Synthesis User Guide
(UG018)

All Achronix Devices

Achronix

Data Acceleration

http://www.achronix.com

Synthesis User Guide (UG018)

Copyrights, Trademarks and Disclaimers

Copyright © 2019 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster,
and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other
trademarks are the property of their respective owners. All specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

www.achronix.com

http://www.achronix.com

Synthesis User Guide (UG018)

Table of Contents

Chapter = 1: OVEIVIBW ..t e e e et e 6
Chapter - 2: Synplify Pro Introduction e 7
Creatingand Setting up a Projecto i 7
Adding the Synthesis Library Include File ... e 8
Adding Source Files tothe Project e e e 9
Implementation OptioNS ... e e 10
RV =T 1o = PP 1
Place and RoOUTE e 12
TN REPOIt ..o e e e e 12
Implementation ReSUILS o e 13
CONS I aAINES Lt e e 14

0] o1 To] o T 15
RUNNINE SYNTNESIS . oo e e e e e e e e 16
Chapter - 3: Synthesis Constraints e 17
TIMINg CoNStraiNtS .o 17
CrEaAtE L ClOCK ...ttt e 17
create_generated _CloCKo e e 18

SEE _CIOCK L BrOUPS ..ottt e 19
Set_false _path ... e 19

S L INMPUL Iy ..t e 19

SEL OULPUL _dElaY ..ottt e e 20

Sl _MaAaX _dElaY ..o 20

St _MUItICYClE _path .. e 20

SEY _ClOCK ANy o oot e e 21
SET_CIOCK _UNCEI AN Y o oottt e e e e 21
Non-timing CoNnStraints e e e e e 22
ComPile POINTS ... e 22
AT UL S « . e 22
Constraint CheCK e e 23
Chapter - 4: Synthesis Optimizationsc i i 24
Preventing Objects from Being Optimized Away ... e 24
DANEliNE NS e e e e 24

www.achronix.com 3

http://www.achronix.com

Synthesis User Guide (UG018)

Dangling SequeNntial LOoBIiC ... e e e e 24
Unconnected INSTanCes e 24
Prevent ACE Optimizing ObjJects AWayo e e e 25
PP N NG .ot 25
R IMIN g Lo 25
Forward Annotation of RTL Attributesto Netlist i 26
EXAMIPIE L o e 26
EXAMIDIE 2 e e e e 26
EXAMIDIE B o e 27
EXAMIDIE e e 27
EXAMIPIE D e e 28
EXAMIDIE B o i e e 29
EXAMIDIE 7 oottt e e 30
CoMIPIlE POINES . oottt e 30
Finite State Machineso 32
Generating Better ResUIS i e e e e 32
Debugging the State MacChinesttt i et e e e 32
FOM BN COIN g ettt et e e e et e e e e e e 32
Replication of States with High Fan-ins ... e e 33
Chapter - 5: Example Synplify-Pro Project File i 35
ReVISION HiStOry ..o e 37

www.achronix.com 4

http://www.achronix.com

Synthesis User Guide (UG018)

www.achronix.com

http://www.achronix.com

Synthesis User Guide (UG018)

Chapter - 1. Overview

This user guide describes how to use Synplify Pro from Synopsys to synthesize a design and generate a netlist
for implementation in an Achronix Speedcore instance. Suggested optimization techniques are also included.

Synplify-Pro reads in standard RTL and outputs a mapped netlist (. vim) which is used by the ACE tool suite. A
high-level overview of the Achronix design flow is shown in figure below.

RTL Design

'

Synthesis using
Synplify Pro

'

Mapped Netlist

If Timing
Not Met

Bitstream Generation

4229211-01.2016.07.12

Figure 1: Achronix Synthesis Design Flow

www.achronix.com

http://www.achronix.com

Synthesis User Guide (UG018)

Chapter - 2: Synplify Pro Introduction

This guide assumes that Synplify Pro is installed with the synplify_pro command added to the $PATH. The
examples in this guide uses the Linux version of the software; the Windows version of Synplify Pro has the same
options.

Creating and Setting up a Project

In a Linux command shell type synpl i fy_pro to invoke the Synplify Pro Synthesis tool. When invoked, the
following window will be displayed:

[Synplify Pro L-2016.03X-SP1-beta - [<no projects [oaded>]
B ‘@ File Edit View Project Run Analysis HDL-Analyst Options Window Web Help
B d4BE 08 @4 B g @ D E D ws S s
Synplify Pro®
2Run
Ready
‘_,T} Open Project... ‘ Project Files Project Status Implementation Directory Process View
‘.E Close Project ‘ Name Size Type Modified
‘@ Add File.. ‘
‘33 Change File... ‘
‘ﬁ Add Implementation ‘
‘{ﬁ Implementation Cptions... ‘
BR Add P&R Implementation |
‘A View Log ‘
Frequency (MHz):
e = Auto Const
=
T <No projects>
Information
Starting: fusr/local/cad/synplicity/programs/synppro_L-2016.03%spl_beta/linux_a_64/mbin/synplify
Install: fusr/local/cad/synplicity/programs/synppro_L-2016.03%spl_beta
Hostnane: fell.achronix.local
Date: Tue Jul 5 13:46:47 2016
Version: L-2016.03%-8P1-beta
Arguments: -product synplify_pro -disable_rainbow_dongle -licensetype synplifypro_achronix
ProductType: synplify_pro
4 | ay

Figure 2: Synplify Pro Invoked from the Command Shell

Click the Open Project button on the left side to open the open project dialog-box:.

www.achronix.com 7

http://www.achronix.com

Synthesis User Guide (UG018)

Open Project X

—Recent Projects

[Existing Project. 4 | [/homeyranjinib/views/main/output/results/L-2016.03xSP1Beta/ACE_HS1.0/16ULRAM_sim/i

fhome/ranjinibfviews/main/output/results/L-2016.03x5P1Beta/ACE_main/16L/BRAM_sim/te
| New Project | fhome/ranjinib/views/mainfoutput/results/L-2016.03x5P1Eeta/ACE_main/16t/BRAM_sim/t:
fhome/ranjinibjviews/main/output/results/L-2016.03x5P1Beta/ACE_HS51.0/16t/LRAM_sim/i
fMhome/ranjinib/views/main/output/results/L-2016.03x5P1Beta/ACE_HS1.0/16t/BRAM_simjt
fMhome/ranjinib/views/main/output/results/L-2016.03x5P1Beta/ACE_HS1.0/16t/BRAM_simjt
fhome/ranjinibfviews/mainfoutput/results/L-2016.03x5P1Beta/ACE_H51 .0/16t/BRAM_sim/k
fhome/ranjinib/views/main/output/results/incremental_flow/HD22i_ethernet_ref_100g_no
fhome/ranjinib/views/mainfoutput/results/L-2016.03xSP1Beta/ACE_HS1.0/16L/BRAM_sim/i

