Speedster7t Soft IP User Guide (UG103)

Speedster FPGAs

Copyrights, Trademarks and Disclaimers

Copyright © 2023 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks are the property of their respective owners. All specifications subject to change without notice.

Notice of Disclaimer

The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor Corporation does not give any representations or warranties as to the completeness or accuracy of such information and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the information contained herein at any time and without notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane Santa Clara, CA 95054 USA

Website: www.achronix.com E-mail : info@achronix.com

Table of Contents

Chapter 1 :	Introduction	1
Chapter 2 :	Instructions	2
	IO Ring and Core	2
Chapter 3 :	Available Configurators	5
	Memories	5
	MLPs	5
	Logic	5
	NAP and AXI	5
	Device Management	5
Chapter 4 :	BRAM72K Soft IP	6
	Description	6
	Configuration	6
	Write and Read Depth	8
	Absolute Limits Device Specific Limits	
	Examples	10

IJ	G1	0	3
\circ	UT.	U	U

Chapter 5 :	LRAM Soft IP	11
	Description	
	Utilization	
	Configuration	
	Write and Read Depth	
	Device Specific Limits	
	Examples	15
Chapter 6 :	ROM Soft IP	16
	Description	
	Utilization	
	Configuration	
	Write and Read Depth	
	Device Specific Limits	
	Examples	
Chapter 7 :	Integer Complex Multiplier Soft IP	22
	Description	22
	Configuration	22
	Examples	
Chapter 8 :	Integer Multiplier Soft IP	27
	Description	27

	Configuration	27
	Examples	
Chapter 9 :	Integer Parallel Multiplier Soft IP	32
	Description	32
	Configuration	32
	Input Format	
	Output Format	
	Example	
	Examples	
Chapter 10	: Integer Parallel Sum of Products Soft IP	39
	Description	
	Configuration	
	Input Format	
	Examples	
Chapter 11	: Integer Parallel Sum of Squares Soft IP	46
	Description	
	Configuration	
	Input Packing	
	Examples	51
Chapter 12	: Integer RLB Multiplier Soft IP	52
	Description	52

Configuration	
Examples	
Chapter 13 : Floating Point Adder .	
Description	
Configuration	
Ports	
Files	
Examples	
Chapter 14 : Floating Point Multipl	ier 64
Description	
Configuration	
Ports	
Files	
Examples	
Chapter 15 : Floating Point Multipl	ier Plus 71
Description	
Configuration	
Ports	
Files	
Examples	

Chapter 16 : Floating Point Parallel Multiplier	78
Description	78
Configuration	78
Ports	81
Files	
Examples	85
Chapter 17 : Floating Point Sum of Products	86
Description	
Configuration	
Ports	
Files	
Examples	92
Chapter 18 : Shift Register	93
Description	
Configuration	
Examples	96
Chapter 19 : Speedster7t AXI Initiator NAP	97
Description	97
Configuration	97
Files	

Examples	
Chapter 20 : Speedster7t AXI Responder NAP	
Description	
Configuration	
Files	
Examples	
Chapter 21 : Speedster7t Device Manager	
Description	
Configuration	
File Generation	
Ports	
Status Signals	
Examples	
Using the JTAG Interface	
JTAG Connection	
Accessing the ACX_DEVICE_MANAGER with ACE	
ACX_DEVICE_MANAGER Commands	
use_acx_device_manager	
Description	
Example	
Arguments	
mcu_status	
Description	
Example	

Arguments	
mcu_info	
Description	120
Example	120
Arguments	
noc_delay	
Description	
Example	
Arguments	
set_csr_clock	
Description	122
Example	122
Arguments	
fpga_temp	
Description	
Example	
Arguments	
fpga_temp_to_c	
Description	
Example	
Arguments	
fpga_c_to_temp	
Description	
Example	
Arguments	125
Sharing the JTAG Interface with Snapshot	
FPGA Temperature	
Simulation	
Instantiation Example	
Example Template	100
∟∧ampie remplate	120

Using Without Snapshot	
Using With Snapshot	
Chapter 22 : Revision History	133

Chapter 1: Introduction

There are a number of available soft IP cores for the Speedster[®]7t family of FPGAs. Each of these cores has an IP configurator within ACE that allows configuration of the soft IP core. When configured, the generated wrapper for the core can be instantiated within a user project enabling both synthesis and simulation of the design.

This document describes the available soft IP cores and the methods for configuration and instantiation of each. Soft IP cores are primarily implemented using the components present in the FPGA programmable fabric. For details of these components, refer to the *Speedster7t IP Component Library User Guide* (UG086).

Chapter 2 : Instructions

Within ACE, all IP cores are accessed using the IP perspective (see the "Perspectives" chapter in the ACE User Guide (UG070). The flow and method for generating user IP cores is fully detailed in the "Creating an IP Configuration" chapter in the ACE User Guide. Unless directed otherwise in the following sections, follow the instructions in the ACE User Guide.

IO Ring and Core

Within the Speedster7t FPGA there are two categories of IP core. These are listed within the IP Libraries pane as **IO Ring** and **Core**. For the Speedster7t family of FPGAs, the following soft IP cores are available:

ACE - Achronix CAD Environment - Version 8.8 - quickstart->impl_1 (AC7t1	500) — 🗆 X
<u>File E</u> dit <u>A</u> ctions <u>W</u> indow <u>H</u> elp	
🐸 🗟 🕒 🔄 🛷 🗈 👘 🕐 📯 🖹 🕾 📰 🔝 🖓 🗭 🐜 🧠	<u>ନ</u> ୍ଦ
🚰 Projects 🛛 🖆 🐸 🖓 👔 📄 📑 💭 🖏 🦑 🗶 🖇 😑 🗖 📗	
✓ ≱ quickstart	
> 🥭 Netlists	
> 🧁 Constraints	
🔁 IP	
~ ∰ impl_1	
🛋 IP Libraries 🖾 👘 🗖 🗖	
✓ 🛋 Speedster7t	
🗸 🛋 IO Ring	
Advanced PLL	
Clock I/O Bank	
DDR Memory	
Ethernet	
GDDR6	
GPIO Bank	
NoC	
PCI Express	
PLL	
🎲 Raw SerDes	
∨ 🛋 Core	
🗸 🛋 Memories	
BRAM72K	
BRAM72K FIFO	
🎲 LRAM	
🚳 ROM	
✓ 🛋 MLPs	
FP Adder	
FP Multiplier	
FP Multiplier Plus	
FP Parallel Multiplier	
FP Sum of Products	
Integer Complex Multiplier	
Integer Multiplier	
Integer Parallel Multiplier	
Integer Parallel Sum of Products	
Integer Parallel Sum of Squares	
Integer RLB Multiplier	
V En Logic	
Shift Kegister	
AXI INITIATOR INAP	
AXI Kesponder NAP	
V Musica Management	
👷 Device Manager	
	320M of 512M

Figure 1 • Speedster7t IP Libraries View

IO Ring

The I/O ring contains the configuration for each of the IP cores located in the I/O ring of the FPGA such as the clock banks, PLLs, GDDR, DDR, GPIO, PCIe, 2D NoC, SerDes and Ethernet. The configuration of each of these IP cores is detailed in its respective User Guide.

Core

The **Core** view contains the available IP configurators for the selected target FPGA used in the project. For the Speedster7t FPGAs, the available soft cores are **shown above**, and listed in the **Available Configurators** chapter. The details of how to configure each of these cores are given in the appropriate chapter.

Chapter 3 : Available Configurators

Memories

- BRAM72K Soft IP for creating large block RAM memory arrays
- LRAM Soft IP for creating large local RAM memory arrays
- ROM Soft IP for creating ROMs constructed of either block RAM or local RAM

MLPs

- Integer Complex Multiplier Soft IP for creating a complex multiplier with a single machine learning processing block.
- Integer Multiplier Soft IP for creating a single multiplier of up to 32 × 32
- Integer Parallel Multiplier Soft IP for creating parallel multipliers of up to 32 × 32
- · Integer Parallel Sum of Products Soft IP for integer sum of products from up to 24 multipliers
- · Integer Parallel Sum of Squares Soft IP for integer sum of squares inputs
- Integer RLB Multiplier Soft IP for creating a single multiplier using RLBs in the fabric logic

Logic

Shift Register Soft IP - for creating DFF-based shift registers

NAP and AXI

- AXI Initiator NAP Soft IP for creating a NAP that initiates AXI traffic
- AXI Responder NAP Soft IP for creating a NAP that responds to AXI traffic

Device Management

• Device Manager Soft IP – for creating the Achronix Device Manager to run GDDR6 training and used in all builds to manage JTAG communication

Chapter 4 : BRAM72K Soft IP

Description

The Speedster7t BRAM72K soft IP core creates an arbitrary sized memory array, comprised of ACX_BRAM72K primitives. The macro employs the embedded data and address cascade paths between ACX_BRAM72K primitives enabling fast connections for both address and data paths.

If only a single ACX_BRAM72K is required, this primitive can be inferred or instantiated in the code directly. However, if a memory array comprising multiple BRAM72K blocks is required, it is recommended to use the soft IP configuration to enable the optimum architecture.

Configuration

The user macro has the following configuration options:

	This page contains the the structure and base	top-level, global properties that govern configuration of the BRAM72K wrapper.	
0	Target Device	AC7t1500	
0	Byte Width	9	
0	Write Width	72	
P	Read Width	72	
0	Write Depth	1024	
2	Read Depth	1024	
0	Enable Output Register	r	
Enable ECC Encoder			
Enable ECC Decoder			
Enable NoC Write Mode			
p	Enable NoC Read Mod	e	
p	Memory Initialization File	Brow	
	-		

Figure 2 • BRAM72K Soft IP Configuration

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Byte Width	9	8, 9	Determines whether fields should be set to 8-bit or 9-bit.
Write Width	72	1 to 9216	Write port data width. Values greater than 144 limit the write depth to 16K words.
Read Width	72	1 to 9216	Read port data width. Currently set to match the write width. This value cannot be changed by the user. Future releases of this user macro are planned to allow configuring different write and read widths.
Write Depth	1024	512 to 1048576	Write port address depth. The maximum value is limited by the number of BRAM72K blocks in a column in the target device. The maximum value is also dependant on the write width as detailed in Write and Read Depths versus Data Width
Read Depth	1024	512 to 1048576	Read port address depth. Currently set to match the write depth. This value cannot be changed by the user. Future releases of this user macro are planned to allow configuring different write and read depths.
Enable Output Register	Off	On, Off	Determines whether the output register in each of the BRAM72K primitives is enabled. Adds an additional cycle of latency to any read operation.
Enable ECC Encoder	Off	On, Off	Determines whether the ECC encoder is enabled for writes to the memory array. This option is currently disabled and cannot be set by the user.
Enable ECC Decoder	Off	On, Off	Determines whether the ECC encoder is enabled for reads from the memory array. This option is currently disabled and cannot be set by the user.
Enable NoC Write Mode	Off	On, Off	Determines whether the BRAM can be written directly from the NoC. This option is currently disabled and cannot be set by the user.

Table 1 \cdot Configuration Options

Name	Default	Range	Description					
Enable NoC Read Off On, Off Mode			Determines whether the BRAM can be read directly from the NoC. This option is currently disabled and cannot be set by the user.					
Use Memory	Off	On, Off	Determines whether a memory initialization file is used to initialize the memory contents. This initialization occurs for both synthesis and simulation.					
Initialization File 💝			When this option is enabled, entry of the file location in the associated file browser dialog is permitted.					
Table Notes								
 If relative paths are used for the memory initialization file location, the same relative paths must be valid from both the ACE project directory and the simulation directory. It is recommended to locate both of these directories at the same relative depth in the project tree, and to use relative paths that navigate up the tree to the first common directory, before descending the tree to the location of the files. 								
For example: Th	e Achronix ref	erence designs lo	ocate the ACE project in <project root="">/src/ace . The</project>					
simulation directories are located in <project root="">/sim/vcs or <project root="">/sim/questa . The</project></project>								
memory initialization files are located in <project root="">/src/mem_init_files . A relative path correct for</project>								
both simulation	and ACE is "	.//src/mem_init	_files/filename.txt" .					
		,,, 510, mom_mm						

Write and Read Depth

Absolute Limits

The write and read depths are related to the write and read widths. The absolute limit on these values is detailed in the following table:

	Table 2	• Write and	Read Depths	versus Data	Width
--	---------	-------------	--------------------	-------------	-------

Memory Width	Maximum Memory Depth
1 to 144	1048576
145 to 9216	16384

Device Specific Limits

Within a device, the largest memory that can be generated is limited by the number of ACX_BRAM72K primitives in a column. For example, if there are 64 ACX_BRAM72K primitives in a column, then the maximum memory size is 64 × 72K bits = 4,718,592 bits. This would support a configuration of 72-bits × 64K depth, or 36-bits × 128K depth.

Examples

The following figure shows the macro configured for a 4096-bit by 16,384 entry memory with the memory output register enabled:

	Speedster7	t BRAM72K
	Overview This page contains the the structure and base	top-level, global properties that govern configuration of the BRAM72K wrapper.
~	Target Device	AC7t1500 ~
~	Byte Width	8 ~
~	Write Width	4096
~	Read Width	4096
V	Write Depth	16384
V	Read Depth	16384
V	Enable Output Register	
V	Enable ECC Encoder	
V	Enable ECC Decoder	
V	Enable NoC Write Mod	e
V	Enable NoC Read Mode	2
V	Memory Initialization File	Browse
?)	Generate << Back Next >>

Figure 3 • 4096 × 16K Memory Configuration

The following figure shows the IP diagram for the above configuration:

🖫 IP Diagram 🛛				~
	din[4095:0] byte_en[511:0] wraddr[13:0] wren wrcik rdaddr[13:0] rdaddr[13:0] rden rdcik outreg_rstn	BRAM 67108864 bits	— dout[4095:0]	

Figure 4 • 4096 × 16K Memory IP Diagram

Chapter 5 : LRAM Soft IP

Description

The LRAM soft IP core creates an arbitrary sized memory array comprised of LRAM primitives.

If only a single LRAM is required, this primitive can be inferred or instantiated into the code directly. However, if a memory array consisting of multiple LRAM primitives is required, it is recommended to use the soft IP configurator to achieve the optimum architecture.

Utilization

(i) Note

Within the Speedster7t family, the LRAM and MLP primitives share a site. Therefore if a site is allocated for use as an LRAM primitive, the MLP on that same site cannot be used.

Configuration

The LRAM2K soft IP configurator has the following configuration options:

Speedst Overview	er7t LRA	М		
This page contain the structure and	ins the top-level, glob d base configuration	oal properties that gover of the LRAM wrapper.	n	
Target Device	AC7t1500			
Address Depth	32			
Data Width	72			
Read Clock Polarity	y Rising Edge			
Write Clock Polarit	y Rising Edge			
🖉 🗌 Output Register	Enabled			
Output Register				
🖌 Clock Enabl	e Priority rstreg			
Use Memory Initialization	itialization File			
✓ Memory Ini	tialization File			Browse
?)		Generate	<< Back	Next >>

Figure 5 • LRAM Soft IP Configurator

Table 3 · Configuration Options

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Address Depth	32	4 to 4096	Address depth of the memory array in words. The depth imposes limitations on the maximum data width. The limits are detailed in Read and Write Depths Versus Data Widths .
Data Width	72	1 to 184320	Data port width in bits of both din and dout .
Read Clock Polarity	Rising Edge	Falling or Rising Edge	The rdclk active edge on which all read transactions occur.
Write Clock Polarity	Rising Edge	Falling or Rising Edge	The wrclk active edge on which all write transactions occur.
Output Register Enabled	Off	On, Off	Determines whether the output register in each of the LRAM primitives is enabled. This adds an additional cycle of latency to any read operation. If the output register is disabled, the memory array is combinatorial. The output changes when the input address changes.
Output Register Clock Enable Priority	rstreg	rstreg, rstce	 Controls the clock enable input of the output register. rstreg: The outregce input is ignored when rstregn = 1'b0. The output register is reset on the next active rdclk edge. rstce: outregce must be equal to 1'b1 and rstregn = 1'b0 for the output register to be reset on the next active rdclk edge.
Use Memory Initialization File ⁽¹⁾	Off	On, Off	Determines whether a memory initialization file is used to initialize the memory contents. This initialization occurs for both synthesis and simulation. When this option is enabled, entry of the file location in the associated file browser dialog is permitted.

