
Preliminary Data

Speedster7t Network on
Chip User Guide (UG089)

Speedster FPGAs

Preliminary Data

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 2

Copyrights, Trademarks and Disclaimers
Copyright © 2020 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster,
and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other
trademarks are the property of their respective owners. All specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Preliminary Data
This document contains preliminary information and is subject to change without notice. Information provided
herein is based on internal engineering specifications and/or initial characterization data.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 3

Table of Contents

Chapter - 1: Introduction . 7
NoC Features . 8

Chapter - 2: Speedster7t Peripheral NoC . 10
Peripheral NoC Features . 10

Modes of Operation . 11

Connections to NoC Peripheral Ring . 12
FPGA Fabric Logic to GDDR6 or DDR4 Subsystems . 12

PCIe to GDDR6 or DDR4 Subsytems . 12

PCIe Endpoint to PCIe Endpoint . 12

PCIe Endpoint to FCU . 12

PCIe Endpoint to/from FPGA Fabric Logic . 13

FCU to All Endpoints . 13

Additional Features . 13
Addressing . 13

Clock Domain Crossing . 13

Transaction Arbitration . 13

Functional Prior to Configuration . 14

Chapter - 3: Speedster7t NoC Rows and Columns . 15
Structure and Performance . 15

Modes of Operation . 16
AXI Mode . 17

Data Streaming . 17

Ethernet Packet Transfers . 19

Additional Features . 19
Clock Domain Crossing . 19

Transaction Arbitration . 19

Chapter - 4: Speedster7t NoC Access Point . 21
AXI Slave NAP . 22

AXI Master NAP . 22

Horizontal NAP . 23

Vertical NAP . 24

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 4

Chapter - 5: Speedster7t NoC Connectivity . 26
Interface-only Connections . 26

Interface-to-Fabric Connections . 28

Ethernet-to-Fabric Connections . 30
Packet Mode . 30

Quad-Segmented Mode . 32

Fabric-to-Fabric Connections . 34
AXI Transactions . 35

Data Streaming . 36

Chapter - 6: Speedster7t NoC Address Mapping . 38
Global Address Map . 38

PCIe . 39

DDR4 . 39

GDDR6 . 39

NAP . 39

CSR Space . 40

FCU . 40

Control and Status Register Space . 40

Address Translation . 41
DDR4 . 41

GDDR6 . 42

NAP . 42

Chapter - 7: Speedster7t NoC Performance . 43
Latency and Performance . 43

Power . 43

Chapter - 8: Speedster7t NoC Simulation Support . 44
NAP Bus Functional Model . 44

NAP_AXI_SLAVE Macro . 45

NAP_AXI_MASTER Macro . 46

NAP_HORIZONTAL Macro . 46

NAP_VERTICAL Macro . 47

Simulating Full NoC with BFM Interface Subsystems . 47

Simulating Full System . 48

Chapter - 9: Speedster7t NoC Software Support . 49

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 5

Create Clocks and Configure the PLL . 49

Configure the NoC . 49

Revision History . 52

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 6

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 7

Chapter - 1: Introduction
The Speedster7t FPGA family of devices has a network hierarchy that enables extremely high-speed dataflow
between the FPGA core and the interfaces around the periphery, as well as between logic within the FPGA itself.
This on-chip network hierarchy supports a cross-sectional bidirectional bandwidth of 20 Tbps. It supports a
multitude of interface protocols including GDDR6, DDR4/5, 400G Ethernet, and PCI Express Gen5 data streams,
while greatly simplifying access to memory and high-speed protocols. Achronix's network on chip (NoC) provides
for read/write transactions throughout the device, as well as specialized support for 400G Ethernet streams in
selected columns.

The NoC extends both vertically and horizontally over the FPGA fabric until it reaches the peripheral portion of
the NoC. This structure provides an easy-to-use, high-bandwidth method to communicate between various
masters and slaves on a Speedster7t device, including specialized connections between the Ethernet subsystem
and NoC access points (NAPs) on select NoC columns in the FPGA fabric. In addition, the NoC provides a
connection from the FPGA fabric and interface subsystems to the FPGA configuration unit (FCU). The FCU
receives bitstreams and is used to configure the FPGA fabric as well as the various interface subsystems on the
device. The NoC also provides read and write access to the control and status register (CSR) space. The CSR
space includes control registers and status registers for the interface subsystems.

The features of the NoC described in this user guide generally pertain to the entire Speedster7t family of devices.
In order to help users understand specific connections and features of the NoC, this user guide focuses on the
NoC as implemented in the AC7t1500 device.

Master Endpoints
80 NoC access point (NAP) masters distributed throughout the FPGA core for user-implemented masters

Two PCI Express Interfaces

FPGA configuration unit (FCU)

Slave Endpoints
80 NAP slaves distributed throughout the FPGA core for user-implemented slaves

16x GDDR6 slave interfaces

DDR4/5 controller

Two PCI Express Interfaces

All control and status register (CSR) interfaces of all subsystem cores

FCU (to enable configuring of FPGA and interface subsystems)

Packet Endpoints
80 vertical and 80 horizontal NAP packet interfaces distributed throughout the FPGA core for fabric-to-
fabric transactions

32 of the 80 vertical NAPs can send and receive data to/from the Ethernet subsystems, each Ethernet
controller connects to two dedicated NoC columns

Two Ethernet subsystems, supporting a mix of up to 4× 400 Gbps Ethernet or 16× 100 Gbps Ethernet

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 8

NoC Features
While the main purpose of the NoC is to provide high-bandwidth connections between various endpoints on a
Speedster7t device, it also includes features for ease-of-use and flexibility. The NAPs that provide the NoC-to-
FPGA interface can operate in several different modes: 256-bit advanced extensible Interface (AXI) slave, 256-
bit AXI master, Ethernet packet, and NAP-to-NAP data streaming mode. These different modes provide a built-in
way to communicate between endpoints without the user needing to design the logic themselves. The NoC also
handles flow control internally, such that data is never dropped. Additionally, each NAP has its own address
translation table providing both flexibility in addressing, as well as security through the ability to block access to
specific memory regions on a per-NAP basis.

The figure below shows the NoC surrounded by high-speed interfaces on a Speedster7t1500 device, and the
rows and columns of the NoC over the FPGA fabric.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 9

Figure 1: Speedcore7t NoC Showing Master and Slave Endpoints

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 10

Chapter - 2: Speedster7t Peripheral NoC
Achronix's Speedster7t NoC consists of two main parts:

The peripheral ring around the fabric that connects to all the IP interfaces.

The rows and columns that run over the top of the FPGA fabric.

This section describes the peripheral ring of the NoC, along with its connections and features.

Peripheral NoC Features
The peripheral portion of the NoC forms a ring around the FPGA fabric, but operates entirely without consuming
any FPGA resources. This ring provides a 256-bit wide primary data-path that runs at 2 GHz, implemented with
six full crossbar switches allowing access to all endpoints connected to the NoC. In addition, It has built-in clock
domain crossing logic to handle the different endpoint frequencies, built-in address decoding using a global
address map, and built-in arbitration to keep traffic moving at high speeds.

