
www.achronix.com

Speedster7t Machine
Learning Processing User
Guide (UG088)

Speedster FPGAs

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 2

Copyrights, Trademarks and Disclaimers
Copyright © 2019 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster,
and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other
trademarks are the property of their respective owners. All specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 3

Table of Contents

Chapter - 1: Introduction . 6
Scope . 10

Sections . 10

Chapter - 2: Number Formats . 11
Integer Formats . 11

Integer Groups . 12
INT16 . 12

INT8 . 12

INT7 . 12

INT6 . 13

INT4 . 13

INT3 . 14

Floating Point Formats . 14
Formats . 14

Representation . 15

Rounding . 16

Block Floating Point . 16

Chapter - 3: Integer Multiplication Primitives . 18
MLP72_INT . 18

MLP72_INT8_MULT_4X . 18

MLP72_INT16_MULT_2X . 18

Chapter - 4: Floating Point Primitives . 19
FP_MULT . 19

FP_MULT_2X . 19

Chapter - 5: Dot Product Reference Designs . 20
dot_product_N_8x8 . 20

dot_product_2bf16_doutcasc4 . 20

dot_product_10bfp_fp10_6x6 . 20

Chapter - 6: Cascade Paths . 21
Usage Conditions . 21

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 4

Solutions . 22
Input re-use . 22

Output addition . 23

Chapter - 7: Closely Coupled LRAM . 24
Introduction . 24

Modes . 24

Solutions . 24

Revision History . 25

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 5

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 6

Chapter - 1: Introduction
The machine learning processing block (MLP) is an array of up to 32 multipliers, followed by an adder tree, an
accumulator, and a rounding/saturation/normalize block.The MLP also includes two memory blocks, a BRAM72k
and LRAM2k, that can be used individually or in conjunction with the array of multipliers. The number of
multipliers available varies with the bit width of each operand and the total width of input data. When the MLP is
used in conjunction with a BRAM72k, the amount of data inputs to the MLP block increases along with the
number of multipliers available.

The MLP offers a range of features including integer multiply with optional accumulate, bfloat16 operations,
floating point 16, block floating point, and floating point 24. Below is a list of features available with the MLP
block:

Configurable multiply precision and multiplier count

Up to 32 multiplies for 4-bit integers or block floating point 12 in a single MLP

Up to 16 multiplies for 8-bit integers or block floating point 16 in a single MLP

Support for 16-bit integer, Bfloat16, (Brain Float), floating point 16, and floating point 24 in a single
MLP

Multiple number formats (fixed and floating point)

Deep adder tree and accumulator block

Multiple rounding and saturation features

Tightly coupled circular register file (LRAM) for easily caching and feeding back results

Tightly coupled BRAM for reusable input data such as kernels or weights

Cascade paths up a column of MLPs

Allows for broadcast of operands up a column of MLPs without using up critical routing resources

Allows for adder trees to extend across multiple MLPs

Broadcast read/write to tightly coupled BRAMs up a column of MLPs to efficiently create large
memories

Along with the numerous multiply configurations, the MLP block includes optional input and pipelining registers at
various locations to support high-frequency designs. There is a deep adder tree after the multipliers, with the
option to bypass the adders and output the multiplier products directly. There is a normalization block for floating-
point and block-floating-point operations. In addition, a feedback path allows for accumulation within the MLP
block.

Below are block diagrams showing the MLP using the fixed or floating-point formats.

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 7

Figure 1: MLP Using Fixed-Point Mode

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 8

Figure 2: MLP Using Floating-Point Mode

A cascade path allows for the adder tree to extend across multiple MLP blocks in a column without using extra
fabric resources, and a data cascade/broadcast path is available to send operands across multiple MLP blocks.
Below is a diagram showing the cascade paths across MLPs.