Name	Default	Range	Description
Table Notes			
1. If relative paths from both the A directories at th tree to the first	are used for th CE project dire e same relativ common direc	ne memory initiali actory and the sim e depth in the pro tory, before desce	zation file location, the same relative paths must be valid nulation directory. It is recommended to locate both these ject tree, and to use relative paths that navigate up the ending the tree to the location of the files.
For example, the	e Achronix refe	erence designs lo	cate the ACE project in <project root="">/src/ace . The</project>
simulation direc	tories are loca	ted in <project re<="" th=""><th>pot>/sim/vcs or <project root="">/sim/questa . The</project></th></project>	pot>/sim/vcs or <project root="">/sim/questa . The</project>
memory initializ	ation files are	located in <proje< th=""><th>ct root>/src/mem_init_files . A relative path correct for</th></proje<>	ct root>/src/mem_init_files . A relative path correct for
both simulation	and ACE is "	//src/mem_init_	files/filename.txt" .

Write and Read Depth

Absolute Limits

The write and read depths are related to the write and read widths. The absolute limit on these values is detailed in the following table:

Table 4 • Write and Read Depths versus Data Width

Memory Width	Maximum Memory Depth
4 to 32	184320
33 to 64	92160
65 to 96	61416
97 to 128	46080
129 to 144	36864

Device Specific Limits

Within a device, the largest memory that can be generated is limited by the number of ACX_LRAM primitives in a column. For example, if there are 64 ACX_LRAM2K primitives in a column, the maximum memory size is 64 × 2K bits = 131,027 bits. This would support a configuration of 64-bits x 2K depth, or 32-bits × 4K depth. Alternatively, if there are 64 ACX_LRAM4K in a column, the maximum memory size is 64 × 4K bits = 262,144 bits. This would support a configuration of 64-bits × 8K depth.

The type of LRAM used by the Speedster7t LRAM configurator is dependent upon the device chosen and the available LRAM types within the fabric.

14

Examples

The following figure shows the soft IP configured for a 128-bit × 4096-word LRAM memory with the memory output register enabled:

	Speedste Overview This page contains the structure and I	er7t	LRAN p-level, globa nfiguration of	// I properties th f the LRAM wr	at goverr apper.	1		
~	Target Device	AC7t15	00					~
~	Address Depth	4096						
~	Data Width	128						
~	Read Clock Polarity	Rising	Edge					~
~	Write Clock Polarity	Rising	Edge					~
~	✓ Output Register E Output Register	nabled						
*	Clock Enable	Priority alization on Ilization	rstreg File					V Browse
?)			Generat	e	<< Back	1	Vext >>

Figure 6 • 128-Bit x 4096-Word LRAM Memory Configuration

The following figure shows the IP diagram for the above configuration:

😫 IP Diagram 🛛		~ -	
	rdaldr[11:0] wraddr[11:0] din[127:0] wren outregce rstregn		

Figure 7 • 128-Bit x 4096-Word LRAM Memory IP Diagram

Chapter 6 : ROM Soft IP

Description

The Speedster7t ROM soft IP core creates an arbitrary sized ROM, using either BRAM or LRAM primitives.

Utilization

(i) Note

Within the Speedster7t family, the LRAM and MLP primitives share a site. Therefore, if using a Speedster7t device, and if the ROM soft IP configuration selects an LRAM to implement the ROM, the MLPs on the sites used by the ROM cannot be used.

Configuration

The soft IP has the following configuration options:

	Speedster7 Overview This page contains the of the ROM wrapper.	Tt ROM	
~	Target Device	AC7t1500	~
~	RAM Type	BRAM72K	~
~	Address Depth	4096	
~	Data Width	128	
~	Read Clock Polarity	Rising Edge	~
~	🗹 Output Register Enabl	ed	
	Output Register		
	Clock Enable Prior	ity rstreg	~
~	Memory Initialization File	C:\projects\achronix\example_design\src\mem_init_files\rom_init.hex	Browse
?)	Generate << Back Nex	t >>

Figure 8	•	ROM S	oft IP	Configuration
----------	---	-------	--------	---------------

Table 5 · Configuration Options

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
RAM Туре	BRAM72K	BRAM72K, LRAM2K	Determines which type of RAM primitives used to form the ROM.
Address Depth	1024	4 to 16384	Address depth of the ROM in words.
Data Width	20	1 to 184320	Port width in bits of the dout port. The width selected affects the available address depth. The maximum values of width versus depth are detailed in Read and Write Depths Versus Data Widths .
Read Clock Polarity	Rising Edge	Falling or Rising Edge	The rdclk active edge on which all read transactions occur.
Enable Output Register	Off	On, Off	Determines whether the output register in each of the LRAM2K primitives is enabled. Adds an additional cycle of latency to any read operation. If the output register is disabled, the memory array is combinatorial. The output changes when the input address changes.
Output Register Clock Enable Priority	rstreg	rstreg, rstce	 Controls the clock enable input of the output register. rstreg: The outregce input is ignored when rstregn = 1'b0. The output register is reset on the next active rdclk edge. rstce: outregce must be equal to 1'b1 and rstregn = 1'b0 for the output register to be reset on the next active rdclk edge.
Use Memory Initialization File ⁽¹⁾	On	On	Location of the memory initialization file used to initialize the memory contents. This initialization occurs for both synthesis and simulation.

Name	Default	Range	Description
Table Notes			
 If relative paths from both the A these directorie the tree to the f 	are used for th CE project dire s at the same irst common d	ne memory initiali actory and the sim relative depth in t irectory, before d	zation file location, the same relative paths must be valid nulation directory. It is recommended to locate both of he project tree, and to use relative paths that navigate up escending the tree to the location of the files.
For example, th	e Achronix refe	erence designs loo	cate the ACE project in <project root="">/src/ace . The</project>
simulation direc	ctories are loca	ted in <project re<="" th=""><th>pot>/sim/vcs or <project root="">/sim/questa. The</project></th></project>	pot>/sim/vcs or <project root="">/sim/questa. The</project>
memory initializ	ation files are	located in <proje< th=""><th>ct root>/src/mem_init_files . A relative path correct for</th></proje<>	ct root>/src/mem_init_files . A relative path correct for
both simulation	and ACE is "	//src/mem_init_	_files/filename.txt" .

Write and Read Depth

Absolute Limits

The write and read depths are related to the write and read widths. The absolute limit of these values is detailed in the following table:

Table 6 • Write and Read Depths Versus Data Width

RAM Type	Memory Width	Maximum Memory Depth
	1 to 11520	16384
	11521 to 23040	8096
ACX_BRAM72K	23041 to 46080	4096
	46081 to 92160	2048
	92161 to 184320	1024
	1-1440	4096
	Memory Width Max 1 to 11520 1 11521 to 23040 1 23041 to 46080 1 46081 to 92160 1 92161 to 184320 1 1441 to 2880 1 2881 to 5760 1 5761 to 11520 1 11521 to 23040 1 2001 to 46080 1	2048
	2881 to 5760	1024
ACX LRAM2K	5761 to 11520	512
	11521 to 23040	256
	23041 to 46080	128
	46081 to 92160	64
	92161 to 184320	32

Device Specific Limits

Within a device, the largest memory that can be generated is limited by the number of RAM primitives in a column, and the choice of RAM type. The overall ROM limit in bits is equivalent to the number of RAM primitives in a column multiplied by the number of bits in the primitive, (72K for ACX_BRAM72K, and 2K for ACX_LRAM2K).

Examples

The following figure shows the soft IP configured for a 128-bit × 4096-word ROM formed of BRAM72K primitives with the memory output register enabled.

	Overview This page contains th the structure and bas	ne top-level, global properties that govern se configuration of the ROM wrapper.
/	Target Device	AC7t1500
1	RAM Type	BRAM72K
2	Address Depth	4096
2	Data Width	128
1	Read Clock Polarity	Rising Edge
۶	Output Register Enable Output Register Clock Enable Price	ority rstreg
>	Memory Initialization Fi	le C:\projects\achronix\example_design\src\mem_init_files\rom_init.hex Brows

Figure 9 • 128-bit × 4096-word ROM Configuration

The following figure shows the soft IP I/O diagram for the above configuration.

Figure 10 • 128-Bit × 4096-Word ROM IP Diagram

Chapter 7 : Integer Complex Multiplier Soft IP

Description

The Integer Complex Multiplier Soft IP implements a complex multiplication with a single machine learning processing block.

Configuration

The integer complex multiplier soft IP configurator has the following options:

ę	Speedster Overview This page contains th the structure and bas	7t Inte ne top-level, gl se configuratio	eger Comp obal properties that g n of the Integer Comp	overn I		
~	Target Device	AC7t1500			~	
	Integer Size	16				
~	Use Unsigned Numb	ers for Input A				
~	Use Unsigned Numb	ers for Input B				
~	Use Conjugate(B) ins	tead of B				
~	Enable Accumulation	ı				
~	✓ Enable Input Registers					
~	Hide ce and rstn of Ir	nput Registers				
~	Pipeline Register Stages	1			~	
~	Hide ce and rstn of P	ipeline Register	s			
?)		Generate	<< Back	Next >>	

Figure 11 • Complex Integer Multiplier Soft IP Configurator

Table 7 · Configuration Options

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Use Unsigned Numbers for Input A	No	Yes, No	 0 - i_din_a_re and i_din_a_im are signed (two's complement). 1 - i_din_a_re and i_din_a_im are unsigned.
Use Unsigned Numbers for Input B	No	Yes, No	 0 - i_din_b_re and i_din_b_im are signed (two's complement). 1 - i_din_b_re and i_din_b_im are unsigned.
Use Conjugate(B) instead of B	No	Yes, No	Compute A × conjugate(B) instead of A × B.
Enable Accumulation	No	Yes, No	<pre>0 - No accumulation: (dout_re + dout_im · j) = (i_din_a_re + i_din_a_im · j) × (i_din_b_re + i_din_b_im · j). 1 - Accumulation: dout_re + dout_im · j is the accumulated value. The start of accumulation is signaled by asserting i_load = 1.</pre>
Enable Input Registers	No	Yes, No	 0 - No input registers. 1 - i_din_a_re, i_din_a_im, i_din_b_re, and i_din_b_im are registered. The input registers are controlled by the i_in_reg_a_ce, i_in_reg_b_ce, and i_in_reg_rstn inputs. Enabling the input register adds one cycle of latency.
Hide ce and rstn of Input Registers	No	Yes, No	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).

Name	Default	Range	Description
Pipeline Register Stages	0	0, 1, 2	The number of pipeline registers, not counting the input register. The total latency is pipeline_regs + in_reg_enable .
Hide ce and rstn of Pipeline Registers	No	Yes, No	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).

Name	Direction	Description
i_clk	Input	Clock input, used for the (optional) registers and accumulator.
i_din_a_re [(Integer Size - 1):0]	Input	Real coefficient of A data input to multiplier.
i_din_a_im [(Integer Size - 1):0]	Input	Imaginary coefficient of A data input to multiplier.
i_din_b_re [(Integer Size - 1):0]	Input	Real coefficient of B data input to multiplier.
i_din_b_im [(Integer Size - 1):0]	Input	Imaginary coefficient of B data input to multiplier.
i_load	Input	Resets the accumulator to A × B, ignoring the previous value. This signal is internally pipelined to have the same latency as A × B.
i_in_reg_a_ce	Input	(Optional) Clock enable for <code>i_din_a_re</code> and <code>i_din_a_im</code> . Present when Enable Input Registers is set to On .
i_in_reg_b_ce	Input	(Optional) Clock enable for <code>i_din_b_re</code> and <code>i_din_b_im</code> . Present when Enable Input Registers is set to On .
i_in_reg_rstn	Input	(Optional) Synchronous active-low reset for input registers. Present when Enable Input Registers is set to On .
i_pipeline_ce	Input	(Optional) Clock enable for pipeline and accumulator registers. Present when Pipeline Register Stages is greater than 0.
i_pipeline_rstn	Input	(Optional) Synchronous active-low reset for pipeline and accumulator registers. Present when Pipeline Register Stages is greater than 0.
o_dout_re [(Output Width - 1):0]	Output	Real coefficient of the result of multiplication and accumulation. Always signed (2's complement).
o_dout_im [(Output Width - 1):0]	Output	Imaginary coefficient of the result of multiplication and accumulation. Always signed (2's complement).

Table 8 • Ports

Examples

The following example shows the integer complex multiplier configured for 16-bit unsigned inputs with input registers, accumulation and two pipeline stages, and 32-bit output:

ę	Speedster Overview	7t Integ	er Comple	эх	
	This page contains th structure and base co	e top-level, global onfiguration of the	properties that govern Integer Compl	1 the	
~	Target Device	AC7t1500			~
	Integer Size	16			
\checkmark	Output Width	32			
\checkmark	Use Unsigned Numb	ers for Input A			
V	Use Unsigned Numb	ers for Input B			
\checkmark	Use Conjugate(B) ins	tead of B			
\checkmark	Enable Accumulation	1			
V	🗹 Enable Input Register	s			
\checkmark	Hide ce and rstn of Ir	put Registers			
~	Pipeline Register Stages	2			~
~	Hide ce and rstn of P	ipeline Registers			
?)		Generate	<< Back	Next >>

Figure 12 • Two Pipeline Stage Integer Multiplier Configuration

The following figure shows the IP diagram for the above configuration:

i_clk — o_dout_re[31:0] 	🏩 IP Diagram 🔀		8 - 0
Loan_a_imirsui i_din_b_reisoi _i_din_b_reisoi _i_din_b_imirsui _i_load 		i_cik	

Figure 13 • Two Pipeline Stage Integer Multiplier I/O
Chapter 8 : Integer Multiplier Soft IP

Description

The Integer Multiplier soft IP core configures a two-input integer multiplier using either RLB (logic) based multipliers or MLP primitives. The multiplier also supports optional result accumulation. The configurator supports sizes of up to 32 × 32 integers, with both signed and unsigned numerical formats.

Configuration

The Integer Multiplier soft IP configurator has the following options:

Speedster7t Integer Multiplier					
Overview This page contains th structure and base co	ne top-level, global properties that govern the onfiguration of the Integer Multiplier.				
✓ Target Device	AC7t1500 ~				
✓ Architecture	auto				
🖋 Input Width	8				
💉 Output Width	16				
ᢦ 🗌 Use Unsigned Numb	Use Unsigned Numbers for Input A				
🖋 🗌 Use Unsigned Numb	🥢 🗌 Use Unsigned Numbers for Input B				
✓ □ Enable Accumulation	V Enable Accumulation				
✓ □ Enable Input Registers					
✓	nput Registers				
V Pipeline Register Stages	0 ~				
✓ ☐ Hide ce and rstn of P	ipeline Registers				
?	Generate << Back Next >>				

Figure 14 • Integer Multiplier Soft IP Configurator

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Architecture	auto	auto, rlb, mlp	 Determines which primitives should be used to implement the multiplier. auto: Allow the tool to choose the most appropriate primitive based on the number formats and sizes selected. rlb: Implement the multiplier in fabric logic. The Speedster7t FPGA has a unique MLUT structure which supports very efficient multiplier arrays using logic. mlp: Use the MLP primitive to implement the multiplier.
Input Width	8	3, 4, 5, 6, 7, 8, 16 or 32 Width of both a and b inputs.	
Use Unsigned Numbers for Input A/B	Off	On, Off	When set, configures the appropriate input to use unsigned numbers. By default, the inputs are set to signed.
Enable Input Registers	Off	On, Off	When set, enables a register stage for both A and B inputs. This stage adds a cycle of latency to all results. Enabling the input registers adds the inputs i_in_reg_a_ce, i_in_reg_b_ce and i_in_reg_rstn to the resultant soft IP.
Hide ce and rstn of Input Registers	No	Yes, No	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).

