesis Library Include File

After selecting and saving the project file inside the desired directory path, add the appropriate synthesis library
include file and device specific synthesis constraints file:

+ <ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_synplify.sv
+ <ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_synplify.fdc (page 27)

N

0 www.achronix.com 29

http://www.achronix.com

UuGo18 Synthesis User Guide

The first file in the project file list should be the relevant ACE library file.

For the path to ACE libraries, the ACE_INSTALL_DIR environment variable can be used. By manually editing the

Synplify Pro . prj file, a TCL variable that stores the value of an environment variable can be defined. Then, each
time the TCL variable is used, ensure the full string is enclosed in { } rather than " ". For example:

#-- Synopsys, Inc.

#-- Version S$-2021.09X-3

#-—- Project file /views3/kevinhine/main/hls/PandA-Bambu/designs/pcie_mnist/syn/
pcie_mnist.prj

#-— Written on Thu Aug 31 10:01:41 2023

Custom TCL source
syn_source {

set ACE_INSTALL_DIR $::env(ACE_INSTALL_DIR)
}

add_file -verilog -vlog_std sysv {$ACE_INSTALL_DIR/libraries/device_models/
AC7t1500_synplify.sv}
set_option -include_path {../src/shell/include/;../hls/;$ACE_INSTALL_DIR/libraries/}

When the . prj is saved, the entire "syn_source" command written is preserved, as well as any places with the
variable is enclosed with { }.

© Warning!

If the variable is enclosed with "" instead of { }, the value of the variable will be written into the . prj onthe
next save.

Adding Source Files to the Project

There are two ways to add RTL source files. One is using the Add File button in the left menu bar, and the other one
is to right-click on the project file and select Add Source File. Selecting either option directs the user to a dialog box
listing available RTL files (see the figure below). The same procedure is followed for adding both source and
constraint files.

In the examples that follow, the Speedster 7t technology has been selected, so the file

AC7t1500ESO_synplify.sv is used. From this dialog box, select the desired RTL file(s) and then
click Add followed by OK. The Verilog/VHDL file(s) will now be added to the project for synthesis.

2.0 30

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

*

“> Add Files to Project

Look in: | Z\Achronix\Achronix-linw\librarnes\device_models v| @ (=] 0 E]

ACOSSCO103R0_simmaodels.sv
ACO53C0M03R0_synplify.sv
ACO55C0105R0_simmodels.sv
ACO5SCO10ER0_synplify sv
ACOSSCO020MR0_simmaodels.sv
ACO53C0Z0MR0_synplify.sv
ACTIBOOESD simmodels. sv
ACTIBODESD synplify.sv
ACTE1500ES0_simmodels.sv

| ACTt1500ES0_synplify.sv
ACTH1550ES0_simmodels . sv
ACTH1650ES0_synplify.sv
ACTIFSCO4A100RT_simmodels.sv
ACTIFSCO4AT00RT_synplify.sv
ACTIFSCO4AS00R1_simmodels.sv
ACTIFSCO4AS00RT _synplify.sv

.‘ My Computer

z sajanverman

[P I I I O O B O O O O

File name: ACTH1500ES0 _synplify.sy

Files of type: |HDL Files (*.vhd *.vhdl *.v *.sv *.vma) ~|

VHDL Verilog lib: -

Files to add to project: (1 file(s) selected) [+] Use relative paths [Add files to Folders | Folder Options...

Z\Achronix\Achronix-linwlibraries\device models\ACTE1500ES0_synplify.sv <- Add All

<- Add

Remove All -=

Remove -=

=

Cancel

Figure 26 - Add Files to Project

Implementation Options

After adding the RTL files and constraint files, the next step is to set the implementation options. Click
Implementation Options to open the window. shown below. This dialog box shows the default options. For example
the "Fanout Guide" defaults to 10,000, but can be overwritten by the user for tuning QoR.

2.0 www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

B Implementation Options - quickstart: rev_1 *

Device Options | Constraints | Implementation Results | Timing Report | Verilog | GCC F‘IaceanEE] Implementations:

rev_1
Technology: Part Package: Speed: -

| Achronix Speedsterft | | ACTt1500ESD ~| |F53a0 ~||c1 |

Device Mapping Options

| Option | value |
Fanout Guide $10000

Disable I/Q Insertion

Update Compile Point Timing Data [}

Automatic Read/Write Check Insertion for RAM [

Retime Registers Forward]

Annoctated Properties for Analyst

mem_init_file 0

Resolve Mixed Drivers [

Set the guideline for fanout-based optimizations such as replication

SYTOPSYS

| ok || cancel || Help

Figure 27 - Implementation Options

(® Note
For Achronix devices, ensure the Disable 1/0 Insertion option is checked as shown.

In the "Implementation Options" dialog box, the "Device" tab is selected by default. Each tab presentation additional
options that can be set according to user's needs. Below are some guidelines for these options.

Verilog

Under this tab, the user may designate the top-level design module name. The user can also provide the names of
any parameters existing in the design along with associated values. If parameters are defined in this manner,
Synplify Pro propagates this value throughout the design. In this tab, the user must include the path to needed
libraries under "Include Path Order." Click on the + file icon to add the directory path and select from the
ACE_installation path as shown below.

() Note

"Library Directories or Files" box can be left empty.

2.0 32

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Device | Options | Constraints | Implementation Results | Timing Report =~ Verilog | GCC | Place an-{:E] Implementations:
rev_1

Top Level Module: Compiler Directives and Parameters

Verilog Language
Verilog 2001
System Verilog

Parameter Name Override Value ﬁ

Push Tristates @

[] Allow Duplicate Modules Extract Parameters

Multiple File Compilation Unit

[] Beta Features for Verilog Compiler Directives: e.g. SIZE=8

Loop Limit 2000 =

Include Path Order: (Relative to Project File)

Cr\projectsi\quickstartiincludel

Library Directories or Files:

Library Extensions (space separated)

SYNOPSYS'

[ok || cancel |[Hep | —oresees

Figure 28 - Implementation Options: Include Path Order.

Place and Route
This tab is not presently utilized by ACE.

Timing Report

In the Timing report tab, the number of critical paths and number of start and end points can be specified to appear

in the timing report. Default timing report is available in the synthesis report (. srr) file. The two available options
are:

- Number of Critical paths - sets the number of critical paths for the tool to report.

- Number of Start/End points - specifies the number of start and end points to see reported in the critical path
sections.

2.0 33

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

P Implementation Options - quickstart : rev_1

Device = Options = Constraints = Implementation Results =~ Timing Report | Verilog GCC = Place an[lz] Implementations:
rev_1
Number of Critical Paths: 100 -

Mumber of Start/End Points: 10

Description
Configure the timing report by specifying the number of paths to include in the "Starting/Ending Points with worst

slack” and "Worst Paths" report sections.
SYOPSYS

| ok || cancel || Help

Figure 29 - Implementation Options: Timing Report

Implementation Results

Users may set their own implementation name in this tab; the default name is rev_1. The next box is the "Results
Directory," specifying where users want to save the synthesized netlist file. The third box is "Results File Name,"

which sets the synthesized netlist file name.

2.0 www.achronix.com

34

http://www.achronix.com

UuGo18 Synthesis User Guide

B Implementation Options - quickstart : rev_1 >
Device | Options | Constraints = Implementation Results | Timing Report | Verlog = GCC | Place amEE] Implementations:
rev_1
Implementation Name: =
rev_1
Results Directory:
C:iprojects\quickstartirev_1
Result Base Name: Result Format:
quickstart| vm -
Optional Output File Options
Write Mapped Verilog Netlist
[Write Mapped VHDL Netlist
Write Vendor Constraint File
SYNOPSYS
| ok || cancel || Hep | s

Figure 30 - Implementation Options: Implementation Results

Constraints

The Constraints tab is used to add synthesis constraint files if they were not added after adding source RTL files.
This tab is also used to set the default clock speed of the design. Achronix highly recommends that a suitable

constraint file be created for the synthesis project, specifying all of the clocks in the design. For details of how to add
constraint files and their syntax see Synthesis Constraints (page 47).

