Speedster/t Configuration
User Guide (UG094)

Speedster FPGAs

Achronix

Data Acceleration

UUUUU

UG094 Speedster/t Configuration User Guide

Copyrights, Trademarks and Disclaimers

Copyright © 2025 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and
ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks
are the property of their respective owners. All specifications subject to change without notice.

Notice of Disclaimer

The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor
Corporation does not give any representations or warranties as to the completeness or accuracy of such information
and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation
reserves the right to make changes to this document and the information contained herein at any time and without
notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at http://
www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

UG094

Speedster/t Configuration User Guide

Table of Contents

Chapter1:

Chapter 2:

Chapter 3:

OVEIVIBW eeeiiieeneeeeieeeneeseeesessesssssssssssssssssssssssssssssssssssssnsssssssssssssssssssnsssssssssns 1

Interface Performance..........oiireinnciicirceincenccseeessnesesnesesnesesnens 3
Bitstream Programming Modes for Speedster7t FPGAs..........ccecu...... 4
Bitstream Programming TIME ...ttt ssst st assssssssssssssssssssenns 5
Bitstream Programming Via CPU ...ttt sssssssessssssssssssesenns 5
CPU Mode Bitstream Programming FIOW ..o ssessesssssssssssssaes 5
Generating the CPU Mode Bitstream Files From ACE 5

How To Use the ACE-Generated CPU Bitstream File 6

CPU M0dE Hardware INTEITACE ...ttt ssse st 7
Bitstream Programming via Flash MemOries ... 9
Serial Flash Bitstream Programming FIOWc.ccciiineineieieeeieeeeeeseiseisessesseisessessessessessessessessesseens 9
Generating the Serial Flash Bitstream Files from ACE 9

Using ACE-Generated Serial Flash Bitstream Files 11
spiz:program_bitstream Command 11
spi::program_all_bitstreams Command 12

Reading Back Data Stored In Flash 13
spiz:read_bitstream Command 13

Serial Flash HardWare INTEIrfaCE ...ttt 14
FIASN INTEITACE ettt 15
Flash Device CoONFIBUIATIONS ...ttt ansssnsssssseens 16

UG094 Speedster/t Configuration User Guide

1D Configuration 16

4D Configuration 17
Addressing Modes and Memory Organization........ceeirenesisenesiesssssessssssssssssssssssssssssssssssssssses 18
Address Range 19
Flash Configuration Header (PageO Header) 20
Flash Configuration ProtOCOL ...t naessssess s essessess s s sscssesscsscssees 21
FLIASI IMIOAES ...ttt st st s sttt bttt eae 22
SPI Mode 23
Dual Mode 23
Quad Mode 24
Octa Mode 24
Flash Memory Size REQUIFEMENTS ...t eaesseas s ssessessessssssssesacssessssscsaes 25
Flash Configuration USING FT DI ...ttt essessessessesssssessssss st sassans 25
FTDI Board-Level Device Connections 25
Bitstream Programming Via JTAGc.cccnicneeicnecieeiesencssesessesesesesessesesesessees 28
Generating the JTAG Bitstream Files From ACE ...t ssesees 28
How To Use the ACE-Generated JTAG Bitstream Files.......uencenenernenecneecseneceeneenne 28
JTAG Programming using the ACE DOWNI0AA VIEW......covurerirrerierisiseseseesissesssissssssesssssssssenssnnens 28
ACE JTAG Connection Preference Page 28
ACE JTAG Download View 29
JTAG Programming using the ACE FIOW STEPS w...ururerirereeieeereeeieeireieeiseiseesteseeseisesseass et sssseen 31
JTAG Programming using the TCl LIDrary APl ...ttt seenas 32
Variables Under ACE Tcl Console 33

Tcl Command Tables 33
Programming the Board Using JTAG and Read/Write Registers 40
JTAG HardWare DVEIVIEW.......cucueeeeerieireeireieeeisee ettt ettt st s s st sas e sasssssssssseeassassnen 41
Introduction 41

UG094

Speedster/t Configuration User Guide

Chapter 4:

Chapter 5:

JTAG Configuration Overview. 41

JTAG Instructions 45

JTAG Configuration USING FTD ...ttt ssessssssssssssssssssssessssssssssssssesssssssssssssssssnens 46
Overview 46

FTDI Board-Level Device Connections 49

FTDI Interface in ACE 54
Programming Speeds and Requirements 55

Known Device Limitations 56

Software and Driver Install for FTDI 56
Connecting the FTDI Device 58

JTAG Configuration Using the Bitporter2 POd ... erenenerescereiseencineeseesessesessesessesesessennee 59
Software and Driver Install for Bitporter2 60
Connecting the Bitporter2 Pod 62
Bitstream Programming Via PCIE.... ettt eessesesessesens 65
Design Requirements for Programming Via PCIE ...t ssessesssnn 65
How to Generate the PCle Bitstream Files With ACE.........ccoceeneeeneeeeeeneeecnesecssesseessesseenne 67
Bitstream Generation - Additional Outputs Section 67
Bitstream Generation - Two Stage Programming Section 67

How to Program a Device with the PCle Bitstream Files..... e 68
Standalone PCle Programming Utility 68
Programmatic Access Using Achronix SDK Library Functions 68

FPGA Configuration Unit (FCU)ccceeeeeererereeereereeeerereeeeeesenesessesesenns 69
OVEBIVIBW ittt ettt sttt sttt sttt bbbt et 69
Configuration Pin TabIES ...ttt 71
Bitstream Generation Software Support in ACE.........cccovveievreeecieennnne 75

UG094

Speedster/t Configuration User Guide

Chapter 6:

Chapter 7:

Chapter 8:

BitStream GENEIratioN ...ttt ssese st sesaesas 75
Bitstream OULPUL File FOrMATS ..ottt ae st et as s essassenas 75
Serial Flash Configuration OPTIONS ...t eieeesesseasessessea st bbb seeeas 76
ENCIYPLION OPTIONS ceeeeeeceeeece ettt bt a s s s s esas s s s sassnns 78
Two-Stage Configuration OPLiON..... ettt sssss st ss s s ssessssssssssssssassanens 79
Partial Reconfiguration Configuration OPLiONSccceeeeieeerieneresesisess s ssesssssssssssssenes 79
FCU ConfigUuration OPLIONScceeeceeucecereicieiseeeeceeeeesesessenae e easessssessessessessssssssessessessesssssessessessessesan 80
Bitstream ID Configuration OPLIONS ...ttt eeas 81
CMEM Error INJECTION OPTiONS. ..ottt sttt s ss s s s s s s ss s s sassessssassenes 81

Configuration Sequence and Power-Up........cccccceeevererercrercnencnnencnnennne 83

DEVICE POWET=UP ottt ss s s s s s s s s st s s s s s s sesesees 83

Configuration Error Correction and SEU Mitigation.........ccccceeeeueeennennee 84

Configuration Memory Architecture and Addressingcceeeeeeeereeeeeeseeseseeeseenene 85

Error INjection and REPOIMTING ...ttt ettt aes 87
ACE ImMplementation OPLIONS ...ttt s s s s s s s s asssssssassanens 87
BitStream ErrOr INJECTION .. ettt ettt sesanans 88

Bitstream Single-Bit Error Injection Example 89
Bitstream Dual-Bit Error Injection Example 90

SCIUDDING RESET ..ttt sttt s st s s s s see 91

SCrUbDING FCU REGISTEIS.....uiieeieieeieieeeeteeeets sttt sttt ssss s s st s sassns 91

Design Security for Speedster7t FPGAcooiivvirerercnernceneceeenneeennes 93

Bitstream AUthentiCatioN ...ttt es 93

Vi

UG094 Speedster/t Configuration User Guide

BitSTream ENCIYPION .ttt a st eaes 93
Generating ENCrypted BitSTrEamMS ...ttt s s s s ssesacsaes 94
Encrypting a Speedster7t AC7t1500 BitSTrEamM ...ttt sssiaa 95

Using the ACE GUI 95
Using Tcl Commands 96
Encrypting @ Speed AC7t1400 BitSTrEam ... ettt sssssssssssss s sssssssssssssssssnes 97
Using ACE GUI 97
Using Tcl Commands 98
HArAWAIE SECUNILY cuvureeecieiecieieicteee ettt ettt bas s a s s s s s s s s as s s sesananes 98
Physically Unclonable Function 99
Key Derivation Function 99
Rules for Encryption 99

SECUILY FUSESovvtettttst sttt 100
FUuses Set at ManUFACTUIING ..ottt sssss s st sss st snss s sssssssssnsnssens 100
FUSES SET BY CUSTOMIET ...ttt ess s s s st st ssnennsees 100
DEFAUIT KEY Sttt e bbb eaenan 101
Generating a Public and Private Key Pair on Speedster7t AC7t1500ccocveveereereereereeneeneereiseeneenns 101
Programming the Encryption Keys Into Speedster7t AC7t1500 eFUSES...c.ocveuveureeneeneeneeneeeeennnne 102
Programming the Encryption Keys into Speedster7t AC7t1400 eFUSES.....cccoerveeeerreereerreerinnnes 102

Loading Encrypted BitStreamS ...ttt sssssssaes 103
Programming an AC7t1500 Encrypted BitStream ... sssssssssssssssssens 103
Programming an AC7t1400 Encrypted BitStream ... ssssssssens 104

DEVICE DINA .ttt et ettt ettt eaen 105
ACE Placements to Read Device DNA ... ssessessse s sssesssessesaenns 105

Top-Level Port Declaration 105
PDC 106

vii

UG094 Speedster/t Configuration User Guide

Chapter 9: Partial Reconfigurationcceeeeieerinnreerrececeerceeeceeeceeeceeeceesenes 107
DeSi8N CONSIAEIAtIONSvu ettt seseee sttt sess s seaeene 108

Using Partial ReCONTIBUIAtiON ..ottt enes 109

ACE ImMplementation OPLIONS ...t tetsssessss st ss e sesss e sesssassessassesssasssssssssssessssssens 109

Partial RECONTIGUIATION STEPS ...ttt et 109

Chapter 10 : ReViSiON HiStOrY ... iieicceeecceetccceecccrecccnecsccne e e ssseeessseeesssneeessanasenns 110

viii

UG094 Speedster/t Configuration User Guide

Chapter 1: Overview

At startup, Speedster®7t FPGAs require configuration via a bitstream. This bitstream can be programmed through
one of four available interfaces in the FPGA configuration unit (FCU), the logic controlling the configuration process.

The term FPGA configuration unit (FCU) refers to logic that controls the configuration (bitstream programming)
process of the Speedster7t FPGA. This logic is responsible for the following:

- Receiving data on a variety of external interfaces (depending on the selected programming mode)
- Decoding instructions

- Sending configuration bit values to the appropriate destination (e.g., core configuration memory, the core
boundary ring configuration memory, FCU registers, etc.)

- Controls the startup and shutdown sequences that drive resets to the on-chip logic

- Bitstream CRC checks

- SEU mitigation with CMEM scrubbing

- Bitstream Encryption Security

- Any core-level housekeeping that occurs on the de-assertion of reset (i.e., clearing of configuration memory)
Data from the configuration pins is brought into the FCU located in the core boundary logic. Depending on the
configuration mode, this data passes through one of four interfaces and is then provided to the control logic and
state machines in the FCU. At this point, the data bus is standardized to a configuration mode independent common

interface. Data is processed and propagated to the configuration registers in the core boundary ring, to the core
configuration memory, or to the hard IP blocks in the FPGA I/0 ring.

When all of the configuration bits are successfully loaded, the FCU transitions the Speedster7t FPGA into user mode,
allowing full operation of the custom design.

2.2 www.achronix.com 1

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

Parallel load of
config memory in
core logic

Space Registers of
Hard IP

.

\
To Configuration [™

YYYYYY

FPGA Configuration Unit (FCU)

===>— 1 pcle }
. =
Control Logic and =
State Machines &
Z

/’ 4
7 [[Pcle x8/x16 |
//
//
Configuration Mode Configuration Pins

Interfaces
42074227-01.2022.08.11

Figure 1 - Speedster7t Configuration Block

2.2

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Chapter 2 : Interface Performance

The following table lists the various configuration interfaces supported by the Speedster7t FPGA and their
corresponding maximum operating frequency.

Table 1 - Configuration Modes and Maximum Frequencies

Configuration Mode Maximum Frequency

JTAG 50 MHz
CPU 250 MHz
Serial flash 62.5 MHz

All of the programming modes and interfaces are capable of running up to 250 MHz at the configuration pins. The
FCU and all associated circuitry are also capable of running up to 250 MHz. Since the internal data bus in the FCU is
128 bits wide, and in most configuration modes, the data pin count is less than 128, the incoming data stream goes
through a gearbox to reduce the throughput. This configuration ensures that the internal programming circuitry runs
at less than 250 MHz to process the incoming data stream. In the widest data mode (CPU x128), the gearbox is
bypassed and the entire configuration interface can run at the full 250 MHz bandwidth. Depending on the mode and
configuration data width, the total bandwidth varies, and the programming time changes accordingly.

() Note

CPU x128 mode is primarily for ATE use and not a recommended mode for design configuration.

2.2 www.achronix.com 3

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Chapter 3 : Bitstream Programming Modes for Speedster/t
FPGAs

Speedster7t FPGAs support four configuration modes:
- Flash
- JTAG
- CPU
- PCl Express

The selection between these modes is controlled by setting the FCU_CONFIG_MODESEL pins to the values shown in
the following table. Both JTAG and PCle modes are independent of the FCU_CONFIG_MODESEL pin setting. The
JTAG mode overrides all other configuration modes except PCle until disabled.

Table 2 - Pin Settings for Various Configuration Modes

Confisuration Mod Data FCU_CONFIG_ FCU_CONFIG_ FCU_CONFIG_
onriguration Mode Width MODESEL [3:0] SYSCLK_BYPAss @ CLKSEL @
- X 0

PCle XXXX
JTAG @ @) - XXXX X 0/1
1(SPI) 0001
2 (Dual) 1000
Flash single device (1D) @
4 (Quad) 1010
8 (Octa) 1100
0/1 0
1(SPI) 0010
2 (Dual) 1001
Flash four devices (4D) @)
4 (Quad) 1011
8 (Octa) 1101
1 0011
8 0100
CPU 16 0101 1 0
32 0110
128® o111

2.2 www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Configuration Mode FCU_CONFIG_ FCU_CONFIG_ FCU_CONFIG_

MODESEL [3:0] SYSCLK_BYPASS W CLKSEL W

Table Notes
1. These straps select the configuration clock source:

0 - on-chip oscillator clock
1- FCU_CPU_CLK

2. Always active. Enabled in the JTAG TAP controller.

3. If FCU_CONFIG_MODELSEL[3:0] pins are set such that flash or CPU configuration mode is selected, the JTAG override should be issued after flash
programming has completed or the CPU mode interface is inactive.

4. In 1D mode, the flash bitstream is downloaded from one flash device. In 4D mode, the flash bitstream is downloaded from four flash devices.

5. Speedster7t FPGAs have 32 dedicated data I/0 pins for the CPU interface supporting up to a x32 interface. For X128 mode, the upper 96 pins are
shared with the DDR4 interface.

& Caution!

CPU x128 is primarily for ATE use and not a recommended mode for design configuration.

Bitstream Programming Time
Bitstream programming time is determined by the following formula in seconds:

(Total number of programming bits) / (programming data-width x clock frequency)

(Note

When programming via JTAG, the clock frequency applied to the formula should be the frequency of
JTAG_TCK.

Bitstream Programming Via CPU

CPU Mode Bitstream Programming Flow

Generating the CPU Mode Bitstream Files From ACE
1. In ACE, select the CPU mode additional output.

2. Select the CPU bus width to generate . cpu and _cpu.b1in files for use in CPU programming mode as shown in
the following example.

3. Run the Generate Bitstream flow step:

> run -step write_bitstream

2.2 www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Additional Outputs
[serial Flash (.flash)
[w4 CPU Mode (.cpu, .bin)

CPU Bus Width | 32 -

[PCle {.pcie)
[| CMEM Address and Data Export (.address)

Figure 2 - ACE Additional Output Options Dialog

Table 3 - Bitstream Generation Implementation Options For CPU Mode

Enables generation of an additional CPU mode (. cpu) formatted
output file with the same name as the . hex file. The file contains
hexadecimal-formatted data organized with "CPU bus width"
number of bits per file line. File data is sent to the FCU CPU
interface line by line (one line per clock cycle), where the left-most
CPU Mode (. cpu) bitstream_output_cpu bit on each line is the MSB and the right-most bit is the LSB.
In simulation, this file can be loaded using the readmemh
function. For convenience, an additional binary representation of
the CPU mode output (_cpu . b1in) file is written with the same
name as the . hex file. It contains the same data in the same bit
order as the . cpu file butin a binary format with no new-lines.

Controls the bit width of the CPU-mode formatted output file.
When using the CPU interface in x8 mode, set this value to 8. If
using the CPU interface in x32 mode, set this to 32. The value
determines how many bitstream bits are printed per line in

the . cpu output file. The bit sequence required by the FCU (and
output in the generated bitstream file) might be different for each
CPU bus width setting. It is important to set this option to match
the actual CPU hardware interface width.

CPU Bus Width bitstream_output_cpu_width

How To Use the ACE-Generated CPU Bitstream File

There are two different CPU mode output file formats generated by ACE:

1. The x.cpu file format. This file uses hexadecimal formatting and contains one CPU write per data line. If CPU
bus width is set to 8, each line in the * . cpu file contains eight bits of hex-formatted data in big-endian format.

2. The x_cpu.binformat. This file is a pure binary formatted file (with no newlines) and is formatted according

to the CPU bus width in little-endian format. If CPU bus width is set to 8, every eight bits of binary file data
represents the eight bits of data needed for each sequential CPU write.

To use either file format to program the ACE-generated bitstream into the FPGA, simply loop over the bitstream file
from start to end and perform a CPU write operation with (CPU bus width) bits of data from the file on the

FCU_CPU_DQ_IN_OUT bus. Details on the hardware interface follow.