While the peripheral portion of the NoC can be used without configuring the fabric, it also connects directly to the
rows and columns of the NoC that run over the FPGA fabric, providing access to master and slave logic in the
FPGA. Additionally, the peripheral ring of the NoC connects to the FPGA configuration unit (FCU), allowing the
NoC to aid in configuration of the FPGA fabric or the various interfaces. To see how the peripheral ring connects
to the rows and columns, see the figure in the section on . Speedster7t NoC Rows and Columns (see page 16)
The figure below shows the peripheral portion of the NoC as it surrounds the FPGA fabric and provides high-
bandwidth connections to the memory and networking interfaces.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 11

Figure 2: Speedster7t Peripheral NoC

Modes of Operation
The NoC supports AXI4 master/slave interfaces with read and write transactions. Masters initiate commands and
slaves respond to commands by either writing the provided data or sending the requested read data. This
mechanism provides easy-to-use connections between all the interfaces without the user needing to design
complicated logic to communicate with each interface separately. As mentioned above, this mode of operation
provides for a 256-bit main data path operating at 2 GHz.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 12

Additionally, the NoC connects to the advanced peripheral bus (APB) interface used to configure and collect
status from all the interface subsystem control and status registers (CSRs) in the device. While this interface
operates at a lower frequency, it is expected to only be used in limited scenarios. If using the PCIe interface for
example to program CSRs, the NoC handles all the translation from AXI4 transactions to APB.

Connections to NoC Peripheral Ring
The NoC allows designers to easily communicate between the various device interfaces, as well as connecting
the fabric to any of the interfaces on the device, all without using logic or routing resources in the FPGA fabric.
The peripheral portion of the NoC connects endpoints using a master/slave model, where the master initiates
transactions and the slave responds to transactions. The peripheral portion of the NoC can connect the following
endpoints

GDDR6

DDR4

PCIe

Rows and columns of the NoC to fabric logic

FPGA configuration unit (FCU)

CSRs in entire FPGA

FPGA Fabric Logic to GDDR6 or DDR4 Subsystems
Master logic in the FPGA fabric can initiate transactions to any of the GDDR6 channels or the DDR4 interface.
The user logic sends a transaction to the NAP connected to a row of the NoC. This transaction then travels east
or west on the row until it reaches the peripheral portion of the NoC, and then to the destination GDDR6 or DDR4
channel.

PCIe to GDDR6 or DDR4 Subsytems
Either PCIe endpoint can initiate transactions to either GDDR6 or DDR4 directly using the NoC. In this case, the
PCIe endpoint is the master with either the GDDR6 or DDR4 as the slave. The NoC is able to provide enough
bandwidth to sustain PCIe Gen 5 traffic connecting to two channels of GDDR6. This high-bandwidth connection
is achieved without consuming any FPGA fabric resources. The user only needs to enable PCIe, GDDR6, and/or
DDR4 in order to send transactions on the NoC.

PCIe Endpoint to PCIe Endpoint
Because the AC7t1500 contains two independent PCIe controllers, each PCIe can send transactions to the other
via the NoC. Similar to connections with GDDR6 and DDR4, this high-bandwidth connection is achieved without
consuming any FPGA fabric resources — the user only needs to enable both PCIe controllers in order to send
transactions between them.

PCIe Endpoint to FCU
The PCIe endpoint can also connect directly to the FCU via the NoC without using FPGA fabric resources. This
feature allows the PCIe endpoint to send a bitstream directly to the FCU, which then configures the FPGA fabric
with the bitstream.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 13

PCIe Endpoint to/from FPGA Fabric Logic
The PCIe endpoint can connect to logic in the FPGA fabric through the NoC. In this case, the PCIe endpoint can
be the master or slave, and similarly the logic in the FPGA can be either the master or slave. If the PCIe endpoint
is initiating transactions, the peripheral portion of the NoC sends transactions down the columns of the NoC to
reach NAPs in the fabric. These NAPs send the transaction to the logic in the fabric and then send the responses
back onto the NoC. If the logic in the FPGA fabric is acting as the master, it can initiate transactions to the NAP
on a row of the NoC, which sends the transaction to the peripheral portion and then to the PCIe.

FCU to All Endpoints
The FCU can act as a master to all other endpoints of the NoC, allowing the FCU to program the entire FPGA,
including configuring the interface subsystems. For example, using the NoC the FCU can read and write the
control and status register (CSR) space in the entire FPGA and can even be used to load the memory of GDDR6
or DDR4. For details on how the FCU performs these transactions, refer to the appropriate interface user guide.

For additional details on all the connectivity available in the NoC, refer to the Speedster7t NoC Connectivity (see
 section in this user guide.page 26)

Additional Features
The NoC provides several features that make it easy to use without sacrificing on area, congestion, or design
time.

Addressing
The NoC provides address decoding using a global address map to ensure transactions are sent to their
intended destination. Additionally, the NoC supports address translation for flexibility and added security. For
more information on the address map and address translation features, see the Speedster7t NoC Address

 section in this user guide.Mapping (see page 38)

Clock Domain Crossing
To make logic design easier, the NoC handles all clock domain crossing internally. This capability significantly
simplifies user design while providing a way to easily transfer data operating at lower frequencies compared to
the NoC. Specifically, on the peripheral portion of the NoC, this handles the clock crossing needed between the
NoC and PCIe, GDDR6, DDR4, and FCU.

Transaction Arbitration
Transaction arbitration is also handled internally by the NoC. This capability keeps data moving through the NoC
without causing major congestion. For the peripheral portion of the NoC, a FIFO-based arbitration scheme is
used, meaning transactions are handled on a first-come, first-served basis. If multiple transactions arrive on the
same NoC clock cycle, a least-recently-serviced policy is used to order the transactions. This scheme
guarantees that no endpoint is starved, and all transactions complete. The arbitration scheme in the peripheral
portion of the NoC is not configurable and differs somewhat from the arbitration scheme used in the rows and
columns of the NoC. For more information on the transaction arbitration in the rows and columns, refer to the

 section in this user guide.Speedster7t NoC Rows and Columns Transaction Arbitration (see page 19)

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 14

Functional Prior to Configuration
Additionally, the peripheral portion of the NoC is operational without needing to first configure the fabric FPGA.
This feature allows a host to use the PCIe endpoint to program the FPGA fabric, and further, this capability also
makes partial reconfiguration through the peripheral portion of the NoC possible.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 15

Chapter - 3: Speedster7t NoC Rows and Columns
The rows and columns of the NoC are placed over the FPGA fabric and do not break the connectivity within the
fabric. This structure allows the logic in the FPGA fabric to connect to the NoC through NoC access points
(NAPs). The rows and columns are connected to the peripheral portion of the NoC, which communicates with the
interface subsystems such as GDDR6, PCIe, and DDR4. The columns also have direct connections to the
Ethernet MAC, and thus connect easily to user logic in the FPGA fabric.