Table 9 · Configuration Options

Name	Default	Range	Description
Enable Accumulator	Off	On, Off	The output is the accumulation of the result from each clock cycle. Enabling accumulation adds the input i_load to the resultant soft IP. The accumulation is cleared when i_load is asserted, the output is reset to i_din_a × i_din_b. The i_load signal has the same pipeline delay to the accumulator as the i_din_a and i_din_b inputs. Therefore it should be applied on the same cycle as the i_din_a and i_din_b inputs that are to start a new accumulation cycle.
Pipeline Register Stages	0	0, 1, 2, 3	Add pipeline register stages through the multiplication process. Enabling pipeline registers improves timing performance at the cost of an additional cycle of latency for each stage enabled. When any pipeline stages are enabled, the inputs i_pipeline_ce and i_pipeline_rstn are added to the resultant soft IP.
Hide ce and rstn of Pipeline Registers	No	Yes, No	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).
Output Width	16	8 to 128	Width of the data output. Automatically updated by the configurator when Input Width is updated. In addition, the value can be modified to meet requirements. The valid range changes dependent upon the Input Width and Architecture. ⁽¹⁾

Table Notes

 When accumulation is enabled, it might be necessary to increase the data output width to account for the growth in the result over multiple accumulation cycles. The minimum output width can be calculated as (2 × Input Width) + (number of accumulation cycles).

Name	Direction	Description
i_clk	Input	Clock input, used for the (optional) registers and accumulator.
i_din_a [(Input Width - 1):0]	Input	'A' data input to the multiplier.
i_din_b [(Input Width - 1):0]	Input	'B' data input to the multiplier.
i_in_reg_a_ce	Input	(Optional) Clock enable for i_din_a . Present when Enable Input Registers is set to On .
i_in_reg_b_ce	Input	(Optional) Clock enable for i_din_b . Present when Enable Input Registers is set to On .
i_in_reg_rstn	Input	(Optional) Synchronous active-low reset for input registers. Present when Enable Input Registers is set to On .
i_pipeline_ce	Input	(Optional) Clock enable for pipeline and accumulator registers. Present when Pipeline Register Stages is greater than 0.
i_pipeline_rstn	Input	(Optional) Synchronous active-low reset for pipeline and accumulator registers. Present when Pipeline Register Stages is greater than 0.
i_load ⁽¹⁾	Input	(Optional) When asserted to $1'b1$, resets the accumulator to i_din_a × i_din_b, ignoring the previous value. Present when Enable Accumulator is set to On .
o_dout [(Output Width - 1):0]	Output	Result of multiplication and accumulation.

Table 10 • Ports

Table Notes

1. This signal is internally pipelined to have the same latency as $\ i_din_a \ and \ i_din_b$.

Examples

The following example shows the integer multiplier configured for signed 32 × 32 inputs, with accumulation and a single pipeline stage:

	Speedster Overview This page contains th base configuration of t	7t Integer Multi e top-level, global properties that g the Integer Multiplier.	plier overn the structure and		
~	Target Device	AC7t1500			~
~	Architecture	auto			~
~	Input Width	32			~
~	Output Width	64			
~	Use Unsigned Numbe	ers for Input A			
~	Use Unsigned Numbe	ers for Input B			
~	Enable Accumulation				
~	🗹 Enable Input Register	s			
~	Hide ce and rstn of In	put Registers			
~	Pipeline Register Stages	1			~
~	Hide ce and rstn of Pi	peline Registers			
?)		Generate	<< Back	Next >>

Figure 15 • 32 × 32 Signed Integer Multiplier Configuration

The following figure shows the IP diagram for this configuration:

😋 IP Diagram 🔀		8 🗖 🗖
	i_din_a(31:0) i_din_b(31:0) i_load i_in_reg_a_ce i_in_reg_tst i_pipeline_ce i_pipeline_rstn	

Figure 16 • 32 x 32 Signed Integer Multiplier I/O

Chapter 9 : Integer Parallel Multiplier Soft IP

Description

The Integer Parallel Multiplier soft IP core configures multiple integer multipliers. This soft IP core is implemented with the MLP primitive which contains an array of integer multipliers. There can be up to 8 separate multipliers ranging from 3 × 3 to 16 × 16 bits. The multipliers support both signed and unsigned arithmetic.

Configuration

The Integer Parallel Multiplier soft IP configurator has the following options:

	Speedster7t Integer Parallel Multiplier				
	- Overview	-	-		
	This page contains the top-leve configuration of the Integer Para	l, global properties that gover allel Multiplier.	n the structure and ba	se	
~	Target Device	AC7t1500			~
~	Input Width	8			~
~	Number of Parallel Multiplications	4			~
~	🖉 🗌 Use Unsigned Numbers for Input A				
~	✓ 🗌 Use Unsigned Numbers for Input B				
~	Enable Input Registers				
~	Hide ce and rstn of Input Regist	ers			
~	Pipeline Register Stages	1			~
~	Hide ce and rstn of Pipeline Reg	isters			
?)		Generate	<< Back	Next >>

Figure 17 • Integer Parallel Multiplier Soft IP Configurator

Table 11 · Configuration Options

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Input Width	8	3, 4, 5, 6, 7, 8 or 16	Width of the two inputs to each multiplier
Number of Parallel Multiplications	4	2 to 8 The number of parallel multipliers to be implemented maximum number of multipliers is determined by the Input Width. Refer to the Number of Multipliers Per Width table for details.	
Use Unsigned Numbers for Input A/B	Off	On, Off	When set, configures the appropriate inputs to use unsigned numbers. By default, the inputs are set to signed.
Enable Input Registers	Off	On, Off	 When set, enables a register stage for all multiplier inputs. This adds a cycle of latency to all results. Enabling the input registers adds these inputs to the resultant soft IP core: i_in_reg_a_ce i_in_reg_b_ce i_in_reg_rstn
Hide ce and rstn of Input Registers	No	Yes, No	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).
Pipeline Register Stages	0	0,1	 Adds a pipeline register stage to the multiplication process. Enabling pipeline registers improves timing performance at the cost of an additional cycle of latency. When any pipeline stages are enabled, these inputs are added to the resultant soft IP core: i_pipeline_ce i_pipeline_rstn

Name	Default	Range	Description
Hide ce and rstn of Pipeline Registers	No	Yes, No	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).

Input Width	Maximum Number of Multipliers
3	8
4	8
5	4
6	4
7	4
8	4
16	2

Table 12 • Number of Multipliers Per Input Width

Table 13 • Ports

Name	Direction	Description
i_clk	Input	Clock input to drive the (optional) registers and accumulator.
i_din_a [(Input Width - 1):0]	Input	Packed vector of data to 'A' inputs of multipliers.
i_din_b [(Input Width - 1):0]	Input	Packed vector of data to 'B' inputs of multipliers.
i_in_reg_a_ce	Input	(Optional) Clock enable for i_din_a . Present when Enable Input Registers is set to On .
i_in_reg_b_ce	Input	(Optional) Clock enable for i_din_b . Present when Enable Input Registers is set to On .
i_in_reg_rstn	Input	(Optional) Synchronous active-low reset for input registers. Present when Enable Input Registers is set to On .
i_pipeline_ce	Input	(Optional) Clock enable for pipeline registers. Present when Pipeline Register Stages is set to 1 .

Name	Direction	Description
i_pipeline_rstn	Input	(Optional) Synchronous active-low reset for pipeline registers. Present when Pipeline Register Stages is set to 1 .
o_dout [(Output Width - 1):0]	Output	Output bus consisting of the results from all the multipliers in parallel. Output Width is dynamically calculated by the configurator. See Output Format for details of how the results are assembled in the single output bus.

Input Format

Each multiplier input is formed from an array of the individual inputs packed in a single input vector:

Code

i_din_a/b(i) = i_din_a/b[i * int_size +: int_size];

Output Format

For each multiplier, the result width in bits is equal to 2 × Input Width.

The results from all the parallel multiplications are output as a concatenation on the o_dout output. The width of this output is calculated as follows:

Output Width = Number of Parallel Multiplications × 2 × Input Width.

The bit lanes used for the result of an individual multiplier are found by multiplying the number of the multiplier (starting at 0) by the result width.

Example

If four 8 × 8 multipliers are configured:

Result Width = $2 \times 8 = 16$ bits

Output Width = $4 \times 16 = 64$ bits

Each individual multiplier result appears in the lanes detailed in the following table.

Table 14 • Output Bus Organization

Multiplier Number	Result
0	o_dout[15:0]
1	o_dout[31:16]
2	o_dout[47:32]
3	o_dout[63:48]

Examples

The following example shows the integer parallel multiplier configured for two signed 16 × 16 multiplications, with input registers and and an internal pipeline stage:

	Speedster7t In	teger Parallel	Multiplie	r	
	Overview				
	This page contains the top-level configuration of the Integer Para	, global properties that govern Ilel Multiplier.	the structure and bas	e	
~	Target Device	AC7t1500			~
\checkmark	Input Width	16			~
\checkmark	Number of Parallel Multiplications	2			~
\checkmark	Use Unsigned Numbers for Inpu	t A			
\checkmark	Use Unsigned Numbers for Inpu	t B			
\checkmark	Enable Input Registers				
\checkmark	Hide ce and rstn of Input Registe	ers			
V	Pipeline Register Stages	1			~
\checkmark	Hide ce and rstn of Pipeline Reg	isters			
?)		Generate	<< Back	Next >>

Figure 18 • Two 16 × 16 Signed Parallel Integer Multiplier Configuration

The following figure shows the IP diagram for this configuration:

📴 IP Diagram 🔀 🖇	-	' 6	3
i_clin_a[31:0]			

Figure 19 • Two 16 × 16 Signed Parallel Integer Multiplier I/O

Chapter 10 : Integer Parallel Sum of Products Soft IP

Description

The Integer Parallel Sum of Products soft IP core configures multiple parallel integer multipliers with a single summed result. This soft IP core is implemented with the MLP primitive which contains an array of integer multipliers and associated adders. Up to 24 parallel multipliers, ranging from 3 × 3 to 16 × 16 bits can be used. The multipliers support both signed and unsigned arithmetic. The final output can optionally be accumulated.

Configuration

The integer parallel sum of products soft IP configurator has the following options:

Speedster7t In	teger Parallel Sum of Products				
Overview	.				
This page contains the top-level the Integer Parallel Sum of Proc	, global properties that govern the structure and base configuration of ducts.				
✓ Target Device	AC7t1500 ~				
🖋 Input Width	8 ~				
🖋 Output Width	48				
 Number of Parallel Multiplications 	8 ~				
V 🗌 Use Unsigned Numbers for Input A					
🖋 🗌 Use Unsigned Numbers for Inpu	tB				
V Enable Accumulation					
🖋 🗹 Enable Input Registers					
✓ ☐ Hide ce and rstn of Input Registe	ers				
Pipeline Register Stages	1 ~				
✓ ☐ Hide ce and rstn of Pipeline Regi	isters				
?	Generate << Back Next >>				

Figure 20 • Integer Parallel Sum of Products Configurator

Name	Default	Range	Description	
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.	
Input Width	8	3, 4, 5, 6, 7, 8 or 16	Width of the two inputs to each multiplier.	
Number of Parallel Multiplications	8	1 to 24	The number of parallel multipliers to be implemented and their results summed. The maximum number of multipliers is determined by the Input Width. Refer to the Maximum Number of Multipliers Per Input Width table for details.	
Use Unsigned Numbers for Input A/B	Off	On, Off	When set, configures the appropriate inputs to use unsigned numbers. The inputs are signed by default.	
Enable Input Registers	Off	On, Off	 When set, enables a register stage for all multiplier input This adds a cycle of latency to all results. Enabling the input registers adds these inputs to the resultant soft IP core: i_in_reg_a_ce i_in_reg_b_ce i_in_reg_rstn 	
Hide ce and rstn of Input Registers	No	Yes, No	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).	
Enable Accumulator	Off	On, Off	The output is the accumulation of the result from each clock cycle. Enabling accumulation adds the input i_load to the resultant soft IP core. The accumulation is cleared when i_load is asserted.	

Name	Default	Range	Description
Pipeline Register Stages	0	0, 1 or 2	Adds pipeline register stages to the multiplication process. Enabling pipeline register stages improves timing performance at the cost of an additional cycle of latency per stage. When any pipeline stages are enabled, these inputs are added to the resultant soft IP core: • i_pipeline_ce • i_pipeline_rstn
Hide ce and rstn of Pipeline Registers	No	Yes, No	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).
Output Width ⁽¹⁾	48	3 to 48	Width of the data output. By default, this value is set to 48 bits. This value can be reduced if required.

Table Notes

1. Ensure that **Output Width** is sufficient to represent the maximum result that can be accumulated. In the event of overflow, the higher order bits of any result are truncated.

When accumulation is enabled, it might be necessary to increase the data output width to account for the growth in the result over multiple accumulation cycles. The minimum output width can be calculated as:

(2 × Input Width × Number of Parallel Multiplications) + (number of accumulation cycles)

Input Width	Maximum Number of Multipliers
3	24
4	16
5	12
6	12
7	10
8	8
16	4

Table 16 • Maximum Number of Multipliers Per Input Width

Name	Direction	Description
i_clk	Input	Clock input, used for the (optional) registers and accumulator.
i_din_a [(data width - 1):0]	Input	Packed data vector to the 'A' inputs of the multipliers where data width = Input Width × Number of Parallel Multiplications.
i_din_b [(data width - 1):0]	Input	Packed data vector to the 'B' inputs of the multipliers where data width = Input Width × Number of Parallel Multiplications.
i_in_reg_a_ce	Input	(Optional) Clock enable for i_din_a . Present when Enable Input Registers is set to On .
i_in_reg_b_ce	Input	(Optional) Clock enable for <code>i_din_b</code> . Present when Enable Input Registers is set to On .
i_in_reg_rstn	Input	(Optional) Synchronous active-low reset for input registers. Present when Enable Input Registers is set to On .
i_pipeline_ce	Input	(Optional) Clock enable for pipeline registers. Present when Pipeline Register Stages is greater than 0.
i_pipeline_rstn	Input	(Optional) Synchronous active-low reset for pipeline registers. Present when Pipeline Register Stages is greater than 0.
i_load ⁽¹⁾	Input	(Optional) When asserted to $1'b1$, resets the accumulator to i_din_a × i_din_b, ignoring the previous value. Present when Enable Accumulator is set to On.
o_dout [(Output Width - 1):0]	Output	Output bus consisting of the sum of products from all of the multipliers in parallel.
Table Notes		

Table 17 • Ports

1. This signal is internally pipelined to have the same latency as $\ i_din_a \ and \ i_din_b$.

Input Format

Each multiplier input is formed from an array of the individual inputs, packed in a single input vector.

i_din_a / b(i) = i_din_a / b[i*int_size +: int_size];

Examples

The following example shows the integer parallel sum of products configured for four signed 16 × 16 multiplications with input registers, accumulation and a single internal pipeline stage.

