
Preliminary Data

Speedster7t Cryptographic
Engine User Guide (UG104)

Speedster FPGAs

Preliminary Data

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 2

Copyrights, Trademarks and Disclaimers
Copyright © 2021 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster,
and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other
trademarks are the property of their respective owners. All specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Preliminary Data
This document contains preliminary information and is subject to change without notice. Information provided
herein is based on internal engineering specifications and/or initial characterization data.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 3

Table of Contents

Chapter - 1: Description . 5
Example . 5

Ports . 7

Chapter - 2: Operation . 9

Chapter - 3: Usage . 11
Synthesis . 11

Simulation . 11

Chapter - 4: Templates . 12
Verilog Functional Core . 12

Verilog Core Bypass . 13

Chapter - 5: Implementation . 14

Chapter - 6: Bitstream Generation . 16
Default Key . 16

ACE Options . 16

Revision History . 17

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 4

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 5

Chapter - 1: Description
The Cryptographic engine, , supports data encryption/decryption and implements an AES ACX_AESX_GMC_K
algorithm using Rijndael encoding and decoding in compliance with the . NIST Advanced Encryption Standard
The encryption is suitable for a variety of applications in the public and private domain.

The Advance Encryption Standard (AES) is a symmetric block cipher chosen by the US government to protect
classified information. Symmetric, also known as , ciphers use the same key for encrypting and secret key
decrypting so the sender and receiver must both know and use the same secret key. Compared to the DES and
triple DES algorithms, AES provides a higher level of security because it has a larger key size and is also faster.
In addition, DES has become vulnerable to brute-force attacks.

The Cryptographic engine core is pre-placed and pre-routed. Although it is implemented in the fabric, it can be
considered a hard IP core because the placement and routing cannot be modified.

All of the inputs are synchronous to the clock signal, . The Cryptographic engine processes 128-bit blocks of clk
messages using a 128-bit fixed-length key. The data input interface is 128 bits wide but the data can be input
with byte resolution using the and inputs. The signal indicates the last word being input. ibyte last_w last_w
The signal is ignored until is asserted, indicating the number of valid bytes in the last word minus ibyte last_w
1 (counted from the MSB). So = "0000" means that only the first byte in the incoming word is valid and ibyte

="1111" means that all bytes are valid.ibyte

Example
There is an example reference design for the Cryptographic engine included in the Speedster 2D NoC Reference
Design. This design can be freely obtained by contacting Achronix at support@achronix.com

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11510

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 6

Figure 1: ACX_AESX_GMC_K Symbol

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 7

Ports
Table 1: Port Description

Name Direction Width Description

rstn Input 1 Active low asynchronous reset.

clk Input 1 Clock signal.

en Input 1 Synchronous enable signal.

go Input 1 Starts cryptographic operation when = 1.

abort Input 1 Aborts current operation when = 1.

e_d Input 1

Mode signal:

Encryption when = 0
Decryption when = 1

kin[127:0] Input 128 Key data input.

ksize[1:0] Input 2 Input key size. Not user programmable.

k192[31:0] Input 31 Unexpanded key.

din[127:0] Input 128

Input data:

Contains input data when = 1Additional adata

Contains input data when = 1Message mdata

adata and are mutually exclusive cannot be 0 at the same timemdata

iv[95:0] Input 96 Initialization Vector.

adata Input 1 Additional data is input when = 1.adata

mdata Input 1 Message data is input when = 1.mdata

ibyte[3:0] Input 4

Indicates the number of valid bytes in the last word – 1. Valid when din

 is asserted. last_w (1)

ibyte = 4'h0 = 1 byte
ibyte = 4'hf = 16 bytes, (full 128-bit word)

last_w Input 1 When = 1, last Additional or Message data word is input. Validates ibyte[3:
 input.0]

k_req Output 1 When = 1, the unexpanded key is requested.

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 8

1.

Name Direction Width Description

a_req Output 1 When = 1, Additional data is requested.

m_req Output 1 When = 1, Message data is requested.

ibusy Output 1 When = 1, the core is in the initialization process.

dout[127:
0]

Output 128 Processed message data output.

tag[127:0] Output 128 Authenticated tag value output.

tag_vld Output 1 Authenticated tag value valid output.

Table Notes

ibyte is scaled differently from many other last byte values. It is equal to (last word – 1). If moving din
between other interfaces with mod signals, be aware of this scaling difference.

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 9

Chapter - 2: Operation
The core supports both encryption and decryption according to the AES algorithm.ACX_AESX_GMC_K
The rising edge on the port triggers the beginning of a cryptographic operation using the input as the key. go key
The signal must be asserted one cycle before the signal. The and signals must remain en go mdata adata
stable.

When the core is started, it requests the unexpanded key (one 128-bit word) by raising . The application k_req
must assert the kin input on the same cycle that is asserted, (not on the following cycle). After 14 cycles k_req
from being asserted, the core is ready to accept message data or additional data.ibusy

This is known as the initialization phase and it is indicated by the signal being asserted.ibusy

Figure 2: Initialization Phase

After initialization, the core asserts on the third clock cycle after the falling edge of if is m_req ibusy mdata
asserted, indicating that the core is now accepting message data on every clock cycle. The application must
apply data to the core on the assertion of , (not on the cycle following). Therefore it is suggested m_req m_req
that the application count cycles from the de-assertion of to ensure that the first word of data is applied on ibusy
the same cycle that is asserted.m_req

Figure 3: Message Data Input and Output

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 10

The core asserts on the third clock cycle after the falling edge of if is asserted. The type of a_req ibusy adata
data requested is indicated by the and signals for additional and message data respectively.a_req m_req

The output is synchronous as there are flops on the output. The encrypted or decrypted message data is the
result of the AES counter operation XORed with the incoming data, as shown above.