(4] €10

oK || Cancel |

Figure 3: Dialog Box to Select the New Project

Click the New Project button to open the following window:

| Synplify Pro L-2016.03X-5P1-beta - [/mnt/scratch2/ranjinib/views/main/output/proj_L.prj (Unsaved)]

B '@ File Edit View Project Run Analysis HDL-Analyst Options Window Web Help
EdBDad B e fh:@ 0 @ DV @ owe B s
Synplify Pro®
2Run
Ready
‘_l} Open Project... ‘ Project Files Design Hierarchy Project Status Implementation Directory Process View
‘uE Gosa e proj_1 : rev_1 - Achronix Speedster1BtSC CORE :C2 Imnt/scratct j itputirev_1
R E 5%[.01_11....:..17""V.E.mﬂd‘?:f!.?!!!l'"'b[!f!.ﬁ%.!ﬂﬁ""!ﬂ!!.!!ﬂ“‘EH.!{E'UJ_!..E.!] Name Size Type Modified
1% rev_1
By Change File
‘ﬁ Add Implementation ‘
‘{@ Implementation Options... ‘
[BR Add P&R Implementation |
‘A View Log ‘
Frequency (MHz)
200 % & Aulo Const
Automatic Compile Point
Continue on Error
FSM Compiler R4
Resource Sharing v
Pipelining v
Retiming L4
=]
P proj_1+ L
Information
%
Starting: /usr/local/cad/synplicity/prograns/synppro_L-2016.03Xspl_beta/linux_a_64/nbin/synplify
Install: /usr/local/cad/synplicity/prograns/synppro_L-2016.03%spl_beta
Hostname: fell.achronix.local
Date: Tue Jul 5 13:46:47 2016
Version: L-2016.03%-5P1-beta
Arguments: -product synplify_pro -disable rainbow_dongle -licensetype synplifypro_achronix B
4 | L4

Figure 4: Starting a New Project

www.achronix.com 8

http://www.achronix.com

Synthesis User Guide (UG018)

Adding the Synthesis Library Include File

After selecting and saving the project file inside the desired directory path, add the appropriate synthesis library
include file. The file to be included varies according to the target device technology; the respective files are listed
in Synthesis library include files table (see page 9) below. All the synthesis library includes files are located in
the directory <ACE_| NSTALL_DI R>/1 i brari es/ devi ce_nodel s/ .

Table 1: Synthesis Library Include Files

Technology Library file

HD1000 22nm | 22i_synplify.v

Speedcore 16t | 16t_synplify.v

Speedster 7t 7t_synplify.v

Speedcore 7t 7t_synplify.v

Adding Source Files to the Project

There are two ways to add RTL source files. One is using the Add File button in the left menu bar, and the other
one is to right-click on the project file and select Add Source File. Selecting either option directs the user to a
dialog box listing available RTL files (see the figure below). The same procedure is followed for adding both
source and constraint files.

In the examples that follow, the Speedcore 16t technology has been selected, so the file 16t _synplify. v is
used. From this dialog box, select the desired RTL file(s) and then click Add followed by OK. The Verilog/VHDL
file(s) will now be added to the project for synthesis.

www.achronix.com

http://www.achronix.com

Synthesis User Guide (UG018)

Add Files to Project x

Look in: |E"J‘fhomejranjjnibfujewszCE_...xj]ibrarjesjdeuice_models|v| 4 b a B B8
5l computer {J 16t_precision.v

o 7 16t_rivierav
[ranjinio {7 16t_simmodels v

I 16t synplify.v

File name: ’16t_5ynp|ify.\.r] |Qpen |
Files of type: |HDL Files (*.vhd * vhdl *.v * sv * vma) -] [®cancel |
VHDL/Verilog lib: | B

Files to add to project: (1 file(s) selected) [¥] Use relative paths [Add files to Folders | Folder Options...

/home/franjinib/views/ACE_HS1.0_linux/ACE_HS1.0/Achronix-linux/flibraries/device_models/16t_synplify.v

| =- Add All I

Rermowve All ->

Rermove -=

OK

Cancel

Figure 5: Add Files to Project

Implementation Options

After adding the RTL files and constraint files, the next step is to set the implementation options. Click
Implementation Options to open the window. shown below. This dialog box shows the default options. For

example the "Fanout Guide" defaults to 10,000, but can be overwritten by the user.

www.achronix.com

10

http://www.achronix.com

Synthesis User Guide (UG018)

Implementation Options - proj_l : rev_1

Device I Options | Constraints | Implementation Results | Timing Report | Verilog | GCC | PI.{]E Implementations:
Technology: Part: Package: Speed: -
| Achronix Speedster16tSC || |# . || |coORE |~ |c2 |~
—Device Mapping Options

Option |Va|ue

Fanout Guide 10000

Disable /O Insertion

Update Compile Point Timing Data (]

Automatic Read/Write Check Insertion for RAM O

Time Borrowing |

Retime Registers Forward |

Annotated Properties for Analyst

Resolve Mixed Drivers [l

Click on an option for description

SYNOPSYS
| oK | | Cancel | | Help | N

Figure 6: Implementation Options

Note

@ i using a Speedcore device, ensure the Disable I/O Insertion option is checked as shown. If using a
Speedster device, then this option must be disabled..

In the "Implementation Options" dialog box, the "Device" tab is selected by default. Each tab presentation
additional options that can be set according to user's needs. Below are some guidelines for these options.

Verilog

Under this tab, the user may designate the top-level design module name. The user can also provide the names
of any parameters existing in the design along with associated values. If parameters are defined in this manner,
Synplify Pro propagates this value throughout the design. In this tab, the user must include the path to needed
libraries under "Include Path Order." Click on the + file icon to add the directory path and select from the

ACE _installation path as shown below.

Note

"Library Directories or Files" box can be left empty.

www.achronix.com 11

http://www.achronix.com

Synthesis User Guide (UG018)

Implementation Options - proj_l:rev_Ll

[Device | Options | Constraints | Implementation Results | Timing Report J Verilog | GCC E. Implementations:

rev_1

Top Level Module: — Compiler Directives and Parameters

[] |Parameter Name |0verride Value [E

Verilog Language

Verilog 2001
System Verilog

Push Tristates @
] Allow Duplicate Modules
Multiple File Compilation Unit

Extract Parameters |

[Beta Features for Verilog Compiler Directives: e.g. SIZE=8

Loop Limit [2000 = ’]

|Inc|ude Path Order: (Relative to Project File)

Mhome/ranjinib/views/ACE_HS1.0_linux/ACE_HS1.0/Achronix-linux/libraries/

|Library Directories or Files:

|

Library Extensions (space separated)]

SYNOPSYS

| oK || Cancel || Help | Fraciabls Sucases

Figure 7: Inplementation Options: Include Path Order.

Place and Route
This tab is not presently utilized by the Achronix back-end tool (ACE).