	Speedster7t In Overview	teger Parallel Sum o	f Product	s		
	This page contains the top-level the Integer Parallel Sum of Proc	, global properties that govern the structure an Jucts.	id base configuration	of		
~	Target Device	AC7t1500			~	,
~	Input Width	16			~	,
~	Output Width	48				
~	Number of Parallel Multiplications	4			~	,
~	Use Unsigned Numbers for Input	t A				
~	Use Unsigned Numbers for Input	t B				
~	Enable Accumulation					
~	Enable Input Registers					
~	Hide ce and rstn of Input Registe	ers				
~	Pipeline Register Stages	1			~	,
~	Hide ce and rstn of Pipeline Regi	isters				
?)		Generate	<< Back	Next >>]

Figure 21 • Four 16 × 16 Signed Multiplier Sum of Products Configuration

The following figure shows the IP diagram for this configuration:

뿣 IP Diagram 🔀		8 -
	i_din_a(63:0) - i_din_b(63:0) - i_load - Integer Parallel Sum of Products i_in_reg_a_ce - i_in_reg_b_ce - i_pipeline_rstn - i_pipeline_rstn - i_pipeline_rstn - i_double - i_pipeline_rstn - - o_dout[47:0] - o_dout[47:0] -	
	·	

Figure 22 • Four 16 × 16 Signed Multiplier Sum of Products I/O

Chapter 11 : Integer Parallel Sum of Squares Soft IP

Description

The Integer Parallel Sum of Squares soft IP core configures multiple parallel integer square (n²) multipliers with a single summed result. This soft IP core is implemented with the MLP primitive which contains an array of integer multipliers and associated adders. Up to 32 parallel multipliers, ranging from 3 × 3 to 16 × 16 bits can be configured. The multipliers support both signed and unsigned arithmetic. The final output can optionally be accumulated.

Configuration

The integer parallel sum of squares soft IP configurator has the following options:

Speedster7t Integer Parallel Sum of Squares				
Overview				
This page contains the to the Integer Parallel Sum	p-level, global properties that govern the structure and base cor of Squares.	onfiguration of		
✓ Target Device	AC7t1500	~		
🖋 Input Width	8	~		
< Output Width	48			
Vumber of Parallel Squares	16	~		
🖋 🗌 Use Unsigned Numbers f	or Inputs			
V Enable Accumulation				
🖋 🗹 Enable Input Registers				
🖋 🗌 Hide ce and rstn of Input	Registers			
V Pipeline Register Stages	1	~		
🖋 🗌 Hide ce and rstn of Pipeli	ne Registers			
?	Genera	ate << Back Next >>		

Figure 23 • Integer Parallel Sum of Squares Configurator

Table 18	 Configuration 	Options
----------	-----------------------------------	---------

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Input Width	8	3, 4, 5, 6, 7, 8 or 16	Width of the input to be squared.
Number of Parallel Squares	8	1 to 32	The number of parallel squaring multipliers to be implemented and their results summed. The maximum number of multipliers is determined by the Input Width. Refer to the Maximum Number of Multipliers Per Input Width table, for details.
Use Unsigned Numbers for Input	Off	On, Off	When set, configures the input to use unsigned numbers. The input is signed by default.
Enable Input Registers	Off	On, Off	 When set, enables a register stage for the input. Adds a cycle of latency to all results. Enabling the input registers adds these inputs to the resultant soft IP core: i_in_reg_ce i_in_reg_rstn
Hide ce and rstn of Input Registers	No	Yes, No	If selected, the i_in_reg_ce and i_in_reg_rstn inputs are automatically tied high (1'b1).
Enable Accumulator	Off	On, Off	Output is the accumulation of the result from each clock cycle. Enabling accumulation adds these inputs to the resultant soft IP core: • i_load • i_pipeline_ce • i_pipeline_rstn The accumulation is cleared when i_load is asserted.

Name	Default	Range	Description
Pipeline Register Stages	0	0, 1 or 2	Adds pipeline register stages to the multiplication process. Enabling pipeline register stages improves timing performance at the cost of an additional cycle of latency per stage. When any pipeline stages are enabled, these inputs are added to the resultant soft IP core: • i_pipeline_ce • i_pipeline_rstn
Hide ce and rstn of Pipeline Registers	No	Yes, No	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).
Output Width ⁽¹⁾	48	3 to 48	Width of the data output. By default, this value is set to 48 bits. This value can be reduced if required.

Table Notes

1. Ensure that **Output Width** is sufficient to represent the maximum result that can be accumulated. In the event of overflow, the higher order bits of any result are truncated.

When accumulation is enabled, it might be necessary to increase the data output width to account for the growth in the result over multiple accumulation cycles. The minimum output width can be calculated as:

(2 × Input Width × Number of Parallel Squares) + (number of accumulation cycles)

Input Width	Maximum Number of Multipliers		
3	32		
4	32		
5	16		
6	16		
7	16		
8	16		
16	4		

Table 19 • Maximum Number of Multipliers Per Input Width

Name	Direction	Description
i_clk	Input	Clock input to drive the (optional) registers and accumulator.
i_din [(data width - 1):0]	Input	Packed vector of data input to the squaring multipliers where data width = Input Width × Number of Parallel Squares .
i_in_reg_ce	Input	(Optional) Clock enable for i_din . Present when Enable Input Registers is set to On .
i_in_reg_rstn	Input	(Optional) Synchronous active-low reset for input register. Present when Enable Input Registers is set to On .
i_pipeline_ce	Input	(Optional) Clock enable for pipeline registers. Present when Pipeline Register Stages is greater than 0.
i_pipeline_rstn	Input	(Optional) Synchronous active-low reset for pipeline registers. Present when Pipeline Register Stages is greater than 0.
i_load ⁽¹⁾	Input	(Optional) When asserted to 1'b1, resets the accumulator to i_din ² ignoring the previous value. Present when Enable Accumulator is set to On .
o_dout [(Output Width - 1):0]	Output	Output bus consisting of the sum of squares from all of the multipliers in parallel.
Table Notes		

Table 20 • Ports

1. This signal is internally pipelined to have the same latency as i_din .

Input Packing

Inputs are packed in a single input vector.

din(i) = i_din[i * int_size +: int_size];

Examples

The following example shows the integer parallel sum of squares configured for four signed 16 bit inputs, with input registers, accumulation and a single internal pipeline stage:

Speedster71	Speedster7t Integer Parallel Sum of Squares				
This page contains the to of the Integer Parallel Su	op-level, global properties that govern the structur m of Squares.	e and base configurati	ion		
✓ Target Device	AC7t1500			~	
🖋 Input Width	16			~	
؇ Output Width	48				
✓ Number of Parallel Squares	4			~	
🖋 🗌 Use Unsigned Numbers f	or Inputs				
🖋 🗹 Enable Accumulation					
🖋 🗹 Enable Input Registers					
✓ ☐ Hide ce and rstn of Input	Registers				
🎸 Pipeline Register Stages	1			~	
🖋 🗌 Hide ce and rstn of Pipel	ine Registers				
?		Generate	<< Back	Next >>	

Figure 24 • Four 16 × 16 Signed Multiplier Sum of Squares Configuration

The following figure shows the IP diagram for this configuration:

🏠 IP Diagram 🛛				8 🗖 🗆
	i_cik — i_din(63:0) — i_load — i_in_reg_ce — i_in_reg_rstn — i_pipeline_ce — i_pipeline_rstn —	Integer Parallel Sum of Squares 4 Parallel 16 Bits X 16 Bits	— o_dout[47:0]	

Figure 25 • Four 16 × 16 Signed Multiplier Sum of Squares I/O

Chapter 12 : Integer RLB Multiplier Soft IP

Description

The Integer RLB Multiplier soft IP core configures a two-input integer multiplier using RLB (logic) based multipliers. The multiplier can also support optional result accumulation. The configurator supports sizes of up to 9×9 , with signed inputs and outputs.

Configuration

The integer RLB multiplier soft IP configurator has the following options:

Spe	Speedster7t Integer RLB Multiplier					
This base	page contains the configuration of t	e top-level, global properties that g he Integer RLB Multiplier.	overn the structure and	1		
💉 Targe	t Device	AC7t1500			~	
🖋 Input	Width A	9			~	
🖋 Input	Width B	9			~	
🖌 Outp	ut Width	18				
🖌 🗆 En	able Accumulation					
🖌 🖂 En	able Input Registers	i				
🖌 🗆 Hi	de ce and rstn of In	put Registers				
🖋 Pipeli	ne Register Stages	1			~	
🖌 🗆 Hi	de ce and rstn of Pi	peline Registers				
?			Generate	<< Back	Next >>	

Figure 26 • Integer RLB Multiplier Soft IP Configurator

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Input Width A	9	3 to 9	Width of 'A' inputs.
Input Width B	9	3 to 9	Width of 'B' inputs.
Enable Input Registers	Off	On, Off	 When set, enables a register stage for both 'A' and 'B' inputs. Adds a cycle of latency to all results. Enabling the input registers adds these inputs to the resultant soft IP core: i_in_reg_a_ce i_in_reg_b_ce i_in_reg_rstn
Hide ce and rstn of Input Registers	No	Yes, No	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).
Enable Accumulator	Off	On, Off	Output is the accumulation of the result from each clock cycle. Enabling accumulation adds the input i_load to the resultant soft IP core. The accumulation is cleared when i_load is asserted. The output is reset to i_din_a × i_din_b.
Pipeline Register Stages	0	0, 1, 2	Adds pipeline register stages through the multiplication process. Enabling pipeline registers improves timing performance at the cost of an additional cycle of latency for each stage enabled. When any pipeline stages are enabled, these inputs are added to the resultant soft IP core: • i_pipeline_ce • i_pipeline_rstn

Table 21 · Configuration Options

Name	Default	Range	Description	
Hide ce and rstn of Pipeline Registers	No	Yes, No	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).	
Output Width ⁽¹⁾	18	2 to 48	Width of the data output. Automatically updated by the configurator when Input Width A/B is updated. In addition, the value can be modified to match requirements.	
 Table Notes 1. When accumulation is enabled, it might be necessary to increase the data output width to account for the growth in the result over multiple accumulation cycles. The minimum output width can be calculated as: (2 × Input Width) + (number of accumulation cycles) 				

Name	Direction	Description
i_clk	Input	Clock input to drive the (optional) registers and accumulator.
i_din_a [(Input Width A - 1):0]	Input	'A' data input to the multiplier.
i_din_b [(Input Width B - 1):0]	Input	'B' data input to the multiplier.
i_in_reg_a_ce	Input	(Optional) Clock enable for i_din_a . Present when Enable Input Registers is set to On .
i_in_reg_b_ce	Input	(Optional) Clock enable for <code>i_din_b</code> . Present when Enable Input Registers is set to On .
i_in_reg_rstn	Input	(Optional) Synchronous active-low reset for the input registers. Present when Enable Input Registers is set to On .
i_pipeline_ce	Input	(Optional) Clock enable for the pipeline and accumulator registers. Present when Pipeline Register Stages is greater than 0.
i_pipeline_rstn	Input	(Optional) Synchronous active-low reset for the pipeline and accumulator registers. Present when Pipeline Register Stages is greater than 0.
i_load ⁽¹⁾	Input	(Optional) When asserted to 1'b1 , resets the accumulator to $i_din_a \times i_din_b$ ignoring the previous value. Present when Enable Accumulator is set to On .
o_dout [(Output Width - 1):0]	Output	Result of multiplication and accumulation.

Table 22 • Ports

Table Notes

1. This signal is internally pipelined to have the same latency as i_din_a and i_din_b .

Examples

The following example shows the integer multiplier configured for signed 9 × 9 inputs with input registers, accumulation and a single pipeline stage:

	Speedster Overview	7t Integer RLE	6 Multiplier		
	This page contains th base configuration of	e top-level, global properties that the Integer RLB Multiplier.	t govern the structure and	1	
~	Target Device	AC7t1500			~
V	Input Width A	9			~
V	Input Width B	9			~
\checkmark	Output Width	18			
V	Enable Accumulation				
V	🗹 Enable Input Register	5			
V	Hide ce and rstn of In	put Registers			
V	Pipeline Register Stages	1			~
V	Hide ce and rstn of Pi	peline Registers			
?)		Generate	<< Back	Next >>

Figure 27 • 9 × 9 Signed Integer RL Multiplier Configuration

The following figure shows the IP diagram for this configuration:

뿣 IP Diagram 🔀		8 P E	3
	i_din_a(8:0) i_din_b(8:0) i_load i_load i_loreg_a_ce i_in_reg_b_ce i_in_reg_istn i_pipeline_rstn		

Figure 28 • 9 × 9 Signed Integer RLB Multiplier I/O

Chapter 13 : Floating Point Adder

Description

The Floating Point Adder soft IP core configures a two-input floating point adder with optional result accumulation. The adder instantiates the ACX_FP_ADD module shown in the *Speedster7t Component Library User Guide* (UG086).

Configuration

The floating point adder soft IP configurator has the following options:

Speedster7t Overview The ACX_FP_ADD module	FP Adder computes A+B, with optional
✓ Target Device	AC7t1500 ~
✓ Floating-point width	16 ~
✓ Floating-point exponent size	5 ~
 ✓ □ Subtract Mode ✓ □ Enable Accumulation ✓ □ Enable Input Registers 	
✓ \square Hide ce and rstn of Input	Registers
✓ Pipeline Registers	0 ~
✓ ☐ Hide ce and rstn of Pipelir	ne Registers
?	Generate << Back Next >>

Figure 29 • Floating Point Adder Soft IP Configurator

Table 23 · Configuration Options				
Name	Default	Range		

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Floating-point width	16	16, 24	Width of floating point number. Supports fp24, fp16, and fp16e8.
Floating-point exponent size	5	5, 8	Size of floating-point exponent. For floating point width of 16, the exponent size can be either 5(fp16) or 8(fp16e8). For floating point width of 24, the exponent size must be 8.
Subtract Mode	0	0, 1	0 - compute i_din_a + i_din_b . 1 - compute i_din_a - i_din_b .
Enable Accumulation	0	0,1	 0 - no accumulation: dout = i_din_a ± i_din_b (determined by the subtract parameter). 1 - accumulation: dout is the accumulated value. The start of accumulation is signaled by asserting i_load = 1. When load is high, the previous value of the internal accumulation register is ignored, and the new value is stored. The output is then set to this value. When load is low, the old and new values are added. The output is this sum which is stored. The load signal is internally pipelined to have the same latency as the input. If a set of inputs start a new accumulation, then load must be high when those inputs are presented. If accumulation is not enabled, then the load signal is ignored.
Enable Input Registers	0	0,1	 0 - no input registers. 1 - i_din_a and i_din_b are registered. The input registers are controlled by the i_in_reg_a_ce, i_in_reg_b_ce, and i_in_reg_rstn inputs. Enabling the input registers adds one cycle of latency.

Name	Default	Range	Description
Hide ce and rstn of Input registers	0	0,1	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).
Pipeline Registers	0	0-5	The number of pipeline registers, not counting the input register. The total latency is pipeline_regs + in_reg_enable .
Hide ce and rstn of Pipeline Registers	0	0,1	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).

Ports

Table 24 • Floating Point Adder GUI-Generated Pin Descriptions

Name	Direction	Description
i_clk	Input	Clock input. Used by the (optional) registers and accumulator.
i_din_a[(fp_size-1):0]	Input	'A' data input to adder.
i_din_b[(fp_size-1):0]	Input	'B' data input to adder.
i_in_reg_a_ce	Input	If "Enable Input Registers" is checked, i_in_reg_a_ce is the clock enable for i_din_a . If "Enable Input Registers" is not enabled, i_in_reg_a_ce does not exist.
i_in_reg_b_ce	Input	If "Enable Input Registers" is checked, i_in_reg_b_ce is the clock enable for i_din_b . If "Enable Input Registers" is not enabled, i_in_reg_b_ce does not exist.
i_in_reg_rstn	Input	If "Enable Input Registers" is checked, i_in_reg_rstn is the synchronous active-low reset for input registers. If "Enable Input Registers" is not enabled, i_in_reg_rstn does not exist.
i_pipeline_ce	Input	 If "Pipeline registers" are selected (greater than 1), i_pipeline_ce is the clock enable for pipeline and accumulator registers. If "Pipeline registers" are not selected (0), i_pipeline_ce does not exist.

Name	Direction	Description
i_pipeline_rstn	Input	If "Pipeline registers" are selected (greater than 1), i_pipeline_rstn is the synchronous, active-low reset for pipeline and accumulator registers. If "Pipeline registers" are not selected (0), i_pipeline_rstn doe s not exist.
i_load	Input	If "Accumulation" is enabled, i_load resets the accumulator to i_din_a \pm i_din_b, ignoring the previous value. This signal is internally pipelined to have the same latency as i_din_a \pm i_din_b. If "Accumulation" is not enabled, i_load does not exist.
o_dout[(fp_size-1):0]	Output	Result of addition and accumulation.
o_status[1:0]	Output	Error status of o_dout : 2'b00 - normal. 2'b01 - result is ± 0.0. 2'b10 - Result is ± infinity. 2'b11 - last operation had underflow, the result is ± 0.0.