Also, the related signal is two cycles behind and so continues for two cycles after . The dout din last_w e_d
signal only needs to be valid when data is being input because decryption only affects the authentication tag
calculation.

Figure 4: Additional Data Input and Output

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 11

Chapter - 3: Usage
The Cryptographic engine, , must be present in any design for the Speedster AC7t1550 ACX_AESX_GMC_K
device. The ACX_AESX_GMC_K module must be instantiated in a user design for this device. The core may be
instantiated as detailed below, or a bypass version which bypasses the ACX_AESX_GMC_K core for
applications that do not require data encryption and decryption may, instead, be instantiated.

There can be only one instance of the ACX_AESX_GMC_K module in the user design.

Synthesis
To instantiate either the core or the bypass version, the synthesis must include the Speedster AC7t1550 device
synthesis library file. The core is then included as part of the Speedster AC7t1550 synthesis library.

Configure path to ACE library files
set ACE_INSTALL_DIR $::env(ACE_INSTALL_DIR)

Include AC7t1550 synthesis library file, which includes the ACX_AESX_GMC_K core
add_file -verilog "$ACE_INSTALL_DIR/libraries/device_models/AC7t1550_synplify.v"

Simulation
The ACE simulation model also supports the ACX_AESX_GCM_K core. To simulate the core, ensure that the
Speedster AC7t1550 simulation device file is included in the simulation file list. The core is included as part of the
Speedster AC7t1550 simulation device library.

Include AC7t1550 device simulation library, which includes ACX_AESX_GCM_K core

$ACE_INSTALL_DIR/libraries/device_models/AC7t1550_simmodels.v

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 12

Chapter - 4: Templates

Verilog Functional Core
 // Instantiate the Cryptographic Core

 ACX_AESX_GCM_K i_ACX_AESX_GCM_K (
 .clk (user_clk),

 .rstn (user_rstn),
 .en (user_en),

 .go (user_go),
 .abort (user_abort),

 .ksize (user_ksize),
 .k192 (user_k192),

 .kin (user_kin),
 .iv (user_iv),

 .e_d (user_e_d),
 .adata (user_adata),

 .mdata (user_mdata),
 .k_req (user_k_req),

 .a_req (user_a_req),
 .m_req (user_m_req),

 .din (user_din),
 .ibyte (user_ibyte),

 .last_w (user_last_w),
 .dout (user_dout),

 .tag (user_tag),
 .tag_vld (user_tag_vld),

 .ibusy (user_ibusy)
);

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 13

Verilog Core Bypass
If the Cryptographic engine in the Speedster AC7t1550 device is not required, the engine can be bypassed as
shown below:

 // --
 // Support for the AC7t1550 device

 // --
 // If this design is intended to be targeted to the ac7t1550 device,

 // (which includes the pseudo-hard IP Cryptographic engine), then it is necessary to
 // instantiate the core in the code, even if unused

 // If not required for an AC7t1550 design, then instantiate a bypass
 // instance of the core as shown below

 // For a design that demonstrates full use of the core, please see the
 // Speedster_2D_noc_ref_design_RD22/ac7t1550 design

 // --
 // The define ACX_DEVICE is set as follows :

 // In simulation by the /sim/<simulator>/Makefile
 // In GUI synthesis by the /src/syn/<project>.prj file

 // In batch synthesis by the /src/constraints/synplify_options.tcl file
 // --

`ifdef ACX_DEVICE_AC7t1550
 ACX_AESX_GCM_K_BYPASS ();

`endif

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 14

Chapter - 5: Implementation
Support for the Cryptographic engine has been integrated into ACE via partition flow. The flow automatically
takes care of importing the Cryptographic engine as a partition along with the relevant .EPDB file.

Note

Because the Cryptographic engine is imported as a partition, incremental flow cannot be used on the
Speedster AC7t1550 device.

The Cryptographic engine is placed in the South East corner of the device as shown below (see page 15)
(highlighted in Blue). The placement is fixed and cannot be modified by the user.

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 15

Figure 5: Cryptographic Engine Placement

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 16

Chapter - 6: Bitstream Generation
The bitstream for the Speedster AC7t1550 must be encrypted. Use the default Achronix AES key that is included
in the Speedster AC7t1550 device overlay package at key index 0. Alternately, users can substitute their own
AES keys by burning the E-Fuses for the upper three AES keys into the device.

Default Key
bcdd1d62ad64c599807cfc1e1e35baa573fb51192fcfd2c89623051dc3dc521a

The AES key must be saved in a text file to be read by ACE during the bitstream generation phase. In the
example reference design for the Cryptographic engine, the key is stored in /src/mem_init_files
/aes_key.txt

ACE Options
The AES Key is input to ACE for encryption of the bitstream via implementation options as shown below:

set_impl_option bitstream_encrypted 1
set_impl_option bitstream_encryption_aes_key_file “<path_to_aes.txt> "

set_impl_option bitstream_encryption_key_index 2
set_impl_option bitstream_encryption_key_type 1

set_impl_option bitstream_encryption_same_key 1

In the example reference design for the Cryptographic engine, the above options are set in the /src
 file./constraints/ace_options.tcl

Speedster7t Cryptographic Engine User Guide (UG104)

Preliminary Data 17

Revision History

Version Date Description

1.0 17 Sep 2021 Initial release.

	Description
	Example
	Ports

	Operation
	Usage
	Synthesis
	Simulation

	Templates
	Verilog Functional Core
	Verilog Core Bypass

	Implementation
	Bitstream Generation
	Default Key
	ACE Options

	Revision History