In addition the default frequency should be set to the match the most common system clock frequency (by default it
is set to 200 MHz).

2.0 www.achronix.com 35

http://www.achronix.com

UuGo18 Synthesis User Guide

B Implementation Options - quickstart : rev_1

Device = Options = Constraints | Implementation Results | Timing Report | Verilog | GCC P|acean[E] Implementations:

Frequency (MHz)

[ZCL‘] ® Auto Constrain (Optimize to obtain maximum frequency)

"] Use Clock Period for Unconstrained 1O
Constraint Files

Check files to apply to this implementation.

FPGA Constraints (FDC) sSDC Synopsys Safety Format (SSF) |
=click to add file...=

SYnOPSYS

| ok || cancel || Help

Figure 31 - Implementation Options: Constraints

Options

The Options tab sets the following optimization switches: FSM Compiler, Resource Sharing, Pipelining and
Retiming — all are enabled by default. Users may change these optimization options according to design needs. For
example, with resource sharing enabled, the software uses the same arithmetic operators for mutually exclusive
statements as in branches of a case statement and hence area is optimized. Conversely, timing can be improved by
disabling resource sharing, but at the expense of increased area.

2.0 www.achronix.com 36

http://www.achronix.com

uGo18 Synthesis User Guide

P Implementation Options - quickstart : rev_1 *

Device | Options = Constraints | Implementation Results | Timing Report | Verilog | GCC P|aceanEE] Implementations:

Optimization Switches

[] Automatic Compile Point
Continue on Ermor

FSM Compiler

Resource Sharing

Pipelining

Retiming

[Distributed Compilation

[] Automatic Compile Point with soft

Option Description
Click on an option for a description.

SYNOPSYS

| OK || Cancel || Help | Predictable Sucoess

Figure 32 - Implementation Options: Options

2.0 37

www.achronix.com

http://www.achronix.com

uGo18 Synthesis User Guide

Chapter 7 : Synplify Pro Features

There are several features in Synplify Pro which can be very useful. This section covers recommendations for:
- Synplify Warnings
- Synthesis Hierarchical Report
- HDL Analyst Schematics
- Watch Window
- Validating Constraints
- Using Help

Synplify Warnings

Users can make use of strong linting and checking capabilities provided by Synplify Pro.

[792 warnings, 1138 notes]E\nd: [|'] I§et Filter... | [Apply Filter [] Status Page Filter Group Commeon IDs
|Type | ID | Message |Suurce LclLog Location |Tlme | Report =
37 CL246 Input port bits 23 to 10 of ovc_avalable_all[23:0] are unused. Assign logic for all port bits or change the input port size. - large top.srr 01:14:52... Compiler Report
Ay 18 CG133 Object i is declared but not assigned. Either assign a value or remove the declaration. - large top.sm 01:14:52... Compiler Report—|
/Ay 100 CG168 Type of parameter CVw on the instance class_table is not in accordance with the type of parameter on corresponding module. PL.. - large top.srr H . Compiler Report
[\ 20 CL247 Input port bit O of destpori[4:0] is unused - large top.sm ... Compiler Report
a [B4] CG1239 Undriven input neighbors_r_addr on instance the_router mesh 1... large top.sm... :52... Compiler Report
i CG360 Removing wire refresh_w_counter, as there is no assignment to it. routerv... large top.smr... 01:14:52... Compiler Report
a2 CL156 *Input un1[1:0] to expression [ror] has undriven bits; assigning undriven bits to 0. Simulation mismatch pessible. Assign all bits o... - large top.sm 01:14:52... Compiler Report
8 CL169 Pruning unused register port_Ip[5].ssa_flit_wr_all[3]. Make sure that there are no unused intermediate registers. - large top.sm 01:14:52... Compiler Report
A 8 CL168 Removing instance extractor because it does not drive other instances. To preserve this instance, use the syn noprune synthesis... ss allo... large top.sm 01:14:52... Compiler Report
N [2 CL271 Pruning unused bits 4095 to 3584 of filt_in_reg4[4095:0]. If this is not the intended behavior, drive the inputs with valid values, ori... large to... large top.smr... ... Compiler Report
VN CL177 Sharing sequential element user_i_in_reg_ce. Add a syn_preserve attribute to the element to prevent sharing. add c.s... large top.sm Compiler Repol {=]
474 er-specified initial value definec e sequential elements wh an Dreve imum svnthesis re i - large too.si... .. Pre-mappina Rei
[; L]
TCL Script Messages

Figure 33 - Warning Messages

Synthesis Hierarchical Report

Synplify Pro has a hierarchical report to show different design statistics. The right-hand pane also shows, Project
build status, Predicted timing, Resource Utilization:

2.0 38

www.achronix.com

http://www.achronix.com

uGo18 Synthesis User Guide

Project Status | Implementation Directory | Process View |

Project Name

noc_ref_design_top Device Name rev_1: Achronix Speedster7t : AC7t1500ES0
Implementation Name rev_1 Top Module noc_ref_design_top
Pipelining 1 Retiming 1
Resource Sharing Fanout Guide 10000
Disable I/O Insertion 1 Disable Sequential Optimizations 0
Clock Conversion 1 FSM Compiler 1
Job Name Status (] iy () |CPU Time Real Time Memory Date/Time
Compile Input (compiler) . . . Si24/21
Detailed repart Complete 278 49 0 00m:06s 5:00 PM
Premap (premap) . . Si24/21
TrrTrea Complete 17 3 0 | Om:04s 0Om:05s 381MB alion
Map & Optimize 5/24/21
(fpga_mapper) Complete 1580 1335 0 | 0m:30s Om:31s 414MB bt
Detailed report :

11884 of 1382400 (less than 1%) 2 of 2560 (less than 1%)
LRAM 1 of 2560 (less than 1%) MLP 0 of 2560 (0.00%)
LUT 48401 of 691200 (7.00%) ALU8 73 of 172800 (less than 1%%)
Detailed report Hierarchical Area report

Clock Name (clock_name) Req Freq (req_freq) Est Freq (est_freq) Slack (slack)
clk_chk 500.0 MHz 341.7 MHz -0.927
clk_send 500.0 MHz 362.2 MHz -0.761
System 500.0 MHz NA NA
Detailed report

Combined Clock Conversion

2/ 0 more

|Retiming I 146 / 283 more I I ‘

Figure 34 - Synthesis Hierarchical Report

Hierarchical Area Report

This report is useful to understand utilization of elements in the design, as well as, total sequential utilization for

specific modules. The report is really helpful to understand the utilization hotspots in the design.

2.0

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

| Area Summary : Hierarchical Area report

| Module name LUT4 LUT6 DFF ALUB BRAM LRAM MLP FADS
£+ 5 noc_ref_design_top 47327 47752 11884 73 2 1 0 0
G- 5] axi_bram_responder_71509640 27 271 1141 5 2 0 0 0
= axi_pkt_chk_Z3124600 71 95 417 19 0 0 0 0
= axi_pkt_gen_71803840 35 27 143 5 0 0 0 0
=] data_stream_pkt_chk_Z1617590 163 223 619 16 0 0 0 0
=1 data_stream_pkt_chk_Z1626830 178 227 638 16 0 0 0 0
=1 data_stream_pkt_gen_Z1916190 82 114 385 0 0 0 0 0
& =] data_stream_pkt_gen_Z1925430 85 114 388 0 0 0 0 0
- =] nap_horizontal_wrapper_Z1461360 0 0 0 0 0 0 0 0
=1 nap_horizontal_wrapper_Z959520 0 0 0 0 0 0 0 0
- =] nap_slave_wrapper_Z4900260 4 0 0 0 0 0 0 0
=1 nap_vertical_wrapper_Z1492480 0 0 0 0 0 0 0 0
=1 nap_vertical_wrapper_71494450 0 0 0 0 0 0 0 0

(1

HDL Analyst Schematics

The Synplify Pro HDL Analyst features enable the user to visualize the end user design in several useful schematic
views, including the hierarchical RTL view and flattened gate level netlist view. There are a variety of features to

Figure 35 - Hierarchical Area Report

help filter and explore the design which can be accessed by the HDL Analyst top level menus or by right click menus

within the schematic.