Timing Report

In the Timing report tab, the number of critical paths and number of start and end points can be specified to
appear in the timing report. Default timing report is available in the synthesis report (. srr) file. The two available
options are:

®* Number of Critical paths — sets the number of critical paths for the tool to report.

®* Number of Start/End points — specifies the number of start and end points to see reported in the critical
path sections.

www.achronix.com 12

http://www.achronix.com

Synthesis User Guide (UG018)

Implementation Options - proj_1 : rev_1

Implementations:

[Device | Options | Constraints | Implementation Results | Timing Report l Verilog | GCC | PI4 |'

Number of Critical Paths: | |

l

Number of Start/End Points: |

Description
Configure the timing report by specifying the number of paths to include in the "Starting/Ending Points

with worst slack™ and "Worst Paths” report sections.
SYNoPSYs

| OK || Cancel ” Help | R .

Figure 8: Implementation Options: Timing Report

Implementation Results
Users may set their own implementation name in this tab; the default name is rev_1. The next box is the "Results
Directory," specifying where users want to save the synthesized netlist file. The third box is "Results File Name,"

which sets the synthesized netlist file name.

www.achronix.com

13

http://www.achronix.com

Synthesis User Guide (UG018)

Implementation Options - proj_l: rev_L

[Device | Options Constraints Implementation Results Timing Report | Verilog | GCC | p|4:E] Implementations:

rev_1

Implementation Name:
[rev_l]

Results Directory:

[r‘mnt.fscratch2franjinibfviewsfmainjoutput.fresultstSynthesisUGfrev_l]l Browse. .. |
Result Base Name: Result Format:
[hwbram40_atob_gui "vm |v|

Optional Output File Options

Write Mapped Verilog Netlist
] Write Mapped VHDL Netlist
Write Vendor Constraint File

SYNOPSYS

| OK ” Cancel ” Help | Predictable Success

Figure 9: Implementation Options: Implementation Results

Constraints

The Constraints tab is used to add synthesis constraint files if they were not added after adding source RTL files.
This tab is also used to set the default clock speed of the design. Achronix highly recommends that a suitable
constraint file be created for the synthesis project, specifying all of the clocks in the design. For details of how to
add constraint files and their syntax see Synthesis Constraints (see page 17).

In addition the default frequency should be set to the match the most common system clock frequency (by
default it is set to 200 MHz).

www.achronix.com 14

http://www.achronix.com

Synthesis User Guide (UG018)

Implementation Options - proj_l: rev_L

[Dew’ce | Optiens] Constraints l Implementation Results | Timing Report | Verilog | GCC | PJ#:E] Implementations:

rev_1

Freguency (MHz)

O ’ l%l ® Auto Constrain (Optimize to obtain maximum frequency)

[J Use Clock Period for Unconstrained 10

— Constraint Files

| Check files to apply to this implementation.

FPGA Constraints (FDC) I 5DC]

=click to add file. .=

SYNOPSYS

| oK ” Cancel ” Help | Predictable Success

Figure 10: Implementation Options: Constraints

Options

The Options tab sets the following optimization switches: FSM Compiler, Resource Sharing, Pipelining and
Retiming — all are enabled by default. Users may change these optimization options according to design needs.
For example, with resource sharing enabled, the software uses the same arithmetic operators for mutually
exclusive statements as in branches of a case statement and hence area is optimized. Conversely, timing can be
improved by disabling resource sharing, but at the expense of increased area.

www.achronix.com 15

http://www.achronix.com

Synthesis User Guide (UG018)

Device | Options l Constraints | Implementation Results | Timing Report | Verilog | GCC | Pl4 |P Implementations:

rev_1

—Optimization Switches

[Automatic Compile Point
[C] Continue on Error

FSM Compiler

Resource Sharing
Pipelining

Retiming

l

Option Description

Click on an option for a description.

SYNOPSYS’

| oK ” Cancel || Help | Predictable Success.

(L Implementation Options - proj_l : rev_1 x

Figure 11: Implementation Options: Options

Running Synthesis

After selecting all the options according to the users design, click OK. The user is returned to the Synplify Pro
main window to run the synthesis. From this main window, click RUN button to start synthesis.

www.achronix.com

16

http://www.achronix.com

Synthesis User Guide (UG018)

Chapter - 3: Synthesis Constraints

Synplify constraints can be specified in two file types:

® Synopsys design constraints (SDC) — normally used for timing (clock) constraints. A second SDC file
would be required for any non-timing constraints.

® FPGA design constraints (FDC) — usually used for non-timing constraints; however, can contain timing
constraints as well.

SDC files are usually edited using a text editor, either as part of Synplify Pro or an external editor. FDC files can
be edited in both a text editor or using the Scope editor within Synplify Pro. When using Synplify Pro to edit FDC
files, an assistant tab is available which provides details of available FDC commands and their format.

Timing Constraints

It is highly recommended that the user defines all clocks in the design, using an SDC file. If the design has
multiple clocks, clock constraints should be set accordingly, defining either appropriate clock groups or false
paths between asynchronous clocks. In addition, if required the user can specify specific duty cycles for any
particular clock.

Use the cr eat e_cl ock timing constraint to define each input clock signal. Use the

creat e_gener at ed_cl ock timing constraint to define a clock signal output from clock divider logic. The clock
name (set with the - name option) will be applied to the output signal name of the source register instance. When
constraining a differential clock, the user only needs to constrain the positive input.

For any clock signal that is not defined, Synplify Pro uses a default global frequency, which can be set with the
set _option-frequency Tcl command in the Synplify project file. However, Achronix recommends defining
each clock in the design rather than relying on using this default frequency for undefined clocks.

A list of SDC commands are given below with examples. Refer to f pga_r ef er ence. pdf available in Synplify
Pro Tool — Help — PDF documents for the description of the various options of the remaining SDC commands
listed here.

create_clock

This command creates a clock object and defines its waveform in the current design. The options for
cr eat e_cl ock are described in the table following.

Syntax
create_cl ock -nane cl ockNanme [-add] {objectList} | -period {Value} [-waveform {riseVal ue
fallValue}] [-disable] [-coment conmment String]

Command Examples

create_clock -nane inclk -period 10 [get_ports {inclkl}]

create_clock -nane divclk -period 20 [get_nets {divclk}]

create_clock -nane inclkfast -period 5 -add [get_ports {inclkl}]

create_clock -nane inclk -period 20 [get_ports {inclkl inclk2 inclk3}] -waveform{ 10 15 }

www.achronix.com 17

http://www.achronix.com

Synthesis User Guide (UG018)

Table 2: Option Description for create_clock

Option

Descriptions

-name clockName

Specifies the name for the clock being created, enclosed in quotation marks or curly braces. If
this option is not used, the clock is given the name of the first clock source specified in the
objectList option. If the objectList option is not specified, the -name option must also be used,
which creates a virtual clock not associated with a port, pin, or net. Both the -name and objectList
options can be used to give the clock a more descriptive name than the first source pin, port, or
net. If specifying the -add option, the -name option must be used, and clocks with the same
source must have different names.