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 9

Figure 3: MLP Cascade Path

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 10

Scope
This user guide is intended to be used in conjunction with which Speedster7t IP Component Library User Guide
gives details of the MLP72 primitive, listing each port and parameter, and containing detailed internal block
diagrams. This document discusses mathematical applications and how the MLP72 may best be configured to
achieve them. In addition this document lists advanced modes of the MLP72 that allow it to perform complex
mathematical manipulations in a very efficient form

Sections
This document contains sections on the following;

Number Formats (see page 11) : This details the variety of numerical formats that can be used by the
MLP72. Understanding the formats greatly aids understanding how various parameters relating to the
formats should be set, and equally how issues such as precision and rounding are defined and controlled

Integer Multiplication Primitives (see page 18) : A number of pre-defined integer multiplication primitives,
derived from the MLP72, are available. These are easy to instantiate and in certain cases may be inferred.
If the application only requires integer multiplication, then these are recommended over instantiating the
full MLP72

Floating Point Primitives (see page 19) : Two pre-defined floating point primitives,derived from the
MLP72, are available. These are easy to instantiate and if the application simply requires floating point
multiplication, then these are recommended over instantiating the full MLP72

Dot Product Reference Designs (see page 20) : A suite of reference designs are available which show
how to perform matrix dot product multiplication.

Cascade Paths (see page 21) : The MLP72, (and associated BRAM72K and LRAM2K), have dedicated
high speed cascade paths which allow connection of several primitives in series. Using these cascade
paths allows for complex, multi-element, structures to be performed. Multiple MLP72 can be operated in
parallel, cascading input data or results along the paths, in parallel with their associated BRAM passing
pre-stored kernels or weights; or alternatively the BRAM address, allowing for different kernel and weights
to be applied to each MLP72 whilst they share the same input data.

Closely Coupled LRAM (see page 24) : The MLP72 has a closely coupled LRAM2K, which can be used
as a register file, storing output results, and inserting them back into the inputs to be part of subsequent
calculations. Alternatively the LRAM can be used to cache results allowing for subsequent efficient burst
delivery.

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 11

Chapter - 2: Number Formats
Within the machine learning processor (MLP72), a variety of different number formats are used. It is important to
understand these formats, how they are represented and what their resolution is, so that the user can make the
correct choices with regard to math they wish to perform, and subsequently how to configure correctly for the
chosen number formats.

Integer Formats
Integer values can be represented in three possible formats

Signed – The highest order bit (MSB) represents the sign. The other bits equate to the distance from
either 0 (for a positive number, sign bit = 1'b0) or the most negative possible value (sign bit = 1'b1). This
format is commonly known as signed two's compliment.

Unsigned – Only positive values are represented, with all bits representing the binary value, i.e., the
distance from zero.

Signed magnitude – The MSB is the sign bit. The remaining bits represent the value in the same form as
unsigned, i.e., the distance from zero. Signed magnitude has a negative range one less than that of
signed due to the fact that zero can be represented by 1000_0000 or 0000_0000 (using 8-bit values as
the example).

The following examples shown how the same values can be represented by each method

Table 1: Integer Format Examples

Decimal Value Format Bit 7 Bits [6:0]

24 Unsigned 0 001_1000

24 Signed 0 001_1000

24 Signed magnitude 0 001_1000

–24 Unsigned Cannot be represented

–24 Signed 1 110_1000(†)

–24 Signed magnitude 1 001_1000

Note

† For an 8-bit signed integer the most negative value is −128. The distance from the most negative
value is 128 – 24 = 104. The binary representation of 104 is 110_1000.

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 12

Integer Groups
The formats are listed in their groups, which represent their size in bits. These group names are used in the MLP
parameters to represent the size of the integers that will be directed to each respective multiplier. Within a group,
each named format is followed by it's token name; these token names are used by the MLP parameters to
configure the modes of each multiplier.

INT16
Table 2: Signed 16 Bit (Signed16)

Bit Position 15 [14:0] Range

Function Sign bit Value −32768 to +32767

Table 3: Unsigned 16 Bit (Unsigned16)

Bit Position [15:0] Range

Function Value 0 to +65535

Table 4: Signed Magnitude 16 Bit (SMAG16)

Bit Position 15 [14:0] Range

Function Sign bit Value −32767 to +32767

INT8
Table 5: Signed 8 Bit (Signed8)

Bit Position 7 [6:0] Range

Function Sign bit Value −128 to +127

Table 6: Unsigned 8 Bit (Unsigned8)

Bit Position [7:0] Range

Function Value 0 to +255

Table 7: Signed Magnitude 8 Bit (SMAG8)