Browsing back and forth between the RTL view and the Technology (gate-level netlist) view enables users to
visualize how the design RTL was mapped to FPGA primitives such as LUTs and registers.

2.0

www.achronix.com

40

http://www.achronix.com

uGo18

Synthesis User Guide

h=
<

BdBE Ded 0B @
@ 2 B e 4 @ @

» LT Instances/Groups (3)

P I Nets(24)

P - Ports (4)

¥ LT primitives (19)
i:ent1_countf_reg1 (dff)
i:cnt1_countf_reg2 (dff)
N irent2_countf_regl (dff)
i:cnt2_countf_reg2 (dff)
D ipulsel (orv)
D ipulsel_a (andv)
T ipulsel_b (andv)
i:pulsel_reg1 (dff)

I i:pulse? (orv)

O ipulse?_a (andv)
O ipulse_b (andv)
i:pulse2_reg1 (dff)

Synplify Pro (R) U-2023,03X-2 - [DMNACE_10.0\Designs\quickstart\impl_T\syn\rev_acx\synwork\quickstart_impl_1_mult.srs]

File Edit View Project Run Apalysis HDL-Analyst Options Window Web Help

]

pulsel

Schematic Optians...

Use Legacy HDL Analyst (cbsolete)

RTL » (@ Hierarchical View
Technology > Elattened View
Hierarchical >

2 Filter Schematic Fi2

oCe]

pulsel reg:

qre]

i:pulse2_reg2 (dff)

rel

pulsel_regl

Schematic Options | Dataflow View ~ |

unl_pulse2_z

Qrel —l_

counter_12s
k count[11:2]

jenale

nrst.

are]
| te1
oo el

internal _counter2

D ent2_countf_re

entZ_countf_regl

P iquickstart_gpio_bank_c
$= iunl_pulsel_a {inv)
= iunl_pulsel_b (inv)
4+ iunl_pulse2_a (inv)
+= iunl_pulse2_b (imv)
I Black Boxes (0)
4 » Il >
Detail View Zoom: Ctrl+Scroll Wheel Zoom Area: Ctri+Drag Pan: Middle Click Drag or Alt+Drag Push: Double Click Cancel Display: Press 'Escape’
—
P quickstart_impl_1.prj <out of date> | @ quickstart_impl_1_mult.srs (RTL)[d:0] = 43 quickstart_impl_1.srm (Tech)[d:1]
Information =]E3]
=
project -load D:/ACE_10.0/Designs/quickstart/impl_l/syn/quickstart_impl 1.prj
Unrecognized part "ACTtl500" specified for device "AchronixSpeedster7t” in quickstart_impl l:rev_acx
Loaded XOM (Hierarchy) data base - elapsed time 0:0 Blocks=4
BN Implementation 'D:\ACE 10.0\Designs\quickstart\impl 1\syn\gquickstart_impl 1.prj|rev_acx' design hierarchy loaded from database
-
% =
TCL Script | Messages
Analyze RTL level schematics after compiling ng

Figure 36 - HDL Analyst Hierarchical RTL View

2.0

www.achronix.com

41

http://www.achronix.com

UuGo18 Synthesis User Guide

S Synplify Pro (R) U-2023.03X-2 - [DAACE_10.0\Designs\quickstart\impl_1\syn\rev_acx\quickstart_impl_1.srm] - [m] X
< [File Edit View Project Run Apalysis |HDL-Analyst Options Window Web Help =] {ENES]
BB D@ RO BAM g & ' |1 oo
Technology ¥ | 13 Hierarchical View
@ 92 B 3 & & @ @ = dierarchical X Elattened View Schematic Options | Dataflow View
iiinternal_counterl.coun = ? Filter Schematic F12 Flattened to Gates View =

itiinternal_counter\.coun
tinternal_counter!\.coun

Schematic Options... Hierarchical Critical Path

Flattened Critical Path
iinternal_counterl\.coun Use Legacy HDL Analyst (cbsolete) £ eeprel counterd: . countr19]1

itiinternal_counter\.coun
iinternal_counter!\.coun
iinternal_counterl\.coun
itiinternal_counter\.coun
iinternal_counter2\.coun
iinternal_counter2\.coumn

ot e o JIOFFE Lo con
q

i

nal_coun ter 2\count :sL

i

iinternal_counterZ\.coum = -
- pulsel_regZ N T L
ternel_counterzh. count_cry_a[s
iinternal_counter2\.coumn b.ca, 13m0 . ireerrel countarzi.countery.olel
b = r pulsel_regl
iinternal_counter2\.coun - v d LI

intarnal_counter2\.count[2]

iinternal_counter\.coun | ne; zaunif res2
iinternal_counter?\.coun

irinternal_counter2\.coun pulsel b +qe e g DFFE Lo oo
intemal_counter?\.coun -
iiinternal_counter2\.coun L

. intgrnal_counter 2\ count[£]
iinternal_counter2\.coun

itled_counter.count[0] (C

i:led_counter.count[1] (T b DFFE_'" NN
i:led_counteri.led_count_ .
itled_counter.led_count_

internal_counter2\.count[€]

ipulsel_b (LUT4_2F22)

ipulsel_regl (DFF)

i:pulsel_reg2 (DFF)

i:pulse? b (LUT4 2F22) |~
»

) 4) »

Detail View Zoom: Ctrl+Scroll Wheel Zoom Area: Ctri+Drag Pan: Middle Click Drag or Alt+Drag Push: Double Click Cancel Display: Press ‘Escape’
B quickstart_impl_1.prj <out of date> @ quickstart_impl_1_mult srs (RTL)jd:0] = T quickstart_impl_1.srm (Tech)[d:1]

Information]

project -load D:/ACE_10.0/Designs/quickstart/impl_l/syn/quickstart_impl 1.prj

Unrecognized part "ACTtl500" specified for device "AchronixSpeedster7t” in quickstart_impl l:rev_acx

Loaded XOM (Hierarchy) data base - elapsed time 0:0 Blocks=4

BN Implementation 'D:\ACE 10.0\Designs\quickstart\impl 1\syn\gquickstart_impl 1.prj|rev_acx' design hierarchy loaded from database -

% -
TCL Script | Messages
Generate and analyze technelogy specific schematics after mapping and flattening to gates [S

Figure 37 - HDL Analyst Flattened Gate-Level Netlist View

Watch Window

Watch window is useful to view and compare results of multiple implementations. Watch window can be enabled by
the View — Watch Window command. Click in the Log Parameter section of the window and then click the pull-
down arrows to display the parameter choices.

(® Note

Only a limited set of design parameters are supported for display.

To choose the implementations to watch, use the "Configure Watch" dialog box (right-click on "Log Parameter"
section of the window) and select the implementations to watch.

2.0 42

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

'' WU T T e e e e e e e e e e e e e e e
Log Parameter rev_default rev_logic rev_BROM
clk - Estimated Frequency 190.4 MHz 192.4 MHz 210.7 MHz
clk - Requested Frequency 250.0 MHz 250.0 MHz 230.0 MHz
clk - Estimated Period 5.253 5.196 4.747
clk - Requested Period 4.000 4.000 4.000
clk - Slack -1.253 -1.196 -0.747
top Part ac7t1500es0f53a0c2 ac7t1500es0f53a0c2 ac7t1500es0f53a0c2
CPU Time 0Oh:02m:28s Oh:00m:34s 0Oh:02m:22s
Log Watch
Figure 38 - Watch Window
Log Watch Configuration {3
Watch Selection
) iWatch Active Implementation ;
'® Watch Selected Implementations
 Watch All Implementations
Selected Implementations to watch:
rev_default
rev_logic Select All
rev_BROM

Figure 39 - Log Watch Configuration

10
ke

2.0

www.achronix.com

43

http://www.achronix.com

uGo18

Synthesis User Guide

Validating Constraints

Synplify Pro provides a constraint checker, which runs the preliminary stages of synthesis, and then checks the
project constraint files against the objects in the design. It will report if any constraints cannot be successfully
applied. It is highly recommended that constraint check is run to ensure that all constraints the user requires to be
applied to the design are in fact being applied.