Specifies whether to add this clock to the existing clock or to overwrite it. Use this option when

-add multiple clocks must be specified on the same source for simultaneous analysis with different
waveforms. When this option is specified, the -name option must also be used.

-period Value Specifies the clock period in nanoseconds (ns). The value type must be greater than zero.
Specifies the rise and fall times for the clock in nanoseconds with respect to the clock period.

-waveform The first value is a rising transition, typically the first rising transition after time zero.There must

riseValue be two edges, and they are assumed to be a rise followed by a fall. The edges must be

fallValue monotonically increasing. If this option is not specified, a default timing is assumed which has a
rising edge of 0.0 and a falling edge of periodValue/2

objectList Clocks can be defined on the following objects: pins, ports, and nets.

-disable Disables the constraint.

—comment Allows the command to accept a comment string.

textString

create_generated_clock

This command creates a generated clock object.

Syntax

create_generated_cl ock -name {cl ockNane} [-add] -source {masterPin} -divide_by integer

Command Examples

create_generated_clock -name divclk -source [get_ports {inclk}] -divide_by 2 [get_nets {divclk}]

create_generated_clock -nanme clk_div2 -source [get_pins {iPLL.ddr3_pll.i ACX PLL/ogg_gmclk[O0]}] \

-divide_by 2\
[get _pins {i_ddr3xN_phy_w ctrl _core.ddr3_inst\.i_ddr3_nacro.

x_ddr3.i _ddr3xN_phy_w control |l er.i_ddr3xN_phy.i_phy_sd_cl kdi v/ cl kout}]

The period (.) is used as a separator between levels of hierarchy and instances. The backslash (\) is only used
when referencing what is inside a generate block name. For example, the RTL appears as follows:

www.achronix.com 18

http://www.achronix.com

Synthesis User Guide (UG018)

gener ate
begi n: ddr3_i nst
ddr3_macro i_ddr3_nacro (...)

set_clock_groups
Specifies clock groups that are mutually exclusive or asynchronous with each other in a design.
Syntax

set _cl ock_groups -asynchronous -nanme cl ockG oupnane -group{cl ockLi st}

Command Example
set _cl ock_groups -asynchronous -group {clkl clk2} -group {clk3 clk4} -nane cl kgroup
set_false_path
This command removes timing constraints from particular paths.
Syntax

set _false_path [-setup] [-from| -rise_from]| -fall_fron] [-through] [-to | -rise_to | -
fall _to] value {objectlList}

Command Examples

set _false_path -from[get_clocks inclkl] -to [get_clocks inclk2]

set_false_path -fromtenmp2 -to out #(where tenp2 is a register and out is an
out put port)

set_false_path -fromin #(where in is an input port)

set _false_path -fromtenpl -to tenp2 #(where tenpl and tenp2 are registers)

set _false_path -fromin -to tenpl #(where in is an input port and templ is a
register)

set _false_path -from{i:tenmp2[*]} -to {nemnmem 0 _0} #(where tenp is register bus and nemnmemO0_0
is a RAM

set_input_delay
Sets input delay on pins or input ports relative to a clock signal.
Syntax

set _input_delay [-clock {clockNane}] [-clock_fall] [-rise] [-fall] [-min] [-nax] [-add_del ay]
{del ayVal ue} {portPinList}

www.achronix.com

19

http://www.achronix.com

Synthesis User Guide (UG018)

Command Examples

set _input_delay 1.00 -clock clk {at} -nmax

set _input _delay {1.00} -clock [get_clocks {clk}] -nmax [get_ports {at}]
set _input_delay 2.00 -clock clk {bt} -mn

set _i nput _del ay 00 -clock clk -mn -add_del ay {bt}

set _i nput _del ay 00 -clock clk {st}

set _i nput _del ay 00 -clock clk -add_del ay {st}

set _i nput _del ay 00 -clock clk {din2} -clock_fall

set _i nput _del ay 50 -clock clk {dinl din2}

set _i nput _del ay 00 -clock clk [all _inputs]

NERAOR

set_output_delay

Sets output delay on pins or output ports relative to a clock signal.
Syntax

set _output_delay [-clock clockName [-clock fall]] [-rise|[-fall] [-m n|-nmax] [-add_del ay]
del ayVal ue {portPinList} [-disable] [-comment conment String]

Command Examples

set _out put_delay 1.00 -clock clk {01} -max
set _output_delay 3.00 -clock clk -max -add_del ay {ol}
set _output_delay 2.00 -clock clk {02} -min

set_max_delay

Specifies a maximum delay target for paths in the current design.
Syntax

set_nax_delay [-from|-rise_from| -fall_fronml [-through] [-to | -rise_to | -fall_to]
{del ay_val ue}

Command Examples

set_max_delay 2 -from{a b } -to {ol}
set_max_delay -rise_from{clk} {1}

set _max_delay -through {{n:dout1}} {1}
set_max_delay 1 -fall_to {clkl}

set_multicycle_path

Modifies single-cycle timing relationship of a constrained path.

www.achronix.com

http://www.achronix.com

Synthesis User Guide (UG018)

Syntax
set_nulticycle_path [-start |-end] [-from {objectList}] [-through {objectList} [-through
{objectList} ...]] [-to {objectList}] pathMultiplier [-disable] [-coment comment String]
Command Examples

set_multicycle_path 2 -from[get_clocks inclkl] -to [get_clocks inclk2]
set_multicycle_path 4 -fromtenp2 -to out

set_clock_latency

Specifies clock network latency.
Syntax

set _clock_latency -source [-clock {clockList}] del ayVal ue {objectList}

Command Example

set _clock _latency 0.2 -source [get_ports clk] -clock [get_clocks {clk}]

set_clock_uncertainty

Specifies the uncertainty or skew of the specified clock networks.

Syntax
set _clock_uncertainty {objectList} -fromfromCdock |-rise_fromriseFronClock | -fall_from
fall FronCl ock -to toCock |-rise_to riseToClock | -fall_to fall Tod ock val ue

Command Example
set _clock _uncertainty 0.4 [get_clocks clKk]
Below is an example of clock constraint commands for a multiple clock domain design.