Bit Position 7 [6:0] Range

Function Sign bit Value −127 to +127

INT7

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 13

INT7
Table 8: Signed 7 Bit (Signed7)

Bit Position 6 [5:0] Range

Function Sign bit Value −64 to +63

Table 9: Unsigned 7 Bit (Unsigned7)

Bit Position [6:0] Range

Function Value 0 to +127

Table 10: Signed Magnitude 7 Bit (SMAG7)

Bit Position 6 [5:0] Range

Function Sign bit Value −63 to +63

INT6
Table 11: Signed 6 Bit (Signed6)

Bit Position 5 [4:0] Range

Function Sign bit Value –32 to +31

Table 12: Unsigned 6 Bit (Unsigned6)

Bit
Position [5:0] Range

Function Value 0 to +63

Table 13: Signed Magnitude 6 Bit (SMAG6)

Bit Position 5 [4:0] Range

Function Sign bit Value −31 to +31

INT4
Table 14: Signed 4 Bit (Signed4)

Bit Position 3 [2:0] Range

Function Sign bit Value −8 to +7

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 14

Table 15: Unsigned 4 Bit (Unsigned4)

Bit Position [3:0] Range

Function Value 0 to +15

Table 16: Signed Magnitude 4 Bit (SMAG4)

Bit Position 3 [2:0] Range

Function Sign bit Value −7 to +7

INT3
Table 17: Signed 3 Bit (Signed3)

Bit Position 2 [1:0] Range

Function Sign bit Value −4 to +3

Table 18: Unsigned 3 Bit (Unsigned3)

Bit Position [2:0] Range

Function Value 0 to +7

Table 19: Signed Magnitude 3 Bit (SMAG3)

Bit Position 2 [1:0] Range

Function Sign bit Value −3 to +3

Floating Point Formats
A key feature of the MLP72 is the ability to process and manipulate floating-point (FP) numbers, which have a
wider range of methods for representing values. Floating-point representations divide the bits into a mantissa and
an exponent. The mantissa represents the value, and the exponent represents the equivalent of a bit shift left or
right of this value. This shift is equivalent to multiplying the value by 2 , where represents the exponent value.n n

Formats
MLP72 supports three floating-point formats, characterized by their total size () and by the number of fp_size
exponent bits (). The difference, − is the size of the mantissa bits and fp_exp_size fp_size fp_exp_size,
represents the precision. The three supported formats are listed below:

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 15

Table 20: Supported Floating-Point Formats

Format FP
Size

FP Exponent
Size Precision MLP

Name Alternative Names

fp24 24 8 16 FP24

fp16 16 5 11 FP16 binary16, half precision

bf16 16 8 8 BFLOAT16 bfloat16 (brain float). Not to be confused with block
floating point.

Table Notes

The fp16 format is defined in the IEEE-754 standard as binary16. The other formats follow the IEEE-754
standard's rules for representation and rounding, but are not specifically defined in the standard. The
bfloat16 format is supported by TensorFlow.

The MLP72 supports all three formats for both input and output, but internally all operations are performed with
fp24. For example, when the internal accumulator is used, the accumulation is done with the extra precision of
fp24, even if the output is one of the 16-bit formats.

Representation
The binary representation of a floating-point number has the form:

Table 21: Floating-Point Number Representation

 Sign Exponent Mantissa

Bits 1 fp_exp_size (precision-1)

Positive numbers have sign = 0; negative numbers have sign = 1. The special cases of 0.0 and infinity can both
have a sign.

The mantissa is normalized to have MSB = 1. Since the MSB is always 1, it is not stored. This "hidden 1" is why
the precision is one higher than the number of bits in the mantissa. An exponent is stored as + bias, where e e
the bias is defined in the table below. This table also lists the limits for the (absolute) value that can be
represented.

There are two special exponents:

If the exponent field is 0, the value of the floating-point number is +0.0 or −0.0.

If the exponent field is all 1s (255 or 31, depending on fp_exp_size), the value is ±infinity.

If a number is not 0.0 and not infinity, its value is 1.mantissa × 2 with the appropriate sign. Here, 1.(exp-bias)

mantissa starts with the hidden 1 and has the mantissa as binary fraction.