Structure and Performance
The NoC is placed in rows and columns at regular intervals over the FPGA fabric. The user logic connects to the
NoC by way of NAPs and does not interfere with the connectivity of other logic within the fabric. Each row and
column has a primary 256-bit data path and additional control signals that operate at 2 GHz, delivering 512 Gbps
of bidirectional bandwidth. While there are no direct connections between the rows and the columns, both
connect to the peripheral ring of the NoC which allows for connections between points in the fabric. Master logic
in the FPGA fabric connects to NAPs on the horizontal rows, and slave logic in the FPGA fabric connects to
NAPs on the vertical columns of the NoC. The figure below shows an example of the NoC as constructed in the
7t1500 device. As shown, there are eight rows and ten columns, providing a total of 80 NAPs on the horizontal
rows and 80 NAPs on the vertical columns to which the fabric logic can connect. The result is 10 Tbps of
bidirectional bandwidth going north-south and 8 Tbps of bidirectional bandwidth going east-west.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 16

Figure 3: NoC Rows and Columns

Modes of Operation
There are three main modes of operation in the rows and columns of the NoC. The industry-standard AXI-4
interface protocol is used to communicate from the fabric to most of the interface subsystems connected at the
periphery of the NoC, as well as within the fabric. Additionally, the internal fabric can connect to points on the
same NoC row or same column using data streaming. Finally, the Ethernet interface is connected via specific
columns using Ethernet packet transfers. These three modes are described in more detail below.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 17

AXI Mode
AXI mode operates using slave and master logic with the master initiating transactions, and the slave responding
to transactions. Master logic in the fabric FPGA can initiate commands to slave NAPs on NoC rows, which send
the commands to slave endpoints such as GDDR6, DDR4, PCIe, and the FCU. Similarly, slave user logic in the
FPGA fabric can respond to transactions from a master NAP on a column of the NoC sent by the PCIe or FCU
endpoints. Additionally, this mode is used to send transactions from FPGA fabric user logic to other endpoints in
the FPGA fabric that may or may not be located on the same row or column of the NoC. Generally, AXI mode
follows the AXI-4 standard, but there is a limit of 16 for burst length on a single transaction. For more details on
AXI transactions, see the .AMBA AXI Protocol Specification

Data Streaming
User logic in the FPGA can communicate with another logic block in the fabric using data streaming on a single
row or column of the NoC. In this case, intra-FPGA transfers act like a distributed FIFO. The start point and
endpoint must be on the same row or same column of the NoC, using a simple signaling protocol. This protocol
uses a valid signal to indicate valid data being sent for the transfer and a ready signal to accept the data or signal
back pressure. The start point sends a destination ID to indicate which NAP on the column or row receives data,
and the endpoint receives a source ID to indicate which NAP on the column or row transmitted the data . The
receiving NAP does not send back any acknowledgement to the transaction, it simply accepts the data, and
knows which NAP sent the data. Optionally, a start of packet and end of packet signal can be used as well. Data
streaming uses all 288 bits of the data bus for rows and 293 bits of the data bus for columns.

Below are example timing diagrams of data streaming transactions, showing how transfers are captured when
both the associated ready and valid signals are high.

https://developer.arm.com/docs/ihi0022/g

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 18

Figure 4: Data Streaming Timing Diagram with Valid Asserted First

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 19

Figure 5: Data Streaming Timing Diagram with Ready Asserted First

In data streaming mode any point in the fabric can initiate the transfer, but the two points reside on the must
same row or same column of the NoC. For more details on data streaming, see the sections, Speedster7t NoC

 or .Access Point (see page 21) Speedster7t NoC Connectivity (see page 26)

Ethernet Packet Transfers
The Ethernet MAC interface is connected to specific columns in the NoC. The user logic in the fabric can connect
to NAPs in these columns to communicate with the Ethernet MAC using Ethernet packets. This mode is very
similar to the data streaming mode described above. For more details on Ethernet packet transfers on the NoC,
see the section on .Speedster7t NoC Connectivity (see page 26)

Additional Features
Clock Domain Crossing
The NoC handles clock domain crossing for any endpoints on the NoC. This feature allows user logic operating
at a slower frequency to easily connect to the NoC without having to spend time to design resource-intensive and
complicated clock domain crossing logic. A user simply connects the slower fabric clock to the NAP, and the rest
of the clock crossing logic is handled by the NoC.

Transaction Arbitration
The NoC also handles transaction arbitration of internally, and interleaves traffic from AXI transactions, Ethernet
packets, and/or data streaming. This arbitration not only keep traffic moving and prevents backups, but also
keeps the NoC operating at its peak capacity. The rows and columns use a configurable round-robin arbitration
scheme, where the user can configure the arbitration schedule at each NAP. The schedule values are passed via
parameters when the NAP is instantiated and remain static after configuration of the fabric. For the NAPs on
columns, there is a parameter for the north-to-south direction as well as the south-to-north direction. Similarly,
the rows have a parameter for the east-to-west direction as well as west-to-east.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 20

Each arbitration parameter is a 32-bit value used to initialize the arbitration schedule mechanism. Bit 0 of the
arbitration schedule vector is used to determine if the local NAP transaction entering the NoC wins arbitration
when there is competing traffic from the upstream NAP on the row or column. If bit 0 has a value of ' ', the local 1
traffic entering the NoC wins, while if bit 0 has a value of ' ', the upstream transaction on the row or column wins. 0
After each NoC clock cycle where both the local transaction and the upstream transaction are competing for
access, the value in the schedule register rotates to the left. For example, a value of means 32'hAAAA_AAAA
that the local NAP transaction has high priority on every second NoC cycle.

ACE chooses default values for the arbitration schedule to create fairness on the rows and columns, but a user
can override those values if a particular NAP needs to have higher priority in a design. It is recommended that
users do not override the arbitration schedule values, as the default values set fairness for all NAPs on a row or
column. The default value for each NAP is based on the number of instantiated NAPs along a row or column,
and the location of the particular NAP. The formula used for the values on each row or column that instantiates N
number of NAPs is 1/N for the last NAP in that direction, 1/(N-1) to next upstream NAP, and so on until the first
instantiated NAP in the row or column. For example, if three NAPs are on a row, the westernmost NAP has
priority every third cycle, the next upstream NAP has priority every second cycle, and the easternmost NAP
always has priority as there are no further competing NAPs in the east-to-west direction. Both ACE and the
simulation environment enforce the default arbitration value unless explicitly overridden by a user's value. For
more information on the arbitration schedules, refer to the , in the Speedster7t Network on Chip Primitives

(UG068). Speedster7t IP Component Library User Guide

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 21

Chapter - 4: Speedster7t NoC Access Point
The NoC access point (NAP) is the connection point from user logic in the fabric to the NoC. Users instantiate
NAPs in their logic to connect to the rows and columns of the NoC. Depending on the function, users instantiate
the appropriate NAP instance in their design. The figure below shows an example of how the NAPs connect to
the NoC.

Figure 6: NoC Access Points in FPGA Fabric

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 22

AXI Slave NAP
The macro presents a 256-bit AXI slave to master user logic in the fabric and connects ACX_NAP_AXI_SLAVE
to the rows of the NoC. The resulting connection uses standard AXI4 protocol for read and write transactions and
connects the user logic to any peripherals on the NoC, including the interface subsystems, as well as other user
logic in the FPGA fabric connected through a NAP. The input clock is the clock used in the user logic in the
FPGA fabric. The NoC uses this clock for any clock crossing logic. Below is a block diagram of the AXI slave
NAP.