Note

©@ Most timing engines only use up to three decimal places of accuracy; therefore, it is normal to truncate
non-rational values to this level.

www.achronix.com

21

http://www.achronix.com

Synthesis User Guide (UG018)

Clock definitions

create_clock -period 10 [get_ports

{pll _refclk_p}] -nane
pll_refclk_p

create_clock -period 100 [get_ports

{tck}] -nane tck

create_clock -period 1.527 [get_pins {i_clock_generator.i_PLL EN.SWAPLL 0O pll _en_cl k_APLL.

i ACX_PLL/ ogg_gm cl k[0]}] -nane en_mac_ref_clk

create_clock -period 3.175 [get_pins {i_clock_generator.i_PLL_FF. SWAPLL_1_pll _ff_cl k_APLL.

i ACX_PLL/ogg_gm cl k[0]}] -nane ff_clk

create_clock -period 3.448 [get_pins {i_clock_generator.i_PLL_SYS.SWAPLL_2 pll_sys_clk_APLL.
i ACX_PLL/ogg_gmclKk[0]}] -name sys_clk

create_clock -period 62.5 [get_pins {i_clock_generator.i_PLL_DCC SWAPLL_3 pll_dcc_clk_APLL.
i ACX_PLL/ogg_gmclk[0]}] -name sbus_cl k

By specifying clock group, each of the above clocks will be determ ned to be asynchronous to
al | other clocks
set _cl ock_groups -asynchronous -nane clk_grpl -group {sbus_cl k}
-group {en_nac_ref_cl k}
-group {pll_refclk_p}
-group {sys_cl k}
-group {ff_clk}
-group {tck}

— o — —

Non-timing Constraints

An FDC file is used to specify non-timing constraints, which can be either attributes on an object (global or local),
using the define_attribute statement, or compile points.

Compile Points

To implement compile points, they are specified in the FDC file as follows.

Note

©@ For a detailed explanation of compile points how and when to use them, see Compile Points (see page
30).

To set a single compile point, enter:
define_compile_point {v:work.pac_ddr3_ip} -type {locked}

To find every instance of a module and set as a compile point, enter:

Conpi | e Poi nt syntax

foreach inst [c_list [find -hier -view pac_ddr3_ip*]] {
define_conpil e_point $inst -type {locked}
}

www.achronix.com 22

http://www.achronix.com

Synthesis User Guide (UG018)

Attributes

Attributes can be defined both globally and also applied to individual instances.

Enable a wide MUX option in Speedster16t technology, enter:
define_global _attribute {syn_acx_nux41_opt} {1}

To override the number of available resources in a device, enter the following command. This command can be
used to limit the mapping to certain resources.

define_global _attribute syn_all owed_resources {bl ockrans=1000}

To synthesize all ROMs using logic, enter:
define_global _attribute {syn_ronstyle} {logic}
To ensure that RAMs are only inferred for sufficiently large register sets, enter:

define_global _attribute {syn_max_nemnsize_reg} {2048}

Constraint Check

Synplify Pro provides a constraint checker, which runs the preliminary stages of synthesis, and then checks the
project constraint files against the objects in the design. It will report if any constraints cannot be successfully
applied. It is highly recommended that Constraint Check is run, to ensure that all constraints the user requires to
be applied to the design are in fact being applied.

Constraint Check is launched using Run — Constraint Check.

www.achronix.com 23

http://www.achronix.com

Synthesis User Guide (UG018)

Chapter - 4: Synthesis Optimizations

There are several optimizations that can be performed by the user during Synplify Pro synthesis. This sections
covers recommendations for:

® Hanging nets

® Pipelining

® Retiming

® Forward annotation of RTL attributes to netlist
® Compile points

® Finite state machines

Preventing Objects from Being Optimized Away
Dangling Nets

Synplify Pro always performs optimization on redundant or feed-through nets. At times, the user may want to
keep these nets. In order for these nets not to get optimized away (removed), add the following directive to the
RTL, In this example, the synthesis tool does not optimize away (remove) the logic. Instead, it infers a buffer
between the two wire statements. If it is not specified, the user may not see the buffer insertion by the tool.

wire netl /* synthesis syn_keep = 1 */
W re net2

assign net2 = netl ;
Dangling Sequential Logic
For sequential logic the syn_pr eser ve attribute is used.

reg net_regl /* synthesis syn preserve = 1 */ ;
al ways @ (posedge cl k)

net _regl <= sone_net,;

Unconnected Instances

For input instances when their output pins are unconnected, the syn_nopr une attribute is used. The following
examples show how to apply this attribute to both Speedster I/0 pads and Speedcore boundary pins.

Speedster Output Pad

PADIN i pad (.padin(in[0])) /* synthesis syn_noprune = 1 */;

www.achronix.com 24

http://www.achronix.com

Synthesis User Guide (UG018)

Speedcore Output Pin

IPINipin (.din(in[0])) /* synthesis syn_noprune = 1 */;

Prevent ACE Optimizing Objects Away

In the above examples, Synplify Pro does not remove the unconnected entity, ensuring that the Synplify Pro
netlist retains these entities. However, when the netlist is read into ACE, ACE performs netlist optimization and
resynthesis. If the objects retained by synthesis are still unconnected, then ACE will remove these entities from
the final place-and-route netlist. To prevent ACE from optimizing these entities, use the ACE nust _keep
directive in conjunction with the above attributes. Using the preceding sequential logic example, the nust _keep
attribute is passed through Synplify and included in the synthesized netlist. ACE will then recognize this attribute
and keep the instance.

Note

The attribute nust keep can be applied to both sequential elements and wires.

(* must_keep=1 *) reg net_regl /* synthesis syn_preserve = 1 */ ;

al ways @ (posedge cl k)
net_regl <= sone_net;

Pipelining

When this switch is enabled in a project file, the synthesis tool uses register balancing and pipeline registers on
multipliers and ROMs. Pipelining is the process of splitting logic into stages so that the first stage can begin
processing new inputs while the last stage is finishing the previous inputs. Pipelining ensures better throughput
and faster circuit performance. If using selected technologies which use pipelining, also use the related technique

of retiming to improve performance. This option is equivalent to enabling the Pipelining option on the Options
panel of the Implementation Options dialog box.

Retiming

When this switch is enabled, the synthesis tool tries to improve the timing performance of sequential circuits. The
retiming process moves storage devices (flip-flops) across computational elements with no memory (only gates
/LUTSs) to improve the performance of the circuit. This option also adds a retiming report to the log file. This
option is equivalent to enabling the Retiming option on the Options panel of the Implementation Options dialog
box. Use the syn_al | ow _r et i m ng attribute to enable or disable retiming for individual flip-flops. Pipelining is
automatically enabled when retiming is enabled.

www.achronix.com 25

http://www.achronix.com

Synthesis User Guide (UG018)

Forward Annotation of RTL Attributes to Netlist

Synplify Pro supports forward annotation of RTL attributes to the netlist. These user-defined attributes propagate
to the netlist to be used by ACE place and route for optimization. This feature requires the usage of various

directives available in Synplify tool such as syn_nopr une,

syn_keep, syn_hi er,

syn_preserve, etc., to

propagate user-define attributes to the netlist. The table below lists the directives to be set on the mentioned

objects in order to forward annotate the RTL attribute.