Files

The configurator produces a .v (verilog) or a .vhd (VHDL) wrapper file based on the chosen RTL model which must be instantiated in the user design. By default, the file is written to the current working directory of the project, but a different location can be chosen by clicking **Browse...** as shown in the following figure.

⊘ Generate IP Design Files	_	- C) X	
Speedster7t FP Adder Design File Generation				
The following design files can be generated for the Speedster7t FP Adder				
RTL Models Image: Constraint of the second				
✓ ./fp_adder_1.v			Browse	
VHDL Model				
✓ _/fp_adder_1.vhd			Browse	
Relative File Paths ✓ Output File paths Relative To ACXIP File			~	
0	Finish	C	ancel	

Figure 30 • FP Adder Design File Generation
The following example shows the floating point adder configured for 16-bit floating point inputs with input registers, accumulation, two pipeline stages, and 16-bit output:

Speedster7t Overview The ACX_FP_ADD module	FP Adder computes A+B, with c	ptional		
✓ Target Device	AC7t1500			~
✓ Floating-point width	16			~
✓ Floating-point exponent size	5			~
✓				
✓ 🗹 Enable Accumulation				
🛩 🗹 Enable Input Registers				
✓				
✓ Pipeline Registers	2			\sim
✓ ☐ Hide ce and rstn of Pipelin	e Registers			
?		Generate	<< Back	Next >>

Figure 31 • Two Pipeline Stage Floating Point Adder Configuration

Figure 32 • Two Pipeline Stage Floating Point Adder IP Diagram

Chapter 14 : Floating Point Multiplier

Description

The Floating Point Multiplier soft IP core configures a two-input floating point multiplier with optional result accumulation. The multiplier instantiates the ACX_FP_MULT module shown in the *Speedster7t Component Library User Guide* (UG086).

Configuration

The Floating Point Multiplier soft IP configurator has the following options:

S	Speedster7t FP Multiplier Overview The ACX_FP_MULT module computes A×B, with optional accumulation.				
~	Target Device	AC7t1500 ~			
~	Floating-point width	16 ~			
~	Floating-point exponent size	5 ~			
~	Enable Accumulation				
~	🗹 Enable Input Registers				
~	Hide ce and rstn of Input R	legisters			
~	Pipeline Registers	0 ~			
~	Hide ce and rstn of Pipelin	e Registers			
?)	Generate << Back Next >>			

Figure 33 • Floating Point Multiplier Soft IP Configurator

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Floating-point width	16	16, 24	Width of floating point number. Supports fp24, fp16, and fp16e8.
Floating point exponent size	5	5, 8	Size of floating-point exponent. For floating point width of 16, the exponent size can either be 5(fp16) or 8(fp16e8). For floating point width of 24, the exponent size must be 8.
Enable Accumulation	0	0,1	 0 - no accumulation: dout = i_din_a × i_din_b. 1 - accumulation: dout is the accumulated value. The start of accumulation is signaled by asserting i_load = 1. When load is high, the previous value of the internal accumulation register is ignored and the new value is stored. The output is then set to this value. When load is low, the old and new values are added, and the sum is stored. The output is dout = (i_din_a × i_din_b) + dout_prev. The load signal is internally pipelined to have the same latency as the input. If a set of inputs start a new accumulation, load must be high when those inputs are presented. If accumulation is not enabled, the load signal is ignored.
Enable Input Registers	0	0,1	 0 - no input registers. 1 - i_din_a and i_din_b are registered. The input registers are controlled by the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs. Enabling the input registers adds one cycle of latency.
Hide ce and rstn of Input registers	0	0,1	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).

Table 25 Configuration Options

Name	Default	Range	Description
Pipeline registers	0	0-4	The number of pipeline registers, not counting the input register. The total latency is pipeline_regs + in_reg_enable .
Hide ce and rstn of Pipeline registers	0	0,1	If selected, i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).

Ports

Table 26 • Floating Point Multiplier GUI-Generated Pin Descriptions

Name	Direction	Description
i_clk	Input	Clock input, used for the (optional) registers and accumulator.
i_din_a[(fp_size-1):0]	Input	'A' data input to multiplier.
i_din_b[(fp_size-1):0]	Input	'B' data input to multiplier.
i_in_reg_a_ce	Input	If "Enable Input Registers" is enabled, i_in_reg_a_ce is the clock enable for i_din_a . If "Enable Input Registers" is not enabled, i_in_reg_a_ce does not exist.
i_in_reg_b_ce	Input	If "Enable Input Registers" is enabled, i_in_reg_b_ce is the clock enable for i_din_b . If "Enable Input Registers" is not enabled, i_in_reg_b_ce does not exist.
i_in_reg_rstn	Input	If "Enable Input Registers" is enabled, i_in_reg_rstn is the synchronous active-low reset for input registers. If "Enable Input Registers" is not enabled, i_in_reg_rstn doesn't exist.
i_pipeline_ce	Input	If "Pipeline registers" is selected (greater than 1), i_pipeline_ce is the clock enable for pipeline and the accumulator registers. If "Pipeline registers" is not selected (0), i_pipeline_ce does not exist.

Name	Direction	Description
i_pipeline_rstn	Input	If "Pipeline registers" is selected (greater than 1), i_pipeline_rstn is the synchronous active-low reset for pipeline and accumulator registers. If "Pipeline registers" is not selected (0), i_pipeline_rstn does not exist.
i_load	Input	If "Accumulation" is enabled, i_load resets the accumulator to i_din_a × i_din_b , ignoring the previous value. This signal is internally pipelined to have the same latency as i_din_a × i_din_b . If "Accumulation" is not enabled, i_load does not exist.
o_dout[(fp_size=1):0]	Output	Result of multiplication and optional accumulation.
o_status[1:0]	Output	Error status of o_dout : 2'b00 - normal. 2'b01 - result is ± 0.0. 2'b10 - result is ± infinity. 2'b11 - last operation had underflow. The result is ± 0.0.

Files

The configurator produces a .v (verilog) or .vhd (VHDL) wrapper file based on the chosen RTL model which must be instantiated in the the user design. By default, the file is written to the current working directory of the project, but a different location can be chosen by clicking **Browse...** as shown in the following figure.

Generate IP Design Files — [
Speedster7t FP Multiplier Design File Generation				
The following design files can be generated for the Speedster7t FP Multiplier				
RTL Models				
🖋 🗹 Verilog Model				
✓ ./fp_multiplier_2.v	Brow	se		
✓ UHDL Model				
✓ //fp_multiplier_2.vhd	Brow	se		
Relative File Paths				
✓ Output File paths Relative To ACXIP File		~		
⑦ Finish	Cance	ł		

Figure 34 • FP Multiplier Design File Generation

The following example shows the floating point multiplication configured for 24-bit floating point inputs with input registers, accumulation, two pipeline stages, and 24-bit output:

Speedster7t Overview The ACX_FP_MULT module	FP Multiplier		
✓ Target Device	AC7t1500		~
V Floating-point width	24		~
V Floating-point exponent size	8		~
🖋 🗹 Enable Accumulation			
🖋 🗹 Enable Input Registers			
✓ ☐ Hide ce and rstn of Input F	egisters		
V Pipeline Registers	2		~
✓ ☐ Hide ce and rstn of Pipelin	e Registers		
?	Generate	< Back	Vext >>

Figure 35 • Two Pipeline Stage Floating Point Multiplier Configuration

Figure 36 • Two Pipeline Stage Floating Point Multiplier IP Diagram

Chapter 15 : Floating Point Multiplier Plus

Description

The Floating Point Multiplier Plus soft IP core configures a two input multiplier with a third adder (A × B + C), with optional result accumulation. The multiplier instantiates the ACX_FP_MULT_PLUS module shown in the *Speedster7t Component Library User Guide* (UG086).

Configuration

The Floating Point Multiplier Plus soft IP configurator has the following options:

Speedster7t Overview The ACX_FP_MULT_PLUS	FP Multiplier Plus module computes A×B+C, with optional			
✓ Target Device	AC7t1500 ~			
Floating-point width	16 ~			
V Floating-point exponent size	5 ~			
✓ □ Subtract Mode				
✓ □Enable Accumulation				
✓ □ Enable Input Registers				
✔	egisters			
Pipeline Registers	0 ~			
✓ ☐ Hide ce and rstn of Pipeline Registers				
?	Generate << Back Next >>			

Figure 37 • Floating Point Multiplier Plus Soft IP Configurator

Table 27 • Configuration Options

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Floating Point width	16	16, 24	Width of floating point number. Supports fp24, fp16, and fp16e8.
Floating point exponent size	5	5, 8	Size of floating-point exponent. For floating point width of 16, the exponent size can be either 5 (fp16) or 8 (fp16e8). For floating point width of 24, the exponent size must be 8.
Subtract Mode	0	0, 1	0 - compute i_din_a × i_din_b + i_din_c . 1 - compute i_din_a × i_din_b - i_din_c .
Enable Accumulation	0	0,1	0 - no accumulation: dout = $i_din_a \times i_din_b \pm i_din_c$ (determined by the subtract parameter). 1 - accumulation: dout is the accumulated value. The start of accumulation is signaled by asserting $i_load = 1$. When load is high, the previous value of the internal accumulation register is ignored and the new value is stored. The output is set to this value. When load is low, the old and new values are added, and the sum is stored. The output is dout = ($i_din_a \times i_din_b \pm i_din_c$) + dout_prev. The load signal is internally pipelined to have the same latency as the input. If a set of inputs starts a new accumulation, then load must be high when those inputs are presented. If accumulation is not enabled, then the load signal is ignored.
Enable Input Registers	0	0,1	 0 - no input registers. 1 - i_din_a, i_din_b, and i_din_c are registered. The input registers are controlled by the i_in_reg_a_ce, i_in_reg_b_ce, i_in_reg_c_ce, and i_in_reg_rstn inputs. Enabling the input registers adds one cycle of latency.

Name	Default	Range	Description
Hide ce and rstn of input registers	0	0,1	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , i_in_reg_c_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).
Pipeline registers	0	0-5	The number of pipeline registers, not counting the input register. The total latency is pipeline_regs + in_reg_enable .
Hide ce and rstn of pipeline registers	0	0,1	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).

Ports

Table 28 • Floating Point Multiplier Plus GUI-Generated Pin Descriptions

Name	Direction	Description
i_clk	Input	Clock input. All inputs are registered on rising edge of i_clk . All outputs are synchronous to i_clk .
i_din_a[(fp_size-1):0]	Input	'A' data input to multiplier.
i_din_b[(fp_size-1):0]	Input	'B' data input to multiplier.
i_din_c[(fp_size-1):0]	Input	'C' data input direct to adder.
i_in_reg_a_ce	Input	If "Enable Input Registers" is enabled, i_in_reg_a_ce is the clock enable for i_din_a . If "Enable Input Registers" is not enabled, i_in_reg_a_ce does not exist.
i_in_reg_b_ce	Input	If "Enable Input Registers" is enabled, i_in_reg_b_ce is the clock enable for i_din_b . If "Enable Input Registers" is not enabled, i_in_reg_b_ce does not exist.
i_in_reg_c_ce	Input	If "Enable Input Registers" is enabled, i_in_reg_c_ce is the clock enable for i_din_c . If "Enable Input Registers" is not enabled, i_in_reg_c_ce does not exist.
i_in_reg_rstn	Input	If "Enable Input Registers" is enabled, i_in_reg_rstn is the synchronous active-low reset for the input registers. If "Enable Input Registers" is not enabled, i_in_reg_rstn does not exist.

Name	Direction	Description
i_pipeline_ce	Input	If "Pipeline registers" is selected (greater than 1), i_pipeline_ce is the clock enable for the pipeline and accumulator registers. If "Pipeline registers" is not selected (0), i_pipeline_ce does not exist.
i_pipeline_rstn	Input	If "Pipeline registers" is selected (greater than 1), i_pipeline_rstn is the synchronous active-low reset for the pipeline and accumulator registers. If "Pipeline registers" is not selected (0), i_pipeline_rstn does not exist.
i_load	Input	If "Accumulation" is enabled, i_load is the accumulator to i_din_a \times i_din_b \pm i_din_c , ignoring the previous value. This signal is internally pipelined to have the same latency as i_din_a \times i_din_b \pm i_din_c . If "Accumulation" is not enabled, i_load does not exist.
o_dout[(fp_size-1):0]	Output	Result of multiplication and accumulation.
o_status[1:0]	Output	Error status of o_dout. 2'b00 - normal. 2'b01 - result is ± 0.0. 2'b10 - result is ± infinity. 2'b11 - last operation had underflow. The result is ± 0.0.

Files

The configurator produces a .v (verilog) or a .vhd (VHDL) wrapper file based on chosen RTL model which must be instantiated in the user design. By default, the file is written to the current working directory of the project, but a different location can be chosen by clicking **Browse...** as shown in the following figure.

Ogenerate IP Design Files	—		×
Speedster7t FP Multiplier Plus Design File Generation			
The following design files can be generated for the Speedster7t FP Multiplier Plus			
RTL Models			
🖋 🗹 Verilog Model			
✓ ./fp_multiplier_plus_1.v		Brow	se
✓ □ VHDL Model			
✓ ./fp_multiplier_plus_1.vhd		Brow	se
Relative File Paths			
Voutput File paths Relative To ACXIP File			~
? Finish	ı	Cance	:I

Figure 38 • Floating Point Multiplier Plus Design File Generation

The following example shows the floating point multiplier plus configured for 16-bit floating point inputs in subtract mode with input registers, accumulation, four pipeline stages, and 16-bit output:

🕸 *fp_multip	lier_plus_1.acxip 🛛				
Spec Overv The AC	edster7t iew X_FP_MULT_PLUS	FP Multiplier	Plus th optional		
🖌 Target [Device	AC7t1500			~
🖌 Floating	g-point width	16			~
🖌 Floating	g-point exponent size	5			~
🖌 🗹 Subt	tract Mode				
🖌 🗹 Enat	ble Accumulation				
🖌 🗹 Enat	ole Input Registers				
🖌 🗌 Hide	e ce and rstn of Input R	egisters			
🛷 Pipeline	e Registers	4			~
🖌 🗌 Hide	e ce and rstn of Pipelin	e Registers			
?			Generate	<< Back	Next >>

Figure 39 • Four Pipeline Stage Floating Point Multiplier Plus Configuration

Figure 40 • Four Pipeline Stage Floating Point Multiplier Plus IP Diagram

Chapter 16 : Floating Point Parallel Multiplier

Description

The Floating Point Parallel Multiplier soft ip core configures two parallel floating point multipliers along with optional result accumulation. The multiplier instantiates the ACX_FP_MULT_2X module shown in the *Speedster7t Component Library User Guide* (UG086).