Figure 7: AXI Slave NAP Block Diagram

For further details on the port names and instantiating the component, see the section, Speedster7t Network on
, in the (UG068).Chip Primitives Speedster7t IP Component Library User Guide

AXI Master NAP
The macro presents a 256-bit AXI master to slave user logic in the fabric and connects ACX_NAP_AXI_MASTER
to the columns of the NoC. The resulting connection uses standard AXI4 protocol for read and write transactions
and connects the user logic to peripherals on the NoC, including the interface subsystems, as well as other user
logic in the FPGA fabric connected through a NAP. The input clock is the clock used in the user logic in the
FPGA fabric. The NoC uses this clock for any clock crossing logic. Below is a block diagram of the AXI master
NAP.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 23

Figure 8: AXI Master NAP Block Diagram

For further details on the port names and instantiating the component, see the section, Speedster7t Network on
, in the (UG068).Chip Primitives Speedster7t IP Component Library User Guide

Horizontal NAP
The macro is used for data streaming along the rows of the NoC. The ACX_NAP_HORIZONTAL

macro presents a 288-bit datapath to another instance on the ACX_NAP_HORIZONTAL ACX_NAP_HORIZONTAL
same row of the NoC using transactions similar to a FIFO. User logic presents data to the interface along with a
destination ID. The data and other fields are captured and sent to the destination NAP as indicated by tx_dest

, which then is sent to the FPGA logic using the destination NAP's receiver interface. The input clock is the [3:0]
clock used in the user logic in the FPGA fabric. The NoC uses this clock for any clock crossing logic. Below is a
block diagram of the horizontal NAP.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 24

Figure 9: Horizontal NAP Block Diagram

For further details on the port names and instantiating the component, see the section, Speedster7t Network on
, in the (UG068).Chip Primitives Speedster7t IP Component Library User Guide

Vertical NAP
The macro is used for data streaming or Ethernet packets along the columns of the NoC. ACX_NAP_VERTICAL
The macro presents a 293-bit datapath to another instance on the ACX_NAP_VERTICAL ACX_NAP_VERTICAL
same column of the NoC using transactions similar to a FIFO. User logic presents data to the interface along with
a destination ID. The data and other fields are captured and sent to the destination NAP as indicated by tx_dest

, which then is sent to the FPGA logic using the destination NAP's receiver interface. The input clock is the [3:0]
clock used in the user logic in the FPGA fabric. The NoC uses this clock for any clock crossing logic. Below is a
block diagram of the vertical NAP.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 25

Figure 10: Vertical NAP Block Diagram

For further details on port names and instantiating the component, see the section, Speedster7t Network on Chip
, in the (UG068).Primitives Speedster7t IP Component Library User Guide

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 26

Chapter - 5: Speedster7t NoC Connectivity
This section describes how the NoC connects the various endpoints together, how traffic moves, and the
designer's role in optimizing a design for low congestion, low latency, and high performance. The NoC connects
interface-only endpoints, interface to fabric, fabric to fabric, and Ethernet to fabric.

Interface-only Connections
The NoC connects certain interface endpoints without using the FPGA fabric. Interface-only connections make
use of only the peripheral portion of the NoC which connects PCIe to GDDR6, DDR4, and FCU. Additionally, the
FCU uses the NoC to access the CSR space of all interface subsystems including PCIe, GDDR6, DDR4, and
Ethernet. The connections between the PCIe, FCU, GDDR6, and DDR4 use the AXI4 protocol to send
transactions. GDDR6 and DDR4 endpoints can only act as slaves, while the PCIe and FCU can act as both
master and slave. The figure below shows an example of the PCIe endpoint sending read or write transactions to
a GDDR6 channel.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 27

Figure 11: PCIe-to-GDDR6 Transactions

Because these connections do not consume any FPGA fabric resources, there is no impact on routing, area, or
timing of the logic in the FPGA. The NoC handles any clock domain crossing internally, as well as flow control
and transaction arbitration; however, the user does need to consider the traffic flow to expected endpoints so as
to optimize for latency and congestion on the peripheral portion of the NoC. For example, if the user is sending
transactions from the PCIe endpoint to several channels of GDDR6, choosing channels on both the east and
west side of the FPGA can spread out the traffic rather than sending all traffic down one side, thus reducing
congestion on the NoC.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 28

Interface-to-Fabric Connections
Interface subsystems can connect to master or slave logic in the FPGA fabric. The user needs to instantiate the
appropriate macro or macro depending on the type of logic in ACX_NAP_AXI_SLAVE ACX_NAP_AXI_MASTER
the fabric. The user logic only needs to use standard AXI4 protocol to communicate with the NAP through read
and write transactions, which in turn connects the user logic through the NoC to the various interface
subsystems. Master logic in the fabric can send transactions to the PCIe, GDDR6, DDR4, FCU, or CSR space.
Additionally, the PCIe and FCU can talk to slave logic in the FPGA fabric. The figure below shows an example of
the PCIe endpoint sending transactions to slave logic in the FPGA fabric.

Figure 12: PCIe-to-FPGA Fabric Transactions

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 29

The NoC handles any clock crossing logic and transaction arbitration internally, eliminating the need for the user
to design this logic in the FPGA fabric. The user does need to consider placement of the NAPs in the fabric with
respect to the interface subsystems if latency and congestion are concerns. For example, when sending
transactions from the PCIe endpoint to a NAP in the fabric, there is more latency to reach a NAP that is
physically further away from the PCIe endpoint. Similarly, if a NAP located on the west side of the device sends a
transaction to a GDDR6 channel on the east side of the device, the latency is longer than if a NAP on the east
side of the device sends the transaction. To help with placement of master logic using NAPs that initiate
transactions, it is important for a designer to know the direction a transaction takes when traversing the NoC row
to the peripheral ring.

The table below lists the direction a transaction takes on the row to arrive at the various interface targets. The
direction is based solely on the target destination, and not on the location of the initiating NAP.

Table 1: Direction of Transaction Based on Target

Interface Target Direction on Row

GDDR6_0 west

GDDR6_1 west

GDDR6_2 west

GDDR6_3 west

GDDR6_4 east

GDDR6_5 east

GDDR6_6 east

GDDR6_7 east

DDR4 east

PCIe ×16 east

PCIe ×8 west

FCU west

Additionally, if the user places logic and multiple NAPs along a single column or row in the FPGA, the traffic is
concentrated on that one row or column. To reduce congestion, the user should consider expected traffic
patterns in the design and choose NAP locations that spread the transaction traffic across several rows or
columns when possible.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 30

Ethernet-to-Fabric Connections
The Ethernet subsystem connects directly to specific columns on the NoC and can communicate to FPGA fabric
logic connected to vertical NAPs along those specific columns using Ethernet packets. Each Ethernet subsystem
has two dedicated columns and can send transactions to NAPs placed only on those two specific columns. The
table below lists the specific columns connected to the Ethernet subsystems.

Table 2: NoC Columns for Ethernet Subsystems

Ethernet Subsystem location Ethernet Subsystem 0 (West) Ethernet Subsystem 1 (East)

NoC Column 1 1 4

NoC Column 2 2 5

Table Note

NoC Columns are numbered 1 at the west-most column and increment going east.

There are a few modes available, depending on how the user wishes to handle the Ethernet packets in the FPGA
fabric. For interfaces using 100GE or slower, the Ethernet sends 256-bit packets down the columns directly to
NAPs. For interfaces running 200GE or 400GE, there are two modes to choose from: packet mode or quad-
segmented mode.