2.2 www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

CPU Mode Hardware Interface

In CPU configuration mode, an external CPU controls the programming operations to the Speedster7t FPGA and
offers a high-speed method for loading configuration data. Depending on the setting of the FCU_CONFIG_MODESEL
pins, the CPU mode can be either a 1-, 8-, 16- or 32-bit wide parallel interface (128-bit wide is available for ATE test

only). This interface is clocked using FCU_CPU_CLK with chip select support to indicate valid data. This mode
supports a maximum clock rate of 250 MHz.

CPU Speedster7tFPGA

CLK FCU_CPU_CLK
CSN FCU_CPU_CSN
READ_VALID FCU_CPU_DQ_VALID

32
DQ_IN_OUT([31:0] FCU_CPU_DQ_IN_OUT[31:0]

Ties to 1'bl for
FCU_CONFIG_SYSCLK_BYPASS
CPU mode = = =
) 4
Tied to relevant values for FCU_CONFIG_ MODESEL[3:0]
CPU mode

FCU_CONFIG_STATUS

FCU_CONFIG_DONE

FCU_CONFIG_RSTN

FCU_CONFIG_USER_MODE

FCU_PARTIAL_CONFIG_DONE

47419708-01.2022.08.11

Figure 3 - External CPU Connectivity to a Speedster7t FPGA

(@ Note

The CPU only needs to connect to the first 1, 8,16 or 32 bits of FCU_CPU_DQ_IN_OUT depending on the
CPU mode selected. All unused signals should be tied to weak pull-up resistors.

As described in the Configuration Sequence and Power-up (page 83) section, the configuration mode-specific
operations occur between the release of FCU_CONFIG_STATUS (indicating that the configuration memory has been
cleared and that the Speedster7t FPGA is ready to accept bitstream data) and the assertion of FCU_CONFIG_DONE
(stating completion of configuration). The following example waveform for CPUx8 mode illustrates the sequence of
events, clocking and control signal states needed for successful configuration in CPU mode:

1. After FCU_CONFIG_RSTN is de-asserted, FCU_CPU_CLK must continue to cycle to ensure that the FPGA

cycles through the FCU states and the configuration memory is cleared. At that point, FCU_CONFIG_STATUS is
driven high.

2.2 www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

2. After at least 5 clock cycles of FCU_CONFIG_STATUS being driven high, FCU_CPU_CSN must be pulled low to
begin writing the bitstream data into the Speedster7t FPGA. When the last set of data is written into the

Speedster7t FPGA, FCU_CPU_CSN is pulled back high.

3. When FCU_CPU_CSN is pulled high, FCU_CPU_CLK must continue being clocked. When the FCU cycles

through all of the configuration states, FCU_CONFIG_DONE is driven high to indicate that the Speedster7t
FPGA was successfully programmed.

4. Asthe FCU_CPU_CLK toggles, the FCU cycles through its states to move the Speedster7t FPGA from
programming mode into user mode, taking the fabric out of reset and performing operations to enable user-

mode functions for all parts of the core. The FCU_CONFIG_USER_MODE signal is asserted to indicate when the
Speedster7t FPGA has successfully transitioned into user mode.

At any point during the configuration, if FCU_CPU_CSN is asserted low, the FCU_CPU_DQ_IN_OUT bus should
contain valid data or NOPs. A NOP is represented by logic O on all data pins. During this time, the
FCU_CPU_DQ_VALID pin should be held low, indicating that the data pins can be driven by a device external to the
FPGA as mentioned in Configuration Pin Tables (page 71). If FCU_CPU_CSN is high, the data on
FCU_CPU_DQ_IN_OUT isignored. When the bitstream is programmed, FCU_CPU_CSN can be held low while
sending NOPs to the Speedster7t FPGA. This action does not affect the assertion of FCU_CONFIG_DONE or
FCU_CONFIG_USER_MODE signals.

e nininiyinipiyipinininininiydnininiydninivay
2 7 2 4 ¢
A aRanr e;e ARERNE
L RN nRRRE i ABK 4
O A G T s - 2
2 2 2 RN any.
! ! ! RN
2 2 2 2 .
! ! ! ! !

47419708-02.2024.01.28

Figure 4 - Clocking and Control Signals for Successful Configuration

512 bits Preamble 300 clock cycles wait time

unencrypted format - Bitstream

47419708-07.2022.08.11

Figure 5 - Bitstream Data Sequence For Unencrypted Bitstream

2.2 www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

(@ Note
During the 300 clock cycle wait time, CPU_CSN is pulled high for encrypted bitstreams.

When programming an encrypted bitstream, there are additional wait clock cycle requirements. Please
refer to the details in the Design Security for Speedster7t FPGA (page 93) section of this document.

Bitstream Programming via Flash Memories

A Caution!

Speedster7t FPGAs can interface to serial NOR flash devices only. Parallel NOR, NAND or other flash
variants are not supported.

Serial Flash Bitstream Programming Flow

Generating the Serial Flash Bitstream Files from ACE

1. In ACE, select the Serial Flash additional output to generate the . flash and _page0. flash files for use in
Serial Flash programming mode as shown in the following example.

Additional Outputs
[+ serial Flash (.flash)
"] cPU Mode (.cpu, .bin)

CPU Bus Width | 8 -

T

["JpCle (.pcie)

|| CMEM Address and Data Export (.address)
Figure 6 - ACE Additional Output Options Dialog
2. Run the Generate Bitstream flow step:

> run -step write_bitstream

Table 4 - Bitstream Generation Implementation Options For Serial Flash Mode

Enables generation of the serial flash-formatted . flash
output file and the page0 header _page0. flashfilesin

Serial Flash (. flash) bitstream_output_flash addition to, and with the same name as, the default . hex file.
The . flash file contains a binary image that can be directly
loaded into a single serial flash memory.

2.2 www.achronix.com

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

The following bitstream implementation options must be set correctly for the board serial flash hardware

configuration.

Serial Flash Configuration

Device Vendor Macronix -
Serial Flash Clock Divider 4 -
Data Width SPI -
Number of Flash Devices x1 -
Addressing Width 4-byte -
3-Byte Dummy Cycle Value (hex) | 00

4-Byte Dummy Cycle Value (hex) 08

Bitstream Start Address (hex) 00001000

[| Enable NOP Compression

Figure 7 - ACE Serial Flash Configuration Options Dialog

Table 5 - Bitstream Generation Serial Flash Configuration Options

ACE impl_option

Device Vendor

Serial Flash Clock Divider

Data Width

Number of Flash Devices

Addressing Width

3-Byte Dummy Cycle Value (hex)

bitstream_page0_vendor

bitstream_page0d_sf_clock_div

bitstream_page0_data_width

bitstream_page®_num_devices

bitstream_page0_addr_width

bitstream_page0_dummy_cycle_3by
te

Selects the flash device vendor. Allowed values:

Macronix (0)
Micron (1)

Selects serial flash clock divider. Allowed values:
4
8

Selects flash data readback width. Allowed values:
SPI (0)

DUAL (1)

QUAD (2)

0CT (3)

Selects number of devices based on targeted x1 or x4 PROM. Allowed
values:

x1(e)

x4 (1)

Selects 3-byte or 4-byte addressing mode to support flash devices
>1Gb. Allowed values:

3-byte (0)

4-byte (1)

Specifies the 3-byte addressing dummy cycle value.

The default value is 00 and varies by device vendor.
Must be specified as a 2-character hex value.

2.2

www.achronix.com

10

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

ACE impl_option

Specifies the 4-byte addressing dummy cycle value.

The default value is 08 and varies by device vendor.
Must be specified as a 2-character hex value.

bitstream_page0_dummy_cycle_4by

4-Byte Dummy Cycle Value (hex) te

Specifies the bitstream start address.

Bitstream Start Address bitstream_page®_start_addr Should be a non-zero multiple of 4096.
Must be specified as an 8-character hex value.

When unchecked (0), the * . flash file for I/0 Ring programming is
similar to other programming modes (CPU, JTAG, Hex, etc). When
checked, the x . flash file bitstream contents are compressed, to
help meet the 100ms PCle link-up time. This results in a different
bitstream for serial flash, which is dependent on the overall FCU data
width (Number of Devices x Device Data Width).

Enable NOP Compression bitstream_page0®_compress_nops

Using ACE-Generated Serial Flash Bitstream Files

The flash device is programmed using Tcl with . flash and _page0. flash files. The
spi::program_all_bitstreams ACE Tcl command is the recommended serial flash bitstream programming
command because it automatically determines the offset and is useful for two-stage bitstream programming over

PCle as discussed in the Bitstream Programming via PCle (page 65) section. If using spi: :program_bitstream,
the command must be issued twice to first program the stage0 header flash file followed by programming the stagel
or full flash file at the specified offset.

spi::;program_bitstream Command

Example

spi::program_bitstream <board_config> <flash_file> <number_of_proms> -device_id
<pod_name/FTDI_device> -offset <int> -hz <int>

Arguments

Table 6 - spi::program_bitstream Command Arguments

The board or part name of the targeted Achronix device (e.g., MEP/

< o> -
board_config FT2232H or VectorPath/FT4232H).

<flash_file> - The bitstream flash file to program from.

The number of PROM devices:

<number_of_proms> - + 1-single PROM
+ 4-x4 PROM

2.2 11

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Argument followed by the Bitporter 2 pod name or FTDI device
connected to the FPGA board. Use the JTAG Tcl command,
jtag::get_connected_devices,to query available FTDI devices
when more than one device is connected.

-device_id -

Argument followed by the byte offset of the flash file within all of the
-offset 0 PROMSs. Must be specified when programming the . flash or
_stage0. flashfile.

Lower SPI clock frequency to the value specified in this argument in KHz

-hz 30000 (optional) where 30000 is the maximum value.

spi::program_all_bitstreams Command

Example

spi::program_all_bitstreams <board_config> <page0®_file> <flash_file> <number_of_proms>
-device_id <pod_name> -hz <int> -stage_1_header_file <file_name>

Arguments

Table 7 - spi::program_all_bitstreams Command Arguments

The board or part name of the targeted Achronix device (e.g., MEP/

< o> —
board_config FT2232H or VectorPath/FT4232H).

The bitstream page0 flash file to program from: * _page0. flash for
<page0_file> - full flash file, or x_stage®_page0. flash for two-stage bitstream
programming.

The bitstream flash file name: either . flash for full flash file, or

<flash_file> N *_stage0. flash for two-stage bitstream programming.

The number of PROM devices:

<number_of_proms> - + 1-single PROM
« 4-x4 PROM

Argument followed by the Bitporter 2 pod name or FTDI device
connected to the FPGA board. Use the JTAG Tcl command,

~device_id - jtag::get_connected_devices,to query available FTDI
devices when more than one device is connected.
_hz 30000 Lower SPI clock frequency to the value specified in this argument in
KHz (optional) where 30000 is the maximum value.
2.2 12

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Argument followed by the ACE-generated bitstream binary stagel
-stage_1_header_file - header flash file to program from: * _stagel_header. flash (used
only with two-stage encrypted bitstream programming over PCle).

Flash Programming Example

cmd> spi::program_bitstream configl <flash_file> <number_of_proms> -offset 4096
-device_id <pod_name>
Device: configl bringup board
Successfully opened SPI device: <pod_name>
205056 of 1333712 blocks written
410112 of 1333712 blocks written
615168 of 1333712 blocks written
820224 of 1333712 blocks written
1025280 of 1333712 blocks written
1230336 of 1333712 blocks written
Successfully programmed PROM devices with 1333968 bytes of data

Reading Back Data Stored In Flash

The contents stored in flash may be read back in ACE using the spi: :read_bitstream Tcl command which
reads back the bitstream from the connected PROMs and outputs the contents to a file.

spi::read_bitstream Command

Example

spi::read_bitstream <board_config> <flash_file> <number_of_proms> <number_of_bytes>
-device_id <pod_name> -offset <int>

Arguments

Table 8 - spi::read_bitstream Command Arguments

The board or part name of the targeted Achronix device (e.g., MEP/

<board_config> - FT2232H or VectorPath/FT4232H).

The bitstream binary flash file to be written. A single file is written for

<flash_file> B either a single PROM or a x4 PROM configuration.

2.2 13

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

The number of PROM devices:

<number_of_proms> - + 1-single PROM
« 4-x4PROM
<number_of_bytes> - The total number of bytes to read back from all PROM devices.

Argument followed by the Bitporter 2 pod name or FTDI device
connected to the FPGA board. Use the JTAG Tcl command,

~device_id - jtag::get_connected_devices,to queryavailable FTDI devices
when more than one device is connected.
Coffset 0 Argument followed by the byte offset of the flash file within all of the
PROMs.
Flash Readback Example

cmd> spi::read_bitstream configl flash_readback 1 1333968 -device_id <pod_name>
Device: configl bringup board
Successfully opened SPI device: <pod_name>
Prom 0 : file flash_readback_0
205056 of 1333968 blocks read
410112 of 1333968 blocks read
615168 of 1333968 blocks read
820224 of 1333968 blocks read
1025280 of 1333968 blocks read
1230336 of 1333968 blocks read
Successfully read back SPI device 0, 1into file flash_readback

Serial Flash Hardware Interface

Flash programming mode allows configuring Speedster7t FPGAs with flash memories. In this mode, the FPGA
controls the programming operations and supplies the clock to the flash memory.

The clock supplied from the FPGA (on the FCU_FLASH_SCK pin) to the attached flash device(s) can be driven either
by the FCU_CPU_CLK or the on-chip oscillator clock depending on the configuration options selected as described
in the Bitstream Programming Modes for Speedster7t FPGAs (page 4) chapter. The frequency of this clock can be
selected from one of the variants of the clock sources arriving at the FCU: the divide-by-4 or divide-by-8. This
selection is configured using the Serial Flash Clock Divider drop-down menu in the "Bitstream Generation
Implementation Options" section of the ACE GUI. This setting ensures that only the flash state machine runs at the
slower frequency. All other FCU and ACB logic continues to operate at the original input clock frequency. Details on
downloading a bitstream into the flash devices via FTDI is presented in the Flash Configuration Using FTDI (page 25)
chapter. It is very critical that the FTDI chip is used in combination with the FCU to write data to the flash devices.
Therefore, all boards that intend to make use of flash configuration must have this component mounted accordingly.
The following diagram details the appropriate connections needed to write to the flash devices and to subsequently
program the Speedster7t FPGA.

2.2 14

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Programming/
Debug

|
I
|
\

m Speedster
Device

]
2232H/4232H

-ny 5Pl
Devices i

|

|

|

|

|

A
I
I
I
I

Writing to Flash Programming Speedster/
Reading From Flash

47419712-20.2023.10.31

Figure 8 - FTDI Cable Connection Detail

(® Note

At power-on, the device defaults to the divide-by-8 setting. The FCU then sets the appropriate
configuration register to control the clock divider based on the user selection in ACE. The transition from a
divide-by-8 clock to any other selected clock frequency is glitch free. Also, flash write is always SPI only
while read can be in SPI, DUAL, QUAD or OCTA mode as summarized in the following table.

Flash Interface

The configuration block is equipped with a flash interface that supports programming the FPGA from flash memory.
A bitstream is assumed to be loaded into the flash memory using an external SPI interface. Flash registers within the
configuration block assist with this process (refer to Registers and Addressing (page 0)). The complete feature list of
the flash interface is described in the following table.

Table 9 - Flash Features

“

Programming interface SPI - JTAG, PCle

Security mode Double encryption.

Device mode X1, X4.

Flash Read SPI, Dual, Quad, Octa.

Page0 Header Holds read address, read counts, and read commands.

2.2 15

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Flash Device Configurations

Speedster7t FPGAs support two flash device configurations:
- Single flash device (1D).
- Four flash devices (4D).

1D Configuration

The 1D programming configuration is composed of a Speedster7t FPGA controlling communications with a single
flash device. The o_flash_sck signal is used for clocking. The o_flash_sd1 signal is the data output from the
FPGA to communicate instructions to the flash device and i_flash_sdo[0] is the single-bit FPGA input pin which

receives the bitstream from the flash in X1 mode. The o_flash_csn[0] signal is pulled low as soon as
communication between the FPGA and flash device begins, and stays low during the valid bitstream window.

The FPGA can communicate with the flash device in SPI, Dual, Quad or Octa modes in the 1D configuration.

The following figure provides a block diagram detailing how a serial flash device can be connected to a Speedster7t
FPGA in Octa mode.

SPI flash Speedster7t

sclk FCU_FLASH_SCK

holdn = FCU_FLASH_HOLDN
sdio[7:0] - FCU_CPU/FLASH_DQ_IN_OUT[7:0]

FCU_CPU_CSN[0]

csn

47419712-01.2022.08.11

Figure 9 - Speedster7t FPGA 1D Octa Mode Flash Programming Configuration

FCU_FLASH_SCK

FCU_CPU_CSN[O0] X

FCU_FLASH_HOLDN

FCU_CPU/FLASH_DQ_IN_OUT[O] X data[7] X datal6] X data[5]X data[4] X datal3] X data[2] X

47419712-02.2022.23.11

Figure 10 - 1D Flash SPI Read Data Ordering

2.2 16

www.achronix.com

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

4D Configuration

Serial 4D flash programming mode is essentially an enhanced and higher bandwidth implementation of the serial

flash 1D configuration. The FPGA again controls communications and interfaces with not one but four flash memory
devices to increase the data bandwidth four times.

When writing to the four flash memories, all four chip selects, o_flash_csn[3:0], are pulled low simultaneously
and 1-bit of bitsream data is sent to each flash device in SPI mode. When reading from the four flash memories, the

FPGA pulls all of the o_flash_csn[3:0] signals low. Four-wide configuration data is read from the flash

memories and transferred to the FPGA through the i_flash_sdo ports. When bitstream operations are complete

(i.e., flash memory contents are read), transitioning from the end of the bitstream to user mode is performed as in

CPU and flash 1D modes.