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 16

Table 22: Floating-Point Number Range

Format Bias Exp for inf Minimum Positive Maximum Positive

fp24 127 255 2(−126) 2 − 2128 112

fp16 15 31 2(−14) 2 − 2 = 6550416 5

bf16 127 255 2(−126) 2 − 2128 120

Subnormal numbers (numbers too close to 0 to be normalized) are not supported; they are changed to 0.0.
Likewise, NaN ("not a number", for invalid operations), is not supported; it is changed to infinity.

Rounding
When the result of an operation does not fit exactly within the precision, it is rounded to the nearest value that
can be represented. If the true result is equally close to two values, it is rounded to the even one (the one that
has LSB = 0).

If the absolute value of a result is too large to be represented, the result is changed to infinity. Similarly, if the
absolute value of a result is too small to be represented, it is changed to 0. The latter case is called underflow,
describing the situation where the floating-point result is 0.0 but mathematically the result should not be 0 (for
example, subtracting two not quite equal numbers may result in underflow if the numbers are small).

Internally, all operations are performed with fp24, including the rounding of multiplications and additions. If a 16-
bit output format is selected, the fp24 result is then rounded a second time to 16 bits. In rare cases, this double
rounding may give a slightly different result than if the operation had been done with 16 bits only.

Block Floating Point
Block floating point (block fp) is not a number format , rather it is a method of processing a collection of per se
floating point numbers efficiently. The principle is that each floating point number consists of a mantissa and an
exponent. If the exponents are made the same (normalized), then the mantissas can be arithmetically combined
in the same way as integer numbers. The result of the mantissa calculation can be recombined with the
normalized exponent, resulting in a full floating point result. During this process there are two semi-independent
input formats involved:

The original floating point format

The integer format used for the multiplication

There are a number of considerations when normalizing the exponent among a collection of floating point
numbers. The value of a floating point number is

mantissa × 2exponent where is of the form 1. .mantissa fraction

However, in order to increase accuracy for the same number of bits, the '1' is not stored, it is implicit. A floating
point number is stored as { }.sign_bit, exponent, fraction

When converting from a floating point value to a block floating point value, firstly the '1' needs to be added to the
fraction in order to give the full mantissa. The mantissa is then right-shifted, while incrementing the exponent,
until the exponent has the desired value equivalent to the maximum exponent in the block. It is this shift process
that requires the implicit '1' to firstly be re-inserted with the ; after shifting the implicit '1' is no longer in fraction
the MSB position.

The shifted mantissa plus sign bit must fit within the integer format that is used. If it is necessary to right-shift a

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 17

The shifted mantissa plus sign bit must fit within the integer format that is used. If it is necessary to right-shift a
significant amount, then precision is lost. It is possible to end up with 0 if the original exponent was small enough.
The choice of integer size, therefore, depends on the required precision and the range of exponent values that
are to be processed together.

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 18

Chapter - 3: Integer Multiplication Primitives
If the user application only requires integer multiplication, with no complex data re-use or results caching; then
there are three integer multiplication primitives available. These primitives are detailed in Speedster7t IP

. The primitives offer the following capabilitiesComponent Library User Guide

MLP72_INT
The MLP72_INT supports up to 12 integer multiply operations, followed by an adder tree and an optional
accumulate. The number of arithmetic operations that can be supported depends on the operand width, where
more arithmetic operations can be supported per clock cycle with narrower operands. Inputs can be encoded as
unsigned integers, signed two's-complement integers, or signed-magnitude integers. Operands width can be in
the range 3 to 16 bits. Outputs are always 48-bit signed integers.

MLP72_INT8_MULT_4X
The MLP72_INT8_MULT_4X primitive is a simple multiplier block with support for up to four parallel multipliers
using 8-bit two's-complement signed, signed magnitude, or unsigned integers. For higher performance operation,
additional input and/or output registers can be enabled. Enabling each register causes an additional cycle of
latency.

MLP72_INT16_MULT_2X
The MLP72_INT16_MULT_2X primitive is a simple multiplier block with support for up to two parallel 16-bit
multipliers using 16-bit two's-complement signed, signed magnitude, or unsigned integers. For higher
performance operation, additional input and/or output registers can be enabled. Enabling each register causes
an additional cycle of latency.