Configuration

The Floating Point parallel multiplier soft IP configurator has the following options:

Speedster7t Overview The ACX_FP_MULT_2X mo ACX_MLP72 to compute tw	FP Para dule is similar to o products in pa	ACX_FP_MULT, but rallel, with optional ac	plier uses a single cumulations.
✓ Target Device	AC7t1500		~
Floating-point width	16		~
V Floating-point exponent size	5		~
✓ □ Enable Accumulation			
🖋 🗌 Enable Input Registers			
✓ ☐ Hide ce and rstn of Input I	Registers		
V Pipeline Registers	0		~
✓ ☐ Hide ce and rstn of Pipelir	e Registers		
?	Generate	<< Back	Next >>

Figure 41 • Floating Point Parallel Multiplier Soft IP Configurator

Target Device A	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Floating-point width	16	16, 24	Width of floating point number. Supports fp24, fp16, and fp16e8.
Floating point exponent size	5	5, 8	Size of floating-point exponent. For floating point width of 16, the exponent size can either be 5(fp16) or 8(fp16e8). For floating point width of 24, the exponent size must be 8.
Enable Accumulation	0	0, 1	 0 - no accumulation: dout_ab = i_din_a × i_din_b, dout_cd = i_din_c × i_din_d. 1 - accumulation: dout_ab and dout_cd are the accumulated values. The start of accumulation is signaled by asserting i_load_ab = 1 or i_load_cd = 1, respectively. When load is high, the previous value of the internal accumulation register is ignored, and the new value is stored. The output is set to this value. When load is low, the old and new values are added, and the sum is stored. The output is dout_ab = (i_din_a × i_din_b) + dout_ab_prev, dout_cd = (i_din_c × i_din_d) + dout_cd_prev. The load signal is internally pipelined to have the same latency as the input. If a set of inputs starts a new accumulation, then load must be high when those inputs are presented. If accumulation is not enabled, the load si

Table 29 · Configuration Options

Name	Default	Range	Description
Enable Input Registers	0	0,1	 0 - no input registers. 1 - i_din_a, i_din_b, i_din_c and i_din_d are registered. The input registers are controlled by the i_in_reg_a_ce, iin_reg_b_ce, i_in_reg_c_ce, i_in_reg_d_ce and i_in_re g_rstn inputs. Enabling the input registers adds one cycle of latency.
Hide ce and rstn of Input registers	0	0,1	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , i_in_reg_c_ce , i_in_reg_d_ce and i_in_reg_rstn inputs are automatically tied high (1'b1).
Pipeline registers	0	0-4	The number of pipeline registers, not counting the input register. The total latency is pipeline_regs + in_reg_enable .
Hide ce and rstn of Pipeline registers	0	0,1	If selected, the i_pipeline_ce , i_pipeline_rstn inputs are automatically tied high (1'b1).

Ports

Table 30 • Floating Point Parallel Multiplier GUI Generated Pin Descriptions

Name	Direction	Description
i_clk	Input	Clock input, used for the (optional) registers and accumulator.
i_din_a[(fp_size - 1):0]	Input	'A' data input to AB multiplier.
i_din_b[(fp_size - 1):0]	Input	'B' data input to AB multiplier.
i_din_c[(fp_size - 1):0]	Input	'C' data input to CD multiplier.
i_din_d[(fp_size - 1):0]	Input	'D' data input to CD multiplier.
i_in_reg_a_ce	Input	If Enable Input Registers is enabled, i_in_reg_a_ce is the clock enable for i_din_a . If Enable Input Registers is not enabled, i_in_reg_a_ce does not exist.
i_in_reg_b_ce	Input	If Enable Input Registers is enabled, i_in_reg_b_ce is the clock enable for i_din_b . If Enable Input Registers is not enabled, i_in_reg_b_ce does not exist.
i_in_reg_c_ce	Input	If Enable Input Registers is enabled, i_in_reg_c_ce is the clock enable for i_din_c . If Enable Input Registers is not enabled, i_in_reg_c_ce does not exist.

Name	Direction	Description
i_in_reg_d_ce	Input	If Enable Input Registers is enabled, i_in_reg_d_ce is the clock enable for i_din_c . If Enable Input Registers is not enabled, i_in_reg_d_ce does not exist.
i_in_reg_rstn	Input	If Enable Input Registers is enabled, i_in_reg_rstn is the synchronous active-low reset for input registers. If Enable Input Registers is not enabled, i_in_reg_rstn does not exist.
i_pipeline_ce	Input	If Pipeline registers is selected (greater than 1), i_pipeline_ce is the clock enable for the pipeline and accumulator registers. If Pipeline registers is not selected (0), i_pipeline_ce does not exist
i_pipeline_rstn	Input	If Pipeline registers is selected (greater than 1), i_pipeline_rstn is the synchronous active-low reset for the pipeline and accumulator registers. If Pipeline registers is not selected (0), i_pipeline_rstn does not exist.
i_load_ab	Input	If Accumulation is enabled, i_load resets the AB accumulator to i_din_a × i_din_b , ignoring the previous value. If Accumulation is not enabled, i_load does not exist. This signal is internally pipelined to have the same latency as i_din_a × i_din_b .
i_load_cd	Input	If Accumulation is enabled, i_load resets the CD accumulator to i_din_c \times i_din_d, ignoring the previous value. If Accumulation is not enabled, i_load does not exist. This signal is internally pipelined to have the same latency as i_din_c \times i_din_d.

UG103
0 0 1 0 0

Name	Direction	Description			
o_dout_ab[(fp_size - 1):0]	Output	Result of A × B multiplication and accumulation.			
o_dout_cd[(fp_size - 1):0]	Output	Result of C × D multiplication and accumulation.			
o_status_ab[1:0]	Output	Error status of o_dout_ab. 2'b00 - normal. 2'b01 - result is ± 0.0. 2'b10 - result is ± infinity. 2'b11 - last operation had underflow. The result is ± 0.0.			
o_status_cd[1:0]	Output	Error status of o_dout_cd. 2'b00 - normal. 2'b01 - result is ± 0.0. 2'b10 - result is ± infinity. 2'b11 - last operation had underflow. The result is ± 0.0.			

Files

The configurator produces a .v (verilog) or a .vhd (VHDL) wrapper file based on the chosen RTL model which must be instantiated in the user design. By default, the file is written to the current working directory of the project, but a different location can be chosen by clicking **Browse...** as shown in the following figure:

🧿 Generate IP Design Files		×	
Speedster7t FP Parallel Multiplier Design File Generation			
The following design files can be generated for the Speedster7t FP Parallel Multiplier			
RTL Models			
✓ _/fp_parallel_multiplier_1.v		Brow	se
VHDL Model			
✓ ./fp_parallel_multiplier_1.vhd		Brow	se
Relative File Paths			
V Output File paths Relative To ACXIP File			~
⑦ Finish	1	Cance	2l

Figure 42 \cdot FP Parallel Multiplier Design File Generation

The following example shows the floating point parallel multiplier configured for 16-bit floating point inputs with input registers, accumulation, two pipeline stages, and 16-bit output:

Speedster7t FP Parallel Multiplier Overview The ACX_FP_MULT_2X module is similar to ACX_FP_MULT, but uses a single ACX_MLP72 to compute two products in parallel, with optional accumulations.					
V Target Device	AC7t1500		~		
V Floating-point width	16		~		
V Floating-point exponent s	size 5 ~				
V Enable Accumulation					
🖋 🗹 Enable Input Registers	✓ Enable Input Registers				
✓ ☐ Hide ce and rstn of Input Registers					
V Pipeline Registers	3 ~				
✓ ☐ Hide ce and rstn of Pipeline Registers					
?	Generate	<< Back	Next >>		

Figure 43 • Three Pipeline Stage Floating Point Parallel Multiplier Configuration

Figure 44 • Three Pipeline Stage Floating Point Parallel Multiplier IP Diagram

Chapter 17 : Floating Point Sum of Products

Description

The Floating Point Sum of Products soft IP core configures two floating point multipliers and an adder to provide the addition of two products ((A × B) \pm (C × D)) along with optional result accumulation. The floating point sum of products instantiates the ACX_FP_MULT_ADD module shown in the *Speedster7t Component Library User Guide* (UG086).

Configuration

The Floating Point Sum of Products soft IP configurator has the following options:

Speedster7t FP Sum of Products				
Overview The ACX_FP_MULT_ADD n	nodule computes (A×B) \pm (C×D), with optional			
✓ Target Device	AC7t1500 ~			
V Floating-point width	16 ~			
V Floating-point exponent size	5 ~			
✓ □ Subtract Mode				
✓ □ Enable Accumulation				
✓ □ Enable Input Registers				
✔				
V Pipeline Registers	0 ~			
✓ ☐ Hide ce and rstn of Pipelin	ne Registers			
? Ge	enerate << Back Next >>			

Figure 45 • Floating Point Sum of Products Soft IP Configurator

86

Table 31 · Configuration Options

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Floating Point width	16	16, 24	Width of floating point number. Supports fp24, fp16, and fp16e8.
Floating point exponent size	5	5, 8	Size of floating-point exponent. For floating point width of 16, the exponent size can be either 5(fp16) or 8(fp16e8). For floating point width of 24, the exponent size must be 8.
Subtract Mode	0	0, 1	$\begin{array}{l} 0 - \text{compute} & (i_din_a \times i_din_b) + (i_din_c \times i_din_d) \\ 1 - \text{compute} & (i_din_a \times i_din_b) - (i_din_c \times i_din_d) \end{array}. \end{array}$
Enable Accumulation	0	0, 1	 0 - no accumulation: dout = (i_din_a × i_din_b) ± (i_din_c × i_din_d) (determined by subtract parameter). 1 - accumulation: dout is the accumulated value. The start of accumulation is signaled by asserting i_load = 1. When load is high, the previous value of the internal accumulation register is ignored, and the new value is stored. The output is set to this value. When load is low, the old and new values are added and the sum is stored. The output is dout = (i_din_a × i_din_b) ± (i_din_c × i_din_d) + dout_prev . The load signal is internally pipelined to have the same latency as the input. If a set of inputs starts a new accumulation, load must be high when those inputs are presented. If accumulation is not enabled, the load signal is ignored.

Name	Default	Range	Description
Enable Input Registers	0	0, 1	 0 - no input registers. 1 - i_din_a, i_din_b, i_din_c and i_din_d are registered. The input registers are controlled by the i_in_reg_ac_ce, i_in_reg_bd_ce and i_in_reg_rstn inputs. Enabling the input registers adds one cycle of latency.
Hide ce and rstn of Input registers	0	0,1	If selected, the i_in_reg_a_ce , i_in_reg_b_ce , and i_in_reg_rstn inputs are automatically tied high (1'b1).
Pipeline registers	0	0-5	The number of pipeline registers, not counting the input register. The total latency is pipeline_regs + in_reg_enable .
Hide ce and rstn of Pipeline registers	0	0,1	If selected, the i_pipeline_ce and i_pipeline_rstn inputs are automatically tied high (1'b1).

Ports

Table 32 • Floating Point Sum of Products GUI-Generated Pin Descriptions

Name	Direction	Description
i_clk	Input	Clock input, used for the (optional) registers and accumulator.
i_din_a[(fp_size - 1):0]	Input	'A' data input to AB multiplier.
i_din_b[(fp_size - 1):0]	Input	'B' data input to AB multiplier.
i_din_c[(fp_size - 1):0]	Input	'C' data input to CD multiplier.
i_din_d[(fp_size - 1):0]	Input	'D' data input to CD multiplier.
i_in_reg_ac_ce	Input	If Enable Input Registers is enabled, i_in_reg_ac_ce is the clock enable for i_din_a and i_din_c. If Enable Input Registers is not enabled, i_in_reg_ac_ce does not exist.
i_in_reg_bd_ce	Input	If Enable Input Registers is enabled, i_in_reg_bd_ce is the clock enable for i_din_b and i_din_d . If Enable Input Registers is not enabled, i_in_reg_bd_ce does not exist.
i_in_reg_rstn	Input	If Enable Input Registers is enabled, i_in_reg_rstn is the synchronous active-low reset for input registers. If Enable Input Registers is not enabled, i_in_reg_rstn does not exist.
i_pipeline_ce	Input	If Pipeline registers is enabled (greater than 1), i_pipeline_ce is the clock enable for the pipeline and accumulator registers. If Pipeline registers is not enabled (0), i_pipeline_ce does not exist.

Name	Direction	Description
i_pipeline_rstn	Input	If Pipeline registers is enabled (greater than 1), i_pipeline_rstn is the synchronous active-low reset for the pipeline and accumulator registers. If Pipeline registers is not enabled (0) i_pipeline_rstn does not exist.
i_load	Input	If Accumulation is enabled, i_load resets the accumulator to: (i_din_a × i_din_b) \pm (i_din_c × i_din_d), ignoring the previous value. This signal is internally pipelined to have the same latency as: (i_din_a × i_din_b) \pm (i_din_c × i_din_d). If Accumulation is not enabled, i_load does not exist.
o_dout[(fp_size - 1):0]	Output	Result of multiplication and accumulation.
o_status[1:0]	Output	Error status of o_dout. 2'b00 - normal. 2'b01 - result is ± 0.0. 2'b10 - result is ± infinity 2'b11 - last operation had underflow. The result is ± 0.0.

Files

The configurator produces a .v (verilog) or .vhd (VHDL) wrapper file based on the chosen RTL model which must be instantiated in the user design. By default, the file is written to the current working directory of the project, but a different location can be chosen by clicking **Browse...** as shown in the following figure:

O Generate IP Design Files		×
Speedster7t FP Sum of Products Design File Generation		
The following design files can be generated for the Speedster7t FP Sum of Products		
RTL Models		
Verilog Model		
✓ ./fp_sum_of_products_1.v	Browse	e
VHDL Model		
./fp_sum_of_products_1.vhd	Browse	e
Relative File Paths		
✓ Output File paths Relative To ACXIP File		~
? Finish	Cancel	

Figure 46 • FP Sum of Products Design File Generation

The following example shows the floating point sum of products configured for 16-bit floating point inputs with input registers, accumulation, five pipeline stages, and 16-bit output:

Speedster7t FP Sum of Products Overview The ACX_FP_MULT_ADD module computes (A×B) ± (C×D), with optional				
✓ Target Device	[AC7t1500	~	
V Floating-point widt	h [16	~	
V Floating-point expo	nent size	5	~	
✓ □ Subtract Mode				
✓ Enable Accumulation				
🖋 🗹 Enable Input Registers				
✓ ☐ Hide ce and rstn of Input Registers				
V Pipeline Registers	[5	\sim	
✓ ☐ Hide ce and rstn of Pipeline Registers				
?	Ger	enerate << Back Next >>		

Figure 47 • Five Pipeline Stage Floating Point Sum of Products Configuration

Figure 48 • Five Pipeline Stage Floating Point Sum of Products IP Diagram

Chapter 18 : Shift Register

Description

The Shift Register soft IP core implements a shift register using the fabric flip-flops. The soft IP core can be configured to support varying widths and depths of shift functions. The generated shift register includes a clock enable and reset.

Configuration

The shift register soft IP configurator has the following options:

Speeds Overview	ter7t Shift Register
This page con the Shift Regis	tains the top-level, global properties that govern the structure and base configuration of
✓ Target Device	AC7t1500 ~
🛷 Data Width	10
✓ Number of Taps	1
?	Generate << Back Next >>

Figure 49 • Shift Register Configurator

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Data Width	10	1 to 65,536	Width of the input and output data bus.
Number of Taps	1	1 to 256	Number of taps in the shift register. All intermediate taps are output from the soft IP.

Table 33 · Configuration Options

(i) Note

The number of flip-flops used is calculated by:

$\textbf{Data Width} \times \textbf{Number of Taps}$

For very wide or deep shift registers, a large number of flip-flops may be used which might result in suboptimal timing closure. In these circumstances, it is recommended to use a BRAM or LRAM to implement the shift register function. However, it should be noted that a BRAM or LRAM implemented shift register only provides access to the end tap of the shift register, and not the intermediate stages.

Name	Direction	Description
clk	Input	Clock input to each flip-flop.
din [(Data Width - 1):0]	Input	Input data bus.
en	Input	Clock enable: en = 1'b0 : Shift register is stopped. No data is input. Current output is maintained. en = 1'b1 : Shift register transfers data from tap to tap on each rising edge of clk.
[(Number of Taps – 1):0] dout [(Data Width – 1):0]	Output	Output data bus and intermediate taps. The final tap of the shift register (the input delayed by Number of Taps clock cycles) is output on [(Number of Taps – 1):0] dout.