Each flash device can operate in SPI, Dual, Quad or Octa modes. The following figure provides a block diagram

detailing how four serial flash devices (4D configuration) can be connected to a Speedster7t FPGA in Octa (x8) mode.

SPI flash

sclk
holdn

sdio[7:0] g

csn

SPI flash

sclk

holdn gy
sdio[7:0] g

csn

SPI flash

sclk

holdn g
sdio[7:0] aug

csn

SPI flash

sclk
holdn

sdio[7:0] 34

csn

FCU_CPU/FLASH_DQ_IN_OUT[7:0]

FCU_CPU/FLASH_DQ_IN_OUT[15:8]

FCU_CPU/FLASH_DQ_IN_OUT[23:16]

FCU_CPU/FLASH_DQ_IN_OUT[31:24]

Speedster7t

FCU_FLASH_SCK
FCU_FLASH_HOLDN
FCU_CPU/FLASH_DQ_IN_OUT[31:0]

FCU_FLASH_CSNI[O0]

FCU_FLASH_CSNI[1]

FCU_FLASH_CSNI[2]

FCU_FLASH_CSNI[3]

47419712-03.2022.08.11

Figure 11 - Speedster7t FPGA 4D Flash Programming Configuration

2.2

www.achronix.com

17

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

FCU_FLASH_SCK

FCU_CPU_CSNI[3:0] \

FCU_FLASH_HOLDN

Jx[

|
X data[7]X data[3] datal[7] data[S]X data[7]X data[3]

FCU_CPU/FLASH_DQ_IN_OUT[O]

FCU_CPU/FLASH_DQ_IN_OUT[8]

T
|

X data[G]X data[2] X data[6] data[2]X data[6] X data[2]
i

Xl dat;[S XI datla[l]XI dat;[5]* data[l X data[B]X data[l X:
X data[4] X data[O] X data[4] X data[O] X data[4] X data[O] X:

47419712-11.2022.23.11

FCU_CPU/FLASH_DQ_IN_OUT[16]

FCU_CPU/FLASH_DQ_IN_OUT[24]

Figure 12 - 4D Flash SPI Read Data Ordering

(@ Note
The FCU_FLASH_HOLDN signal must be held high at all times for both read and write accesses to the flash.

Addressing Modes and Memory Organization

Addressing modes for flash memory are based on the size of the device. A three-byte addressing mode is required
for 128 Mb flash and smaller, and a four-byte addressing mode is required to support memory sizes above 128 Mb.
Writes to the flash memory occur as pages, with each page consisting of 256 bytes. The following figure shows the
memory organization.

2.2 www.achronix.com

18

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Sector-65535 Addr-FFFFFFFF A A
Block-4095
1Gb
Addr-7FFF FFFF x 2Gb
1Gb
Sector-15
Block-0 Sector-1
Sector-0 Page-1 Page-2 Page-14 Page-15 [NiRocs Yy v
256 Bytes
- 16x256 Bytes = 4KB -
47419712-12.2022.23.11
Figure 13 - Speedster7t FPGA Flash Memory Organization
Address Range

The following table shows the address ranges when two images are stored on a single flash device, assuming that
each image is 1Gb in size.

Table 10 - Address Ranges For Two Bitstream Images on a Single Device

Address Range

(32 bits)

Description

Configuration
Details

Ox0000_0000
to

OXxO0000_OOFF

Page-0 address space. This range contains
header information described in the flash
configuration header section. This address
range cannot be used for storing actual
bitstreams.

These addresses are not user configurable.

2.2

www.achronix.com

19

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Address Range Configuration

Description Details

(32 bits)

The start address can be configured via
0x0000_1000

to FPGA current address space.

This example assumes the address starts
OXOTFF_FFFF

at Ox0OO0_1000 for a1 Gb bitstream.

Flash Configuration Header (Page0O Header)

(@ Note

The page0 header information does not need to be manually created. ACE generates the _page0. flash
file during bitstream generation.

The first 256 bytes in the flash memory (page0) holds control information that describes how the subsequent
bitstream should be read from the flash device. This information can be written to the flash device in two ways:

- Via the JTAG interface along with the bitstream.

- Pre-programmed into the device by the manufacturer.

This space is not used for storing the device bitstream. It is formatted as described in the following table and is
generated by ACE when the flash file output option is selected according to the flash configuration options
previously described.

Table 11 - Page0 Header Format

the current address in the page-0 header.

Stage0 or full bitstream read

0x0to Ox3 address (new image).
Bit 0 - flash read enable.
Bit 1 - flash fall back enable.
Bit [5:2] - retry count.

. Bit [21:6] - timeout count. Bit 1is 1'b0 for AC7t1400/

x4 to Ox7 32 Bitstream read control. Bit 22 - enable 4-byte addressing. ACTt1500
Bit [27:23] - dummy read cycles.
Bit [30:28] - flash SCK div count.
Bit [31]: 1'b1 - Micron, 1'b0 - Macronix.

08 to OxB 3 F!ash configuration Stage0 or full

bitstream read count.

OxCto OxF 32 Read command.

Ox18to Ox20 24 Reserved.

0x1C 8 Page0 Header version. 0x01, Version 1 (as of ACE 9.1.1).

2.2 20

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Bit 0 - NOT encrypted.
Bit 1 - full bitstream.

0x28 Bitstream mode.

Stagel header read address (new Calculated as stage0 read address + stage0

0x30to Ox33 32 image) bitstream size (in bytes), aligned at 4kB ACTt1400/ACTt1500 only.
ge): boundary.
0x38 to Ox3B 2 Flash configuration Stagel header ACT1400/ACT1500 only.
read count.
0x40 to Ox43 2 Number of wait cycles between ACT1400/ACT1500 only.

Stage0 and Stagel.

Flash Configuration Protocol

With the FCU_CONFIG_MODESEL[3:0], FCU_CONFIG_CLKSEL and FCU_CONFIG_SYSCLK_BYPASS straps set
for serial flash programming, operations begin as soon as the FPGA is powered up and the FCU receives the clock
input. Immediately after reset is released, bitstream data is read out from the flash device through the flash
interface (at this time the default is SPI (x1) mode). The bitstream read is performed in two stages described as
follows:

Stage 1 - flash configuration header read from flash device:
- The FCU sends a default read command and address of 0x0000_0000 (32 bits) in SPI mode to the flash device
and reads the flash configuration header.
- Internal registers are then updated, including the start address for the bitstream and flash read command.

Stage 2 - bitstream read from flash device:

- Based on the read mode obtained from the flash configuration header (x1/x2/x4/%8), the command and start
address are sent to the flash device.

- The FCU reads the first 512 bits of bitstream data from the flash device and enters a wait state.

- If encryption is not enabled, the FCU reads the complete bitstream and configures the FPGA. If encryption is
enabled and the efuse key is ready, the FCU reads the header segment0 data and sends it to the secure boot
core. The flash read state machine then waits for 2.6 ms after which the FCU reads the complete bitstream and
configures the FPGA.

Bitstream programming in all configuration modes is MSB to LSB. For transmitting a 32-bit FCU command, the
ordering in the serial X1 mode for 1D and 4D configuration is as follows:

- 1D flash configuration - the flash device transmits command bit 31 on the first clock and bits 30, 29, 28, etc. on
subsequent clocks all the way down to bit 0 on the 32" (last) clock.

- 4D flash configuration - the four flash devices transmit command bits [31:28] on the first clock, all the way
down to bits [3:0] on the eighth (last) clock. The ordering within the 4-bit nibble corresponds to the flash device
ordering. Specifically, on the first clock, flash[3] transmits bit 31, flash[2] transmits bit 30, flash[1] transmits bit
29 and flash[0] transmits bit 28

2.2 www.achronix.com 21

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Flash Modes

The following section describes the various modes supported for read operations from attached flash device(s).
Read operations from the flash device can be configured either as SPI, quad or octa modes for both 1D and 4D
configurations. To write to the flash device(s), please consult the Flash Configuration Using FTDI (page 25) section.

(@ Note

A flash write can be performed via either the JTAG or PCle modes. The PCle or JTAG port can access the
data and command registers using an indirect addressing mode.

The following table describes the different combinations of the flash device configurations and modes supported in
the Speedster7t FPGA.

Table 12 - Flash Device Configurations and Modes

Flash Programmin Read Width
g . . & | Flash Interface Width No. of Flash Devices SO[n:0] x No. of Flash
Mode/Configuration .
Devices

SPI (1D) 1 1 1

SPI (4D) 1 4 4

Dual (1D) 2 1 2

Dual (4D) 2 4 8

Quad (1D) 4 1 4

Quad (4D) 4 4 16

Octa (1D) 8 1 8

Octa (4D) 8 4 32

Following are read operation timing diagrams for each of the flash interface widths.

(@ Note

These diagrams pertain to Macronix devices. For details regarding other device vendors, please consult the
flash device vendor datasheet.

2.2 22

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

SPI Mode

CS# \

Mode 3 o 1 2 3 4 5 6 7 8 9

10 28 29 30 31 32 33 34 35 36 37 38 39

B Command 'I‘ 24-Bit Address 7|
Note
)
s 28000000 W
MSB
Data Out 1 Data Out 2
High-Z —
SO 7

47419712-04.2022.23.11

Figure 14 - SPI Read Mode Timing

Dual Mode

CS# \
o 1 2 3 4 5 6 7 8 9 30 31 32
SCLK | | | | | | | | | |

Command 24 ADD Cycles Configurable Data Data

Dummy Cycle Out1 Out 2
SI/SI00 3B eee{ AL Y AdO D6 \ D4 X D2 Y DO X D6 X D4
S0/sl01 High Impedance D7 X D5 X D3 X D1 Y D7 X D5

47419712-18.2023.10.29

Figure 15 - Dual Read Mode (DREAD) Timing

2.2

www.achronix.com 23

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

Quad Mode

SCLK

7 8 9 29 30 31 32 33 38 39 40 41 42

Command 24 ADD Cycles Configurable \Outl
dummy cycles
SI00 6B A2 R A1 X AD D4} DO
S0 High Impedance 05 Y b1
SI02 High Impedance s Y D2
— High Impedance 07 Y b3
Figure 16 - Quad Read Mode (QREAD) Timing
Octa Mode
& Warning!

Octa Mode Device Limitations:

Data
Out 2

D4

D5

D6

D7

For Octa Mode, Speedster7t devices currently only support flash devices in the 1-1-8 mode.

For context, normally flash devices have a SPI sequence that sets a configuration register value that fully
converts everything to octa. Command,address,(return) data are all in octa: 8-bits on 8 lines throughout, or
8-8-8 mode. Some flash devices have a read command that works more like QSPI, and does not require
writing a configuration register to enable. The command and address are sent on a single line (SDI) similar
to SPI, and after a fixed number of dummy cycles, the data is read on all 8 lines. This is referred to as 1-1-8
mode.

The following figure represents 8-8-8 mode.

DD

D1

D2

D3

47419712-07.2022.23.11

Data
Out3

D4

D5

D6

D7

2.2

www.achronix.com

24

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

o) 2

e nipinEninipi Apinininly
WA eininlin

Pre-drive
DOXDIXDZXDBX

—

| I
\]
! '
: |
! |
! |
| !
SI0[7:0] X ECh X 13h XA[31:24]XA[23:16]X A[15:8]X A[7:0]\; ()()
! |
! |
| |

Address

47419712-10.2022.23.11

Figure 17 - Octa Read Mode (8READ) Timing

Flash Memory Size Requirements

As a general rule of thumb to cover the largest bitstream size, a 1 Gb flash memory is recommended to store one
bitstream.

(@ Note

Please work with the Achronix support team to evaluate the best Flash device size for any specific target
device and end user design application.

Flash Configuration Using FTDI

The FTDI device multi-protocol synchronous serial engine (MPSEE) is configured for USB-to-SPI communication to
program the flash device. SPI protocol lines are implemented using the MPSEE channels ADBUS0-7, ACBUSO,
ACBUS3, and BCBUS5.

FTDI Board-Level Device Connections

ACE supports flash programming for three types of pin-out connections from FTDI to the flash device:
- Configuration 1
- Configuration 2
- Configuration 3

The FTDI devices supported by ACE are FT2232 and FT4232H. For pin-out connections configl and config3, the

signal SPI_MODE_EN is not required but can be used in situations where a multiplexer is placed between the FTDI
device and another device that can access the flash memory. The three configuration connection types are
described in the following tables.

2.2 25

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

FTDI Flash Pinout To FT2232

Table 13 - FTDI FT2232-to-Flash Connections (Configuration 1)

FTDI FTDI Device FTDI
Port Name Pin Number Net name

ADBUSO 16 FTDI_ADO SPI_CLK
ADBUS1 17 FTDI_AD1 FCU_DQ1
ADBUS2 18 FTDI_AD2 FCU_DQ9
ADBUS3 19 FTDI_AD3 FCU_DQ17
ADBUS4 21 FTDI_AD4 FCU_DQ25
ADBUS5 22 FTDI_ADS SPI_SDI
ADBUS6 23 FTDI_AD6 SPI_CS_N[3]
ADBUS7 24 FTDI_AD7 SPI_CS_N[2]
ACBUSO 26 FTDI_ACBUS[0O] SPI_CS_N[0]
ACBUS3 29 FTDI_ACBUS[3] SPI_CS_N[1]
BCBUS5 57 FTDI_BCBUS[5] SPI_MODE_EN

FTDI Flash Pinout To FT4232H

Table 14 - FTDI FT4232-to-Flash Connections (Configuration 2)

FTDI FTDI Device FTDI

Port Name Pin Number Net name
ADBUSO 16 FTDI_ADO SPI_CLK
ADBUS1 17 FTDI_AD1 NC
ADBUS2 18 FTDI_AD2 SPI_CS_NJ[1]
ADBUS3 19 FTDI_AD3 SPI_CS_N[2]
ADBUS4 21 FTDI_AD4 SPI_CS_NI[3]
2.2 26

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

FTDI FTDI Device FTDI
Port Name Pin Number Net name
ADBUSS5 22 FTDI_AD5 SPI_MOSI
ADBUSG6 23 FTDI_ADG6 SPI_MISO
ADBUS7 24 FTDI_AD7 SPI_CS_N[0O]
(@ Note

Configuration 2 is the hardware configuration used with the VectorPath S7t-VG6 accelerator card.

FTDI Flash Pinout To FT2232/4232H

Table 15 - FTDI FT2232/4232H-to-Flash Connections (Configuration 3)

FTDI FTDI Device FTDI
Port Name Pin Number Net name
ADBUSO 16 FTDI_ADO SPI_CLK
ADBUS1 17 FTDI_AD1 SPI_MOSI
ADBUS2 18 FTDI_AD2 SPI_MISO
ADBUS3 19 FTDI_AD3 SPI_CS_N[2]
ADBUS4 21 FTDI_AD4 SPI_CS_N[3]
ADBUS5 22 FTDI_ADS SPI_CS_N[0O]
ADBUS6 23 FTDI_ADG6 SPI_CS_N[1]
BCBUSS5 57 FTDI_BCBUS[5] SPI_MODE_EN
(@ Note

Configuration 3 is the most optimized and recommended mode. If using configuration 3 with the FTDI
FT4232H, the SPI_MODE_EN pin is not used because it is not available on that device.

2.2 27

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Bitstream Programming via JTAG

Generating the JTAG Bitstream Files From ACE

The JTAG . hex file is the default file and is always generated when running the Generate Bitstream flow step (run

-step write_bitstream). Advanced bitstream features are covered in the Design Security for Speedster7t
FPGA (page 93), Partial Reconfiguration (page 107), and Configuration Error Correction and SEU Mitigation (page 84)

sections.

How To Use the ACE-Generated JTAG Bitstream Files

There are three ways to program a JTAG bitstream . hex file created during the Generate Bitstream flow step to
program over JTAG. These methods are detailed in the following pages.

- JTAG Programming using the ACE Download View (page 28)
- JTAG Programming using the ACE Flow Steps (page 31)
- JTAG Programming using the Tcl Library API (page 32)

JTAG Programming using the ACE Download View

ACE JTAG Connection Preference Page

Configure JTAG Connection - - 8

These preferences are used to configure JTAG connections used by ACE.

JTAG Device ID (jtag_id)

JTAG Scan Chain
IR Bits Before Target FPGA Device 0

IR Bits After Target FPGA Device 0

Target FPGA Device Offset in Scan Chain | 0

Figure 18 - Configure JTAG Connection Preference Page Example

Table 16 - Configure JTAG Interface Preference Page Options

2.2 28

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

“

The name of the JTAG device which should be used for all ACE
JTAG interactions with the chosen FPGA or eFPGA. If the name is
not specified, auto-detection of JTAG devices is attempted.

Performance Tip
JTAG Programmer Device Name @ ©

Even if only one JTAG device is connected, specifying the
JTAG device by name (instead of relying upon auto-
detection) can save up to several seconds of initialization
time on every JTAG connection.

JTAG Scan Chain

Sets the (decimal) number of instruction register bits between the
. . 2
IR Bits Before the Target FPGA Device board JTAG TDI pin and the target device.
Sets the (decimal) number of instruction register bits between the
. .)
IR Bits After the Target FPGA Device target device and the board JTAG TDO pin.
Sets the device count (in decimal) between the board JTAG TDI pin

Target FPGA Device Offset in Scan Chain and target FPGA device.

Table Notes

1. Auto-detection can only be used safely when just one JTAG pod/device is connected. If more than one
pod/device is automatically detected while no name is specified, JTAG interactions fail, stating that it is
required to specify which pod/device to use. The Tcl command jtag: : get_connected_devices

provides a list of connected JTAG device names. See the Speedster7t Configuration User Guide (UG094)
for more information.

2. The default value of zero is always correct for single-device JTAG scan chains. For multi-device scan
chains, the default values of all zeros never work.

ACE JTAG Download View

The Download view provides a graphical interface for choosing and downloading (via JTAG) a bitstream * . hex file to
an Achronix FPGA connected to the workstation using USB via a Bitporter2 pod or FTDI FT2232H or FT4232H device.