In the circumstance where one of the above primitives would fulfil the application needs, the user is
recommended to use the macro in preference to instantiating the full MLP72 primitive. The primitives offer a
simpler, easier to understand interface, and use the optimal configuration of the MLP72, to achieve the highest
possible results, with the minimum of debug effort from the user. None of the macros can currently be inferred,
however instantiation templates for each macro are provided in Speedster7t IP Component Library User Guide

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 19

Chapter - 4: Floating Point Primitives
The user is recommended to read the introduction to the floating point library in Speedster7t IP Component

 as this explains the principles behind the floating point primitives, and also details files that Library User Guide
need to be included in the users build environment in order to be able to use these floating point primitives. The
primitives are detailed belowIf the user application requires simple floating point multiplication with one or two
floating point multiplications per MLP72, then there are two floating point primitives that are available. These
primitives greatly simplify using the MLP72 in floating point mode, and if the application does not require
advanced data re-use, or summation of multiple results, then they are recommended over directly instantiating
the MLP72.

FP_MULT
FP_MULT computes a × b, with optional accumulation. The floating point range is up to fp24, with an 8 bit
exponent and 16 bit precision. For further details on floating point number formats, please refer to Number

. Currently this module has to be directly instantiated; it cannot be inferred.Formats (see page 11)

FP_MULT_2X
This macro is similar to but uses a single MLP72 to compute two products in parallel, FP_MULT (see page 19)
with optional accumulation. The two operations are:

dout_ab = a × b

dout_cd = c × d

The floating point number range is the same as for . Similarly this module has to be FP_MULT (see page 19)
directly instantiated; it cannot be inferred.

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 20

Chapter - 5: Dot Product Reference Designs
The flexibility of the MLP72 results in there being a number of different methods for structuring the data flow to
perform dot-product multiplication. To aid the user, there are a number of reference designs that perform dot
product calculations on differing numerical formats, and differing vector sizes. These dot product reference
designs are detailed in the . The code for these reference designs Speedster7t Reference Designs User Guide
can be downloaded from the Achronix secure FTP site at One of the most common uses of secure.achronix.com
the MLP72, certainly within the Machine Learning, or Artificial Intelligence, (AI/ML), solution space, is the ability
to multiply matrices together. This process whereby each element of a row is multiplied by the value of its
equivalent column location, and the sum of all the multiplications forms the result in the new matrix, is known as
dot-product. The MLP72 is ideally suited to this dot-product manipulation, offering summation and accumulation
from each of the 16 possible multiplications.

If the user needs to perform matrix multiplication, and hence dot-product calculation, they are recommended to
refer to these designs to help determine the correct architecture for their application.

There are three dot product reference designs

dot_product_N_8x8
This design demonstrates the dot product of a sequence of int8 values. On each cycle int8 inputs are N
multiplied and summed. The result is then accumulated and available two cycles after the input. The
accumulation can be controlled by first and last indicators inputs.

dot_product_2bf16_doutcasc4
This design demonstrates the dot product of a number of bfloat16 (brain-float) inputs. The design consists of four
MLP72, connected using their cascade paths. Each MLP72 sums the result of two parallel multiplications, with
each multiplication being the result of an a input multiplied by a b input (both being bfloat16 numbers). The sum
from each MLP72 is cascaded up the column of MLP72 to the next block above. In the last MLP72, on each
cycle, the sum of the eight parallel bf16 multiplications is calculated.

The final result is the accumulated sum across a number of input cycles.

dot_product_10bfp_fp10_6x6
This design computes the accumulated sum of a block of 10 floating-point number pairs. Each pair of numbers is
multiplied and the result added to the sum. The inputs are in fp10 format (5 bits mantissa + 5 bits exponent). This
design uses a single MLP72, and its tightly coupled BRAM72K, to demonstrate how the combination of blocks
can process a total input bit width that is larger than any of the individual inputs bit widths. This capability is
achieved by the design operating in two phases; in phase one the b inputs are written to the BRAM. In phase two
the a inputs are applied to the MLP72 as the b values are read from the BRAM72K.

An advantage of this structure is that if the b values need to be used more than once, such as for a kernel or
weights, then they only need be written the once and can be re-read multiple times as different sets of a inputs
are applied.