Object Directive Result
Module syn_hier="hard” Attrllbute applied on the module will get propagated to the
netlist
Instantiated Attribute applied on the instantiated component will get
syn_noprune :
Components propagated to the netlist
Input / Output syn_hier="hard" on the module Attribute applied on ports get propagated to the inpt
ports containing the ports /output port in the netlist

Registers syn_preserve

Attribute applied on the registers will get propagated to
the netlist

wire syn_keep

Attribute applied on nets/wires will get propagated to the
netlist

Below are some examples:

Example 1

The attribute weight="3.0" gets propagated to my_reg in the netlist. The syntax used is Verilog 2001 style

parenthetical comments.

(* syn_preserve=l, weight="3.0" *) reg my_reg

Example 2

The syntax used is C-style comment.

reg ny_reg /* synthesis syn_preserve=1 weight=4 */;

Note

@ when using C-style comment, comma is not required after syn_preserve=1. When using Verilog 2001

style comma is required after syn_preserve=1.

www.achronix.com

26

http://www.achronix.com

Synthesis User Guide (UG018)

Example 3

This example illustrate attribute propagation on nets.

(* syn_keep =1, weight =3 *) wire n2;

Example 4

This feature of attribute propagation is utilized in flop pushing to boundary pins or I/O pads via the ACE attribute
ace_usei of f. The ace_usei of f is applied to the input and output ports in the below example.

nmodul e flop_push_testl (
ina, inb, sel, clk, z0

)

input wre [3:0] ina /* synthesis ace_useioff=1 */;
input wre [3:0] inb /* synthesis ace_useioff=0 */;

input wre sel /* synthesis ace_useioff=1 */;

input wre clk;

out put reg z0 /* synthesis ace_useioff=1 */;
reg sel _r0=1'b0, sel _r1=1'bO0;

reg [3:0] ina_r0=4'h0, ina_r1=4'h0, inb_r0=4"h0, inb_r1=4"'ho0;

al wvays @ posedge cl k)
begi n
sel _r0 <= sel;
sel rl1 <= sel ro0;
ina_r0 <= ina;
ina_rl <= ina_r0;
inb_r0 <= inb;
inb_rl <= inb_r0;

z0 <=sel _r1 ? &inb_rl : |ina_r1;
end

endnodul e

Note

In example 4, the module flop_push_test1 is a top module so syn_hier="hard" is not specified on the
module. If it were a sub module, syn_hier="hard" is required for the attribute on ports to propagate to
@ the netlist; for example:

nmodul e flop_push_testl (ina, inb, sel, clk, z0) /* synthesis syn_hier="hard" */;

www.achronix.com 27

http://www.achronix.com

Synthesis User Guide (UG018)

Note
In example 4, the ace_useioff attribute could also be specified in the Verilog 2001 comment style. For
example:

@ (* ace_useioff=1 *) input [3:0] ina;

However, that style only works correctly when the attribute has a non-zero value. Synplify Pro cannot
distinguish between the value zero and and an attribute that is not present, so in that case it will not
forward annotate the attribute into the netlist used by Ace. Therefore it is recommended to always use
the C-style comment used in example 4.

Example 5

This example illustrates attribute propagation on instantiated components:

nodul e att_propagate_i nstconp (
dil, d2, d3, clk, outl
)

input wre di,d2, d3, clk;
out put reg outl,

reg ql, q2;

/llnstantiate 2 instances UL and U2 of nodule test2
(* must_keep = 1, syn_noprune = 1 *) test2 Ul (di,d2,d3, clk,out2);
(* syn_noprune = 1, nust_keep = 1 *) test2 W2 (d1,d2,d3, clk,out?2);

al ways @ posedge cl k)
gl <= di;

assign conbol = gl & d2 & d3;

al ways @ posedge cl k)
g2 <= conbol;

assign conbo2 = g2 | conbol;

al wvays @ posedge cl k)
outl <= conbo2;

endnodul e

nmodul e test2 (
dl, d2, d3, clk, outl
) /*synthesis syn_hier = hard */;

input wre di, d2, d3, clk;
out put reg out 1;

reg qi, q2;

www.achronix.com

28

http://www.achronix.com

Synthesis User Guide (UG018)

al wvays @ posedge cl k)
gl <= di;

assign conbol = gl | d2 | d3;

al ways @ posedge cl k)
g2 <= conbol;

assign conbo2 = g2 & conbol;

al ways @ posedge cl k)
outl <= conbo2;

endnodul e

Example 6

This example shows attribute propagation on modules:

(* att0=1 *) nodule top (
dil, d2, d3, clk, outl, out2

)
input wre dil, d2, d3, clk;
out put wire out?2;

output wire outl,

/!l Instantiate testl
testl Ul (di1, d2, d3, clk, outl);

endnodul e

(* nmust_keep=1 *) nodule testl (
dil, d2, d3, clk, outl
) /* synthesis syn_hier="hard" */;

input wre dil, d2, d3, clk;
out put reg outl,

reg qi, q2;

al ways @ posedge cl k)
gl <= di;

assign conbol = q1 & d2 & d3;

al ways @ posedge cl k)
g2 <= conbol;

assign conbo2 = g2 | conbol;

al ways @ posedge cl k)
outl <= conbo2;

endnodul e

www.achronix.com

http://www.achronix.com

Synthesis User Guide (UG018)

Example 7

As shown above, flop pushing can take advantage of attribute propagation to control specific I/O pads or
boundary pins. The examples below shows how to control flop pushing from within the RTL, applying the
attribute to both Speedster I/O pads and a Speedcore device boundary pins.

This example illustrates the application of the ace_usei of f attribute with a value of 0 on, respectively:
®* A wire
® A black-box PAD instance, an IPIN instance, the IPIN input net, the IPIN output net (Speedcore only)
® An PADIN instance (Speedster only)
® A pair of DFF instances

All of the above are valid instances to which to apply this property:

(* syn_keep=1 *) wire ipad_dout /* synthesis ace_useioff = 0 *
(* syn_keep=1 *) wire ipin_dout /* synthesis ace_useioff = 0 */
wire dffl_q, dff2_q;
BB _PADIN i _bb_padin (.padin(sc_in) , .dout(bb_pad_dout)) /* synthesis ace_useioff = 0 */;
PADI N i _padin (.padin(sp_in) , .dout(padin_dout)) /* synthesis ace_useioff =0 */;
I PIN i_ipin (.din(ipad_dout), .dout(ipin_dout)) [/* synthesis ace_useioff = 0 */;
ACX_DFF i _dff1 (.d(ipin_dout) , .ck(clk) . .q(dffl.qgq)) /* synthesis ace_useioff =0 */;
ACX DFF i _dff2 (.d(ipin_dout) , .ck(clk) . .qg(dff2_q)) /* synthesis ace_useioff = 0 */;

For full details on all the options for flop pushing, see the section Automatic Flop Pushing into I/O Pads in the
ACE User Guide (UG001).