After downloading the bitstream, the JTAG connection status is retained, meaning that if the JTAG connection is

open prior to programming, it stays open, and if the JTAG connection is closed prior to programming, it closes the
connection when programming completes.

2.2 www.achronix.com 29

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

JTAG Programming

JTAG Pragramming Options

:;;3‘ Snapshot Debugger | % Downlead < |BS Register Browser =3

Select the programming options and bitstream file (".hex) to be used.

Perform an FCU reset to clear the (e)FPGA config memory.

ChAchronix\quickstart_packager ACTt1

Macehimpl_Typnioutputiquickstart.hex Browse... | %

Suggested Bitstream Files

= From active implementation

= Recently used

= Download Bitstream

ChAchronihquickstart packager ACTH 300hacehimpl 1\pnryoutputhguickstart.hex

ChAchronihquickstart packager ACTH 300hacehimpl 1\pnryoutputhguickstart.hex

ChAchronc\quickstart packager ACTHE0MNacehimpl Thprroutput\quickstart.hex

ITAG Utilities

Table 17 - Download View Options

JTAG Programming Options

Perform an FCU reset to clear
the (e)FPGA config memory.

Browse

B Download Bitstream.

Suggested Bitstream Files

Miscellaneous utilities to ease JTAG interactions.

Report a list of all available USBE-connected JTAG devices by |D: | Get Connected Devices

Figure 19 - Download View Example

Description

When checked, performs a soft reset and clears all device configuration
memory before beginning programming. This reset is typically only
disabled for multi-stage programming (after stage 0 programming has
completed, before programming later stages begins), or for "partial
reconfig" when partial bitstreams are in use (see the chapter titled
Partial Reconfiguration in the Speedster7t Configuration User Guide
(UG094) for more details).

Allows choosing any * . hex bitstream file from the file system using a
graphical file system browser.

Clicking this button performs the actual download by calling the

appropriate Tcl commands in the jtag: : namespace. See also:
Speedster7t Configuration User Guide (UG094).

2.2

www.achronix.com 30

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

“

Alist of all x. hex bitstream files (shown as hyperlinks) found in the
From active implementation. output directory of the current Active Implementation. Select any of
these hyperlinks to choose that file for download.

A list of the most recently used * . hex bitstream files (shown as
Recently used. hyperlinks). Select any of these hyperlinks to choose that file for
download.

JTAG Utilities

Press the button to run a Tcl command

(jtag: :get_connected_devices)to report a list of all connected
JTAG devices in the Tcl Console view.

Report a list of all available USB-
connected JTAG devices by ID.

JTAG Programming using the ACE Flow Steps

ACE has a flow step that, upon completion of the "Generate Bitstream" flow step, allows downloading a generated
bitstream into a connected Speedster7t FPGA. After downloading the bitstream, the JTAG connection status is
retained, meaning that if the JTAG connection is open prior to programming, it will stay open, and if the JTAG
connection is closed prior to programming, it will close the connection when programming completes.

E%Flow # B Ok

v [=| €y Prepare
(=]« Run Prepare [18 wamings]
[] & Run Estimated Timing Analysis
[] & Generate Pre-Placed Simulation Netlist
+ [=| & Place and Route
[=]# Run Place [3 wamings]
[& Run Post-Placement Timing Analysis
[=| 4 RuN Route [4 wamings]
[+« Run Post-Route Timing Analysis
v [=| & Design Completion

i o=\

[=| 4 PoSt-Process Design
[=] 4 Run Final DRC Checks
[#4+# Run Sign-off Timing Analysis [3 warnings]
[#4+# Generate Final Reports
[] & Generate Final Simulation Netlist
+ (=] FPGA Programming
(¥« Generate Bitstream

Figure 20 - ACE FPGA Download Flow Step

2.2 31

www.achronix.com

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

~ FPGA Download
Configure JTAG Connection

JTAG Device ID (jtag_id) | FTSYQV7P

JTAG Scan Chain
[+ single Device Scan Chain
Multi-Device Scan Chain Description

R Bits Before Target FPGA Device 0
R Bits After Target FPGA Device 0
Target FPGA Device Offset in Scan Chain | 0

Figure 21 - ACE FPGA Download Options Dialog

Table 18 - FPGA Download Implementation Options - JTAG Scan Chain

ACE impl_option

JTAG Device ID (jtag_id) download_jtag_-id

Single Device Chain download_single_device
IR Bits Before Target download_preir_padding
IR Bits After Target download_postir_padding
Chain Offset of Target download_chain_offset

Specifies the JTAG programming device name to attempt
connecting to during FPGA download. If not populated, auto-
detection of JTAG programming devices is attempted, and the
download fails if more than one JTAG device is auto-detected.

This option should be enabled when the target is the only device
on the JTAG scan chain (single-device JTAG scan chain). If this
option is set to 0, the pre-IR, post-IR, and chain offset options are
used to configure the scan chain.

Sets the (decimal) number of instruction register bits between the
board JTAG TDI pin and the target device instruction register. Used
for multi-device scan chains in order to pad the IR chain properly
with ones, placing other devices in bypass mode.

Sets the (decimal) number of instruction register bits between the
target device and the board JTAG TDO pin. Used for multi-device
scan chains in order to pad the IR chain properly with ones, placing
other devices in bypass mode.

Sets the device count (in decimal) between the board JTAG TDI pin
and target FPGA device. Setting this to 1 selects the second device
on the chain, and so on.

JTAG Programming using the Tcl Library API

This section provides a list of JTAG Tcl commands for high-level general use and low-level specific use.

2.2

www.achronix.com

32

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Variables Under ACE Tcl Console

When running in the ACE Tcl console, there are two types of Tcl variables used by the script: obligatory and optional.
Both can be set in the Tcl console window before running a script.

(@ Note
Starting with ACE 10.0, global variables are no longer just set to affect the ACE Tcl library.

To set a TCL variable:

set var ACP1234X

To clear a TCL variable:

unset var

To determine the setting of a variable:
puts $var

#
Accessor functions are available for the JTAG Tcl Library.

To set the jtag-id used 1in subsequent operations:
set_global_jtag_id ACP1234X

To determine what value a variable is set to:
puts []

Table 19 - Variables Under ACE Tcl Console

Must be set before scripts are run. Must match the JTAG
ID value of the particular programming pod. To obtain a list

jtag_id ves of available programming pods, issue the
jtag::get_connected_devices command.
If set to any value other than 0, the

quiet_script No jtag::apb_write() and jtag: :apb_read()

commands are called without the -print option for scripts
to run cleanly without excessive console logging.

Tcl Command Tables

Namespace Commands

There is a specific Tcl namespace within the API for each Speedster7t FPGA. The commands within each
namespace are high-level commands such that each of these commands must be prefixed with its respective
device namespace. For example, to read from a specific register in the Speedster7t AC7t1500 FPGA, the

2.2 33

www.achronix.com

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

csr_read_named command must be prefixed with the correct namespace as: ac7t1500: : csr_read_named.
The same action in the Speedster AC7t1400 FPGA requires the ac7t1400: : csr_read_named command.

Acting On Read Returned Values

Under ACE, read commands operate as expected by interrogating the relevant registers and returning the values
read to the ACE Tcl console. These values can then be used in further Tcl commands.

Commands

The following commands are specific to each device namespace.

Table 20 - High-Level Commands

IIIIIHHHHHHHHIIIIIIIIIIIIIIH%HHHHHHHIIIIIIIIIIIIIIIIIIEHHHHHHIIIIIIIIIIIIIIIIIIIIIIIHHHHHHHHHIIIIIIIIIIIII

Interrogate the Dictionaries

get_dict_spaces W

get_dict_spaces @
(0]

get_dict_spaces

get_dict_space

get_dict_space

E)et_cs r_reg_name
1

None

<top level space token>

<level 1 token> <level 2
token>

CSR_SPACE IP_NAME <IP area>

CSR_SPACE IP_NAME <IP area>
<register_name>

address

Named CSR Register Accesses

csr_write_named

csr_reset_named

csr_read_named @

CSR_SPACE IP_NAME IP_AREA
REG_NAME <value>

CSR_SPACE IP_NAME IP_AREA
REG_NAME

CSR_SPACE IP_NAME IP_AREA
REG_NAME [expected value]

Return the top address map spaces.

Return the level 2 tokens under the top
level space.

Returns list of level 2 tokens. If using
CSR_SPACE, these are the CSR IP
areas under the specific IP.

Returns a list of CSR registers under
the specific IP and IP ID.

Gets the entry for the specified register
name.

Reverse dictionary lookup, providing
the token hierarchy of the specified
address.

Writes to selected register.

Resets selected register to its default
value.

Reads the selected register.

See list of available tokens under level 1.

See list of available tokens under level 2.

See level 3 token descriptions.

Returns register names (list can be long).

Returns an entry consisting of {addr[23:0]
reg_size default_value}.

Given the address (must be 11 hex digits), returns the
tokens that specify that address. For example, given
08091340264, returns:

get_csr_reg_name()
success. The address
08091340264 equates to
CSR_SPACE DDR4 PHY
MICRORESET

Value is treated as hex with or without the "0x"
prefix.

The default value is stored in dictionaries.

Function returns register read (under ACE).

2.2

www.achronix.com

34

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

IIIIIHHHHHHHHIIIIIIIIIIIIIIH%HHHHHH’IIIIIIIIIIIIIIIIIIHHHHHHHIIIIIIIIIIIIIIIIIIIIIIHHHHHHHHHIIIIIIIIIIIII

csr_verify_named

csr_read_all_
regs_named

csr_set_bits_name
d[ﬂ

csr_clear_

bits_named @

CSR_SPACE IP_NAME IP_AREA
REG_NAME <value>

CSR_SPACE IP_NAME IP_AREA

CSR_SPACE IP_NAME IP_AREA
REG_NAME <low_bit>
<high_bit> [expected value]

CSR_SPACE IP_NAME IP_AREA
REG_NAME <low_bit>
<high_bit> [expected value]

Based CSR Register Accesses

csr_named_base

csr_write_based

csr_reset_based
csr_read_based @

csr_verify_based

Individual CSR Access

csr_named_addr

noc_write @

noc_read @@

noc_verify @)

set_bits_addresse
d

CSR_SPACE IP_NAME [IP_AREA]

REG_NAME <value>

REG_NAME

REG_NAME [expected value]

REG_NAME <value>

CSR_SPACE IP_NAME [IP_AREA]
[REG_NAME]

<addr value>

<addr> [expected value]

<addr> <value>

<addr> <low_bit> <high_bit>

Verifies selected register is equal to
value.

Reads all registers in an IP area.

Sets bits [high_bit:low_bit] to
1'b1 inthe selected register.

Clears bits [high_bit:low_bit] to
1'b0 in the selected register.

Declares the arguments to be the
stateful base address values.

Writes to the selected register.

Resets the selected register to its
default value.

Reads the selected register.

Verifies the selected register is equal
to value.

Returns the base address of the space.

Writes to any location in the address
map.

Reads from any location in the address
map.

Reads and verifies the result from any
location in the address map.

Sets bits [high_bit:low_bit] to
1'b1inthe selected address.

When run outside of ACE, function always returns 0.

Prints register name to console while reading the
register.

Performs a read-modify-write on the register. To set
a single bit, assign high_bit = low_bit.The
optional argument, expected value,is usedin
simulation only.

Performs a read-modify-write on the register. To
clear a single bit, assign high_bit = low_bit.
The optional argument, expected value, is used
in simulation only.

Supports 2 to 3 arguments. If IP_AREA is not
specified, the stateful IP ID variable is set to

BASE_IP (=0).

The value is treated as hex with or without the "0x"
prefix.

The default value is stored in dictionaries.

The function returns the register read (under ACE).

When run outside of ACE, the function always
returns 0.

Between 2 and 4 arguments are supported. The
returned address is the base address of the provided
arguments. If all four arguments are provided, the
address is the full register address.

The addr value must be an eleven-character, 42-bit
hex value and can be up to 32-bit hex. If
csr_named_addr is used to obtain the base
address, this function can be used by simply adding
on the offsets to known registers.

The addr value must be an eleven-character, 42-bit
hex value. If csr_named_addr is used to obtain the
base address, this function can be used by simply
adding on the offsets to known registers.

The addr value must be an eleven-character, 42-bit
hex value. If csr_named_addr is used to obtain the
base address, this function can be used by simply
adding on the offsets to known registers.

Performs a read-modify-write on the address
location. To set a single bit, assign high_bit =
Tow_bit.

2.2

www.achronix.com

35

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

clear_bits_
addressed

NAP Access¥

nap_axi_write

nap_axi_read @

nap_axi_verify

<addr> <low_bit> <high_bit>

NAP_SPACE <column row
address> <value>

NAP_SPACE <column row
address> [expected value]

NAP_SPACE <column row
address> <value>

GDDR6 and DDR4 Memory Access'®)

memory_write

memory_read

memory_write

memory_read

Delay or Wait®

wait_us

wait_ns

GDDR6_SPACE <controller>
<channel> <address> <value>

GDDR6_SPACE <controller>
<channel> <address>

DDR4_SPACE <address>
<value>

DDR4_SPACE <address>

<wait value (decimal)>

<wait value (decimal)>

Clears bits [high_bit:low_bit] to
1'b0 in the selected address.

Creates an AXI write from the selected
NAP.

Creates an AXI read at the selected AXI
NAP.

Creates an AXl read at the selected
NAP. Compares the read value against
the expected value.

Writes to the selected GDDR memory
space.

Reads from the selected GDDR
memory space.

Writes to the selected DDR4 memory
space.

Reads from the selected DDR4
memory space.

Addsawait value psdelay tothe
simulation command file.

Adds await value nsdelay to the
simulation command file.

Performs a read-modify-write on the address
location. To clear a single bit, assign high_bit =
Tow_bit.

The address and data are only 32-bits wide. The
address is the AX| write address, awaddr and does
not relate to selecting the NAP which uses column
and row. The write data is relocated to the
appropriate byte lane, selected by the address, in the
256-bit output from the NAP.

The address and data are only 32-bits wide. The
address is the AX| read address, araddr and does
not relate to selecting the NAP which uses column
and row. The read data is relocated to the
appropriate byte lane, selected by the address, in the
256-bit input from the NAP.

The address and data are only 32-bits wide. The
address is the AX| read address, araddr and does
not relate to selecting the NAP which uses column
and row. The read data is relocated to the
appropriate byte lane, selected by the address, in the
256-bit input from the NAP.

<controller>isoneof {GDDR_O to GDDR_T7}.
<channel>isoneof {CH_O CH_1}.The address
is up to a 33-bit hex field and the value is up to a 32-
bit hex field.

<controller>isoneof {GDDR_O to GDDR_T7}.
<channel>isoneof {CH_O CH_1}.The address
is up to a 33-bit hex field and the returned value is
32-bit hex.

<address> is up to a 40-bit hex field. <value> is
up to a 32-bit hex field.

<address> is up to a 40-bit hex field The returned
value is a 32-bit hex field.

The value is decimal, not hex. The wait is based on
the FCU BFM cfg_clk. By default, this is 2560MHz
(4ns). If this clock is changed, this function must be
updated. There is an associated ACE command only
if the value exceeds 1,000 (>1ms).

The value is decimal, not hex. The wait is based on
the FCU BFM cfg_clk. By default this is 250MHz
(4ns). If this clock is changed, this function must be
updated. The delay is in multiples of 4ns. This
command is only really applicable to simulation as
the time between JTAG commands to the FCU in
hardware is in the order of hundreds of ps or even
ms. There is an associated ACE command only if the
value exceeds 1,000,000 (>1ms).

2.2

www.achronix.com

36

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Programming When Running Under ACE

The optional arguments are:

—encrypted - encrypted hex file.

<hex fil (with extension)> Programs a hex file. This operation - ~do_not_enter_user_mode - after
program_hex_file ex Titename (with extension opens the JTAG port and leaves it programming, remain in conf‘|gurat|on mode.
[<optional arguments>] open. Holds most of the I/0 ring IP in reset.

To use Windows backslashes, enclose the filename
and path in braces "{}" (i.e, program_hex_file
{C:\Users\me\my_dir\test\my_hex.hex}.

Table Notes

More details on available tokens can be found in the Application Note, Runtime Programming of Speedster FPGAs (AN025).1
The argument, expected value, is optional for functions that read from registers.

Excludes FCU registers. ACE has a specific command to access the FCU registers.

these commands access the NAP address space, not the CSR address space.

(S S A

These functions rely on a stateful Tcl flow. The base addresses must be set first before the functions can make calls using the based address. These
functions apply when a script is focused on a single IP block, saving the need to repeatedly re-enter values.

6. Inserts a wait into the command file. When run under ACE, there is at minimum an approximate 1 ms delay between commands

Low-level JTAG Tcl Commands

& Warning!

These lower-level commands should only be used if no higher-level commands are available.

Table 21 - JTAG Tcl Commands in jtag:: namespace

jtag::open <jtag_id> Opens a new connection to the JTAG device. Sets the initial clock frequency.

Gets the list of connected JTAG devices from the host machine. Returns the serial

Jtag::get_connected_devices number (jtag_-id)to be used with the jtag: : open command.

jtag::get_open_connections Returns the list of open connected JTAG devices in the ACE session.
jtag::close <jtag_id> Closes an existing connection to a JTAG device.
jtag::initialize_scan_chain <jtag_id> <pre_ir_bits> Configures a scan chain. This function sets the initial clock frequency (based on the
<post_ir_bits><target_device_offset> -single_device target device), checks the number of devices and IR length, sets preamble/
-target_device <string> postamble IR/DR bits, and checks IDCODE.

Performs a JTAG read. Specify —irscan to perform an IRSCAN. Returns a hex

jtag::read <jtag_id> <bit_length> -irscan string of the read-back data.