During phase two, the final result is the accumulated sum across the number of input cycles. The number of
cycles of a input must match the number of stored b values written.

http://www.achronix.com
https://secure.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 21

Chapter - 6: Cascade Paths
The MLP72, (and associated BRAM72K and LRAM2K), have dedicated high speed cascade paths which allow
connection of several primitives in series. Using these cascade paths allows for complex, multi-element,
structures to be performed. Multiple MLP72 can be operated in parallel, cascading input data or results along the
paths, in parallel with their associated BRAM passing pre-stored kernels or weights; or alternatively the BRAM
address, allowing for different kernel and weights to be applied to each MLP72 whilst they share the same input
data. Introduction

The MLP72 cascade paths are listed below

Table 23: MLP72 Cascade Paths

Port Direction Description

fwdi_multa_h[71:0] Input Forward cascade path inputs for multiplier A inputs, higher multiplier block

fwdi_multb_h[71:0] Input Forward cascade path inputs for multiplier B inputs, higher multiplier block

fwdi_multa_l[71:0] Input Forward cascade path inputs for multiplier A inputs, lower multiplier block

fwdi_multb_l[71:0] Input Forward cascade path inputs for multiplier B inputs, lower multiplier block

fwdo_multa_h[71:0] Output Forward cascade path output for multiplier A inputs, higher multiplier block

fwdo_multb_h[71:0] Output Forward cascade path output for multiplier B inputs, higher multiplier block.

fwdo_multa_l[71:0] Output Forward cascade path output for multiplier A inputs, lower multiplier block

fwdo_multb_l[71:0] Output Forward cascade path output for multiplier B inputs, lower multiplier block.

fwdi_dout[47:0] Input MLP72 internally calculated result, cascaded from MLP72 below

fwdo_dout[47:0] Output MLP72 internally calculated results, cascaded up to MLP72 above

Usage Conditions
A number of conditions are required to use cascade paths;

Cascade paths run up, (and also down), a column of identical elements. In the case of the MLP72, the
cascade paths only run up a column, and as such are named forward, (fw), paths.

All forward cascade paths inputs will come from the MLP72 directly below

All forward cascade path outputs will go to the MLP72 directly above

It is not possible to bypass an MLP72 in a column that is using cascade paths

It is not possible to drive the cascade path inputs from the fabric. For the start of the path, the user may
use the ACX_FLOAT macro to create a floating signal which may be connected to the input of the lowest
MLP72, (see below)

It is not possible to use the cascade outputs in the fabric. The top of the cascade chain must be left open

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 22

It is not possible to use the cascade outputs in the fabric. The top of the cascade chain must be left open
circuit.

The following code is suggested for implementing the floating input to the bottom cascade chain

code

// ---
// Cascade paths

// ---
// Create a float wire for cascade signals

wire float;

ACX_FLOAT X_ACX_FLOAT(.y(float));

// ---
// Example connectivity

// ---
wire [71:0] fwd_multa_h[NUMBER_OF_MLP:0];

assign fwd_multa_h[0] = {72{float}};

Solutions
There are a number of application requirements that can be solved by the use of the cascade paths

Input re-use
The four buses that feed the multiplier array, , , and are all output as multa_l multa_h multb_l multb_h
similarly named forward cascade paths, (etc.). Equally each is available as an cascade path fwdo_multa_l
input, (etc.) to its respective input selection mux.fwdi_multa_l

Therefore data values can be input to the bottom of a column of MLP72, and cascaded up to all MLP72 in the
column. This greatly simplifies routing, and also improves timing as the data source only has to fanout to a single
input on the bottom MLP72. In this scenario one of the multiplier inputs, for example all the "A" inputs, would be
cascaded up the column, and then the corresponding "B" inputs would be input directly to each MLP72. This
allows for a column of MLP72 to process the same source data, (the "A" inputs), with different coefficients or
weights, (the "B" inputs), in a parallel structure.

In order to achieve high performance, it is recommended that the delay registers, etc. are del_multa_l
enabled. With these enabled the data is able to traverse the cascade chain at approximately 750MHz, (fastest
speed grade). Having the registers enabled results in each MLP72 in the column processing the data one cycle
after the MLP72 below it. If the second data source, (the "B" inputs") are equally delayed by one cycle per
MLP72, then the resultant output from each MLP72 will also be delayed by a cycle for each MLP72 in the
column. This can have advantages in terms of collecting the results, and streaming them to either a following
processing stage, or storing the results into memory.