Select Run - Constraint Check to validate a project's constraints.

P 5] File Edit View Project | Run| Analysis HDL-Analyst Options

1 = R

Window Web

2Run

I Open Project...
| & Close Project |

|4 Add File...

Hy Change File...
|4 Add Implementation... |

{& Implementation Options...

BiR Add P&R Implementation

| & View Log |
— Frequency (MHz):

Continue on Ermor
FSM Compiler

Automatic Compile Point |[]

Y.

2 C

Run

Resynthesize All
Compile Only

Write Output Netlist Only
FSM Explorer

Translate Vendor 10...
FPost Place & Route Resynthesis...
Syntax Check

Synthesis Check
Constraint Check
Ammange VHDL Files
Launch SYMNCore...

Fa

F7

Shift+F7
Shift+F8
Shift+F10

Configure and Launch WVCS Simulator ...

Run TCL Script...

Run Implementations Setup...
Job Status...

Mext EmorVWaming

Previous ErrorVWaming

Log File Message Filter...

Ctri+J
F3
Shift+F3

mal

Resource Sharing

M i e

s HJE

Figure 40 - Validating Constraints

Using Help

For getting help quickly, Synplify Pro provides very useful context sensitive help. For example, to access more

information about the "Attributes" tab of the Scope editor, click F1 key.

2.0

www.achronix.com

44

http://www.achronix.com

uGo18 Synthesis User Guide

e v ey [- — g e g o e o sy 50
B [E File Edit Wiew Project Run Analysis HDL-Analyst Opiions Window Web Help
BHE D@0 A AR IRIEL Vom @ Em

Cument Design: [<Top Level» [=] [Check Censtrainis |
Enable | Object Type | Object | Attribute Valve | Value Type Description |
B
2 |
5 |
4
s |
]
7 |
]
o |
10
1
12|
13
14
15
16|
17]
18
10
ki
21|
22
)|
24|
5
25|
7
)
]
0|
31|
Clocks | Clocks | Collactions | Inputs/Outputs | | Delay Paths | Aftributes | 1O Standards | Compile Points | TCL View |

Figure 41 - Attributes Tab Within the Scope Editor

On clicking the F1 key, help will automatically direct to relevant section of the help.

2.0 45

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

Fie Edit View Go Bookmarks Help Feedback

le-c-AEllen@aa

Contents | Index | Bookmarks Search |
Search 5%

search for: 4] »| search

_+ | Advanced search

Kd 0-00f0Hs DB

Open Pages &%

Attributes’

ity Pt FRvppr——
Attributes
ou can assign anrbutes directly in the editor.
[ewka] comaiee | oo s o1 e _Cesaeten
o =] ot pot | agdebal [rrm_nodockiu’
AE o

5 o st fomt
or e scal Foret
om Fror omatrsis
oty

= et
2 raonzzas
s

Aurbuse

Here are descriptions for the Attributes columns:

fcolumn
[Enabled

[Objeet Type

[attibute

alue

ol Type

Peseriptian

[Comment

[pesenpion

(Required) Tum this on to enable the constraint.

ISpacifies the type of GBject to which the aftribute is as:
(Chaase from the pull-dow fist, 16 fiter the avaiiahle choices in
fthe: Object fieia.

(Required) Specifies the abject to which the attribute is
fattached. This field is Synchionized with the ARBI fiel, 5o
Iselecting an object here fiters the available ChOICeS n the
laaribute felg

(Required) Speciies the aitibute name. You can choose from a
pull-down st that Includes all avalable aitributes for the
ispecified technology. This field is synchronized with the Object
i 1f you select an object first, the stbute list s filareg. If
/oU Select an allribute frst, the syninesis 10oi iters the
fwalabie choices in the Dbject ield, You miist select an

I a valid aitribute does not appear n the pull-down lis, simply
type it in this fiekl and then apply appropiate values.
{(Required) Specfies the aitribute value. You mus speclfy the
it firs. Clicking in the column displays the defaut value,
fa drop-domn arrom lsts available values where appropriate.

ISpacifies the kind of value for the attnibute. For exampis, string
lor beglean.

(Cantains a one-line description of the attrinute.

ILets you enter comments anout the aTInoues.

Enter the appropriate auributes and their values, by clicking in a cell and choosing from the pul-down menu.

To specfy an abject to which you want to assign an attribute, you may also drag-and-drop it from the RTL or Technology view into a cellin the Object column. After you have entered the atributes, save the constraint file and add it ta your project.

See Also

+ For more information on specifying attibutes, see Ho

Atritue:

« For information about all SCOPE panels, see SCOPE Tabs

Figure 42 - Sample Help Screen

©2021 Symapsys, Ic.

2.0

www.achronix.com

46

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 8 : Synthesis Constraints

Synplify Pro constraints can be specified in two file types:

- Synopsys design constraints (SDC) - normally used for timing (clock) constraints. A second SDC file would be
required for any non-timing constraints.

- FPGA design constraints (FDC) - usually used for non-timing constraints; however, can contain timing
constraints as well.

SDC files are usually edited using a text editor, either as part of Synplify Pro or an external editor. FDC files can be
edited in either a text editor or using the Scope editor within Synplify Pro. When using Synplify Pro to edit FDC files,
an assistant tab is available which provides details of available FDC commands and their format.

Timing Constraints

It is highly recommended that the user defines all clocks in the design using an SDC file. If the design has multiple
clocks, clock constraints should be set accordingly, defining either appropriate clock groups or false paths between
asynchronous clocks. In addition, if required, the user can specify specific duty cycles for any particular clock.

Use the create_clock timing constraint to define each input clock signal and the create_generated_clockt
iming constraint to define a clock signal output from clock divider logic. The clock name (set with the —name option)
will be applied to the output signal name of the source register instance. When constraining a differential clock, the
user only needs to constrain the positive input.

For any clock signal that is not defined, Synplify Pro uses a default global frequency, which can be set with

the set_option —-frequency Tcl command in the Synplify Pro project file. However, Achronix recommends
defining each clock in the design rather than relying on using this default frequency for undefined clocks.

A list of SDC commands are given below with examples. Refer to
fpga_reference.pdf
available in Synplify Pro Tool — Help - PDF documents for the description of the various options of the
remaining SDC commands listed here.

create_clock

This command creates a clock object and defines its waveform in the current design. The options
for create_clock are described in the table following.

Syntax

create_clock -name clockName [-add] {objectList} | -period {Value} [-waveform {riseValue
fallvalue}] [-disable] [-comment commentString]

2.0 a7

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Command Examples

create_clock -name 1inclk -period 10 [get_ports {inclkl}]

create_clock -name divclk -period 20 [get_nets {divclk}]

create_clock -name 1inclkfast -period 5 -add [get_ports {inclkl}]

create_clock -name 1inclk -period 20 [get_ports {inclkl inclk2 inclk3}] -waveform {
10 15 }

Table 1 - Option Description for create_clock

“

Specifies the name for the clock being created, enclosed in quotation
marks or curly braces. If this option is not used, the clock is given the name
of the first clock source specified in the objectList option. If the objectList
option is not specified, the -name option must also be used, which creates

-name clockName a virtual clock not associated with a port, pin, or net. Both the -name and
objectList options can be used to give the clock a more descriptive name
than the first source pin, port, or net. If specifying the -add option, the
-name option must be used, and clocks with the same source must have
different names.

Specifies whether to add this clock to the existing clock or to overwrite it.
Use this option when multiple clocks must be specified on the same source

-add for simultaneous analysis with different waveforms. When this option is
specified, the -name option must also be used.
-period Value Specifies the clock period in nanoseconds (ns). The value type must be

greater than zero.