1 https://www.achronix.com/documentation/runtime-programming-speedster-fpgas-an025

2.2 37

www.achronix.com

https://www.achronix.com/documentation/runtime-programming-speedster-fpgas-an025
http://www.achronix.com
https://www.achronix.com/documentation/runtime-programming-speedster-fpgas-an025

UGo94

Speedster/t Configuration User Guide

jtag::

jtag:

jtag:

jtag:

jtag:

jtag:

jtag:

jtag:

jtag:

jtag:

jtag:

jtag:

jtag:

jtag:

jtag::

write <jtag_id> <bit_length> <data> -irscan

twrite_read <jtag_id> <bit_length> <data> -irscan

:set_clock_frequency <jtag_id> <frequency>

twait <jtag_id> <tap_state> <clock_t'icks>(1]
tset_trst_n <jtag_id> <value>

:set_tap_state <jtag_id> <tap_state>[1)
iget_tap_state <jtag_id> W
:read_config_rstn <jtag_id> -print
:read_config_status <jtag_id> -print

:read_config_done <jtag_id> -print

rinitialize_fcu <jtag_id> -reset

rexit_fcu <jtag_id>

:lock_fcu <jtag_id>

tunlock_fcu <jtag_id> -instance_id

program_bitstream <jtag_id> <hex_file>

-encrypted -stay_in_fcu_mode <bool>[1)

jtag::

read_cmem <jtag_id> <word_count> <word_step>

<address> -print

jtag::

write_cmem <jtag_id> <address> -data <9344-bit

string> -print

Performs a JTAG write to the connected JTAG device. Specify —irscan to perform
an IRSCAN.

Performs a JTAG write and read (scan with capture) to the connected JTAG device.

Specify —irscan to perform an IRSCAN. Returns a hex string of the read-back
data.

Sets the TCK frequency of the connected JTAG device. Returns the actual set
frequency since the exact frequency cannot always be obtained. Waits in idle for
100 cycles.

Wiaits in the specified TAP state for the specified number of TCK cycles.

Asserts the specified value (0 or 1) on the TRST_N pin. A value of O asserts TRSTN
and a value of 1 deasserts TRSTN.

Sets the JTAG TAP state to one of the legal TAP states.
Returns the current JTAG TAP state.

Returns the value of FCU_CONFIG_RSTN.

Returns the value of FCU_CONFIG_STATUS.

Returns the value of FCU_CONFIG_DONE.

Performs initial setup. Must be run after the jtag: :initialize_scan_chain
command. The —reset option performs a soft reset and waits for configuration
memory to be cleared. This action is required prior to bitstream programming with
the jtag: :program_bitstream command. When performing basic register/
cmem read/write operations, the -reset option should not be used (all registers
are reset).

This command indicates to the FCU that it can exit JTAG mode and allow
communication from other interfaces (such as the CPU).

This command locks the FCU after jtag: :program_bitstreamor locks the
FCU after it is unlocked with jtag: :unlock_fcu.

This command should be run after the jtag: :program_bitstream command
to unlock the FCU if locked after programming the bitstream.

Performs a bulk write to the Speedster7t FPGAs using data from the supplied hex
file. Programs the bitstream and enters user mode. Must be run after
jtag::initialize_scan_chainand jtag::initialize_fcu -reset.
The optional —encrypted flag sends an encrypted bitstream hex file. This option
adds the additional wait cycles needed for the Athena encryption engine. After the
first 12,688 bytes of the encrypted bitstream, the code must wait in idle (pulsing
TCK) 520,000 cycles. Refer to the Design Security for Speedster7t FPGA (page 93)
section for details.

Reads a frame of 9344-bit data from the CMEM (Core/BRAM/LRAM/CFF/DFF) data

space starting at frame address <address>. The address is the 24-bit frame
address (upper 24-bits out of the 32-bit address). The read-back data is returned as

a hex string to the caller. The —print option prints a message indicating the
address and data read back.

Writes a frame of 9344-bit data to the CMEM (CORE/BRAM/LRAM/CFF/DFF) data
space at address <address>. If no data is specified, the command writes all ones.
The -print option prints a message indicating the write address.

2.2

www.achronix.com

38

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

jtag::read_acb <jtag_id> <address> <word_count>
<word_step> -print

jtag::write_acb <jtag_id> <address> <data> -flush
<int> -print

jtag::read_apb <jtag_id> <address> <word_count>
<word_step> -print

jtag::write_apb <jtag_id> <address> <data> -flush
<int> -print

jtag::read_fcu <jtag_id> <address> <word_count>
<word_step> -print

jtag::write_fcu <jtag_id> <address> <data> -print

Table Notes
1. Legal JTAG TAP states:

CAPTURE_DR, CAPTURE_IR, EXIT1_DR, EXIT1_IR,
EXIT2_DR, EXIT2_IR, IDLE, PAUSE_DR,

PAUSE_IR, RESET, SELECT_DR_SCAN, SELECT_IR_SCAN,
SHIFT_DR, SHIFT_IR, UPDATE_DR, UPDATE_IR.

Reads <word_count> 32-bit words of data from the ACB data space (boundary
ring) starting at word address <address>. The address is the full 24-bit ACB
address. If multiple words are read back, the address increments by <word_step>
for each read operation. The read-back data is returned as a Tcl list of hex strings to
the caller. The —print option prints a message indicating the address and data
read back.

Writes 32 bits of <data> into the register at address <address>. The address is
the full 24-bit ACB address. The —print option prints a message indicating the
write address.

Read <word_count> 32-bit words of data from the full 42-bit address space,
which can talk to CSR, GDDR6, DDR4, FCU, PCIE, or NAP data space starting at word
address <address>. The address is the full 42-bit address. If multiple words are
read back, the address increments by <word_step> for each read operation. The
read-back data is returned as a Tcl list of hex strings to the caller. The -print
option can be used to print a message indicating the address and data read back.

Examples:

Bulk read

jtag::read_apb $jtag_id {08060000048
08070000050 0816000003c 08170000030} 1 1
Single read

jtag::read_apb $jtag_id 08060000048 1 1

Writes 32 bits of <data> into the register at address <address>. The address is
the full 42-bit address. The —flush option adds <int> clock ticks to wait in IDLE
after the write to flush it. The default is 300 clock cycles. The —print option prints
a message indicating the write address.

Reads <word_count> 32-bit words of data from the FCU register space (Internal
FCU Registers) starting at word address <address>. The address is the full 16-bit
FCU address. If multiple words are read back, the address increments by
<word_step> for each read operation. The read-back data is returned as a Tcl list
of hex strings to the caller. The —pr-int option prints a message indicating the
address and data read back.

Writes 32 bits of <data> into the FCU register at <address>. <address> is the
full 16-bit FCU address. The —print option displays a message indicating the
target address.

2.2

www.achronix.com

39

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Programming the Board Using JTAG and Read/Write Registers

Speedster7t Flow

To program a bitstream using JTAG Tcl, a * . hex file must be generated which appears in the <design>/ace/
<impl>/output/ directory. The implementation option bitstream_output_hex is enabled by default for
Speedster7t FPGAs.

The following Tcl commands must be run to:
- Open the JTAG Connection
- Program the Bitstream
-+ Enter User Mode

set jtag_id [jtag::get_connected_devices]
jtag::open $jtag_id
jtag::initialize_scan_chain $jtag_id 0 0 0
jtag::initialize_fcu S$jtag_id -reset
jtag::program_bitstream $jtag_id <x.hex file>

If the bitstream_fcu_lock impl option is set, the FCU locks at the end of programming. This prevents the FCU
registers from being accessed. The FCU must be unlocked in order to regain access. However, the FCU cannot be
unlocked on encrypted bitstreams. To unlock the FCU after entering user mode, add the following command:

jtag::unlock_fcu $jtag_id

If the device is already programmed, the —reset option must be skipped:

set jtag_id [jtag::get_connected_devices]
jtag::open S$jtag_id
jtag::initialize_scan_chain $jtag_id 0 0 0
jtag::initialize_fcu $jtag_id

Following either code path, where appropriate, register reads and writes can be executed. The following are some
example registers to read and write:

jtag::read_fcu $jtag_id 1000 -print
jtag::write_fcu $jtag_id 1064 00003001 -print
jtag::read_fcu $jtag_id 1064 1 4 -print
jtag::write_fcu $jtag_id 1064 00000000 -print
jtag::read_fcu $jtag_id 1064 1 4 -print

To release the JTAG lock, execute the following command:

jtag::close $jtag_id

2.2 www.achronix.com 40

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

JTAG Hardware Overview

Introduction

When a design has successfully completed the ACE design flow, it is ready for FPGA programming. ACE has a
straightforward interface to generate the bitstream files required to implement all of the supported configuration
modes. The bitstream files are generated during the the FPGA Programming - Generate Bitstream step of the
compilation flow (see the Concepts, View, Flow View section in the ACE User Guide (UG070)? for more details).

The bitstream hex file needed for JTAG mode configuration is always generated by default. The "Bitstream
Generation" section of the Project Options menu, also provides a menu selection to generate bitstream files for the
other configuration modes.

The configuration options are unique to each device and ACE supports a number of settings for the features
supported by each device.

JTAG Configuration Overview

The embedded programming and configuration logic in the Speedster7t FPGA is designed to support a variety of
programming and debugging options. There are two external interfaces that can be used as communication
channels between Achronix hardware and software:

- The Achronix Bitporter2 pod - provides a JTAG-only interface via USB to Achronix FPGAs. Device configuration
must be completed via JTAG, along with communication with debug tools such as Snapshot. See JTAG
Configuration Using the Bitporter2 Pod (page 59).

- An FTDI FT2232H/FT4232H device - provides a lower-cost JTAG interface to Achronix FPGAs through USB.
This interface also allows debug tools to be accessible via JTAG. See JTAG Configuration Using FTDI (page 46).

The following figure outlines the basic block diagram of the programming and configuration logic. The configuration
management unit is responsible for configuring the device with a bitstream and controls the startup and shutdown
sequence from configuration mode to user mode and back.

2 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 41

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster/t Configuration User Guide

Mode and Status Pins
A

FPGA

Configuration Logic User Logic

Bitporter2 |[SNIYe JTAG
Pod Interface

SEEWETI Serial Data SPI Flash
Flash Controller

FPGA

Configuration » SRAM Scan
Management "~ Chain

Unit

CPU Slave
Controller

External

CPU

5046380-01.2023.03.27

Figure 22 - Configuration Options Block Diagram

Board-Level Device Connections

The following figure details the board-level electrical connections to the JTAG header used to connect the
Bitporter2. The subsequent figure provides the mechanical specifications (The value of Vppg_ytag is dependent on

the 170 voltage of the JTAG target chip).

For board-level connection details, access board schematic documents on the Achronix support portal, Board Level
Issues® (requires signed NDA to view board schematics).

3 https://support.achronix.com/hc/en-us/sections/360010558151-Board-Level-Issues

2.2 42

www.achronix.com

https://support.achronix.com/hc/en-us/sections/360010558151-Board-Level-Issues
http://www.achronix.com
https://support.achronix.com/hc/en-us/sections/360010558151-Board-Level-Issues

UG094 Speedster/t Configuration User Guide

VDDO_JTAG VDDO_JTAG
5 <5
53 <5
Achronix Core .
TRST X X
DI X X
TDO X X
T™S X X
TCK X X
Ne|
=<y
8<B nel B

5046380-02.2023.03.27

Figure 23 - JTAG Header Electrical Connections

A Caution

The Tck signal produced by both the FT2232H/FT4232H device, and by all Bitporter 2 devices, is only
present during programming. Further, its frequency accuracy and stability cannot be guaranteed.
Therefore, it is not recommended to use this clock for any other purpose than JTAG programming of the
device.

Top View PCB Side View PCB

2.54 mm 5.84 mm
_b. 4—

11X |2 1 [
X X I D
EE—;’i—mm Doez*mm
Dz T
2wl _—
D I
B X X4 |

Note: Pin 12 removed to allow for key.

5046380-03.2023.03.27

Figure 24 - JTAG Header Mechanical Specifications

2.2 43

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

JTAG TAP Controller Overview

The Speedster7t FPGA JTAG TAP controller is IEEE Std 1149.1 compliant and is used for programming the bitstream
and debug via Snapshot in ACE. The JTAG_TMS and JTAG_TCK inputs determine whether an instruction register
scan or data register scan is performed. JTAG_TMS and JTAG_TDI are sampled on the rising edge of JTAG_TCK,
while JTAG_TDO changes on the falling edge. JTAG configuration and operation mode is independent of
FCU_CONFIG_MODESEL settings.

JTAG implementation in Speedster7t FPGAs, which allows for bitstream programming as well as real-time in-system
control and observation, is composed of the blocks shown in the following figure.

The external interface is a standard 5-pin JTAG interface, connected directly to the JTAG TAP controller. The TAP
controller operates independently from the Speedster7t FPGA FCU. It is always active and uses JTAG_TCK for
clocking. The TAP controller takes the data from the pins and converts it to DR instructions to communicate to the
JTAG logic in the FCU. It also takes in data in the form of load/read requests, translating it to the appropriate signals
to drive and expect on the JTAG pins.

The JTAG logic in the FCU interprets these DR instructions and generates input data in the standard 128-bit
Speedster7t FPGA frame size format, along with a data valid indicator, to be forwarded to the FCU data mux and,
ultimately, to the FCU state machine for configuration memory loading. The FCU data mux accepts 128-bit output
data from the FCU, which has an associated valid signal for debug and read-back operations. The mux also provides
an acknowledge signal to indicate to downstream circuitry that the data transfer was successful.

The FCU data mux simply selects between the configuration mode-specific data buses entering the FCU. This logic
is controlled by the static FCU_CONFIG_MODESEL straps and the JTAG override logic from the JTAG TAP controller.

Finally, the FCU state machine accepts incoming data for loading the configuration memory. Conversely, it also
provides output data from the configuration memory or Snapshot to forward upstream.

i_jtag_tck >l CaptureDR » jtag_din_data[127:0] din_data[127:0]

din_valid

i_jtag_tms —————=| ShiftbR jtag_din_valid

JTAG TAP Lz;ﬁﬁn FCU Data B din_ready SFt(a:tJe
_jtog_tdl ——— Controller UpdateDR Fou » jtag_dout_data[127:0] Mux Machine

dout_data[127:0]

i_jtag_trstn ———— | | l0ad_tdr - jtag_dout_valid

dout_valid

o_jtag_tdo jread_tdr jtag_dout_ack dout_ack

47419710-01.2022.23.11

Figure 25 - Block Diagram for JTAG Instruction Processing in the FCU

2.2 44

www.achronix.com

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

JTAG Instructions
The following table lists all JTAG instructions supported by Speedster7t FPGAs.

Table 22 - JTAG Instructions

BYPASS

EXTEST

EXTEST_PULSE

EXTEST_TRAIN

SAMPLE/PRELOAD

IDCODE

23'b00OOOOOOOOOOOEOOO
000000

23'b11111111111111111
101000

23'b11111111111111111
101001

23'b11111111111111111
101010

23'b11111111111111111
111000

23'b11111111111111111
111110

32

The required BYPASS instruction allows a Speedster7t
FPGA to remain in a functional mode and selects the
bypass register to be connected between JTAG_TDI and
JTAG_TDO. This instruction allows serial data to be
transferred through the FCU from JTAG_TDI to
JTAG_TDO without affecting FPGA operation.

The required EXTEST instruction places the Speedster7t
FPGA into an external boundary-test mode and selects the
boundary-scan register to be connected between
JTAG_TDI and JTAG_TDO. Output pins operate in test
mode, driven from the contents of the boundary-scan
update latch. Input data are captured in boundary-scan
latches prior to shift operation. During this instruction, the
boundary-scan register is accessed to drive test data
outside the FPGA via the boundary outputs and receive
test data from outside the FPGA via the boundary inputs.

Generates a single pulse by entering and exiting the Run-
Test/Idle state of the 1149.1 TAP controller.

Generates a stream of pulses while in the Run-Test/Idle
state. ABSDL file for an 1149.6 device specifies the
minimum number of pulses and the maximum time period
allowed for pulse generation in the Run-Test/Idle state.

The required SAMPLE/PRELOAD instruction allows a
Speedster7t FPGA to remain in its functional mode and
selects the boundary-scan register to be connected
between JTAG_TDI and JTAG_TDO. The output and
input pins operate in normal mode. Input pin data and
core logic output data are captured in the boundary-scan
latches. During this instruction, the boundary-scan register
can be accessed via a data scan operation to take a sample
of the functional data entering and leaving the FPGA. This
instruction is also used to preload test data into the
boundary-scan register before loading an EXTEST
instruction.

The optional IDCODE instruction allows a Speedster7t
FPGA to remain in its functional mode and selects the
optional device identification register to be connected
between JTAG_TDI and JTAG_TDO. The IDCODE
register appears between JTAG_TDI and JTAG_TDO after
power-up, after the TAP has been reset using the optional
TRST pin, or by otherwise moving to the Test-Logic-Reset
state.

2.2

www.achronix.com

45

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

The optional HIGHZ instruction sets all outputs (including

HIGHZ 23'b11111111111111111 B two-state as well as three-state types) to a disabled (high-
001111 impedance) state and selects the bypass register to be
connected between JTAG_TDI and JTAG_TDO.
Provides for "guarding" chip outputs during in-circuit test
23'p11111111111111111 or boundary—§can functional test. Output pins operate in
CLAMP 101111 - test mode, driven from the content of the boundary-scan
update latch. The one-bit bypass register is selected for
shifting.
Provides access to the test data register implemented
INTDR 23'b00OOOOOOOOOOOOOOO 97 internal to the TAP controller. This internal register is used
111101 for global configuration and monitoring of global status
signals.
Enables the scan-in of the configuration bitstream to the
configuration logic (in this mode, the SHIFT-DR state is
JLOAD 23'b000001000000O1100 128 used to scan in the bitstream). For the read-back, the data
111010 register is read back. All of these operations are performed

internally using a 128-bit parallel bus. Data is latched every
128 bits in the UPDATE-DR state.