Example
An example of the input cascade paths is to be found in the with the Speedster7t Reference Designs User Guide
mlp_conv2d reference design. This design passes the image data that is to be processed up the cascade path,
and this data is then convolved with weights read from each MLP72's local BRAM72K. This allows a single
stream of image data to be processed by 16 MLP72s in parallel, and the whole design applies 60 MLP72s in
parallel, with the source data only needing to fanout to the 4 MLP72 at the bottom of each column.

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 23

To further illustrate the power of the cascade paths, in the above mlp_conv2d reference design, the BRAM72K
themselves are programmed using the cascade path, so allowing the weight data source to again only fanout to
the four columns of MLP72/BRAM72K. In addition, as the weights are read from BRAM, the read address is also
cascaded up the column, with a delay stage enabled between each BRAM. This structure ensures that each
MLP72 has the image data and weights correctly phased with each MLP72 operating one cycle behind the one
below it.

Output addition
The internally calculated 48 bit result of the MLP72 calculation is output as fwdo_dout. This cascade path
connects to the MLP72 above, into the sum / accumulator for each half of the multiplier tree. This allows for the
sum of the MLP72 below to be added, or subtracted, from the current MLP72 sum. Using cascaded outputs it is
possible to build extended MLP72 which support accumulation and summation across a wide number of inputs

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 24

Chapter - 7: Closely Coupled LRAM

Introduction
The MLP72 has an integrated Logic 2k bit RAM, (LRAM), tightly bonded to both its external inputs, and internal
signals. This LRAM enables local storage and reuse of both input values, and output results. The LRAM is often
referred to as a register file, particularly when it is configured to store and replay MLP72 results. The LRAM can
be configured as 36 bits × 64, 72 bits × 32, or 144 bits × 16, dependant upon application.

Modes
When the LRAM is used as an integrated part of the MLP72, it can be operated in three modes; (the modes
values correspond to the values set for the and lram_input_control_mode lram_output_control_mode
parameters.

Mode 0, (default). LRAM is slaved to co-sited BRAM72K. The LRAM operates as an extension to the
BRAM72K, supporting additional address space. The data, read and write signals are connected from the
BRAM72K to the LRAM using the dedicated signal paths. This mode is intended for initialising the LRAM,
via the NOC, during power up.

Mode 1. LRAM operates as either RAM or FIFO. Re-purposing several dual use MLP72 inputs the LRAM
can store the results of the MLP72 calculation, and its output can be routed back into the MLP72 Input

 stage.Selection (see page)

Mode 2. With the LRAM set to operate as a FIFO in Mode 1, Mode 2 adds additional signals that allow
reset of the FIFO address generators. This additional flexibility allows for when the LRAM may be storing
groups of results or coefficients that do not necessarily match the length of the FIFO, i.e. their length is not
a power of 2 .n

Solutions
The LRAM can be operated as a register file, storing output results, and adding them back into the multiplier
outputs

http://www.achronix.com

Speedster7t Machine Learning Processing User Guide (UG088)

www.achronix.com 25

Revision History

Version Date Description

0.9 06 Aug 2019 Initial preliminary release.

http://www.achronix.com

	Introduction
	Scope
	Sections

	Number Formats
	Integer Formats
	Integer Groups
	INT16
	INT8
	INT7
	INT6
	INT4
	INT3

	Floating Point Formats
	Formats
	Representation
	Rounding

	Block Floating Point

	Integer Multiplication Primitives
	MLP72_INT
	MLP72_INT8_MULT_4X
	MLP72_INT16_MULT_2X

	Floating Point Primitives
	FP_MULT
	FP_MULT_2X

	Dot Product Reference Designs
	dot_product_N_8x8
	dot_product_2bf16_doutcasc4
	dot_product_10bfp_fp10_6x6

	Cascade Paths
	Usage Conditions
	Solutions
	Input re-use
	Example

	Output addition

	Closely Coupled LRAM
	Introduction
	Modes
	Solutions

	 Revision History