Packet Mode
The NoC rearranges the 1024-bit data bus into four narrower data paths, funneling a separate packet to each of
four NAPs and splitting the full 1024-bit data bus into four 256-bit (32-byte) data paths. This solution results in
less congestion in the fabric because the user logic can reside in four separate engines distributed down the NoC
columns rather than a single large engine immediately next to the Ethernet subsystem. This mode also reduces
the needed frequency in the FPGA fabric design and makes the design easier because each NAP can have its
own individual packet processing engine.

Packet mode can result in larger latency as each packet can take more cycles to transfer. Importantly, packets
can arrive out of order, with the NoC sending a sequence number along with each packet. The user logic is
responsible for reordering the packets (if necessary), in order to retrieve the original data sequence. The figure
below shows how the Ethernet subsystem data bus is rearranged into four separate 256-bit wide data buses.
Each packet can take multiple cycles to complete.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 31

Figure 13: Data Bus Rearrangement for Packet Mode

The four packets shown above are sent to four separate NAPs distributed down the designated NoC columns.
Each NAP communicates to an individual packet processing engine. This arrangement allows each NAP and
processing engine to be run at a lower frequency than that required of a single processing engine with the full
1024-bit bus, thus simplifying the system design. For example, a single processing engine for a 400GE solution
requires a 1024-bit bus running at about 728 MHz, whereas the packet mode for 400GE uses four NAPs and
requires four 256-bit buses running at 507 MHz. The NoC automatically handles the load balancing, sending the
next available packet to the next free NAP. For more details on Ethernet packet mode, refer to the Speedster7t

(UG097). Ethernet User Guide

In the figure below, the four NAPs are distributed in different locations along two columns. The specific
placement of the NAPs is a design choice. It is equally possible to have all four NAPs be located on a single
column, or grouped closer together.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 32

Figure 14: Ethernet Packet Mode on the NoC

Quad-Segmented Mode
In quad-segmented mode, the NoC sends a 1024-bit bus that is segmented across four NAPs. This mode makes
the user logic a little more complex as the design logically is one large packet processing engine distributed
across the four NAP locations. This mode does guarantee in-order packet arrival, and larger packets arrive with
less latency than in packet mode described above. Because the bus is segmented, packets can potentially start
at any of the four NAPs, and up to two packets can arrive in a single fabric clock cycle.

Similar to the packet mode above, the FPGA logic can be spread across the space of four NAPs on the
designated columns, rather than having to be placed immediately next to the Ethernet subsystem. This
arrangement helps ease congestion, and because the design can be split across four NAPs, the frequency can
be reduced similar to the packet mode. For example, a single processing engine for a 400GE solution requires a
1024-bit bus running at 728 MHz, whereas the quad-segmented mode for 400GE uses four NAPs and requires
four 256-bit buses running at 507 MHz. The figure below shows how the packets are arranged and segmented
for the quad-segmented mode.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 33

Figure 15: Packet Segmentation for Quad-Segmented Mode

Each packet is distributed across four NAPs located on the designated columns of the NoC. Each 32-byte
segment is dedicated to a specific NAP in the group of four. The packet processing engine should be located
close to the four NAPs. The figure below shows the four NAPs distributed in two columns, but placed close
together. The specific placement of the NAPs is a design choice. It is equally possible to have all four NAPs be
located on a single column, or grouped farther apart.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 34

Figure 16: Quad -segmented Mode on the NoC

For full details on the Ethernet modes and the Ethernet MAC, refer to the .Speedster7t Ethernet User Guide

Fabric-to-Fabric Connections
While logic in the FPGA fabric can communicate to other logic in the fabric in a traditional way using the FPGA's
conventional routing resources, the NoC now enables designs to communicate between points within the FPGA
fabric on a wide, high-speed bus, without using the fabric routing resources. Depending on where the endpoints
are located, and the style of transfer the user wishes to use, there are two methods to using the NoC for fabric-to-
fabric communication: AXI commands or data streaming.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 35

AXI Transactions
Two points in the FPGA can communicate with each other via the NoC through AXI NAPs. In this case master
logic using an AXI slave NAP on a row can send transactions east or west to the peripheral portion of the NoC,
and then down a column to an AXI master NAP that connects to slave logic in the fabric. As previously
mentioned, the AXI NAPs send read and write commands using the AXI4 standard. This method of connecting
FPGA points is not optimized for latency, but can easily transfer read and write data. Below shows an example of
connecting two points via the NoC using AXI mode.

Figure 17: AXI Mode Fabric-to-Fabric Transaction

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 36

Data Streaming
Two points within the FPGA fabric along the same row or the same column can communicate via data streaming.
These transfers behave like pushing or popping data to or from a FIFO. The transactions use a ready signal to
indicate that the logic or the NAP can accept data and a valid signal to indicate when data is being transmitted.
There is also a and that indicates the transfer's destination and source, tx_dest[3:0] rx_src[3:0]
respectively. The location ID is a static number along the row or column. For example, on a row, the NAP
number starts at 1 on the westernmost NAP and increments to 10, the easternmost NAP. Similarly, on a column
the NAP number starts at 1 on the south-most NAP and increments to 8, the north-most NAP.

Data streaming provides a simple method to push data across a single row or column without using FPGA
routing resources. Each NAP endpoint can both send and receive data, although each individual transfer is one
way. The receiving NAP does not send an acknowledgement of receiving the data. Additionally, any number of
NAPs on the same row or column can send data streaming transactions between each other; however,
transactions are only point to point. There is no broadcast option built into the NoC. If a user wishes to broadcast
data down a row or column, the design must take this into account and send the transaction along to the next
NAP.

The figure below shows transactions between various points in the NoC. The logic at points 1 and 2 have each
instantiated a horizontal NAP. The NAPs can both send and receive data, as indicated by the arrows in the figure
below, but each individual data stream transaction is unidirectional. For example, the NAP at location 1 can send
a data stream transaction to the NAP at location 2, and the NAP at location 2 can send a separate data stream
transaction to the NAP at location 1. Similarly, the logic at points 3 and 4 both instantiate a vertical NAP and can
send data streams between each other.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 37

Figure 18: Data Streaming

Any clock domain crossing logic is automatically handled in the NoC. The NoC also handles transaction
arbitration internally and can interleave the data streaming with AXI transactions. The user needs be aware of the
full design when using multiple NAPs on a row or column such that traffic congestion is considered. Since data
streaming requires a single column or row for the NAPs communicating with each other, the user needs to be
aware of traffic to AXI NAPs on the same row or column. AXI transactions and data streaming can be interleaved
and add to latency.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 38

Chapter - 6: Speedster7t NoC Address Mapping

Global Address Map
The NoC has a global address map that is used to address all the endpoints in the FPGA. It uses a 42-bit
address space, and includes regions that can be remapped with an address translation table for each NAP (see
section on below). The figure below shows the NoC address space and how Address Translation (see page 41)
each portion of the 42-bit address space is distributed.

Figure 19: NoC Address Space

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 39

Each of the endpoints on the NoC has its own address space. Below is the global address space table describing
the details for each of the endpoints available on the NoC.