Enables the data register for read-back. When this
instruction is decoded and CAPTURE-DR is executed, the
data from the configuration logic is sampled as 32-bit data
1
JREAD 23'b00000100000001000 128 plus a valid bit. Multiple words of the configuration
111010 .
memory can be read back by cycling through the
CAPTURE-DR/SHIFT-DR states. The 33-bit status register is
selected between JTAG_TDI and JTAG_TDO.

1
Jusr1 @ 23 bOOOOlOlllOOOlOOOOOOOlOO User defined Enables the USER1 TDR.

23'b000001000OOOOOOOO

(1) .
JUSR2 111010 User defined Enables the USER2 TDR.
1 . .
JASYNCERR 23'b0OOOOOEOENENOE1110 B Ena.bles the connection to the fabric error status scan
111010 register.

Table Notes

1. This TDRis implemented in the fabric and is used for supporting debug functions in the fabric.

JTAG Configuration Using FTDI

Overview

The FTDI device provides a low-cost JTAG interface to Achronix Speedster7t FPGAs and Speedcore eFPGAs through
a USB 2.0 (USB 1.0/3.0 compatible) interface, enabling both debug and configuration interfaces. Achronix supports
interfacing only with FTDI FT2232H and FT4232H devices.

2.2 46

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

The following diagram shows how Speedcore/Speedster7t FPGAs interface to ACE via the FT2232H/FT4232H
device. In this setup, the FTDI multi-protocol synchronous serial engine (MPSEE) is configured for single-chip USB-
to-JTAG communication. The FTDI device interfaces to the host PC via USB. ACE allows configuring and debugging
the FPGA using the built-in FTDI drivers.

ACE

Programming
debug Speedcore/

Speedster
Device

FTDI
2232H/4232H

7081180-01.2023.03.27

Figure 26 - FTDI Interface Example

The FT2232H has two independent 16-bit configurable interfaces while the FT4232H has four independent 8-bit
configurable interfaces.

The FTDI configuration flow is as follows:
1. Generate a design_name.hex file from a placed-and-routed design within ACE.
2. Connect a USB cable between the on-board FTDI programming port and the USB port of the host PC.
3. Program the device through JTAG using one of three methods:
> Using the FPGA download flow step after generating a bitstream
> Using the ACE GUI Download view:

~ FPGA Download
Configure JTAG Connection
JTAG Device ID (jtag_id)
JTAG Scan Chain
[+ Single Device Scan Chain

Multi-Device Scan Chain Description

R Bits Before Target FPGA Device 0
R Bits After Target FPGA Device 0
Target FPGA Device Offsetin Scan Chain | O

Figure 27 - Programming Device Connections In ACE Download View

2.2 www.achronix.com atl

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

#&?SnapshotDebugged % Download X |ERegister Browser = S =

JTAG Programming
Select the programming options and bitstream file (*.hex] to be used.

JTAG Prograrnming Options
[Perform an FCU reset to clear the (e)FPGA config memory.
Close the JTAG connection/device when programming is complete

| G:/generic/generic_bitstream.hex | Browse... | (4

[= Download Bitstream

Suggested Bitstream Files
» From active implementation
» Recently used

JTAG Utilities
Miscellaneous utilities to ease JTAG interactions.

Report a list of all available USB-connected JTAG devices by [D: ' Get Connected Devices

Figure 28 - Hex File Actions in ACE Download View

> Using the Tcl console with the program_hex_file command

The following figure shows the basic block diagram of the FTDI devices.

Tx Buffer BUSO
Control EEPROM
Data INTERFACE Rx Buffer Interface

1

BUS1

Control

0SCl ———»

0SCO ~——rf
Protocol Select

D+ «—p| USB USB Engine and Control

PHY and Control .
D- <> Logic

RESET# ————»

Control
BUS2

Interface
2

Tx Buffer BUS3

Rx Buffer

7081180-02.2023.03.27

Figure 29 - FTDI FT2232H/FT4232H Basic Block Diagram

2.2 www.achronix.com

48

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

FTDI Board-Level Device Connections

FTDI JTAG Pinout
Achronix tools expect the BDBUS pins of the FTDI chip to be connected to JTAG as specified in the following table.

Table 23 - FTDI-to-FPGA JTAG Connections

JTAG Signal JTAG Header FTDI Port FT2232H FT4232H
Name Pin Number Name Pin Number Pin Number
TRST_N 1 BDBUS[4] 43 30
TCK 9 BDBUS[0] 38 26
TMS 7 BDBUS[3] 41 29
TDI 3 BDBUS[1] 39 27
TDO 5 BDBUS[2] 40 28
(® Note

On Achronix boards, BDBUS[5] is connected to JTAG_MODE_EN_N, an active-low signal that is inverted
into JTAG_MODE_EN, which is used as a mux between the FTDI chip and the JTAG header.

FTDI Voltage Compatibility

The FTDI devices have two voltage rails:

* Vcore
* Veero

Vcore Must be connected to 1.8V, while Vcc1g must be connected 3.3V. As a result, the output ports from the FTDI
chips have a 3.3V range. However, Speedcore and Speedster7t devices both require 1.8V for the configuration
signals, including JTAG. Therefore, it is necessary to insert voltage level shifters between the output of the FTDI and
the JTAG input signals of the target device.

FTDI EEPROM Interface

An external EEPROM helps select the FTDI operating mode. Adding an external EEPROM allows each of the chip
channels to be independently configured to one of three modes:

- Serial UART (RS232 mode)
- Parallel FIFO (245) mode

- Fast serial (opto-isolation) mode

2.2 49

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

The EEPROM must be programmed using the Achronix template file to allow the Achronix device drivers to find and
communicate with the FTDI device. When used without an external EEPROM, the FTDI device defaults to a USB-to-
dual-asynchronous-serial-port device. This mode is not supported by Achronix.

The external EEPROM can also be used to customize the following FTDI device USB parameters:
- VID
- PID
- Serial Number
+ Product Description Strings
- Power Descriptor value
Other parameters controlled by the EEPROM include the following:
- Remote wake up
- Soft pull-down on power-off
- 1/0 pin drive strength

The following table summarizes modes that are configurable using the EEPROM:

Table 24 - EEPROM Configuration Modes

Configuratio | ASYNC | ASYNC Fast Host
. Serial Bus
n pei Interfac Emulati
Method UART
e on

EEPROM YES YES YES YES YES
Configured
Application
Software YES YES YES YES YES
Configured
Programming the EEPROM

The FTDI utility, FT_PROG?, can be used to program the EEPROM. A generic template file,

Achronix_EEPROM_Template_for_FTDI4232.zip°®, is available on the Achronix support portal for programming the
EEPROM.

Unzip the file to a local folder. The archive contains a template file: FT4232_VP3.xm1l.
The following table lists the values of the parameters in the Achronix generic EEPROM file.

4 http://www.ftdichip.com/Support/Utilities.htm#FT_PROG
5 https://support.achronix.com/hc/en-us/articles/4496793147668

2.2 50

www.achronix.com

http://www.ftdichip.com/Support/Utilities.htm#FT_PROG
https://support.achronix.com/hc/en-us/articles/4496793147668
http://www.achronix.com
http://www.ftdichip.com/Support/Utilities.htm#FT_PROG
https://support.achronix.com/hc/en-us/articles/4496793147668

UG094 Speedster/t Configuration User Guide

Table 25 - Generic Achronix EEPROM File Contents

Manufacturer BittWare Specifies the Vendor name.
Product Description Achronix VectorPath Yes String Achronlx Is required
anywhere in the value.
. Must be a non-zero/non-null value
Serial Number Yes starting with "AC".
Vendor ID 0x0403 No Do not modify this value.
Product ID Ox6011 No Do not modify this value.

Follow these steps to program the EEPROM:
1. Launch FT_PROG and open the example Achronix Speedcore EEPROM template . xm'l file:

® FTDI - FT_Prog - O X
4~ FLASH ROM

EILE DEVICES VIEW HEID
® Open X

« v > ThisPC > VERYZEN_C(C:) » Projects > EEPROM v O Search EEPROM »p

QOrganize New folder == v [TH o
- 3D Objects A Name - Date modified Type Size
I Desktop
|=] Documents
& Downloads
j Music
&= Pictures
B Videos
‘i VERYZEN_C (C:)
Audio
MKV
PerfLogs

e FT4232_VP3.xml 5/3/2021 9:29 AM Microsoft Edge HTM... 4KB

Program Files
Program Files (

Projects v €

File name: | FT4232_VP3.xml v ‘ XML Template Files (*xml) v

Opening Template...

Figure 30 - Opening FT4232_VP3.xml

2.2 www.achronix.com o1

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

2.

The parameter list can be seen on the left side under Device Tree. The Vendor ID and Product ID fields are
under USB Device Descriptor. These fields should not be modified; otherwise, ACE cannot recognize the FTDI

device.

® FTDI - FT Prog - Template: FT4232_VP3.xml - O X
i EEPROM 4’ FLASH ROM
EILE DEVICES VIEW HELP

R=" 2 F B3 (7]
Device Tree Property IVaIue Inf
= & Template: FT4232_VP3.xml Custom VID/PID:
% =3 FTEEPROM FTDI Default v ~

=) Chip Details Vendor ID: 0403

=) USB Device Descriptor Product ID: 011

#=p USB Config Descriptor

=P USB String Descriptors USB Version Number: uUsSB 2.0

@ =p Hardware Specific

Device Qutput

Ready

Figure 31 - Reviewing FT4232_VP3.xml

If required, modify the Manufacturer and Product Description fields under USB String Descriptors. A serial
number can be specified manually or auto-generated.

(@ Note

The value set for Product Description must contain the string "Achronix" to ensure proper operation.
Achronix software uses the serial number to uniquely identify JTAG connections. Thus, it is highly
recommended that the serial number be set to auto-generate. If the Achronix software cannot read a
serial number, or finds it to be null/blank/empty, the Achronix software ignores the connected
FT2232H/FT4232H device.

2.2

www.achronix.com

52

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

® rTDI - T Prog - Template: FT4232_VP3.xml = O X
& EEPROM %~ FLASH ROM
FILE DEVICES VIEW HELP
= | JoRV -l - | @
Device Tree Property [vatue Inf
= & Template: FT4232_VP3.xml Manufacturer:
& =) FTEEPROM Bittware)
.=d Chip Details Product Description: Achronix VectorPz
=p USB Device Descr.imor Serial Number Enabled: [
& =>. USB Config Descriptor Auto Generate Serial ¥
U Sting Descrpors I N0
[=p Hardware Specific Serial Number:
Serial Number Prefix: ACVP
Device Qutput
W
Ready
Figure 32 - Modifying The FT4232_VP3.xml File
EEPROM Interface - Board Implementation
The following figure shows the connection between EEPROM and FTDI chip on board.
VCCIO <M
Q - DP
SEE - RESET
- REF
OluF_
& lvee cs 5 . CS# 4% | eecs
CLK |4 CLK 4 |epoik
oIE3 DATA 2| EEDATA
_ 2 1
GND DO /\/\/\,—IZK
S —— - xcsl
93LC56BT-1/0T
GND

Figure 33 - EEPROM FTDI Board-Level Connection

7081180-03.2023.03.27

2.2

www.achronix.com

53

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

FTDI Crystal Requirements

A 12 MHz crystal should be connected to the OSCI and OSCO pins of the FTDI 2232H chip. A 12KQ resistor should be
connected between REF and GND on the PCB. The value for the loading capacitors should be selected as per
manufacturer recommendation.

FT2232H
27pF
l H P 21 oscl
12MHz —
Crystal]
27pF
l H ° 31 0sco

7081180-04.2023.03.27

Figure 34 - FTDI Crystal Board-Level Connection

FTDI Interface in ACE

To use the FTDI interface in ACE, select Window — Preferences — Configure JTAG Connection and input the
relevant information for the programmer device name and the scan chain details. ACE then knows to use FTDI for
Snapshot, Download View (bitstream programming), and JTAG browser (and even SerDes link tuning). If no name is
entered, ACE/STAPL player autodetects to select the programming device.

2.2 www.achronix.com o4

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

i

Configure JTAG Connection W= A

200

These preferences are used to configure JTAG connections used by ACE.
JTAG Device ID (jtag_id) | |

JTAG Scan Chain
IR Bits Before Target FPGA Device [0 |

IR Bits After Target FPGA Device [0 |

Target FPGA Device Offset in Scan Chain | 0 |

Restore Defaults Apply

Apply and Close Cancel

Figure 35 - Configuring the FTDI Interface in ACE

Programming Speeds and Requirements

JTAG Interface

The possible FT2232H/FT4232H frequencies are limited by FTDI to:

F =60 MHz/ (1 + clkDiv) x 2)

Where clkDiv must be an integer ranging from 0 to OxFFFF, thus providing an effective frequency range from 30
MHz (maximum) to 457.763 Hz (minimum).

The STAPL JTAG tools allow arbitrary frequencies to be requested (in integer Hz), but the drivers then choose the
fastest frequency which is still less than or equal to the requested frequency.

(@ Note

The STAPL frequency is presently not a user-editable value and is hard-coded in the STAPL player by
Achronix in all current use cases.

2.2

www.achronix.com 29

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

& Caution!
The Tck produced by the FTDI device is only present during programming. Further, its frequency accuracy

and stability cannot be guaranteed. Therefore, it is not recommended to use this clock for any other
purpose than JTAG programming of the device.

Known Device Limitations

While the Achronix JTAG tools can support multi-device JTAG scan chains, the Speedster7t AC7t1500ESO FPGA
JTAG test access port (TAP) does not support the JTAG BYPASS instruction. Because JTAG BYPASS is not
supported, affected Speedster7t AC7t1500ESO PPGAs must be the only JTAG device on its own JTAG scan chain.
The JTAG BYPASS feature us fully supported for Speedster7t AC7t1500/AC7t1450 production FPGAs.

Software and Driver Install for FTDI

Introduction

Prior to device configuration, the FTDI USB drivers must be installed on the host system. The JTAG Tcl library and
the USB drivers are included as part of the ACE software suite. Intended for general use, ACE includes a graphical
download tool, the Snapshot debugging tool, the JTAG Browser tool, the HW Demo tool, as well as the JTAG Tcl
library to aid in command-line configuration from ACE.

ACE and the Components Installation

When the ACE software suite is installed, a copy of the FTDI USB drivers is included. ACE installation is covered in a
separate document, the ACE Installation and Licensing Guide (UG002)°.

Windows

Near the end of the install, the ACE package prompts to install the FTDI CDM USB drivers:

6 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

2.2 56

www.achronix.com

https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
http://www.achronix.com
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

UG094 Speedster/t Configuration User Guide

k_vj Achronix CAD Ervirenment 91,1 Setup — >
Choose Components e
Choose which features of Achronix CAD Environment 9. 1. 1 you want to install, | E‘;‘]

Check the components you want to install and uncheck the components you don't want to
install. Click Mext to continue.

Description

Select components to install: Achronix CAD Environme
Achraonix Stapl Player
FTDI COM USE drivers for
Gnuplot - used for some =
Matlab runtime - used for

Space required: 487.8 MB

Figure 36 - ACE Installation Choose Components Dialog Example

Linux

(@ Note

When using the FTDI FT2232H connection from Linux, RHEL/CentOS 7.4 and up have been successfully
tested.

Linux USB Driver Installation

In Linux, the USB driver installation script can be found in the system/cmd/ directory. Special udev rules must be
created to set the permissions so that regular users may write to the FT2232H device. To update these rules,

execute the following as root:

% system/cmd/install_acx_bitporter_usb.pl

2.2 www.achronix.com o7

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

(® Note

If using Ubuntu, it is recommended to use the following syntax:

% sudo system/cmd/install_acx_bitporter_usb.pl

The USB cables might need to be disconnected and re-connected after the install script is run. Whether or
not the new rules are already applied depends upon implementation details within the Linux distribution.

Supported Operating Systems

JTAG interactions are currently supported with FTDI Interface or Bitporter 2 under the following operating systems.
- 64-bit Red Hat Enterprise Linux Release 7.9+, 8.x, and 9.x
- B4-bit Cent0S 7.9-2009
- Rocky Linux 8.x, and 9.x
- 64-bit Microsoft Windows 10, 11
- Ubuntu 20.04 LTS, 22.04 LTS
- SUSE 154+

Minimum Hardware Requirements
- Pentium-class PC with a minimum of 512 MB of memory (2 GB for Windows 10)

- A USB 2.0 port if configuring through FTDI interface
- A powered USB 2.0 port if configuring through the Bitporter 2 pod

(® Note

1. USB 1.0 and 1.1 ports may be used for the Bitporter 2 and FTDI interfaces, but USB 2.0 is strongly
recommended for performance reasons.

2. USB 3.x ports may be used for Bitporter2 or FTDI (both Linux and Windows) interfacing, but
performance is limited to USB 2.0 speeds.

Connecting the FTDI Device

Connecting to the FT2232H or FT4232H via USB
Before connecting the FTDI USB port to the host PC, ensure that the software installation has completed (refer to
Software and Driver Install for FTDI (page 56)).

(@ Note

Depending upon the specific configuration of the FTDI chip on the board, in some cases the USB cable must
be connected to a powered USB port on the host PC. In other configurations, an unpowered USB port
suffices. Consult the board documentation for details.

2.2 58

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Disconnecting the FT2232H or FT4232H Interface

To end a programming session and disconnect the FTDI USB cable from the target hardware:
1. Wait until ACE Tcl Console finishes running.
2. Close an existing connection to a JTAG device using the following command:

jtag::close <jtag_id>
3. Disconnect the USB cable from the target hardware.
Verifying the Setup

Connectivity Self Test

To verify that the USB drivers and FTDI JTAG interface are functioning together correctly:
1. Opena Tcl console in ACE.
2. Atthe command prompt, execute:

jtag::get_connected_devices

The command gets the list of connected JTAG devices from the host machine along with the serial number
(jtag_id).