Table 34 • Ports

The following example shows the shift register configured for 72 bits wide, by 5 stages deep:

Speedster7t Shift Register							
This page contains the top-level, global properties that govern the structure and base configuration of the Shift Register wrapper.							
✓ Target Device	AC7t1500 ~						
🛷 Data Width	72						
🖋 Number of Taps	5						
?	Generate << Back						

Figure 50 • 72 Bit, 5 Stage Shift Register Configuration

Figure 51 • 72 bit, 5 stage Shift Register I/O

Chapter 19 : Speedster7t AXI Initiator NAP

Description

The AXI initiator NAP soft IP core implements a 2D NoC access point (NAP) that connects to user logic in the fabric, which responds to read and write AXI transactions from the 2D NoC. The soft IP configurator allows choosing the NAP location and setting the south-to-north arbitration weight for the NAP. The AXI initiator NAP is comprised of the ACX_NAP_AXI_MASTER primitive. More details on the primitive can be found in the ACX_NAP_AXI_MASTER page of the *Speedster7t Component Library User Guide* (UG086).

Configuration

The AXI Initiator NAP soft IP configurator has the following options:

Speedster7t AXI Initiator NAP Overview This page contains the top-level, global properties that govern the structure and base configuration of the AXI Initiator NAP wrapper.						
✓ Target Device	AC7t1500 ~					
🖋 Row	X ~					
🖋 Column	X ~					
Arbitration Sched	ule					
South-to-No	orth Arbitration Weight	1/2 ~				
South-to-No	rth Arbitration Schedule	000101010101010101010101010101				
?		Generate << Back Next >>				

Figure 52 • AXI Initiator NAP

Table 35	 Configuration 	Options
----------	-----------------------------------	---------

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
Row	Х	1 to 8	Set to match the row number location of the NAP.
Column	Х	1 to 10	Set to match the column number location of the NAP.
South-to- north arbitration weight	1/2	0, 1/2, 1/3, , 1/10, 1, custom	Sets the fraction of remaining bandwidth this NAP is guaranteed in the south-to-north direction. "Remaining bandwidth" is the bandwidth not guaranteed to the downstream NAPs on the same column.
South-to- north arbitration schedule	0001010101010101010101010101 0101	00000000000000000000000000000000000000	A 32-bit number that allows the specific setting of a custom arbitration schedule in the south-to-north direction, where "1" means this NAP gets priority and "0" means the downstream NAPs get priority. Only available when "custom" is chosen for the arbitration weight.
Files

The configuration settings shown in the previous table prompt the generation of an AXI initiator NAP design file in the selected location as shown in the following example:

O Generate IP Design Files			×
Speedster7t AXI Initiator NAP Design File Generation			
The following design files can be generated for the Speedster7t AXI Initiator NAP			
RTL Models			
🖋 🗹 Verilog Model			
✓ ./axi_initiator_nap_1.v		Brov	vse
VHDL Model			
✓ ./axi_initiator_nap_1.vhd		Brow	vse
Relative File Paths			
Voutput File paths Relative To Current Working Directory			~
⑦ <u>Einis</u>	h	Cano	el

Figure 53 • AXI Initiator NAP File Generation

Examples

The following is an example configuration of the AXI initiator NAP located in row 6, column 3, using an arbitration weight of 1/2:

Speeds Overview This page con structure and	tains the top-level, glot base configuration of th	Initiator NA pal properties that govern ne AXI Initiator NAP wrap	AP the per.	
✓ Target Device	AC7t1500			~
🖋 Row	6			~
🖋 Column	3			~
Arbitration Sched	ule			
South-to-No	orth Arbitration Weight	1/2		~
South-to-No	orth Arbitration Schedule	0001010101010101010101010101010101010101	0101010101	
?		Generate	<< Back	Next >>

Figure 54 • AXI Initiator NAP in Row 6, Column 3

Figure 55 • AXI Initiator NAP IP Diagram

Chapter 20 : Speedster7t AXI Responder NAP

Description

The AXI responder NAP soft IP core implements a 2D NoC access point (NAP) that connects to user logic in the fabric, which initiates read and write AXI transactions to the 2D NoC. The AXI responder NAP allows choosing the NAP location and setting the east-to-west and west-to-east arbitration weights for the NAP. This soft IP module is comprised of the ACX_NAP_AXI_SLAVE primitive. More details on the primitive can be found in the ACX_NAP_AXI_SLAVE page of the *Speedster7t Component Library User Guide* (UG086).

Configuration

The AXI responder NAP soft IP configuration GUI has the following options:

Speeds Overview This page con structure and	tains the top-level, g	I Responder NAP	
🖋 Target Device	AC7t1500		~
🖋 Row	X		~
✔ Column	X		~
Arbitration Sched	ule		
V East-to-West	t Arbitration Weight	1/2	~
🖌 East-to-West	Arbitration Schedule	0001010101010101010101010101010101	
✓ West-to-East	t Arbitration Weight	1/2	~
✔ West-to-East	t Arbitration Schedule	00010101010101010101010101010101	
?		Generate <<	Back Next >>

Figure 56 • AXI Responder NAP Configuration

Name	Default	Range	Description
Target Device	AC7r1500	All Speedster7t devices	Set to match the target device of the project.
Row	Х	1 to 8	Set to match the row number location of the NAP.
Column	Х	1 to 10	Set to match the column number location of the NAP.
East-to-west arbitration weight	1/2	0, 1/2, 1/3, , 1/10, 1, custom	Sets the fraction of remaining bandwidth this NAP is guaranteed in the east-to-west direction. "Remaining bandwidth" is the bandwidth not guaranteed to the downstream NAPs on the same row.
East-to-west arbitration schedule	00010101010101010101010101 0101	00000000000000000000000000000000000000	A 32-bit number that allows the specific setting of a custom arbitration schedule in the east-to-west direction, where "1" means this NAP gets priority and "0" means the downstream NAPs get priority. Only available when Custom is chosen for the arbitration weight.

Name	Default	Range	Description
West-to- east arbitration weight	1/2	0, 1/2, 1/3, , 1/10, 1, custom	Sets the fraction of remaining bandwidth this NAP is guaranteed in the west-to-east direction. "Remaining bandwidth" is the bandwidth not guaranteed to the downstream NAPs on the same row.
West-to- east arbitration schedule	00010101010101010101010101 0101	00000000000000000000000000000000000000	A 32-bit number that allows the specific setting of a custom arbitration schedule in the west-to-east direction, where "1" means this NAP gets priority and "0" means the downstream NAPs get priority. Only available when Custom is chosen for the arbitration weight.

Files

The configuration settings shown in the previous table prompt the generation of an AXI responder NAP design file in the selected location as shown in the following example:

Ø Generate IP Design Files			×
Speedster7t AXI Responder NAP Design File Generation			
The following design files can be generated for the Speedster7t AXI Responder NAP			
RTL Models			
🖋 🗹 Verilog Model			
✓ ./axi_responder_nap_1.v		Brov	vse
VHDL Model			
✓ ./axi_responder_nap_1.vhd		Brov	vse
Relative File Paths			
V Output File paths Relative To Current Working Directory			~
⑦ <u>E</u> inis	h	Canc	el

Figure 57 • AXI Responder NAP File Generation

Examples

An sample configuration of the AXI responder NAP located in row 8, column 2, using a 1/3 east-to-west and 1/4 west-to-east arbitration weight is shown in the following example:

Overview This page con structure and	tains the top-level, g base configuration of	I Responder NAP
✓ Target Device	AC7t1500	· · · · · · · · · · · · · · · · · · ·
V Row	8	· · · · · · · · · · · · · · · · · · ·
V Column	2	``````````````````````````````````````
Arbitration Sched	ule	
✔ East-to-Wes	t Arbitration Weight	1/3 ~
V East-to-Wes	t Arbitration Schedule	00001001001001001001001001001
✓ West-to-East	t Arbitration Weight	1/4 ~
West-to-Eas	t Arbitration Schedule	01000000100010001000100010001
?		Generate << Back Next >>

Figure 58 • AXI Responder NAP Configuration

The following figure shows the IP diagram for this configuration:

Chapter 21: Speedster7t Device Manager

Description

The ACX_DEVICE_MANAGER (ADM) component can provide automatic control of the device IP components such as GDDR6 and DDR4, where the hardened control is complex for typical production systems. The device manager contains a soft microcontroller unit (MCU), which is embedded in the FPGA core and performs the management functions. In addition, the device manager acts as a bridge between the JTAG interface and the 2D NoC, allowing access to CSR registers with Tcl commands. The ACX_DEVICE_MANAGER itself can also be queried via the JTAG interface, using commands in ACE. A block diagram of the ACX_DEVICE_MANAGER is shown in the following figure:

Figure 60 • ACX_DEVICE_MANAGER Block Diagram

The ACX_DEVICE_MANAGER operates in two phases: startup and background. In the startup phase, the device manager performs the necessary steps to configure an IP interface (currently only GDDR6). Many interfaces require some form of pre-calibration or link training. During the startup phase, communication to these interfaces is not possible. The user design must wait until the startup phase is complete before accessing the interface. The end of

the startup phase is indicated by an output status signal, o_status .

Following the startup phase, the device manager enters the background phase. In this phase, the device manager acts as bridge between the JTAG interface and the 2D NoC, and may perform periodic maintenance tasks such as temperature sensor monitoring, etc. The ACX_DEVICE_MANAGER contains an embedded NAP to communicate via the 2D NoC. The core of the ACX_DEVICE_MANAGER is a pre-programmed 32-bit MCU.

Starting with ACE 8.8, the ACX_DEVICE_MANAGER controls the startup and operation of the GDDR6 interface. Thus, any design that utilizes GDDR6 must also include an ACX_DEVICE_MANAGER instance. When the device manager instance is integrated into the GDDR6 user design, the GDDR PLL lock signals can drive the start of the device manager. While at the startup phase, the device manager feeds off of the bitstream in ACE that consists of the desired configuration for the GDDR IP. It is recommended that all user designs include the ACX_DEVICE_MANAGER to support periodic monitoring tasks such as the reading of the temperature sensor.

Configuration

The device manager soft IP configurator has the following options:

Speedster Overview This page contains structure and base	7t Device Manager		
 ✓ Target Device ✓ NAP Row 	AC7t1500		
 ✓ NAP Column ✓ □ Expose PC 	X IE_0 PERSTN input		•
 Expose PC ? 	IE_1 PERSTN input Generate	<< Back	Next >>

Figure 61 • Speedster7t Device Manager Soft IP Configuration

Name	Default	Range	Description
Target Device	AC7t1500	All Speedster7t devices	Set to match the target device of the project.
NAP Row ^{(1) (2)}	4'bx	1-8	Row coordinate for NAP.
NAP Column ⁽¹⁾	4'bx	1-10	Column coordinate for NAP.
Expose PCIE_0 PERSTN input ⁽³⁾	disabled	disabled/ enabled	If enabled, requires PCIE_0 PERSTN (from the PCIe connector) to be connected via GPIO or CLKIO input, to the exposed i_pcie_0_perstn pin.
Expose PCIE_1 PERSTN input ⁽³⁾	disabled	disabled/ enabled	If enabled, requires PCIE_1 PERSTN (from the PCIe connector) to be connected via GPIO or CLKIO input, to the exposed i_pcie_1_perstn pin.

Table 37 · Speedster7t Device Manager Configuration Options

	Name	Default	Range	Description
Table	e Notes			
1. T is tł	he ADM must h recommended he fact that the ncrypted.	nave the row a d that the row device manag	nd column param and column locat ger is encrypted. 7	neters set in the RTL. This differs from all other IP where it ion is set via the .pdc file. This requirement results from Thus, the path to the row and column parameters is also
2. F	or AC7t1500ES	0, the NAP_R	OW must be set f	rom rows 5–8.
3. F fu	or AC7t1500 us unctionality if e	sing PCle, it is enabled.	required to enable	e this signal. For AC7t1500ES0, there is no effect on

File Generation

The configuration settings in the previous table prompt the generation of a device manager template design file in the selected location as shown in the following example:

O Generate IP Design Files		×
Speedster7t Device Manager Design File Generation		
The following design files can be generated for the Speedster7t Device Manager		
RTL Models		
✓ ./example.sv	Brow	se
Relative File Paths		
✓ Output File paths Relative To Current Working Directory		~
⑦ <u>Einish</u>	Cance	el

Figure 62 • Device Manager Design File Generation

Ports

Table 38 • ACX_DEVICE_MANAGER Ports

Name	Direction	Description
i_clk	Input	Clock input, must be driven with a 100 MHz or slower clock.
i_start	Input	Start signal, must be kept high for the ACX_DEVICE_MANAGER to start. It is recommended to simply tie this high (1'b1), or to drive it with a PLL lock signal.
o_status[31:0]	Output	Ready and error status.
i_pcie_0_perstn	Input	When enabled, it is required to connect PCIE_0 PERSTN (from the PCIe connector), via GPIO or CLKIO input, to the exposed i_pcie_0_perstn pin.
i_pcie_1_perstn	Input	When enabled, it is required to connect PCIE_1 PERSTN (from the PCIe connector), via GPIO or CLKIO input, to the exposed i_pcie_1_perstn pin.
t_JTAG_INPUT i_jtag_in	Input	JTAG input: must be connected to a top-level port of the same t_JTAG_INPUT type.
t_JTAG_OUTPUT o_jtag_out	Output	JTAG output: must be connected to a top-level port of the same t_JTAG_OUTPUT type.
t_JTAP_BUS o_jtap_bus	Output	JTAP bus output, to share the JTAG interface.
i_tdo_bus	Input	JTAP bus input, to share the JTAG interface. When the JTAG interface is not shared, tie this input to 1'b0.

Status Signals

The o_status output signal shows the status when the startup phase is complete, and indicates if there were any errors during startup. Most designs can only monitor o_status[0] or o_status[1:0] to decide when the design can be started. The o_status value can also be read in ACE Tcl console with the mcu_status command. If errors occur, other ACE Tcl commands may give additional information.

Status bits	Meaning when asserted	
0	Startup is complete and successful. This signal can be used as the start signal for the user design.	
1	Startup is complete. If there were no errors, o_status[0] is set as well. Otherwise, an error bit is also set.	
3:2	Device manager internal error. These bits should always read 2'b00 to indicate no error. If either bit is asserted, contact Achronix for assistance.	
6:4 ⁽¹⁾	Reserved for future use.	
14:7	GDDR_7GDDR_0 startup error.	
16:15 ⁽¹⁾	Reserved for future use.	
17	Temperature alarm 0: High when the FPGA temperature is \geq 85°C	
18	Temperature alarm 1: High when the FPGA temperature is $\geq 100^{\circ}$ C	
31:19 ⁽¹⁾	Reserved for future use.	
Table Notes 1. Unused bits are set to 1'b0.		

Table 39	• ACX	DEVICE	MANAGER	Status Output
				oluluo oulput

Examples

The following example shows the device manager configured for NAP row 6 and NAP column 3:

Speedster	7t Device Man	ager	1	
Overview This page contains structure and base	the top-level, global properties configuration of the Device Ma	that govern the nager wrapper.	- /	
✓ Target Device	AC7t1500			•
✓ NAP Row	6			
✓ NAP Column	3			•
 Expose PCI Expose PCI 	E_0 PERSTN input E_1 PERSTN input			L
?		Generate	<< Back	Next >>

Figure 63 • Device Manager Configured for NAP Row 6 and NAP Column 3

The **Generate** option generates a device manager design file in the selected path. In this example, the design file is generated with the name example.sv.

The ACE IP diagram for this configuration is shown in the following figure. The diagram shows the ACE-generated design instance "example".

Figure 64 • Device Manager IP Diagram

Using the JTAG Interface

JTAG Connection

The ACX_DEVICE_MANAGER connects to the JTAG interface via top-level ports in the design. These ports have a type (i.e., t_JTAG_INPUT, t_JTAG_OUTPUT) that must be used in the port and wire declarations. Declarations are illustrated in the **instantiation example**. The placement of the JTAG interface is built into the macro, and no additional placement statements are required. ACE requires that the JTAG ports are top-level ports of the design. For this reason, it is most convenient to instantiate the ACX_DEVICE_MANAGER at the top-level of the design.