Table 3: NoC Global Address Map

Address
Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 … 0

Destination

PCIe 1 ID Memory Address

DDR4 0 1 Memory Address

GDDR6 0 0 0 0 0 Ctrl ID Memory Address

NAP 0 0 0 1 0 0 0 NAP Column NAP Row Memory Address

CSR
Space 0 0 1 0 0 0 0 0 Target ID IP ID Memory

Address

FCU 0 0 1 1 0 0 0 0 0 0 0 0 FCU Address

The NoC uses the most significant bits (MSB) in the address to identify the destination space of a transaction.
Below is a description of each address space.

PCIe
Addr[41] = 1'b1

Addr[40] = - Selects between the two PCIe IP cores.ID
Addr[39:0] = - This address is passed to the PCIe core.Memory Address

DDR4
Addr[41:40] = 2'b01

Addr[39:0] = - This is passed directly to the DDR4 controller. Memory Address

GDDR6
Addr[41:37] = 5'b00000

Addr[36:33] = - Selects which of the eight GDDR6 controllers the transaction is destined for. The Ctrl ID
three most significant bits of this field select the controller, the least significant bit selects between the two
channels on each controller.

Addr[32:0] = - The memory address for the specific controller and channel.Memory Address

NAP
Addr[41:35] = This space reaches any NAP endpoint in the device7'b0001000 –

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 40

Addr[34:31] = - Indicates which column number; 1 indicates the westernmost column and NAP Column
the numbers increment going east up to 10.

Addr[30:28] = - Indicates which row number; 1 indicates the southernmost row and the NAP Row
numbers increment going north up to 8.

Addr[27:0] = - This address is passed to the FPGA fabric logic.Memory Address

CSR Space
Addr[41:34] = This space reaches all the control and status registers in the FPGA.8'b00100000 –

Addr[33:28] = - Selects the space (DDR4, PCIe, Ethernet, etc.) where the control and status Target ID
register(s) reside.

Addr[27:24] = - Indicates a specific target space internal to the IP. This ID is unique for each IP and IP ID
is described in the associated user guide.

Addr[23:0] = - Byte address for the specific space in the IP.Memory Address

FCU
Addr[41:30] = 12'b001100000000

Addr[29:0] = - This address is passed directly to the FCU block.FCU Address

Control and Status Register Space
The control and status register (CSR) space can receive read or write transactions from a master on the NoC.
The master initiates an AXI transaction to the particular address of a register in the CSR space, allowing the
master to write to a control register or read a status register in one of the GDDR6 controllers or DDR4 controller,
for example. The CSR space uses a 34-bit address, with the most significant bits indicating the target IP space.
Below is the target IP spaces address map.

For more information on each individual register space, consult the associated user guide.

Table 4: Control and Status Register Map

Target ID Description

CSR Space 33 32 31 30 29 28

GDDR6_0 0 0 0 0 0 0 GDDR6 0 control and status registers

GDDR6_1 0 0 0 0 0 1 GDDR6 1 control and status registers

GDDR6_2 0 0 0 0 1 0 GDDR6 2 control and status registers

GDDR6_3 0 0 0 0 1 1 GDDR6 3 control and status registers

DDR4 0 0 1 0 0 1 DDR4 control and status register space

GPIO south 0 0 1 0 1 1 General-purpose I/O on south side

Temp Sensor 0 0 1 1 0 0 Temperature sensor

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 41

Target ID Description

GDDR6_4 0 1 0 0 0 0 GDDR6 4 control and status registers

GDDR6_5 0 1 0 0 0 1 GDDR6 5 control and status registers

GDDR6_6 0 1 0 0 1 0 GDDR6 6 control and status registers

GDDR6_7 0 1 0 0 1 1 GDDR6 7 control and status registers

PCIe x16 0 1 1 0 0 1 PCIe ×16 control and status registers

PCIe x8 0 1 1 0 1 0 PCIe ×8 control and status registers

Ethernet 0 0 1 1 0 1 1 Ethernet 0 control and status registers

Ethernet 1 0 1 1 1 0 0 Ethernet 1 control and status registers

GPIO north 0 1 1 1 0 1 General-purpose I/O on north side

Address Translation
Each NoC access point (NAP) has its own private address translation table that is configured through the
bitstream. The address translation table allows the NAP to remap various endpoints. For example, the NAP can
remap the address of each GDDR6 controller, along with pages within each controller memory space. Similarly,
each NAP can remap pages within the DDR4 memory space, and can even remap other NAP endpoints.

Address translation can be useful for a number of reasons. For example, if a user wishes to have several
engines accessing GDDR6 and wants to reuse the same RTL for each engine, this can be done easily. A module
can be written to access GDDR6 0, but then the user can configure the translation tables to point to the particular
GDDR6 that is closest to each instance of the engine.

Caution

Configuration of the address translation table in the NAP is not currently available in the ACE tool suite.

Additionally, the user can prevent access to certain endpoints, for example, to add security such that a user can
prevent two engines from accessing the same memory. The I/O Designer Toolkit's NoC configuration GUI in ACE
provides a simple way to disable access per NoC row to various endpoints such as GDDR6, DDR4, PCIe 0,
PCIe 1, FCU, CSR space, and the NAPs.

The following tables list the bits available for address translation within the specific address spaces. Bits that are
available for address translation are highlighted in yellow.

DDR4
Bits[32:26] of the DDR4 memory address can be used in address translation allowing the user to remap pages in
the memory.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 42

Address
Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 … 0

DDR4 0 1 Memory Address

GDDR6
Addr[36:33] = , all bits of the Ctrl ID can be used in address translation allowing the user to remap which Ctrl ID
GDDR6 controller receives a transaction.

Bits[28:26] of the GDDR6 memory address can be used in address translation allowing the user to remap pages
in the memory.

Address
Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 … 0

GDDR6 0 0 0 0 0 Ctrl ID Mem Address

NAP
NAP column (bits[34:31]) and NAP row (bits[30:28]) can be used in address translation, allowing users to remap
the location of the NAP transaction.

Address Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 … 0

NAP 0 0 0 1 0 0 0 NAP Column NAP Row Memory Address

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 43

Chapter - 7: Speedster7t NoC Performance
The NoC is optimized for high bandwidth and supports a cross-sectional bidirectional bandwidth of 20 Tbps. The
NoC provides a 256-bit wide primary datapath that runs at 2 GHz, thus delivering 512 Gbps of bidirectional
bandwidth in all directions. Because it includes clock crossing logic internally, the main buses of the NoC can run
at high speeds, while the FPGA fabric and IP interfaces can run at slower frequencies as needed.

Latency and Performance
In order to increase flexibility for user designs, the NoC includes clock domain crossing logic to transmit data
from the logic operating at the FPGA fabric speed to the 2 GHz data path of the NoC. Each NAP has a small
asynchronous FIFO adding a few fabric clock cycles in each direction, adding a small amount of latency to
transactions. Additionally, there is some latency added to traverse a NoC row or column. In the east-west
direction there is latency of 2 × 2 GHz, or 1 ns per NAP along the row. In the north-south direction, there is
latency of 7 × 2 GHz, or 3.5 ns per NAP along the column.

Power
The NoC has different aspects of its power consumption that users should understand. For each NoC access
point (NAP) there are two portions that consume power:

The first is the high-frequency portion connected to the row or column of the NoC that operates at 2 GHz.
This portion is always active while the NoC is in use.

The other portion of the NAP operates at the FPGA frequency and is only used if the NAP is instantiated
in the design. In this case, the NAP portion operating at the FPGA frequency does not contribute to
dynamic power if it is unused.