3. Use the following command to open a new connection to the JTAG device using the jtag_-id returned by the
previous command.

jtag::open <jtag_id>

Handling Multiple FTDI Devices Connected to the Same PC
The ACE Tcl Console can support multiple users sharing a collection or pool of FTDI devices connected to a single PC
via USB.
& Warning!
When multiple JTAG devices are connected to a single PC, the desired JTAG connection must be specified.
If no specific connection is open, use the mentioned jtag: : open command to open the connection. If a connection

is already identified, close the current connection and open the connection to the desired device using the
commands mentioned in the JTAG Programming using the Tcl Library API (page 32) section.

JTAG Configuration Using the Bitporter2 Pod

The Bitporter2 pod (pictured below) connects between a host PC via USB (1.x, 2.x, or 3.x) connection and a JTAG-
compliant connector on the target system. When connected, the Bitporter2 pod supports device configuration and
debug.

2.2 59

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

(® Note
USB 1.0 through 3.1 are supported, but are limited to USB 2.0 "High-Speed" or lower.

Figure 37 - Bitporter2 Pod

The JTAG configuration flow is as follows:
1. Generate a design_name.hex file from a placed-and-routed design within ACE.

2. Connect the Bitporter pod to the USB port of the host PC and to the JTAG port of the target system.

Software and Driver Install for Bitporter2

Introduction

The Bitporter2 pod utilizes the FTDI 2232 USB - JTAG interface chip. Prior to device configuration, the FTDI USB
drivers must be installed on the host system. Intended for general use, ACE includes:

- A graphical download tool
- The Snapshot debugging tool
- The HW Demo tool

ACE and the Components Installation

When the ACE software suite is installed, a copy of the FTDI USB drivers is included. ACE installation is covered in a
separate document, the ACE Installation and Licensing Guide (UG002)’.

7 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

2.2 60

www.achronix.com

https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
http://www.achronix.com
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

UG094 Speedster/t Configuration User Guide

Windows
Near the end of the install, the ACE package prompts to install the FTDI CDM USB drivers:

(@) Achronix CAD Environment 9,11 Setup — *
Choose Components -r-:,\—_-_}
Choose which features of Achronix CAD Environment 9. 1.1 you want to install. T

Chedk the components you want to install and uncheck the components you don't want to
install. Click Mext to continue.

Select companents to install SEiLol
Achraonix Stapl Player
FTDI COM USE drivers for
Gnuplot - used for some =
MatLab runtime - used for

Space required: 487.8 MB

Figure 38 - ACE Installation Choose Components Dialog Example

Linux

(® Note

When using the FTDI FT2232H connection from Linux, RHEL/CentOS 7.4 and up have been successfully
tested.

Linux USB Driver Installation

In Linux, the USB driver installation script can be found in the system/cmd/ directory. Special udev rules must be
created to set the permissions so that regular users may write to the FT2232H device. To update these rules,

execute the following as root:

% system/cmd/install_acx_bitporter_usb.pl

2.2 61

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

(® Note

If using Ubuntu, it is recommended to use the following syntax:
% sudo system/cmd/install_acx_bitporter_usb.pl

The USB cables might need to be disconnected and re-connected after the install script is run. Whether or
not the new rules are already applied depends upon implementation details within the Linux distribution.

Supported Operating Systems

JTAG interactions are currently supported with FTDI Interface or Bitporter 2 under the following operating systems.
- B4-bit Red Hat Enterprise Linux Release 7.9+, 8.x, and 9.x
- B64-bit Cent0S 7.9-2009
- Rocky Linux 8.x, and 9.x
- 64-bit Microsoft Windows 10, 11
- Ubuntu 20.04 LTS, 22.04 LTS
- SUSE 15.4+

Minimum Hardware Requirements
- Pentium-class PC with a minimum of 512 MB of memory (2 GB for Windows 10)
- A USB 2.0 port if configuring through FTDI interface
- A powered USB 2.0 port if configuring through the Bitporter 2 pod

(@ Note

1. USB 1.0 and 1.1 ports may be used for the Bitporter 2 and FTDI interfaces, but USB 2.0 is strongly
recommended for performance reasons.

2. USB 3.x ports may be used for Bitporter2 or FTDI (both Linux and Windows) interfacing, but
performance is limited to USB 2.0 speeds.

Connecting the Bitporter2 Pod

The Bitporter2 pod has two labeled jacks and two LED indicators:
- JTAG - used by the 14-pin JTAG ribbon cable
- USB - USB mini-B jack for communication with the host computer
- PWR LED - lights to indicate power from USB interface is present
- ACT LED - flashes to indicate data transfer to/from target

The Bitporter2 is powered by its USB interface.

Since the pod requires power, it does not work if it is not connected to a powered USB port.

2.2 www.achronix.com 62

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Bitporter2 Board-Level Device Connections

JTAG Pinout

Table 26 - Bitporter2 Connections

TRST_N 1
TCK 9
TMS 7
TDI 3
TDO 5
V_JTAG 14
Ground 2,4,6,8,10

Bitporter2 Voltage Compatibility

The Bitporter2 derives power from the USB interface at 5V. Internally, it regulates this input to two voltage rails: 1.8V
and 3.3V. The pod includes level shifters in order to match the JTAG interface voltage to that of the target. The
target must supply the proper voltage on the JTAG interface pin 14.

Connecting the Bitporter2 Pod via USB

& Caution!

Before connecting the Bitporter2 pod: Do not connect the Bitporter2 USB cable until after the software is
installed (see Software and Driver Install for Bitporter2 (page 60)). If the Bitporter2 USB cable is connected to
the workstation during USB driver installation, the USB driver might not install correctly.

1. Turn off the power to the target hardware.

2. Connect one end of the JTAG flat ribbon cable to the target JTAG connector. Pin 1 is indicated by the red strip.

() Note

If the target JTAG connector is not keyed, the target user guide should specify the location of pin1on
the target JTAG connector.

3. Connect the other end of the JTAG flat ribbon cable to the Bitporter2 pod. The connector is keyed.
4. Connect one end the USB cable to the host PC.
5. Connect the other end of USB cable to the Bitporter2 pod.

2.2 63

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

6. Pod initialization:
o During the pod initialization, the Bitporter2 pod power LED turns on and the ACT LED might flash.

> When pod initialization completes successfully, the power LED remains lit, and the ACT LED turns off.

(® Note
In Windows, after pod initialization is complete, a temporary notification might appear indicating
that device drivers were successfully installed.

7. Turn on the power to the target hardware.
Verifying the Setup

Bitporter2 Connectivity Self Test
To verify that the USB drivers and Bitporter2 pod are correctly functioning together:

1. Opena Tclconsole in ACE.
2. Atthe command prompt, enter:

jtag::get_connected_devices

The command returns a listing of all correctly connected and currently available pods (those not actively in use).

3. Execute the following command to open a new connection to the JTAG device using the jtag_id returned by
the previous command.

jtag::open <jtag_id>

Bitporter2-to-Target-Device Connectivity Test

After the Bitporter2 connectivity self test has successfully completed, it is still useful to ensure the Bitporter2 is
properly connected to the target device via the JTAG ribbon cable. See the previous information in this chapter

which describes the proper way to connect the Bitporter2.

1. Opena Tclconsole in ACE.
2. Enter the following command:

jtag::initialize_scan_chain <jtag_id> <pre_ir_bits> <post_ir_bits>
<target_device_offset> -target_device <string>

This command configures a scan chain. It sets the initial clock frequency (based on the target device), checks
the number of devices and IR length, sets preamble/postamble IR/DR bits, and checks IDCODE.

(@ Note
The <project_name>.hex file can be generated from the user design or by using the quick-start
design.

2.2 www.achronix.com 64

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

3. After successfully starting communications with the Bitporter Pod, the program returns the device ID code of
the target device.

(@ Note

The actual text output, including the ID code, varies slightly by device type and revision.

The following is an example of the text output including the IDCODE:

Checking JTAG device chain:

IR bits before target device: 0

IR bits after target device: 0

Target device offset: 0

Number of devices detected on scan chain: 1

Instruction Register Length 1is: 23

Set pre-IR padding to: 0

Set post-IR padding to: 0

Set pre-DR padding to: 0

Set post-DR padding to: 0

Verifying expected device is at the expected location...
Found JTAG IDCODE: 30400641

Achronix device detected: AC7t1500

...Verified Achronix device found at expected location.

Bitstream Programming via PCle

Bitstream programming via PCI Express, also called config via protocol or CvP, requires a two-stage process in which
part of the I/0 ring is first programmed via flash, CPU, or JTAG, while the remainder of the I/0 ring and the core is
programmed later via PCle. The two-stage process is required because the PCle controller must be configured
before the device can be enumerated by the host server as a PCle endpoint.

In stage O, the entire I/0 ring does not need to be programmed - only the PLLs, related 1/0, and the PCle subsystem.
Other subsystems (e.g., Ethernet/DDR4/GDDRS, clock networks to fabric, reset networks, NoC components, and the
core fabric) are all programmed in stage 1. The size of the bitstream for the core fabric is significantly larger than
that for the 170 ring, therefore, the stage 1 bitstream benefits the most from PCle's fast download speeds.

This document explains how to configure the PCle controller in a design to support CvP, which options to use in ACE
to generate two-stage bitstream files, and the Achronix SDK tools that are available to download bitstreams from a
host machine to an FPGA card over PCle.

Design Requirements for Programming via PCle

There are few requirements on the PCle subsystem configuration when using CvP. Stage 1 bitstream download
requires access to the PCle controller's configuration and status registers (CSRs) in order to set up direct memory
access (DMA) transactions. Therefore, one of the PCle base address registers (BARs) must be configured to allow
access to the PCle controller's direct bus interface (DBI).

2.2 www.achronix.com 65

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

During normal operation, most FPGA designs will map a BAR to the DBI Gateway, a soft logic macro that provides
synchronization for the DBI CSRs. For more information see the knowledge base article, What is the DBI Gateway
and How Can | Use It?8 Full bitstreams may configure the PCle controller with either the "full" or "compressed" DBI
Gateway BAR mapping. However, the DBI Gateway soft logic is not available during two-stage CvP because the FPGA
core is not configured by the stage O bitstream. Therefore, the stage 0 bitstream must configure a PCle BAR to map
to the low-level hard DBI that is internal to the PCle controller.

The Achronix SDK hides the complexity of using the hard DBI, but it does require a different PCle BAR configuration.
Instead of the "full" or "compressed" mappings to the DBI Gateway, the stage O bitstream must map a BAR directly
to the start of PCle CSR space, which is at NOC address Ox081_9100_0000.

The acx_pcie_program_bitstreamtool in the Achronix SDK, described below, takes the DBI BAR number as a
command line argument.

PF0O BAR3 Function MNoC

[+4 BAR3 Enabled

BAR3 Width ‘ ‘
BAR3 Type ‘ Memory - ‘
BAR3 Size (Bytes) ‘ ™ - ‘

[] BAR3 Prefetchable

BAR3 Address Mode ‘ BAR Match Mode -

€ & 4 4 & & & <

BAR3 NoC Address Value (hex) = 08191000000 |
|

BAR3 Number of ATU Regions ‘

Figure 39 - Example of BAR3 Mapped to PCle CSR Space for Hard DBI

Because the hard DBl is not synchronized, Achronix does not recommend using the hard DBI for general
applications. It should only be used within the scope of CvP. If an application needs access to the DBI outside of CvP,
then it is recommended to map a separate BAR to the Gateway's NoC address. After CvP is complete the runtime
application may repurpose the hard DBI BAR for other uses. How to dynamically reconfigure BARs at runtime is
beyond the scope of this document. See the Software Development Kit User Guide (UG107)° for more information.

8 https://support.achronix.com/hc/en-us/articles/34117665702292-What-is-the-DBI-Gateway-and-How-Can-I-Use-It
9 https://achronix.com/documentation/software-development-kit-user-guide-ugl07

2.2 66

www.achronix.com

https://support.achronix.com/hc/en-us/articles/34117665702292-What-is-the-DBI-Gateway-and-How-Can-I-Use-It
https://achronix.com/documentation/software-development-kit-user-guide-ug107
http://www.achronix.com
https://support.achronix.com/hc/en-us/articles/34117665702292-What-is-the-DBI-Gateway-and-How-Can-I-Use-It
https://achronix.com/documentation/software-development-kit-user-guide-ug107

UG094 Speedster/t Configuration User Guide

How to Generate the PCle Bitstream Files with ACE

Two sets of implementation options must be changed to enable two-stage bitstream programming over PCle.

Bitstream Generation - Additional Outputs Section

In the Additional Outputs sub-section of the Bitstream Generation section of the ACE Options View, select the PCle
(.pcie) option to generate the . pciie file for stage 1 config over PCle. Optionally, select the Serial Flash (.flash)
option to generate the _stage0. flash file for two-stage bitstream programming and the . flash file for one-
stage bitstream programming via flash memory. A _stage0. hex file for two-stage programming and a . hex file
for one-stage programming over JTAG is always output. The bitstream(s) will be exported during the Generate

Bitstream flow step in ACE.

Additional Outputs
[+ Serial Flash (.flash)
[_] cPU Mode (.cpu, .bin)
CPU Bus Width | 32 -

[+ PCle (.pcie)
[] CMEM Address and Data Export (.address)

Figure 40 - The Additional Outputs sub-section of the Bitstream Generation Section in the ACE
Options View

Enables the generation of an PCle-formatted
output file, with the same name as the . hex file,

PCle (.pcie) bitstream_output_pcie buthavinga .pcie extension. This file is binary
formatted and can only be used with two-stage

programming or partial reconfiguration.

Enables the generation of an additional serial flash
formatted output files, with the same name as
Serial Flash (.flash) bitstream_output_flash the.hexfile, but havinga . flash extension. This

file is binary formatted. Only the _stage0. flash
file is needed when stagel will be loaded over PCle.

Bitstream Generation - Two Stage Programming Section

The Two-Stage Programming option must be selected to generate the bitstream files needed for two-stage CvP.
With the Two-Stage Programming option enabled, ACE will export a _stage0.hex file and optionally, if the
Additional Outputs option Serial Flash (.flash) is enabled, a _stage0. flash file. When generating encrypted
AC71400/AC7t1500 bitstreams, additional files _stagel_header.hex and _stagel_header.flash are also
generated. An error will be thrown it a user enables the Additional Outputs option PCle (.pcie) but does not enable
the Two-Stage Programming option.

2.2 67

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Two-Stage Programming
[+ Enable Two-Stage Programming

Figure 41 - ACE Bitstream Generation Options Dialog

Table 27 - Bitstream Generation Implementation Options — Two-Stage Programming

“ ACE impl_option

If checked (1), enables two-stage programming. This generates
files with *_stage0.* and x_stagel.* naming. This option

only creates stageO files for flash and stagel files for PCle when
enabled.

Enable Two-Stage Programming bitstream_two_stage

How to Program a Device with the PCle Bitstream Files

The FPGA must be configured with a stage 0 bitstream (. hex or . flash) before the host machine can enumerate
the device as a PCle endpoint. When using encryption (for AC7t1500/AC7t1400), the stage 1 header must also be
programmed into the flash memory or over JTAG following the stage O bitstream. Refer to the sections, "Bitstream
Programming via JTAG (page 28)" and "Bitstream Programming via Flash Memories (page 9)" for information on how to
program the stage O bitstream, and optionally the stage 1 header bitstream, over JTAG or flash, respectively.

Once the device has been enumerated as a PCle endpoint, there are two methods available to download the . pcie
bitstream file to the device. Both methods are made available as part of the Achronix software development kit

(SDK). See the knowledge base article How do | Download the Achronix SDK? (requires login to access) and the
Software Development Kit User Guide (UG107)™ for more information about the SDK.

Standalone PCle Programming Utility

Use the acx_pcie_program_bitstream utility which is available in the SDK/tools/
acx_pcie_program_bitstreamdirectory of the Achronix SDK. After SDK installation, the executable is also
available in /opt/achronix/sdk/bin.Callacx_pcie_program_bitstream -—help for usage information,
or see the Software Development Kit User Guide (UG107)%?

Programmatic Access Using Achronix SDK Library Functions

There is also the option to integrate CvP into the user application by calling the

function acx_pbs_program_bitstream(), which is available in the Achronix_program_bitstream.h
header file and Achronix SDK shared-object library. See the SDK man pages and Software Development Kit User
Guide (UG107)* for more information. Source code for the acx_pcie_program_bitstream utility, discussed in the
previous section, is available in the SDK download, and may be used as a reference when creating user software
applications.

10 https://support.achronix.com/hc/en-us/articles/15234194799252-How-do-I-Download-the-Achronix-SDK
11 https://achronix.com/documentation/software-development-kit-user-guide-ugl07
12 https://achronix.com/documentation/software-development-kit-user-guide-ugl07
13 https://achronix.com/documentation/software-development-kit-user-guide-ugl07

2.2 68

www.achronix.com

https://support.achronix.com/hc/en-us/articles/15234194799252-How-do-I-Download-the-Achronix-SDK
https://achronix.com/documentation/software-development-kit-user-guide-ug107
https://achronix.com/documentation/software-development-kit-user-guide-ug107
https://achronix.com/documentation/software-development-kit-user-guide-ug107
http://www.achronix.com
https://support.achronix.com/hc/en-us/articles/15234194799252-How-do-I-Download-the-Achronix-SDK
https://achronix.com/documentation/software-development-kit-user-guide-ug107
https://achronix.com/documentation/software-development-kit-user-guide-ug107
https://achronix.com/documentation/software-development-kit-user-guide-ug107

UG094 Speedster/t Configuration User Guide

Chapter 4 : FPGA Configuration Unit (FCU)

The term FPGA configuration unit (FCU) refers to logic that controls the configuration (bitstream programming)
process of the Speedster7t FPGA. This logic is responsible for the following:

- Receiving data on a variety of external interfaces (depending on the selected programming mode)

- Decoding instructions

- Sending configuration bit values to the appropriate destination (e.g., core configuration memory, the core

boundary ring configuration memory, FCU registers, etc.)