Note

® As in Example 7, the ace_usei of f attribute must be specified with a synt hesi s directive in a C-style
comment because it has a value of zero. However, the syn_keep=1 attribute on the wire can be
specified in either style.

Compile Points

Compile points are RTL partitions of the design which are defined before synthesizing a design. The advantages
of using compile points is design preservation, runtime savings and improves efficiency of top-down and
traditional bottom-up design flows.

Synplify Pro supports both automatic and manual compile points. The automatic compile-point feature can be
selected from "Implementation Options" dialog box as shown below. When automatic compile points are enabled,
the tool automatically identifies compile points based on various parameters such as size of the design,
hierarchical modules, boundary logic, etc. Refer the f pga_user _gui de. pdf available in the Synplify Pro tool
for details on compile points.

www.achronix.com 30

http://www.achronix.com

Synthesis User Guide (UG018)

< Synplify Pro L-2016.03X-SP1-beta - [/mnt/scratch2/ranjinib/views/main

P |@ File Edit View Project Run Anpalysis HDL-Analyst Options Window Web Help

B 4B BE@ %0 EBa & @9 ET V@ e 8 oo

- |Synplify Pro®

un |i’i Implementation Options - proj_1:rev_1
T} Open Project... Device | Options | Constraints | Implementation Results | Timing Report | Verilog | Gcc | PIg |' Implementations:
B} Close Project ~ Optimization Switches
[45 Add File...

[J Autornatic Compile Paint
By Change File... [] Continue on Error

FSM Compiler

Resource Sharing

5 Add Implementation...

% Implementation Options... Pipelining
Retiming

BiR Add P&R Implementation 0

|j. View Log

Frequency (MHz):
O [® avcons

Automatic Compile Point | []
Continue on Error (]
FSM Compiler
Resource Sharing
Pipelining
Retiming

Option Description

Click on an option for a description.

SYNoPsys

[ok][cancel [Hep | “rrescosesicns

Figure 12: Setting Compile Points

Although compile points can deliver significant runtime savings, users should be aware that they can have a
detrimental effect on quality of results (QoR) if not used with care. Compile points identify blocks of code that are
repeated, guiding Synplify Pro to only synthesise that block once. The level of optimisation between a compile
point and it's enclosing module is defined by the compile point type.

® Locked — No optimizations across compile point boundary. Locked compile points are used for the
Achronix incremental compile flow

® Hard — Signals can be optimized across the compile point boundary (i.e., back-to-back inverters
removed). However, the actual interface is not optimized — all signals remain. All automatic compile
points are set to hard.

¢ Soft — Signals can be optimized across the compile point boundary, and the signals themselves may be
removed, or renamed. Therefore almost full optimization can occur as though the design did not have
compile points.

The three modes above result in increasing runtimes; however, they also generally result in increased QoR as
greater optimizations can be performed. Users should determine what configuration of compile points, if any,
best meet their needs with regards to performance versus runtime.

Caution!

If automatic compile points are enabled, users must be aware that all automatic compile points are set
to hard. Therefore, it may not be possible to achieve the highest QoR.

www.achronix.com 31

http://www.achronix.com

Synthesis User Guide (UG018)

Note

@ Compile points will only have a significant effect on runtimes either when used as locked to enable
incremental synthesis (and place and route), or else in designs with a large number of repeating
structures.

Finite State Machines

The FSM Compiler is an automatic tool for encoding state machines. FSM coding style in the RTL design will
directly impact performance. By default Synplify-Pro implements the following FSM encoding:

® (-4 states is binary encoded
® 5-40 states is one-hot encoded
® >40 states is Gray encoded

FSM compiler is used to generate better results and to debug state machines.

Generating Better Results

The software uses optimization techniques that are specifically tuned for FSMs such as reachability analysis. The
FSM Compiler examines the design for state machines, converting them to a symbolic form that provides a better
starting point for logic optimization. The FSM Compiler may convert an encoded state machine into a different
encoding style (to improve speed and area utilization) without changing the source. This optimization can be
overriden by choosing a particular encoding style through appropriate synthesis attributes in the RTL design.

Debugging the State Machines

State machine description errors can result in unreachable states. The user can also use the FSM Viewer to see
a high-level bubble diagrams and cross-probe from the diagram with respect to RTL. The user can then check
whether the source code describes the state(s) correctly.

FSM Encoding

There are two choices to define the encoding via attributes in the RTL code:
® Use "syn_encoding" attribute and enable the FSM compiler.

® Use "syn_enum_encoding" to define the states (sequential, one-hot, gray, and safe) and disable the FSM
compiler. If the user does not disable the FSM compiler, the "syn_enum_encoding" values are not
implemented. This behavior is because the FSM compiler, which is a mapper operation, overrides any
user attributes for the FSM encoding. The FSM compiler can be disabled via the GUI or the from the
Synplify project file with the following syntax:

set _option -synbolic_fsmconpiler O
The user may also direct the synthesis process to deploy a user-defined FSM encoding, for example:
attribute syn_enum encodi ng of state_type: type is "001 010 101" ;

There is a synthesis attribute to turn on/off FSM extraction. By using this attribute the user can see how state
machines are extracted. The attributes is set in the source code as follows:

www.achronix.com 32

http://www.achronix.com

Synthesis User Guide (UG018)

® Specify a state machine for extraction and optimization — syn_state_machine=1
® Prevent state machines from being extracted and optimized — syn_state_machine=0

In VHDL

------ Attribute ----

attribute syn_state_machine : bool ean;
attribute syn_state_machine of tx_training_cstate : signal is true;

In Verliog

If user does not want to optimize the state machine, add the syn_state_machine directive to the registers in the
Verilog code. Set the value to 0. When synthesized, these registers are not extracted as state machines.

reg [39:0] curstate /* synthesis syn_state_nmachine=0 */ ;

For greater than 40 states, Synplify Pro performs Gray encoding. For one-hot encoding, specify the
syn_encoding = "onehot" as shown below.

reg [39:0] state /* synthesis syn_encoding = "onehot" */ ;

Replication of States with High Fan-ins

Large and complex state machines present another unique challenge in state machine design. Complex state
machines can be made to run faster by actually making them larger by adding more states. This technique can
be counter intuitive as the number of levels of logic between the states and not the number of states typically
limits state machine performance. The performance of a state machine is limited by both the number of fanins
into a given state and the decisions made in that state. For example, idle-type states can have a large number of
inputs plus increased computational load. With the 4input LUT architecture of Speedcore devices, once the
number of fanins exceeds four, another level of logic is needed. An easy method to reduce the number of fanins
is to replicate these states. The duplicated high fanin states reduce the number of inputs, thus reducing the
number of levels of logic.