The high-speed portion of each NAP and the rows and columns of the NoC itself can be turned off completely if
the user does not connect a clock to it. In that case, the rows and columns of the NoC do not contribute to
dynamic power, but it also cannot be used to connect to the FPGA fabric. The peripheral portion of the NoC

 be powered down, but it can have lower power if not being used and has a slower clock connected. A cannot
user can connect a slower clock, or leave only the configuration clock connected to the NoC. In this case, the
NoC can remain in a lower power state if not being used by any of the interface subsystems.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 44

Chapter - 8: Speedster7t NoC Simulation Support
With the introduction of a network on chip (NoC) interacting with logic in the FPGA fabric, it's important to have
methods for simulating the user design to understand how it interacts with the NoC. Achronix provides three
levels of simulation models to support different phases in the design process:

A bus functional model (BFM) of the NAP for simple functional simulations

A model of the full rows, columns and peripheral ring of the NoC to simulate latency and congestion
between NAPs, with BFMs of the interface subsystems

A full cycle-accurate model of the entire system including interface subsystems

NAP Bus Functional Model
The first phase of simulation with a design is to functionally communicate with a NoC access point (NAP) in the
fabric. The Achronix library includes simple bus functional models (BFMs) in each instance of a NAP macro.
Each NAP includes simple tasks, and the user can call these tasks to simulate sending or receiving a
transaction. The tasks depend on the type of NAP macro used and the direction of the transaction. The
testbench calls these tasks in the BFMs by using bind statements.

The example below shows how to bind to the BFM tasks in a NAP and use a testbench to respond to requests
from the FPGA fabric logic initiating transactions. These examples are only snippets of code. For a more detailed
example of how to use the NAP BFMs in a simulation, refer to Achronix's mlp_conv2d reference design.

NAP Task BFM Binding Example

// Testbench has to connect to NAP slave via tasks
// When binding, the module is inside the target module, so gets

// parameters and signal names from that module - not this module

 bind dut.i_axi_slave_nap_wrapper.x_NAP_AXI_SLAVE

 tb_noc
 inst_noc (

 // Inputs
 .i_clk (clk), // bound to signal in AXI_NAP_SLAVE

 .i_reset_n (rstn) // bound to signal in AXI_NAP_SLAVE
);

 // DUT
 my_design_with_nap

 dut (
 // Inputs

 .i_clk (clk),
 .i_reset_n (reset_n)

);

//----------------------------

// The DUT that instantiates the NAP

 module my_design_with_nap (

 input i_clk,
 input i_reset_n

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 45

);

ACX_NAP_AXI_SLAVE i_axi_slave_nap_wrapper (
 .clk (i_clk),

 .rstn (i_reset_n),

//----------------------------

// The ACX_NAP_AXI_SLAVE instantiates the NAP_AXI_SLAVE which has the BFM tasks

NAP_AXI_SLAVE x_NAP_AXI_SLAVE (
 .clk (i_clk),

 .rstn (i_reset_n),

//----------------------------

// the testbench that is bound to the NAP calls the tasks

module tb_noc

(
 // Inputs

 input wire i_clk,
 input wire i_reset_n // Negative synchronous reset

);

 // Support read requests by calling tasks in NAP

 initial
 begin

 #1000 // Allow NAP simulations models to reset first
 while(1)

 begin

 // Blocking call. Task will only complete when request made
 get_AR(t_arid, t_araddr, t_arlen, t_arsize, t_arburst, t_arlock, t_arqos);

 begin
 // Read request logged

 for(i=t_arlen; i>0; i=i-1)

 begin

 issue_R(t_arid,mem_array_out,2'b00,1'b0);
 t_araddr = t_araddr + 42'h01;

 @(posedge i_clk);
 end

 issue_R(t_arid,mem_array_out,2'b00,1'b1);
 @(posedge i_clk);

 end
 @(posedge i_clk);

 end
 end

NAP_AXI_SLAVE Macro
Master logic in the FPGA fabric communicates with a NAP AXI slave macro. In this case the transactions initiate
in the user logic in the FPGA and the NAP responds. The user's testbench can call the tasks in the BFM by using
bind statements. The following tasks are available to functionally model AXI transactions to master logic in the
FPGA fabric.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 46

Table 5: NAP AXI Slave Tasks

Task
Name Description

get_AR Wait for a valid read request and returns the relevant AXI fields to accept the transaction.

get_AW Wait for a valid write request and returns the relevant AXI fields to accept the transaction.

get_W Wait for valid write data and returns relevant AXI fields to accept the data.

issue_R Issue valid read data and waits until the read data is accepted.

issue_B Issue valid write response/acknowledge and waits until the response is accepted.

NAP_AXI_MASTER Macro
Slave logic in the FPGA fabric communicates with a NAP AXI master macro. In this case the transactions initiate
from the NAP, and the user logic in the FPGA responds. The user's testbench can call these tasks in the BFM by
using bind statements. The following tasks are available to functionally model AXI transactions to slave logic in
the FPGA fabric.

Table 6: NAP AXI Master Tasks

Task Name Description

issue_AR Issue a valid read request and wait until request is accepted.

issue_AW Issue a valid write request and wait until write request is accepted.

issue_W Send valid write data and wait until write data is accepted.

get_R Receive read data when valid read data is available.

get_B Receive write response/acknowledge when valid.

NAP_HORIZONTAL Macro
If user logic sends or receives raw data streams (or flit transfers) along a single row, the user must have two
horizontal NAP macros communicate with each other. Each horizontal NAP implements a simple BFM to model
the functionality of the data transfer. The user's testbench can call the tasks in the BFM by using bind
statements. The following tasks are available to functionally model the flit transfers.

Table 7: NAP Horizontal Tasks

Task Name Description

issue_rx Issue a flit transfer and wait for it to be accepted.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 47

Task Name Description

get_tx Receive a flit transfer request, assert ready when ready and waits for a valid.

NAP_VERTICAL Macro
If user logic sends or receives raw data streams (or flit transfers) along a single column, the user must have two
vertical NAP macros communicate with each other. Each vertical NAP implements a simple BFM to model the
functionality of the data transfer. The user's testbench can call the tasks in the BFM by using bind statements.
The following tasks are available to functionally model the flit transfers.

Table 8: NAP Vertical Tasks

Task Name Description

issue_rx Issue a flit transfer and wait for it to be accepted.

get_tx Receive a flit transfer request, assert ready when ready and waits for a valid.

Simulating Full NoC with BFM Interface Subsystems
Achronix offers a simulation overlay package that can be added on to ACE. This package provides a full cycle-
accurate model of the NoC along with BFMs of the interface subsystems. The combination of the BFMs for the
interface subsystems and the cycle-accurate NoC creates a balance between faster compile and simulation
times, while also accurately modeling latency and traffic congestion on the NoC. If multiple NAPs are used in a
design, simulating at this level is a critical step to understanding if there are bottlenecks in the NoC usage and
allows the user to determine if they can improve the efficiency by placing their NAPs on different rows or
columns.

Achronix provides a complete simulation model of the NoC and the BFMs of the interface subsystems. The user
then uses an Achronix-defined text macro to attach their NAP in the user design to the specific NAP location in
the NoC hierarchy. Below is an example of how to instantiate the AC7t1500 device, and to connect four types of
NAPs in a design to specific NAP locations in the device.