Specifies the rise and fall times for the clock in nanoseconds with respect
to the clock period. The first value is a rising transition, typically the first
rising transition after time zero. There must be two edges, and they are
assumed to be a rise followed by a fall. The edges must be monotonically
increasing. If this option is not specified, a default timing is assumed which
has a rising edge of 0.0 and a falling edge of periodValue/2.

-waveform riseValue fallValue

objectList Clocks can be defined on the following objects: pins, ports, and nets.
-disable Disables the constraint.
-comment textString Allows the command to accept a comment string.

create_generated_clock

This command creates a generated clock object.

2.0 48

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Syntax

create_generated_clock —-name {clockName} [-add] -source {masterPin} -divide_by integer

Command Examples

create_generated_clock -name divclk -source [get_ports {inclk}] -divide_by 2 [get_nets
{divclk}]
create_generated_clock -name clk_div2 -source [get_pins {iPLL.ddr3_pll.7iACX_PLL/
ogg_gm_clk[0]}] \

-divide_by 2 \

[get_pins
{i_ddr3xN_phy_w_ctrl_core.ddr3_inst\.i_ddr3_macro.x_ddr3.i_ddr3xN_phy_w_controller.i_ddr
3xN_phy.i_phy_sd_clkdiv/clkout}]

The period () is used as a separator between levels of hierarchy and instances. The backslash (\) is only used when
referencing what is inside a generate block name. For example, the RTL appears as follows:

generate
begin: ddr3_inst
ddr3_macro i_ddr3_macro (...)

set_clock_groups

Specifies clock groups that are mutually exclusive or asynchronous with each other in a design.

Syntax

set_clock_groups -asynchronous -name clockGroupname -group{clockList}

Command Example

set_clock_groups -asynchronous -group {clkl clk2} -group {clk3 clk4} -name clkgroup

set_false_path

This command removes timing constraints from particular paths.

2.0 49

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Syntax

set_false_path [-setup] [-from | -rise_from | -fall_from] [-through] [-to | -rise_to
| -fall_to] value {objectList}

Command Examples

set_false_path -from [get_clocks inclkl] -to [get_clocks inclk2]

set_false_path -from temp2 -to out #(where temp2 1is a register and out
is an output port)

set_false_path -from 1in #(where in is an 1input port)
set_false_path -from templ -to temp2 #(where templ and temp2 are
registers)

set_false_path -from in -to templ #(where in is an 1input port and

templ is a register)
set_false_path -from {i:temp2[*]} -to {mem_mem_0_0} #(where temp is register bus and
mem_mem_0_0 is a RAM

set_input_delay

Sets input delay on pins or input ports relative to a clock signal.

Syntax

set_input_delay [-clock {clockName}] [-clock_fall] [-rise] [-fall] [-min] [-max] [-
add_delay] {delayValue} {portPinList}

Command Examples

set_input_delay 1.00 -clock clk {at} -max

set_input_delay {1.00} -clock [get_clocks {clk}] -max [get_ports {at}]
set_input_delay 2.00 -clock clk {bt} -min

set_input_delay 1.00 -clock clk -min -add_delay {bt}

set_input_delay 3.00 -clock clk {st}

set_input_delay 4.00 -clock clk -add_delay {st}

set_input_delay 1.00 -clock clk {din2} -clock_fall

set_input_delay 1.50 -clock clk {dinl din2}

set_input_delay 2.00 -clock clk [all_inputs]

N R R DMNWR

2.0 50

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

set_output_delay

Sets output delay on pins or output ports relative to a clock signal.

Syntax

set_output_delay [-clock clockName [-clock_fall]] [-rise|[-fall] [-min|-max] [-
add_delay] delayValue {portPinList} [-disable] [-comment commentString]

Command Examples

set_output_delay 1.00 -clock clk {ol} -max
set_output_delay 3.00 -clock clk -max -add_delay {ol}
set_output_delay 2.00 -clock clk {02} -min

set_max_delay
Specifies a maximum delay target for paths in the current design.

Syntax

set_max_delay [-from |-rise_from | -fall_from] [-through] [-to | -rise_to | -fall_to]
{delay_value}

Command Examples

set_max_delay 2 -from {a b } -to {ol}
set_max_delay -rise_from {clk} {1}
set_max_delay -through {{n:doutl}} {1}
set_max_delay 1 -fall_to {clkl}

set_multicycle_path

Modifies single-cycle timing relationship of a constrained path.

2.0 51

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Syntax

set_multicycle_path [-start |-end] [-from {objectList}] [-through {objectList} [-through
{objectlList} ...]] [-to {objectlList}] pathMultiplier [-disable] [-comment
commentString]

Command Examples

set_multicycle_path 2 -from [get_clocks 1inclkl] -to [get_clocks inclk2]
set_multicycle_path 4 -from temp2 -to out

set_clock_latency

Specifies clock network latency.

Syntax

set_clock_latency -source [-clock {clockList}] delayValue {objectList}

Command Example

set_clock_latency 0.2 -source [get_ports clk] -clock [get_clocks {clk}]

set_clock_uncertainty

Specifies the uncertainty or skew of the specified clock networks.

Syntax

set_clock_uncertainty {objectList} -from fromClock |-rise_from riseFromClock |
-fall_from fallFromClock -to toClock |-rise_to riseToClock | -fall_to fallToClock value

Command Example

set_clock_uncertainty 0.4 [get_clocks clk]

Below is an example of clock constraint commands for a multiple clock domain design.

2.0 52

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

(® Note

Most timing engines only use up to three decimal places of accuracy; therefore, it is normal to truncate
non-rational values to this level.

Clock definitions

create_clock -period 10 [get_ports

{pll_refclk_p}] -name
pll_refclk_p

create_clock -period 100 [get_ports

{tck} 1 -name
tck

create_clock -period 1.527 [get_pins
{i_clock_generator.i_PLL_EN.SW_APLL_O_pll_en_clk_APLL.7iACX_PLL/ogg_gm_clk[0O]}] —-name
en_mac_ref_clk

create_clock -period 3.175 [get_pins
{i_clock_generator.i_PLL_FF.SW_APLL_1_pll_ff_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] -name
ff_clk

create_clock -period 3.448 [get_pins
{i_clock_generator.i_PLL_SYS.SW_APLL_2_pll_sys_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] —-name
sys_clk

create_clock -period 62.5 [get_pins
{i_clock_generator.i_PLL_DCC.SW_APLL_3_pll_dcc_clk_APLL.iACX_PLL/ogg_gm_clk[0]}] —-name
sbus_clk

By specifying clock group, each of the above clocks will be determined to be
asynchronous to all other clocks
set_clock_groups -asynchronous -name clk_grpl -group {sbus_clk} \

-group {en_mac_ref_clk} \

-group {pll_refclk_p} \

-group {sys_clk} \

-group {ff_clk} \

-group {tck}

Non-timing Constraints

An FDC file is used to specify non-timing constraints, which can be either attributes on an object (global or local),
using the define_attribute statement, or compile points.

Compile Points

To implement compile points, they are specified in the FDC file as follows.

() Note

For a detailed explanation of compile points how and when to use them, see Compile Points (page 63).

2.0 www.achronix.com

53

http://www.achronix.com

UuGo18 Synthesis User Guide

To set a single compile point, enter:

define_compile_point {v:work.pac_ddr3_ip} -type {locked}

To find every instance of a module and set as a compile point, enter:
Compile Point syntax

foreach inst [c_list [find -hier -view pac_ddr3_ipx]] {
define_compile_point S$inst -type {locked}
}

Attributes

Attributes provides a mechanism to control how a design is mapped by Synplify Pro. Attributes can be defined both
globally and also applied to individual instances. Attributes can be entered both in HDLs or in the SCOPE attributes
tab, FDC files for project-wide entities. Attributes with syn_* do not affect synthesis and passed to the netlist.