Both state machines in the figure below are equivalent in function, but State A is duplicated in Version Il so that A
and A1 have two or less return inputs. As a result, if each state has to deal with two additional inputs, they can
now be contained in one 4input LUT. Although this example is simplistic, the methodology can be applied to
larger and more complex state machines.

www.achronix.com 33

http://www.achronix.com

Synthesis User Guide (UG018)

Version | Version

State B

State D

OO0

4220214-01.2016.07.12

Figure 13: Replicated High Fan-in State Example

Fanout Limit
This fanout limit can also be controller through RTL design. In this case if the user knows about a net with high
fanout and wants to replicate the cell after a certain fanout is reached, the following coding style is needed:

wire netl /* synthesis syn naxfan = 8 */ ;

Here Synplify Pro will infer a buffer/logic if the fanout limit on net1 exceeds 8.

www.achronix.com 34

http://www.achronix.com

Synthesis User Guide (UG018)

Chapter - 5: Example Synplify-Pro Project File

#-- Synopsys, Inc.

#-- Version O 2019. 09X

#-- Project file output/rev_1/hwbrami0_atob_gui. prj
#-- Witten on Tue Jul 5 17:20:52 2018

Get the ACE installation directory fromthe environment variable

This allows for portable projects

Note : If Synplify is used to save the project file, this line will be renoved

When saving with synplify, copy this Iine first, then repaste in the project file
and update the XX synpliy.v path.

set ACE_I NSTALL_DI R $::env(ACE_I NSTALL_DI R)

#project files

Synplify include file for ACE

add_file -verilog "$ACE_I NSTALL_DI R/ Achroni x-1inux/libraries/devi ce_nodel s/ XX_synplify.v"
Verilog file

add _file -verilog "../src/rtl/brami0_atob. v"

SystenVerilog file

add_file -verilog -vlog_std sysv "../src/rtl/hwbrami0O_at ob_gui . sv"

Constraint file

add file -constraint "../src/constraints/synplify_constraints. sdc"

#i mpl enentation: "rev_1"
impl -add rev_1 -type fpga

#i npl enentation attributes

set _option -vlog_std sysv

set _option -project_relative_includes 1

set _option -include_path {$ACE_INSTALL_DIR/libraries/;../src/rtl/include}

#devi ce options

set_option -technol ogy <Technol ogy Fami|y>
set _option -part <Devi ce_Name>

set _option -package <Device Package>
set_option -speed_grade <Devi ce Speed G ade>
set _option -part_conpanion ""

#conpi | ati on/ mappi ng opti ons

hdl _conpi |l er _options
set_option -distributed_conpile 0

mapper _w t hout _write_options
set _option -frequency auto
set _option -srs_instrunmentation 1

mapper _options

set_option -wite_verilog 1
set_option -wite_vhdl O
set_opti on -nmaxfan 10000

set _option -rw _check_on_ramO

www.achronix.com

35

http://www.achronix.com

Synthesis User Guide (UG018)

10 pad insertion, varies according to target device

For Speedcore
set _option -disable_io_insertion 1
For Speedster
set_option -disable_io_insertion 0

set_option -retinme_registers_forward O

set _option -pipe 1

set_option -retimng 1

set_option -update_nodels_cp 0

set_option -run_prop_extract 1

set _option -fix_gated_and_generated_cl ocks 1

NFilter
set _option -no_sequential _opt O

sequential _optim zation_options
set_option -synbolic_fsmconmpiler 1

Conpiler Options

set _option -conpiler_conpatible 0

set _option -resource_sharing 1

set_option -nulti_file_conpilation_unit 1

Conpiler Options
set _option -auto_infer_blackbox 0

#autonmatic place and route (vendor) options
set_option -wite_apr_constraint 1

#set result format/file |ast
project -result_file "rev_1/hwbrami0_at ob_gui . vni

impl -active "rev_1"

Note

i) The device specific values are set from the part selected from the drop-down menu of the
Implementation Options Dialog Box.

ACE_INSTALL_DIR is a local environment variable that is the path to the local ACE installation.

www.achronix.com

http://www.achronix.com

Synthesis User Guide (UG018)

Revision History

Version Date Description
10 July 17, 2016 In|t|a! revision. Ported document to Confluence and made it Speedcore
specific.
Fix for minor type and additional clock constraint example.
1.1 October 31, 2016 .) -
Updated document template to include confidentiality note.
12 March 31, 2017 Corrected one of the create_generated_clock examples in the code
block.
Synthesis Optimizations (see page 24):
® Corrected the syn_keep attribute in Example 7 (see page 30).
® Removed the instantiation templates, referred the user to the Spe
edcore IP Component Library User Guide (UG065).
® Added details on Compile Points. (see page 30)
1.3 October 1, 2018 ® Updated DSP64 (see page).
¢ Updated Block RAM (see page).
Synplify Pro Introduction (see page 7): Removed references to
version L-2016 limitations.
Example Synplify-Pro Project File (see page 35): Removed internal
paths from file names.
Synthesis Optimizations (see page 24):
® Removed technology specific entries to make the guide suitable
for all technologies. Technology specific parts moved to their
appropriate IP Component Library User Guide
® Specifically removed inference templates for Speedster16t parts,
(DSP64, BRAMTDP & BRAMSDP).
1.4 June 10, 2019

Synplify Pro Introduction (see page 7):
® Combined Speedster and Speedcore differing library files into
single Synthesis library include files table (see page 9).
Example Synplify-Pro Project File (see page 35):

® Added ACE_INSTALL_DIR environment variable to example
project file

www.achronix.com 37

http://www.achronix.com

	Overview
	Synplify Pro Introduction
	Creating and Setting up a Project
	Adding the Synthesis Library Include File
	Adding Source Files to the Project

	Implementation Options
	Verilog
	Place and Route
	Timing Report
	Implementation Results
	Constraints
	Options

	Running Synthesis

	Synthesis Constraints
	Timing Constraints
	create_clock
	Syntax
	Command Examples

	create_generated_clock
	Syntax
	Command Examples

	set_clock_groups
	Syntax
	Command Example

	set_false_path
	Syntax
	Command Examples

	set_input_delay
	Syntax
	Command Examples

	set_output_delay
	Syntax
	Command Examples

	set_max_delay
	Syntax
	Command Examples

	set_multicycle_path
	Syntax
	Command Examples

	set_clock_latency
	Syntax
	Command Example

	set_clock_uncertainty
	Syntax
	Command Example

	Non-timing Constraints
	Compile Points
	Attributes

	Constraint Check

	Synthesis Optimizations
	Preventing Objects from Being Optimized Away
	Dangling Nets
	Dangling Sequential Logic
	Unconnected Instances
	Speedster Output Pad
	Speedcore Output Pin

	Prevent ACE Optimizing Objects Away

	Pipelining
	Retiming
	Forward Annotation of RTL Attributes to Netlist
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Compile Points
	Finite State Machines
	Generating Better Results
	Debugging the State Machines
	FSM Encoding
	In VHDL
	In Verliog

	Replication of States with High Fan-ins
	Fanout Limit

	Example Synplify-Pro Project File
	 Revision History