Full NoC Simulation Binding NAPs

 //Instantiate Speedster7t1500
 ac7t1500 ac7t1500();

 // horizontal NAP at col=1, row=3

 `ACX_BIND_NAP_HORIZONTAL(DUT.i_nap_row_1.i_nap_horizontal,1,3);

 // vertical NAP at col=3, row=1
 `ACX_BIND_NAP_VERTICAL(DUT.i_nap_col_3.i_nap_vertical,3,1);

 // AXI slave NAP at col=1, row=1 (south-west corner)
 `ACX_BIND_NAP_AXI_SLAVE(DUT.i_axi_slave_wrapper_in.i_axi_slave,1,1);

 // AXI master NAP at col=9, row=8 (north-east corner)

 `ACX_BIND_NAP_AXI_MASTER(DUT.i_axi_bram_rsp.i_axi_master_nap.i_axi_master,9,8);

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 48

For more details on simulating with Achronix's I/O BFMs, refer to the Speedster7t NoC Reference Design
(RD022). This reference design provides example source code for instantiating and using NAPs, and includes a
full testbench along with constraint and project files for implementation.

Simulating Full System
A final step for simulation is to use the full chip simulation of the interface subsystems along with the NoC and
user logic in the FPGA. This step allows users to accurately model traffic in the NoC and to/from any interface
subsystems such as PCIe, GDDR6, DDR4, or Ethernet. It provides a cycle-accurate method to model delays,
latency, and traffic congestion in the entire system; however, this accuracy comes as the cost of increased
compile and simulation time.

Caution

Simulation model of the full chip including cycle-accurate models of the interface subsystems is not
currently available in the ACE tool suite.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 49

Chapter - 9: Speedster7t NoC Software Support
The I/O Designer Toolkit allows users to configure the interface subsystems, clocks, PLLs, GPIO, and the NoC.
This section describes the steps needed to configure the NoC.

Create Clocks and Configure the PLL
The first step in configuring the NoC is to provide a global clock running at 200 MHz. The simplest method is to
first connect a clock input using the Programmable I/O configuration in the I/O Designer Toolkit. Then create a
PLL using the PLL configuration GUI. Configure the PLL so that it uses the new input clock as a reference input,
and set the output frequency to 200 MHz. The output clock of the PLL can be renamed to , for example, noc_clk
to make it easy to identify in your system. Additionally, if the clock for the NoC is not used in the FPGA fabric,
uncheck the box so that the clock does not consume a clock resource in Expose Clock Output to Core Fabric
the FPGA fabric. Once this clock is configured to the user's specifications, the next step is to configure the NoC
itself.

Configure the NoC
First, using the I/O Designer Toolkit create a new NoC IP configuration. This operation only needs to be
performed once as there is only one NoC in a Speedster7t device. First, the user connects the clock from the
PLL. As can be seen in the figure below, the user sets the target device from a pull-down menu. Additionally, the
user sets the reference clock name chosen from a pull-down list of valid clocks available in the design. In this
case, it must be a 200 MHz clock. Then click to continue to the next configuration tab.Next

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 50

Figure 20: NoC Configuration of Clock

This page in the IP Configuration GUI allows the user to enable or disable access to different endpoints per NoC
row. For the AC7t1500 there are access controls for all eight rows. This dialog screen is where the user can turn
on/off access to the entire GDDR6, DDR4, FCU, CSR spaces, plus PCIe 0, PCIe 1, or the entire NAP space for
that row of the NoC. In other words, for any NAP on that row, the NAP can only access the spaces that are
checked for that row. Once all options are set, save the IP configuration as a file and add it to the *.acxip
design project.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 51

Figure 21: NoC Configuration Row Enable

After all configurations for the I/O Designer Toolkit are complete, click the button to generate all Generate
necessary output files for the I/O ring portion of the Speedster7t device.

Speedster7t Network on Chip User Guide (UG089)

Preliminary Data 52

Revision History

Version Date Description

1.0 19 Sep 2019 Initial Achronix release.

1.1 03 Jun 2020

Additions:

Added details on the arbitration schemes in the peripheral ring of the NoC
in .Speedster7t Peripheral NoC Transaction Arbitration (see page 13)
Included extra details about supported burst lengths in Speedster7t NoC

.Rows and Columns AXI Mode (see page 17)
Added details on the arbitration schemes and information on how to
configure arbitration weights in Speedster7t NoC Rows and Columns

.Transaction Arbitration (see page 19)
Included further details on transactions and NAP placement in Speedster7t

.NoC Connectivity Interface-to-Fabric Connections (see page 28)
Added new details in Speedster7t NoC Simulation Support Simulating Full

.NoC with BFM Interface Subsystems (see page 47)

Updates and Corrections:

Minor updates and clarifications to Speedster7t NoC Connectivity
.Ethernet-to-Fabric Connections (see page 30)

Updates and clarification to Speedster7t NoC Connectivity Data Streaming
.(see page 36)

Corrected NAP numbering in Speedster7t NoC Address Mapping (see
.page 38)

Updated and corrected details in Speedster7t NoC Performance (see
.page 43)

Minor updates to .Speedster7t NoC Software Support (see page 49)

	Introduction
	NoC Features

	Speedster7t Peripheral NoC
	Peripheral NoC Features
	Modes of Operation
	Connections to NoC Peripheral Ring
	FPGA Fabric Logic to GDDR6 or DDR4 Subsystems
	PCIe to GDDR6 or DDR4 Subsytems
	PCIe Endpoint to PCIe Endpoint
	PCIe Endpoint to FCU
	PCIe Endpoint to/from FPGA Fabric Logic
	FCU to All Endpoints

	Additional Features
	Addressing
	Clock Domain Crossing
	Transaction Arbitration
	Functional Prior to Configuration

	Speedster7t NoC Rows and Columns
	Structure and Performance
	Modes of Operation
	AXI Mode
	Data Streaming
	Ethernet Packet Transfers

	Additional Features
	Clock Domain Crossing
	Transaction Arbitration

	Speedster7t NoC Access Point
	AXI Slave NAP
	AXI Master NAP
	Horizontal NAP
	Vertical NAP

	Speedster7t NoC Connectivity
	Interface-only Connections
	Interface-to-Fabric Connections
	Ethernet-to-Fabric Connections
	Packet Mode
	Quad-Segmented Mode

	Fabric-to-Fabric Connections
	AXI Transactions
	Data Streaming

	Speedster7t NoC Address Mapping
	Global Address Map
	PCIe
	DDR4
	GDDR6
	NAP
	CSR Space
	FCU
	Control and Status Register Space

	Address Translation
	DDR4
	GDDR6
	NAP

	Speedster7t NoC Performance
	Latency and Performance
	Power

	Speedster7t NoC Simulation Support
	NAP Bus Functional Model
	NAP_AXI_SLAVE Macro
	NAP_AXI_MASTER Macro
	NAP_HORIZONTAL Macro
	NAP_VERTICAL Macro

	Simulating Full NoC with BFM Interface Subsystems
	Simulating Full System

	Speedster7t NoC Software Support
	Create Clocks and Configure the PLL
	Configure the NoC

	 Revision History