Here is summary and examples of some of these attributes:

“

Controls retiming of registers across combinatorial logic on a global

syn_allow_retimin o :
y g level or to specific register.

syn_dspstyle Controls mapping of DSP.

syn_ramstyle Controls the implementation of an inferred RAM.
syn_romstyle Controls the implementation of an inferred ROM.
syn_keep To preserve net in synthesis during optimization.
syn_preserve To prevent sequential optimizations.

To prevent optimization on instances and black boxes when output

syn_noprune .
y P is not used.

syn_maxfan To override global fanout guide for an individual port, net, register.

Enable a wide MUX option in Speedster16t technology, enter:

define_global_attribute {syn_acx_mux41l_opt} {1}

2.0 54

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

To override the number of available resources in a device, enter the following command. This command can be used
to limit the mapping to certain resources.

define_global_attribute syn_allowed_resources {blockrams=1000}

To synthesize all ROMs using logic, enter:

define_global_attribute {syn_romstyle} {logic}

To ensure that RAMs are only inferred for sufficiently large register sets, enter:

define_global_attribute {syn_max_memsize_reg} {2048}

For more detailed information on all the supported attributes, refer to Synplify Pro online help "Attribute Reference
Manual"

2.0 www.achronix.com 29

http://www.achronix.com

UuGo18 Synthesis User Guide

Chapter 9 : Synthesis Optimizations

There are several optimizations that can be performed by the user during Synplify Pro synthesis. This sections
covers recommendations for:

- Preventing Objects from Being Optimized Away (page 56)

- Pipelining (page 57)

- Retiming (page 57)

- Forward Annotation of RTL Attributes to the Netlist (page 58)
- Compile Points (page 63)

- Finite State Machines (page 65)

Preventing Objects from Being Optimized Away

Dangling Nets

Synplify Pro always performs optimization on redundant or feed-through nets. At times, the user may want to
preserve these nets. In order for these nets not to be optimized away (removed), add the following directive to the
RTL, In this example, synthesis will not optimize away (remove) the logic. Instead, it infers a buffer between the two
wire statements. If it is not specified, the user may not see the buffer insertion by the tool.

wire netl /x synthesis syn_keep = 1 %/ ;
wire net2 ;

assign net2 = netl ;

Dangling Sequential Logic

For sequential logic the syn_preserve attribute is used.

reg net_regl /* synthesis syn_preserve = 1 x/ ;

always @ (posedge clk)
net_regl <= some_net;

Unconnected Instances

For input instances when their output pins are unconnected, the syn_noprune attribute is used. The following
examples show how to apply this attribute to both Speedster I/0 pads and Speedcore boundary pins.

2.0 56

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

Speedster Output Pad

PADIN 1dpad (.padin(in[0])) /* synthesis syn_noprune = 1 x/;

Speedcore Output Pin

IPIN ipin (.din(in[0])) /* synthesis syn_noprune = 1 %/;

Prevent ACE Optimizing Objects Away

In the above examples, Synplify Pro does not remove the unconnected entity, ensuring that the Synplify Pro netlist
retains these entities. However, when the netlist is read into ACE, ACE performs netlist optimization and resynthesis.
If the objects retained by synthesis are still unconnected, then ACE will remove these entities from the final place-
and-route netlist. To prevent ACE from optimizing these entities, use the ACE must_keep directive in conjunction

with the above attributes. Using the preceding sequential logic example, the must_keep attribute is passed through
Synplify and included in the synthesized netlist. ACE will then recognize this attribute and keep the instance.

(@ Note

The attribute must_keep can be applied to both sequential elements and wires.

(* must_keep=1 *) reg net_regl /* synthesis syn_preserve = 1 x/ ;

always @ (posedge clk)
net_regl <= some_net;

Pipelining
Pipelining is the process of splitting logic into stages so that the first stage can begin processing new inputs while
the last stage is finishing the previous inputs. Pipelining ensures better throughput and faster circuit performance. If

using selected technologies which use pipelining, also use the related technique of retiming to improve
performance.

When this switch is enabled in a project file, synthesis uses register balancing and pipeline registers on multipliers
and ROMs.This option is equivalent to enabling the Pipelining option on the Options panel of the Implementation
Options dialog box.

Retiming

The retiming process moves storage devices (flip-flops) across computational elements with no memory (only
gates/LUTs) to improve the performance of the circuit.

2.0 57

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

When this switch is enabled, synthesis tries to improve the timing performance of sequential circuits. This option is
equivalent to enabling the Retiming option on the Options panel of the Implementation Options dialog box. Use the

syn_allow_retiming attribute to enable or disable retiming for individual flip-flops. This option also adds a
retiming report to the log file.

() Note

Pipelining is automatically enabled when retiming is enabled.

Forward Annotation of RTL Attributes to the Netlist

Synplify Pro supports forward annotation of RTL attributes to the netlist. These user-defined attributes propagate to
the netlist to be used by ACE place and route for optimization. This feature requires the usage of various directives
available in Synplify Pro such as syn_noprune,syn_keep, syn_hier,syn_preserve, etc., to propagate user-
define attributes to the netlist. The table below lists the directives to be set on the mentioned objects in order to
forward annotate the RTL attribute.

Attribute applied on the module will

Module syn_hier="hard propagate to the netlist
. Attribute applied on the instantiated
Instantiated Components syn_noprune . .
component will propagate to the netlist
syn_hier="hard" on the module Attribute applied on ports will propagate to

Input/Output ports containing the ports the input/output port in the netlist
Registers SVN._Dreserve Attribute applied on the registers will

g yn-p propagate to the netlist

. Attribut li n nets/wires will
Wire syn_keep bute applied on nets es

propagate to the netlist

Below are some examples:

Example 1

The attribute weight="3.0" propagates to my_reg in the netlist. The syntax used is Verilog 2001 style
parenthetical comments.

(* syn_preserve=1l, weight="3.0" %) reg my_reg;

Example 2

The syntax used is C-style comment.

2.0 58

www.achronix.com

http://www.achronix.com

uGo18

Synthesis User Guide

reg my_reg /* synthesis syn_preserve=1l weight=4 x/;

(@ Note

When using C-style comment, a comma is not required after syn_preserve=1. When using Verilog 2001
style, a comma is required after syn_preserve=1.

Example 3

This example illustrate attribute propagation on nets.

(x syn_keep = 1, weight =

Example 4

3 %) wire n2;

This feature of attribute propagation is utilized in flop pushing to boundary pins or I/0 pads via the ACE attribute
syn_useioff.The syn_useioff is applied to the input and output ports in the below example.

module flop_push_testl (

ina, inb, sel, clk, z0O

)

input wire

input wire

input wire

input wire

output reg
reg

reg [3:0] ina_r0=4'h0, ina_rl=4'h0, inb_r0=4'h0, inb_r1=4'ho;

[3:0] ina /x*
[3:0] inb /%

sel /x
clk;
z0 /*

synthesis syn_useioff=1 x/;
synthesis syn_useioff=0 x/;
synthesis syn_useioff=1 x/;

synthesis syn_useioff=1 x/;

sel_r0=1'b0, sel_rl=1'bo;

always @(posedge clk)

begin
sel_r0 <= sel;
sel_rl <= sel_ro0;
ina_r0@ <= fina;
ina_rl <= 1dina_r0;
inb_r0 <= -inb;
inb_rl <= 1dinb_ro0;
z0 <= sel_rl ? & inb_rl : |ina_rl;
end
endmodule

2.0

www.achronix.com

59

http://www.achronix.com

uGo18

Synthesis User Guide

®

Note

In example 4, the module flop_push_testl is a top module; therefore, syn_hier="hard" is not specified
on the module. If it were a sub module, syn_hier="hard" is required for the attribute on ports to
propagate to the netlist; for example:

module flop_push_testl (ina, 1inb, sel, clk, z0) /x synthesis syn_hier="hard" x/;

Note

In example 4, the syn_useioff attribute could also be specified in the Verilog 2001 comment style. For
example:

(* syn_useioff=1 %) dinput [3:0] 1ina;

However, that style only works correctly when the attribute has a non-zero value. Synplify Pro cannot
distinguish between the value zero and and an attribute that is not present. In that case it will not forward
annotate the attribute to the netlist used by ACE. Therefore, it is recommended to always use the C-style
comment used in example 4.