The Speedster7t AC7t1500 FPGA supports two JTAG communication models, depending on whether the design includes an ACX_DEVICE_MANAGER instance. Both models are used in exactly the same manner, but the correct

model must be selected with the use_acx_device_manager command defined in the following example. This command must be issued before programming the FPGA whenever a design has an ACX_DEVICE_MANAGER instance.

Accessing the ACX_DEVICE_MANAGER with ACE

ACE has several Tcl commands that can be used to access the device manager via the JTAG interface. To enable these commands, use the command package require mcu. Before these commands can be used, the JTAG connection must be established, and the device must be programmed. A typical sequence of instructions follows:

```
1> use_device_namespace ac7t1500
2> use_acx_device_manager
3> set_jtag_id
4> open_jtag
5> program_hex_file <design>.hex
6> # use commands, for instance
7> package require mcu
```

```
8> mcu_status
```

These commands are described in the following table:

Table 40	 Device 	Manager	JTAG I	nterface	Tcl Co	mmand	Details
----------	----------------------------	---------	--------	----------	--------	-------	---------

Line No.	Description
1	Some commands (i.e., program_hex_file) are device-specific and are, therefore, in a special ac7t1500:: namespace. Thus, the command would be called as: " ac7t1500::program_hex_file ". As a convenience, the use_device_namespace command imports commands from the namespace, so that the namespace prefix can be omitted.
2	This command establishes that the ACX_DEVICE_MANAGER is used for JTAG communication and must be issued before programming the FPGA.
3	JTAG commands must have the name of the JTAG device driver. For most commands, this name is assumed to be in the global variable, \$jtag_id . The set_jtag_id command finds the name of the device and sets the global variable. If there is more than one device (not common), it lists the possible choices. In such cases, or alternatively, the jtag_id variable can be assigned manually.
4	The open_jtag command establishes the connection with the JTAG driver. A close_jtag command is also provided.

Line No.	Description
5	The program_hex_file command programs the FPGA via the JTAG interface. The full path name of the hex file must be specified (typically: <userdesign>/impl_1/output/<userdesign>.hex).</userdesign></userdesign>
6	The preceeding sequence of commands can be used for any design, independent of the ACX_DEVICE_MANAGER (except for the use_acx_device_manager command on line 2).
7	The package command loads a set of Tcl macros into ACE. It must be issued at least once, but using it multiple times is harmless.
8	The mcu_status command displays the status of the device manager o_status output. Details are provided in the following section.

ACX_DEVICE_MANAGER Commands

The following ACE commands interact with the ACX_DEVICE_MANAGER. They are enabled with the package require mcu Tcl command. Unless otherwise specified, all arguments are optional.

use_acx_device_manager

Description

The use_acx_device_manager Tcl command specifies that the ACX_DEVICE_MANAGER handles JTAG communication with the 2D NoC. It must be specified at least once, before programming the FPGA. If this command is not used, the startup phase of the ACX_DEVICE_MANAGER does not complete (if JTAG is never used, as is typical in a production environment, this command is not required).

Example

use_acx_device_manager [-enable] [-disable]

Arguments

Argument	Description
-enable	Specifies that the ACX_DEVICE_MANAGER handles JTAG communication with the 2D NoC (default).
-disable	Specifies legacy mode, where the FCU handles JTAG communication with the 2D NoC. This argument should not be used with the ACX_DEVICE_MANAGER, because it interferes with the startup phase.

Table 41 • use_acx_device_manager Arguments

mcu_status

Description

The mcu_status Tcl command prints the value of the ACX_DEVICE_MANAGER o_status output, with interpretation.

Example

mcu_status [-wait] [-quiet] [-timeout <seconds>] [-debug]

Arguments

Table 42 • mcu_status Arguments

Argument	Description
-wait	Waits for the startup phase to complete.
-quiet	Instead of printing the result, this argument returns the status value (an integer).
-timeout int	Specifies a timeout (in seconds) for the -wait option (default is 50 seconds). If a timeout occurs, most likely the
	use_acx_device_manager command was not issued.
-debug	Prints additional information that might be useful when filing a support ticket.

mcu_info

Description

The mcu_info Tcl command prints ACX_DEVICE_MANAGER version information.

Example

mcu_info [-quiet]

Arguments

Table 43 • mcu_info Arguments

Argument	Description
-quiet	Instead of printing the result, this argument returns the information as a list.

Description

The noc_delay Tcl command prints the round-trip delay when accessing a CSR register. This command confirms that the ACX_DEVICE_MANAGER can communicate with the 2D NoC. However, its main purpose is to print whether the CSR clock is the system clock or the JTAG clock. For the ACX_DEVICE_MANAGER to operate correctly, the system clock should be used. If the clock is reported as the JTAG clock, most likely the use_acx_device_manager command was omitted. The clock can be switched with the set_csr_clock Tcl command, but a use_acx_device_manager command must also be used.

Example

noc_delay

Arguments

This command has no arguments.

set_csr_clock

Description

The set_csr_clock Tcl command sets the clock used for CSR registers. For the ACX_DEVICE_MANAGER to operate correctly, the CSR clock should be set to the system clock. When the use_acx_device_manager command is specified, the clock selection should be automatic. If the CSR clock remains set to the JTAG clock even after specifying the system clock, the board is misconfigured (the FCU_CFG_CLKSEL pin of the FPGA must be tied to 0). This condition must be corrected for the design to operate correctly.

Example

set_csr_clock [-system] [-jtag]

Arguments

Table 44 · set_csr_clock Arguments

Argument	Description
-system	Sets the system clock to the CSR clock (default).
-jtag	Sets the JTAG clock to the CSR clock.

fpga_temp

Description

The fpga_temp Tcl command prints the current temperature, as well as the maximum temperature measured so far.

Example

fpga_temp [-clear] [-fout channelId] [-quiet]

Arguments

Table 45 • fpga_temp Arguments

Argument	Description		
-clear	Resets the maximum temperature value, after returning the previous value.		
-fout channelld	Print to the open channel (file descriptor) instead of to the console.		
	Instead of printing the result, return a list with items {max_temp,		
-quiet	time_max_temp, current_temp, time_current_temp} , where the		
	temperatures are in degrees C and the times are in seconds since the start of the design.		

fpga_temp_to_c

Description

The fpga_temp_to_c Tcl command converts the sample value to degrees C, returned as an integer. The sample argument is required.

Example

fpga_temp_to_c <sample>

Arguments

Table 46 • fpga_temp_to_c Arguments

Argument	Description
sample	16-bit sample value.

fpga_c_to_temp

Description

The fpga_c_to_temp Tcl command converts an integer temperature in degrees C to a sample value range. The c argument is required.

Example

fpga_c_to_temp <c> [-quiet]

Arguments

Table 47 • fpga_c_to_temp Arguments

Argument	Description
С	Temperature in degrees C.
-quiet	Instead of printing the result, returns a list with {min, max} sample values.

Sharing the JTAG Interface with Snapshot

The snapshot debug tool, used to observe signals in a design, is independent of the ACX_DEVICE_MANAGER, but also uses the JTAG interface to interact with ACE. The ACX_DEVICE_MANAGER has two ports (o_jtap_bus and i_tdo_bus) that pass the JTAG signals through so that the interface can be shared. The ACX_SNAPSHOT_UNIT module has matching ports (i_jtap_bus and o_tdo_bus) that should be connected to the ACX_DEVICE_MANAGER.

👍 Caution!

- 1. It is necessary to use the ACX_SNAPSHOT_UNIT when using the ADM. ACX_SNAPSHOT cannot be connected.
- 2. o_jtap_bus is not a simple wire, but instead, is type t_JTAP_BUS. This type must be used in the wire declaration. When connected in this manner, the snapshot debug tool operates normally but with the caveat that follows in point 3 (This caveat may change in future versions of ACE).
- 3. To use the snapshot debug tool, the ACE JTAG connection must be closed using the

<device_namespace>::close_jtag Tcl command. This is because snapshot establishes its own
connection to the JTAG driver in a different way, and the driver cannot have both connections open
simultaneously. When a snapshot has been taken, the JTAG interface connected can be opened

again with the <device_namespace>::open_jtag coomand, to allow use of Tcl commands via JTAG. The JTAG connection can be opened and closed repeatedly without affecting the running design.

FPGA Temperature

At startup, the ACX_DEVICE_MANAGER configures the FPGA builtin temperature sensor for continuous sampling. The ACX_DEVICE_MANAGER status output has two bits that are high when pre-set temperature limits are exceeded. These can be observed by the design, or brought out via GPIO pins, to throttle the design or possibly shut down the board (the device manager merely observes the temperature, it does not shut down the board or FPGA).

Table 48 • ACX_DEVICE_MANAGER Temperature Status Outputs

Bit	Description
o_status[17]	Temperature alarm 0 – high when the FPGA temperature is \ge 85°C.
o_status[18]	Temperature alarm 1 – high when the FPGA temperature is \geq 100°C.

When a JTAG connection is present, the fpga_temp Tcl command can be used.

The current temperature can also be observed directly by reading the CSR register, 080c00000d8. CSR registers can be read with Tcl via JTAG (ac7t1500::noc_read 080c00000d8), but can also be read through the 2D NoC, via a NAP. This way, a design can implement its own temperature alarms. The return value of the CSR register is a 16-bit sample value. It can be converted to degrees C with Tcl command fpga_temp_to_c, or by computing

a + b × (sample / 4096 - 0.5)

where a = 71.4 and b = 283.

The reverse calculation is performed by the fpga_c_to_temp Tcl command, to make comparison of sample values easier.

Simulation

Currently, in full RTL simulation mode, the ACX_DEVICE_MANAGER simply waits a few cycles, then sets o_status

to 0x3 to indicate successful completion of the startup phase. This is appropriate for most simulations, which typically do not include full simulation models for all of the interfaces and external devices. Future ACE releases may include more simulation options.

Instantiation Example

Example Template

The following example shows the ACE-generated device manager template.

```
`include "speedster7t/macros/ACX_DEVICE_MANAGER.svp"
module device_manager_test
(
   // JTAG Interface
   input t_JTAG_INPUT i_jtag_in, // Should be connected to top-level ports with
the same declaration
                        i_tdo_bus,
                                       // Pass-through the JTAG bus to connect to
   input
Snapshot. If not used, this input should be tied to 1'b0
  output t_JTAG_OUTPUT o_jtag_out,
                                       // Should be connected to top-level ports with
the same declaration
   output t_JTAP_BUS
                       o_jtap_bus,
                                        // Pass-through of the JTAG bus to connect to
Snapshot (or other JTAG components)
   // User Design
                                        // 100 MHz Clock input for Device Manager block.
   input
                        i_clk,
   input
                        i_start,
                                       // A high input starts the Device Manager. In
most cases this signal is tied to 1'b1,
                                        // but it can also be tied to a PLL lock signal
if necessary.
                                       // Progress indication, error status, alarms
   output [31:0]
                       o_status
);
  wire [1023:0] not_used;
 ACX_DEVICE_MANAGER #
  (
                (6),
  .NAP_ROW
                              // NAP Row
                               // NAP Column
  .NAP_COLUMN
                (3)
 )
 x_dev_mgr
  (
   // JTAG Interface
               (i_jtag_in), // Should be connected to top-level ports with the same
   .i_jtag_in
declaration
   .i_tdo_bus
               (i_tdo_bus),
                              // Pass-through the JTAG bus to connect to Snapshot. If
not used, this input should be tied to 1'b0
   .o_jtag_out (o_jtag_out), // Should be connected to top-level ports with the same
declaration
                              // Pass-through of the JTAG bus to connect to Snapshot
   .o_jtap_bus (o_jtap_bus),
(or other JTAG components)
```

UG103

2.2

Using Without Snapshot

The following examples show how the ACE-generated device manager template can be utilized in a design.

```
module top_level
(
   // JTAG Interface
   input t_JTAG_INPUT
                        i_jtag_in,
                                     // Should be connected to top-level ports with
the same declaration
                                      // Should be connected to top-level ports with
   output t_JTAG_OUTPUT o_jtag_out,
the same declaration
   // User Design
                                      // 100 MHz Clock input for Device Manager block.
   input wire
                        i_clk
);
   // signals for shared JTAG bus
   wire t_JTAP_BUS
                        jtap_bus;
                                       // shared JTAG bus
                        tdo_bus;
                                       // tie to 1'b0 if unused
   wire
   // Other ADM signals
   logic [32 -1:0]
                        adm_status;
                                      // Status from the ADM
   device_manager_test # ()
   i_acx_device_manager
   (
       // JTAG Interface
       .i_jtag_in
                   (i_jtag_in), // Should be connected to top-level ports with
the same declaration
       .i_tdo_bus
                                       // Pass-through the JTAG bus to connect to
                   (tdo_bus),
Snapshot. If not used, this input should be tied to 1'b0
                                   // Should be connected to top-level ports with
       .o_jtag_out (o_jtag_out),
the same declaration
                                     // Pass-through of the JTAG bus to connect to
       .o_jtap_bus (jtap_bus),
Snapshot (or other JTAG components)
```

```
// User Design
.i_clk (i_clk), // 100 MHz Clock input for Device Manager block.
.i_start (1'b1), // A high input starts the Device Manager. In
most cases this signal is tied to 1'b1,
// but it can also be tied to a PLL lock signal
if necessary.
.o_status (adm_status) // Progress indication, error status, alarms
);
endmodule : top_level
```

Using With Snapshot

```
`include "speedster7t/common/speedster7t_snapshot_v3.sv"
module top_level
(
  // JTAG Interface
  input t_JTAG_INPUT
                        i_jtag_in,
                                      // Should be connected to top-level ports with
the same declaration
  output t_JTAG_OUTPUT o_jtag_out,
                                      // Should be connected to top-level ports with
the same declaration
  // User Design
                        i_clk
                                      // 100 MHz Clock input for Device Manager
  input
block.
);
  // signals for shared JTAG bus
                        jtap_bus;
                                      // shared JTAG bus
  wire
        t_JTAP_BUS
  wire
                        tdo_bus;
                                      // tie to 0 if unused
  // Other ADM signals
  logic [32 -1:0]
                    adm_status;
                                      // Status from the ADM
  device_manager_test # ()
  i_acx_device_manager
  (
       // JTAG Interface
                                     // Should be connected to top-level ports with
       .i_jtag_in (i_jtag_in),
the same declaration
       .i_tdo_bus
                   (tdo_bus),
                                      // Pass-through the JTAG bus to connect to
Snapshot. If not used, this input should be tied to 1'b0
       .o_jtag_out (o_jtag_out), // Should be connected to top-level ports with
the same declaration
                                      // Pass-through of the JTAG bus to connect to
       .o_jtap_bus (jtap_bus),
Snapshot (or other JTAG components)
       // User Design
                               // 100 MHz Clock input for Device Manager
       .i_clk
                    (i_clk),
block.
        .i_start
                    (1'b1),
                                      // A high input starts the Device Manager. In
most cases this signal is tied to 1'b1,
                                       // but it can also be tied to a PLL lock signal
if necessary.
                    (adm_status)
                                      // Progress indication, error status, alarms
       .o_status
  );
  ACX_SNAPSHOT_UNIT #(....)
  x_snapshot
```

(
 .i_jtap_bus (jtap_bus),
 .i_tdo_bus (1'b0), // Tie to 1'b0 if not used
 .o_tdo_bus (tdo_bus),
 ... other Snapshot ports ...
);
endmodule : top_level

Chapter 22 : Revision History

Version	Date	Description
1.0	iii 13 Sep 2021	• Initial release.
2.0	💼 20 Sep 2022	Add device manager.
2.1	₱ 25 Aug 2023	 Added the following soft IP: Speedster7t Floating Point Adder Speedster7t Floating Point Multiplier Speedster7t Floating Point Multiplier Plus Speedster7t Floating Point Parallel Multiplier Speedster7t Floating Point Sum of Products Speedster7t AXI Initiator NAP Speedster7t Cryptographic Engine Updated Speedster7t Device Manager.
2.2	iii 05 Nov 2023	Remove references to end-of-life devices.