Example 5

This example illustrates attribute propagation on instantiated components:

module att_propagate_instcomp (

)3

di, d2, d3, clk, outl

input wire di,d2, d3, clk;
output reg outl;

reg

91,92;

//Instantiate 2 instances Ul and U2 of module test2

(* must_keep = 1, syn_noprune = 1 %) test2 Ul (di1,d2,d3, clk,out2);
(* syn_noprune = 1, must_keep 1 *) test2 U2 (d1,d2,d3, clk,out2);

always @(posedge clk)
ql <= di;

assign combol = ql & d2 & d3;

always @(posedge clk)
g2 <= combol;

2.0

www.achronix.com

60

http://www.achronix.com

uGo18

Synthesis User Guide

assign combo2 = g2 | combol;

always @(posedge clk)
outl <= combo2;

endmodule

module test2 (
di, d2, d3, clk, outl
) /*synthesis syn_hier = hard x/;

input wire d1, d2, d3, clk;
output reg outl;

reg q1,q92;

always @(posedge clk)
ql <= di;

assign combol = ql1 | d2 | d3;

always @(posedge clk)
g2 <= combol;

assign combo2 = g2 & combol;

always @(posedge clk)
outl <= combo2;

endmodule

Example 6

This example shows attribute propagation on modules:

(* att0=1 *) module top (
di, d2, d3, clk, outl, out2

)3
input wire dl, d2, d3, clk;

output wire out2;
output wire outl,

// Instantiate testl

2.0

www.achronix.com

61

http://www.achronix.com

UuGo18 Synthesis User Guide

testl U1l (d1, d2, d3, clk, outl);

endmodule

(* must_keep=1 *) module testl (
di, d2, d3, clk, outl
) /* synthesis syn_hier="hard" x/;

input wire dl, d2, d3, clk;
output reg outl;

reg q1,q92;

always @(posedge clk)
ql <= di;

assign combol = gl & d2 & d3;

always @(posedge clk)
g2 <= combol;

assign combo2 = g2 | combol;

always @(posedge clk)
outl <= combo2;

endmodule

Example 7

As shown above, flop pushing can take advantage of attribute propagation to control specific I/0 pads or boundary
pins. The examples below shows how to control flop pushing from within the RTL, applying the attribute to both
Speedster |/0 pads and Speedcore device boundary pins.

This example illustrates the application of the syn_useioff attribute with a value of 0 on, respectively:
- Awire
- A black-box PAD instance, an IPIN instance, the IPIN input net, the IPIN output net (Speedcore only)
- An PADIN instance (Speedster only)
- A pair of DFF instances

All of the above are valid instances to which to apply this property:

(* syn_keep=1 *) wire ipad_dout /* synthesis syn_useioff
(* syn_keep=1 *) wire ipin_dout /* synthesis syn_useioff
wire dffl_q, dff2_q;

0 */;
0 */;

2.0 62

www.achronix.com

http://www.achronix.com

UuGo18 Synthesis User Guide

BB_PADIN 1i_bb_padin (.padin(sc_in) , .dout(bb_pad_dout)) /* synthesis
syn_useioff = 0 *x/;
PADIN i_padin (.padin(sp_in) , .dout(padin_dout)) /* synthesis
syn_useioff = 0 *x/;
IPIN i_dpin (.din(ipad_dout), .dout(ipin_dout)) /* synthesis

syn_useioff = 0 *x/;

ACX_DFF 1d_dff1l (.d(ipin_dout) , .ck(clk) . .q(dffl_q)) /* synthesis
syn_useioff = 0 *x/;
ACX_DFF 1d_dff2 (.d(ipin_dout) , .ck(clk) . .q(dff2_q)) /* synthesis

syn_useioff = 0 *x/;

For full details on all the options for flop pushing, see the section "Automatic Flop Pushing into I/0 Pins" in the ACE
Users Guide (UG070)™.

(@ Note

As in Example 7, the syn_useioff attribute must be specified with a synthesis directive in a C-style
comment because it has a value of zero. However, the syn_keep=1 attribute on the wire can be specified
in either style.

Compile Points

Compile points are RTL partitions of the design which are defined before synthesizing a design. The advantages of
using compile points is design preservation, runtime savings and improves efficiency of top-down and traditional
bottom-up design flows.

Synplify Pro supports both automatic and manual compile points. The automatic compile-point feature can be
selected from "Implementation Options" dialog box as shown below. When automatic compile points are enabled,
the tool automatically identifies compile points based on various parameters such as size of the design, hierarchical
modules, boundary logic, etc. Refer the
fpga_user_guide.pdf
available with Synplify Pro for details on compile points.

13 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 63

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

uGo18

Synthesis User Guide

2 Run

‘-} Open Project...

r,: Close Project

(44 Add File...

s Change File...

ﬁf: Add Implementation...

{:ﬁ Implementation Options. ..

BR Add P&R Implementation

3, View Log

Frequency (MHz):
200

Automatic Compile Point
Continue on Error

F5M Compiler

Resource Sharing

< S IS s

Pipelining
Retiming

Automatic Compile Point wit...

Synplify Pro®
Ready
Project Files Design Hierarchy Project Status

gddr_ref_design_top : rev_1 {gddr_ref design_top) - Achronix SpeedsterTt : ACTH1500 : FE

Implementation Directory

Auto Const.

18 Implementation Options - gddr_ref_design_top : rev_1

Device Options Constraints Implementation Results Timing Report | Verilog GCC

Optimization Switches

Automatic Compile Point
Continue on Error

Validate MIF Files

FSM Compiler

Resource Sharing

Pipelining

Retiming

Distributed Compilation
Automatic Compile Point with soft

e e ¥

Option Description

Click on an option for a description.

Ok Cancel

Figure 43 - Setting Compile Points

Placaam ¢ | » Implemental

rev_1

Sl

Help

Although compile points can deliver significant runtime savings, users should be aware that they can have a
detrimental effect on quality of results (QoR) if not used with care. Compile points identify blocks of code that are
repeated, guiding Synplify Pro to only synthesize that block once. The level of optimization between a compile point
and it's enclosing module is defined by the compile point type:

- Locked - No optimizations across compile point boundary. Locked compile points are used for the Achronix
incremental compile flow

- Hard - Signals can be optimized across the compile point boundary (i.e., back-to-back inverters removed).
However, the actual interface is not optimized — all signals remain. All automatic compile points are set to hard.

- Soft - Signals can be optimized across the compile point boundary, and the signals themselves may be
removed, or renamed. Therefore, almost full optimization can occur as though the design did not have compile

points.

The three modes above result in increasing runtimes; however, they also generally result in increased QoR as greater
optimizations can be performed. Users should determine which configuration of compile points, if any, best meet
their needs with regards to performance versus runtime.

& Caution!

If automatic compile points are enabled, users must be aware that all automatic compile points are set to
hard. Therefore, it may not be possible to achieve the highest QoR.

2.0

www.achronix.com

64

http://www.achronix.com

UuGo18 Synthesis User Guide

(® Note

Compile points will only have a significant effect on runtime either when used as locked to enable
incremental synthesis (and place and route), or else in designs with a large number of repeating structures.

Finite State Machines

The FSM compiler is an automatic tool for encoding state machines. FSM coding style in the RTL design will directly

impact performance. By default Synplify Pro implements the following FSM encoding:
- 0-4 states is binary encoded
- 5-40 states is one-hot encoded

- >40 states is Gray encoded

FSM compiler is used to generate better results and to debug state machines.

Generating Better Results

The software uses optimization techniques that are specifically tuned for FSMs such as reachability analysis. The
FSM compiler examines the design for state machines, converting them to a symbolic form that provides a better
starting point for logic optimization. The FSM compiler may convert an encoded state machine into a different
encoding style (to improve speed and area utilization) without changing the source. This optimization can be
overridden by choosing a particular encoding style through appropriate synthesis attributes in the RTL design.

Debugging the State Machines

State machine description errors can result in unreachable states. The user can also use the FSM viewer to see a
high-level bubble diagrams and cross-probe from the diagram with respect to RTL. The user can then check
whether the source code describes the state(s) correctly.

FSM Encoding

There are two choices to define the encoding via attributes in the RTL code:

- Use syn_encoding attribute and enable the FSM compiler.

- Use syn_enum_encoding to define the states (sequential, one-hot, gray, and safe) and disable the FSM
compiler. If the user does not disable the FSM compiler, the syn_enum_encoding values are not
implemented. This behavior is because the FSM compiler, which is a mapper operation, overrides any user
attributes for the FSM encoding. The FSM compiler can be disabled via the GUI or the from the Synplify Pro
project file with the following syntax:

set_option -symbolic_fsm_compiler 0

The user may also direct the synthesis process to deploy a user-defined FSM encoding, for example:

2.0 www.achronix.com

65

http://www.achronix.com

UuGo18 Synthesis User Guide

attribute syn_enum_encoding of state_type: type 1is "001 010 101" ;

There is a synthesis attribute to turn on/off FSM extraction. By using this attribute the user can see how state
machines are extracted. The attributes is set in the source code as follows:

- Specify a state machine for extraction and optimization - syn_state_machine=1
- Prevent state machines from being extracted and optimized - syn_state_machine=0

In VHDL

—————— Attribute ----

attribute syn_state_machine : boolean;
attribute syn_state_machine of tx_training_cstate : signal 1is true;

In Verliog

If user does not want to optimize the state machine, add the syn_state_machine directive to the registers in the
Verilog code. Set the value to 0. When synthesized, these registers are not extracted as state machines.

reg [39:0] curstate /* synthesis syn_state_machine=0 x/ ;

For greater than 40 states, Synplify Pro performs Gray encoding. For one-hot encoding, specify the syn_encoding
= "onehot" as shown below.

reg [39:0] state /* synthesis syn_encoding = "onehot" x/ ;

Replication of States with High Fan-ins

Large and complex state machines present another unique challenge in state machine design. Complex state
machines can be made to run faster by actually making them larger by adding more states. This technique can be
counter intuitive as the number of levels of logic between the states and not the number of states typically limits
state machine performance. The performance of a state machine is limited by both the number of fan-insinto a
given state and the decisions made in that state. For example, idle-type states can have a large number of inputs
plus increased computational load. With the 6-input LUT architecture of Achronix devices, once the number of fan-
ins exceeds six, another level of logic is needed. An easy method to reduce the number of fan-ins is to replicate these
states. The duplicated high fan-in states reduce the number of inputs, thus reducing the number of levels of logic.

Both state machines in the figure below are equivalent in function, but State A is duplicated in Version Il so that A
and Al have two or less return inputs. As a result, if each state has to deal with four additional inputs, they can now
be contained in one 6-input LUT. Although this example is simplistic, the methodology can be applied to larger and
more complex state machines.

2.0 66

www.achronix.com

http://www.achronix.com

uGo18 Synthesis User Guide

Version | Version Il

State B State B

4229214-01.2023.03.27

Figure 44 - Replicated High Fan-in State Example

Fanout Limit

This fanout limit can also be controller through RTL design. In this case if the user knows about a net with high
fanout and wants to replicate the cell after a certain fanout is reached, the following coding style is needed:

wire netl /* synthesis syn_maxfan = 8 *x/ ;

Here Synplify Pro will infer a buffer/logic if the fanout limit on netl exceeds 8.

2.0 www.achronix.com o7

http://www.achronix.com

uGo18

Synthesis User Guide

Chapter 10 : Synthesis User Guide Revision History

Revision History

1.0

11

12

13

14

17 Jul 2016

31 Oct 2016

31 Mar 2017

01 Oct 2018

10 Jun 2019

- Initial revision. Ported document to Confluence and made it Speedcore

specific.

- Fix for minor type and additional clock constraint example.

- Updated document template to include confidentiality note.

- Corrected one of the create_generated_clock examples in the code block.

- Synthesis Optimizations (page 56):

o Corrected the syn_keep attribute in Example 7 (page 62).

> Removed the instantiation templates, referred the user to the Speedcore
IP Component Library User Guide (UGO65).

> Added details on Compile Points. (page 63)
o Updated DSP64 (page 0) .
> Updated Block RAM (page 0) .

- Managing Projects in Synplify Pro (page 27): Removed references to version

L-2016 limitations.

- Example Synplify-Pro Project File: Removed internal paths from file names.

- Synthesis Optimizations (page 56) :

> Removed technology specific entries to make the guide suitable for all
technologies. Technology specific parts moved to their appropriate IP
Component Library User Guide

o Specifically removed inference templates for Speedster16t parts, (DSP64,
BRAMTDP & BRAMSDP).

- Managing Projects in Synplify Pro (page 27):

o Combined Speedster and Speedcore differing library files into single
Synthesis library include files table.

- Example Synplify-Pro Project File:

o Added ACE_INSTALL_DIR environment variable to example project file

2.0

www.achronix.com 68

http://www.achronix.com

uGo18 Synthesis User Guide

- Overview (page 1): Minor correction.

- Added major new content for integrated synthesis flows with ACE 10.0 and
beyond:

o ACE-Driven Integrated Synthesis (page 3)

2.0 20 Jun 2024 > Synplify-Driven Integrated Synthesis (page 13)
o Stand-Alone Synthesis in Synplify Pro (page 22)
o Managing Projects in Synplify Pro (page 27)

- Added chapter Synthesis Integration with Multiprocess Option
Exploration (page 25)

2.0 69

www.achronix.com

http://www.achronix.com

	Overview
	Synthesis Flows

	ACE-Driven Integrated Synthesis
	Synthesis Project Setup in ACE
	Create an ACE Project
	Add the Design Files and Set Project Options

	Synthesis Options Configuration
	Running Synthesis to Compile the Design
	Synthesis Reports and Messages

	Synplify-Driven Integrated Synthesis
	Configuring the Synthesis Project in Synplify Pro
	Synthesis Project Setup in ACE
	Create an ACE Project
	Add the Design Files and Set Project Options

	Synthesis Options Configuration
	Running Synthesis to Compile the Design
	Synthesis Reports and Messages

	Stand-Alone Synthesis in Synplify Pro
	Configuring the Synthesis Project in Synplify Pro
	Running Synthesis
	Adding the Synthesized Netlist to ACE for Place and Route

	Synthesis Integration with Multiprocess Option Exploration
	Managing Projects in Synplify Pro
	Creating and Setting up a Project
	Adding the Synthesis Library Include File
	Adding Source Files to the Project

	Implementation Options
	Verilog
	Place and Route
	Timing Report
	Implementation Results
	Constraints
	Options

	Synplify Pro Features
	Synplify Warnings
	Synthesis Hierarchical Report
	Hierarchical Area Report

	HDL Analyst Schematics
	Watch Window
	Validating Constraints
	Using Help

	Synthesis Constraints
	Timing Constraints
	create_clock
	create_generated_clock
	set_clock_groups
	set_false_path
	set_input_delay
	set_output_delay
	set_max_delay
	set_multicycle_path
	set_clock_latency
	set_clock_uncertainty

	Non-timing Constraints
	Compile Points
	Attributes

	Synthesis Optimizations
	Preventing Objects from Being Optimized Away
	Dangling Nets
	Dangling Sequential Logic
	Unconnected Instances
	Prevent ACE Optimizing Objects Away

	Pipelining
	Retiming
	Forward Annotation of RTL Attributes to the Netlist
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Compile Points
	Finite State Machines
	Generating Better Results
	Debugging the State Machines
	FSM Encoding
	Replication of States with High Fan-ins

	Synthesis User Guide Revision History
	Revision History