- Controls the startup and shutdown sequences that drive resets to the on-chip logic
- Bitstream CRC checks

- SEU mitigation with CMEM scrubbing

- Bitstream Encryption Security

- Any core-level housekeeping that occurs on the de-assertion of reset (i.e., clearing of configuration memory)

Overview

The following features are supported by the FCU:

- Multiple bitstream programming configuration modes (see Bitstream Programming Modes for Speedster7t

FPGAS (page 4))

- Bitstream CRC (page 0) checks. Bitstream errors are detected by CRC, and the bitstream fails to program if a CRC

error is detected.

- AES encryption/decryption and bitstream security (Design Security for Speedster7t FPGA (page 93))

- Configuration memory scrubbing and SEU mitigation (single-bit error correction, dual-bit error detection)

(Configuration Error Correction and SEU Mitigation (page 84))

- Read-back (JTAG Programming using the Tcl Library API (page 32))

The FCU has thee main operating modes:

- Power-on - triggered after the input signal FCU_CONFIG_RSTN is driven high. When the FCU state machine

starts, it progresses through a number of housekeeping activities, including the clearing of the configuration
memory if needed. This housekeeping happens without any additional user input. All instructions sent via one of
the programming interfaces during this time are ignored. At the end of this mode, the output pin
FCU_CONFIG_STATUS (earlier driven low) is driven high, and the FCU returns to the instruction processing
mode.

- Bitstream Programming - in this mode, the FCU functions as a simple CPU, processing incoming instructions

and sending control signals downstream as directed. Instructions are received on 128-bit boundaries but
processed 32 bits per clock cycle. The FCU can request data from the host or stall when it is processing the
previous instruction. Depending on the programming interface being used, a set of output status signals
generated by the FCU are used to determine how to proceed. Refer to Bitstream Programming Modes for
Speedster7t FPGAs (page 4) for additional details. While the bitstream is being programmed,
FCU_CONFIG_STATUS is driven high. When all of the bitstream data is loaded, FCU_CONFIG_DONE is
asserted if the bitstream download was successful. The FCU then signals the startup state machine to release

2.2

www.achronix.com 69

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

resets and enter user mode. If there were any errors programming the bitstream, FCU_CONFIG_DONE stays
low and the FCU_CONFIG_ERR_ENC bus can be checked to determine the error.

- User Mode - if the bitstream programming sequence completed successfully, and the startup state machine

has completed release of all startup sequenced resets, FCU_CONFIG_DONE remains high and
FCU_CONFIG_USER_MODE is raised.

2.2

www.achronix.com 70

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Configuration Pin Tables

Table 28 - Interface Pin Table

m

Configuration Interface

FPGA configuration unit (FCU) configuration mode selection inputs.

Configuration Mode CFG_MODESEL[3:0]

CPUx1 0011

CPU x8 0100

CPU x16 0101

CPU x32 0110

CPU x128 o111

FCU_(:JONFIG_MODE out Flash SPI (x1)-1D 0001
SEL[3:0

Flash SPI (x1)-4D 0010

Flash Dual (x2)-1D 1000

Flash Dual (x2)-4D 1001

Flash Quad (x4)-1D 1010

Flash Quad (x4)-4D(® 1011

Flash Octa (x8)-1D 1100

Flash Octa (x8)-4D'® 1101

JTAG Always active mode

Active-high configuration status open-drain output signal indicating that the FCU has completed initial start-up, has
Inout @ cleared the CMEM, and is awaiting FCU commands for bitstream programming. When Hi-Z, it remains Hi-Z until the FCU is
power-cycled, reset for a re-initialization sequence, or a CRC error is seen during bitstream load.

FCU_CONFIG_STAT

Active-high configuration done open-drain output signal indicating that bitstream loading completed successfully and that
the device is ready to enter user mode. When Hi-Z, it remains Hi-Z until the FCU is power-cycled or reset for a re-

Inout @ initialization sequence. If a device configuration error occurs, the CONFIG_DONE output remains low. Holding this pin low
on the board must be used as a method to synchronize the start-up of multiple devices. In addition, this pin must be tied
high (even if not externally driven) as the FCU proceeds only if a high value is present on this pin (see note 6).

[F)CU_CONFIG_DONE
1

[Z)CU-CONFIG-RSTN Input Asynchronous active-low reset input clearing the configuration memory in the device and the logic in the FCU.

FCU_CONFIG_USER
_mope W

Active-high output indicating the device has transitioned to user mode. When high, it remains asserted until the FCU is

Output A
P power-cycled or reset for a re-initialization sequence.

2.2 71

www.achronix.com

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

Table 29 - Interface Pin Table (continued)

m

FCU_CONFIG_SYSC

Active-high bypass configuration system clock setting. Along with CFG_CLKSEL, this setting allows for clock selection
during programming. Setting SYSCLK_BYPASS high and CFG_CLKSEL low is the most recommended setting since it is
compatible with all programming modes.

SYSCLK_BYPASS CFG_CLKSEL CFG_MODESEL[3:0] Configuration Clock

0000, 0001, 0010, 1000 to

_chi i (6)
LK_BYPASS Input 0 0 1101 On-chip Oscillator
FCU_CONFIG_CLKS
L@
0000, 0001, 0010, 1000 to ®)
1 0 1101 CPU Clock
X 0 0011, 01XX CPU Clock ®
X 1 XXXX JTAG TCK
EEUEEE'I’:;IG—BYPA Input Active-high input pin to bypass configuration memory clear during device initialization.
Error status
FCU_CONFIG
. = Status Priorit
ERR_ENC[2:0] y
000 No error
010 CRC Error. 0 (Lowest)
001 Single-bit/multiple-bit scrubbing error. 1
E;g_(zi(')gFIG_ERR_ output ©
[2:0] o1 Secure Boot Failure OR Security error. 2
100 Efuse PUF enroliment error. 3
Asserted when the AXI interface of the IP configuration
101 space register block does not receive a ready from the 4
initiator.
110 Secure boot authorization error. 5 (Highest)
Other Undefined.
Output AC7t1500 - this pin is set high when the FCU is unlocked and low when FCU is locked.
FCU_LOCK P AC7t800 - this pin is set high when stage0 bitstream programming is complete.
This clock is internally generated from a ring oscillator. For debug purposes, it can be bypassed and the external clock,
FCU_OSC_CLK Output CPU_CLK, can be used. This is an internal ring oscillator used to provide a free-running clock to the FCU and its frequency
can vary by process and temperature.
FCU_PARTIAL_CON @ Active-high configuration done open-drain output signal indicating that bitstream loading completed successfully for
FIG_DONE Inout partial reconfiguration of the FPGA and that it is ready to enter user mode.
2.2 o

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Table 30 - Interface Pin Table (continued)

m

When asserted high, this signal enables the JTAG interface pins to be directly connected to the JTAG controller in the
SerDes PMA blocks allowing SerDes configuration, debug, and performance monitoring directly from the JTAG interface.

FCU_STAP_SEL Input For bitstream download and design debug using the JTAG interface, this pin must be held low. For SerDes PMA debug only
mode, this pin must be held high.
Status bits showing the FCU state.
1 fcu_locked
FCU_STATUS[1:0] Output
10 sync_found
01 ID found
00 instance ID found / FCU unlocked
FCU_STRAP[2:0] Inputs Test mode input pins. When FCU_STRAP[0] is 0, FCU is in functional mode and when FCU_STRAP[0] is 1,

FCU_CPU_CSN is gated and only controllable via test logic.

JTAG Interface

JTAG_TCK Input Clock input to the FCU JTAG controller.

JTAG_TRSTN Input Active-low reset input to the FCU JTAG controller.

JTAG_TDI Input Serial data input to the FCU JTAG controller. Synchronous to JTAG_TCK.
JTAG_TDO Output Serial data output from the FCU JTAG controller. Synchronous to JTAG_TCK.
JTAG_TMS Input Mode select input to the FCU JTAG controller. Synchronous to JTAG_TCK.

Flash Memory Interface
FCU_FLASH_SCK Output Clock output from FCU to flash memory device(s).

Active-low hold output to flash memory device(s). This signal is used to pause serial communications between the

FCU_FLASH_HOLDN Output Speedster7t FPGA and the flash device without deselecting the device or stopping the serial clock. Synchronous to
FLASH_SCK.

FCU_FLASH_CSN[3 Output Active-low chip select to enable/disable one or more of the attached flash memory devices. For x1 mode, only CSN[0] is

:0] used. For x4 mode, connect each CSN[3:0] to a flash device.

CPU Interface
Input clock from external CPU. The data/address bus is synchronous to this clock. This signal must be driven continuously,

7)10) Input regardless of programming mode and also during user mode. This clock must operate at 100 MHz when programming any

FCU_CPU_CLK npu design bitstream that uses the Achronix Device Manager. A high-quality, stable clock for this required. Recommended
V|L=300 mV, V|y=1500 mV, Duty Cycle=45-55%, Total Jitter < 0.1 Ul.

FCU_CPU_CSN® Input Active-low CPU mode chip select.

2.2 73

www.achronix.com

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

Table 31 - Interface Pin Table (continued)

IIIIHIIHHHEIIIIIHHH%HHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH%%%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Input/ Data Input/Output pins shared between the CPU and Flash interfaces. The CPU interface is inaccessible when the Flash

FCU_CPU_DQ_IN_O Output mode is in use and vice-versa. This bus is only 8-bits wide for the AC7t800/AC7t700 devices.
UT[31:0]

FCU_CPU_DQ_VALI

D

Active-high control bit to indicate to the CPU the clock cycles when the CPU_DQ bus has valid read-back data.

Output
P Synchronous to FCU_CPU_CLK.

Table Notes

1
2.

10.

Refer to the Configuration Sequence and Power-Up (page 83) section of the user guide for details.

This output is an open-drain signal. In the default mode of operation, it is recommended that this signal be connected to an LED as an indicator on the

board. In this case, use an external 10kQ +5% pull-up resistor to 3.3V to drive a 1kQ) resistor to the input of a FET to turn on the LED. If LED usage is not
desired, this signal must be pulled-up to 1.8V (FCU_CB_VDDIO) instead using the same 10k(Q) pull-up resistor. The I/0 standard for this is SSTL-18 and
the recommended minimum pull-up impedance is 68Q.

FCU_CONFIG_RSTN must be held low, and cannot glitch during device power-up. All other input pins need only be stable when i_config_rstn is ready
to be released after power-up.

Regardless of configuration mode, FCU_CONFIG_CLKSEL must be setto "0" and FCU_CONFIG_SYSCLK_BYPASS must be set to "1" when
programming any design bitstream that uses the Achronix Device Manager. This is also necessary in order for CSR access after a bitstream has been
downloaded into the FPGA. Achronix recommends this as the default setting as well.

In JTAG configuration mode, soft control is used to select the JTAG clock as the configuration clock for the duration of the bitstream download.

All configuration status related output signals are driven from registers. The reset value for these registers is "0", and the transition from "0" to "1" is
glitch free after reset de-assertion and when reaching the appropriate FCU states.

FCU_CPU_CLK can either start with a rising or falling edge. An SMA connector or input circuit must be utilized to apply this clock signal. An
FCU_CPU_CLK input provision is required in order to utilize the Achronix Device Manager. For more details about the Achronix Device Manager, consult
the Speedster7t Soft IP User Guide (UG103)14.

Refer to the FCU_CPU_CSN Bitstream Programming Via CPU (page 5) section of the user guide for details.
Not supported for AC7t700/AC7t800 devices.

Although SSTL standards only require V|y and V,_ values of 2200 mV, Achronix places a more stringent requirement on this clock to ensure a robust
incoming clock from the PCB.

14 https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ugl03

2.2

www.achronix.com “

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103
http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

UG094 Speedster/t Configuration User Guide

Chapter 5 : Bitstream Generation Software Support in ACE

Bitstream Generation

ACE has a straightforward interface to generate the bitstream files required to implement all of the supported
configuration modes. The bitstream file is generated during the the "FPGA Programming - Generate Bitstream" step

of the compilation flow (see "Flow View" in the ACE User Guide (UG070)™ for more details). This page is a
consolidated list of all implementation options for reference. For specific use cases, refer to the sections above.

Bitstream Output File Formats

ACE provides a set of implementation options to generate the bitstream in various file formats for each of the

supported bitstream programming modes. The . hex file needed for JTAG mode configuration is always generated
by default. The Additional Outputs section of the Project Options menu, shown in the following figure, also provides
a menu option to generate bitstream files for the other configuration modes.

Additional Outputs
[| serial Flash (.flash)
[] cPU Mode (.cpu, .bin)

CPU Bus Width | 32 -

[]PCle {.pcie)
[] CMEM Address and Data Export (.address)

Figure 42 - ACE Additional Output Options Dialog

Table 32 - Bitstream Generation Implementation Options — Additional Outputs

ACE impl_option

Enables the generation of an additional serial flash-formatted output file,
and the page0 header file, having the same name as the . hex file, but
with a . flash extension. The file contains a binary image that can be
directly loaded into a single serial flash memory.

Serial Flash (flash) bitstream_output_flash

15 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 75

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster/t Configuration User Guide

ACE impl_option

Enables the generation of an additional CPU-Mode-formatted output file,
having the same name as the . hexfile, but with a . cpu extension. The
file contains hexadecimal-formatted data organized with (CPU bus
width) number of bits per file line. Data from this file is sent to the FCU
CPU interface line by line (one line per clock cycle) from the top to the

bottom of the file, where the left-most bit on each line is the MSB and
CPU Mode (cpu) bitstream_output_cpu the right-most bit is the LSB.

In simulation, this file can be loaded using the readmemh function. For
convenience, an additional binary representation of the CPU Mode
output file is written, having the same name as the . hex file, but with a
_cpu.bin extension. It contains the same data in the same bit order as
the . cpufile, but in binary format with no new-lines.

Controls the bit width of the CPU-mode-formatted output file. When
using the CPU interface in X8 mode, set this value to 8. If using the CPU
interface in x32 mode, set this to 32. The value determines how many
bitstream bits are printed per line in the . cpu output file. The bit
sequence required by the FCU (and output in the generated bitstream
file) might be different for each CPU bus width setting. Therefore, it is
important to set this option to match the actual CPU hardware interface
width.

CPU Bus Width bitstream_output_cpu_width

Enables the generation of an additional PCle formatted output file,
having the same name as the . hex file, but with a . pcie extension.
This option is binary-formatted and can only be used with two-stage
programming or partial reconfiguration.

PCle (.pcie) bitstream_output_pcie

Enables an additional CMEM address and data export output file. All
addresses listed in this file are "used" in the bitstream. The data in this
file can be compared against readback data. The file has the same name
as the . hex file, but with the . address extension.

CMEM Address and Data Export (.address) bitstream_output_address

Serial Flash Configuration Options

Serial Flash Configuration

Device Vendor Macronix -
Serial Flash Clock Divider 4 -
Data Width SPI -
Number of Flash Devices x1 -
Addressing Width 4-byte -

Cycle Value (hex) | 00

4-Byte Dummy Cycle Value (hex) 08

Bitstream Start Address (hex) 00001000

["] Enable NOP Compression

Figure 43 - ACE Serial Flash Configuration Options Dialog

2.2 76

www.achronix.com

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

Table 33 - Bitstream Generation Serial Flash Configuration Options

ACE impl_option

Device Vendor

Serial Flash Clock Divider

Data Width

Number of Flash Devices

Addressing Width

3-Byte Dummy Cycle Value (hex)

4-Byte Dummy Cycle Value (hex)

Bitstream Start Address

Enable NOP Compression

bitstream_page0®_vendor

bitstream_page0_sf_clock_div

bitstream_page0d_data_width

bitstream_page®_num_devices

bitstream_page0_addr_width

bitstream_page®_dummy_cycle_3by
te

bitstream_page0®_dummy_cycle_4by
te

bitstream_page0d_start_addr

bitstream_pageO_compress_nops

Selects the flash device vendor. Allowed values:

Macronix (0)
Micron (1)

Selects serial flash clock divider. Allowed values:
4
8

Selects flash data readback width. Allowed values:
SPI (0)

DUAL (1)

QUAD (2)

OCT (3)

Selects number of devices based on targeted x1 or x4 PROM. Allowed
values:

x1(0)

x4 (1)

Selects 3-byte or 4-byte addressing mode to support flash devices
>1Gb. Allowed values:

3-byte (0)

4-byte (1)

Specifies the 3-byte addressing dummy cycle value.

The default value is 00 and varies by device vendor.
Must be specified as a 2-character hex value.

Specifies the 4-byte addressing dummy cycle value.

The default value is 08 and varies by device vendor.
Must be specified as a 2-character hex value.

Specifies the bitstream start address.

Should be a non-zero multiple of 4096.
Must be specified as an 8-character hex value.

When unchecked (0), the x . flash file for I/0 Ring programming is
similar to other programming modes (CPU, JTAG, Hex, etc). When
checked, the x . flash file bitstream contents are compressed, to
help meet the 100ms PCle link-up time. This results in a different
bitstream for serial flash, which is dependent on the overall FCU data
width (Number of Devices x Device Data Width).

2.2

www.achronix.com

T

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

Encryption Options

Encryption

[+ Encrypt Bitstream

256-bit AES Encryption Key Filepath

Authentication Private Key Filepath

AES Decryption Key Source Achronix Default Keys -
AES Decryption Key Type Use red key -
AES E-Fuse Key Index 0 -

[] Enforce Same Key

Figure 44 - ACE Encryption Options Dialog (Showing AC7t1500 Options)

Table 34 - Bitstream Generation Implementation Options — Encryption

ACE impl_option

Encrypt Bitstream

256-bit AES Encryption Key Filepath (Device

Specific)

Authentication Private Key Filepath (Device

Specific)

AES Decryption Key Source

AES Decryption Key Type)

bitstream_encrypted

bitstream_encryption_aes_key_f
ile

bitstream_encryption_pem_key_f
ile

bitstream_encryption_key_sourc
e

bitstream_encryption_key_type

Check the box if bitstream should be encrypted. This option is
always enabled for certain devices.

If the Achronix default Keys are not selected as the key source,
enter a file name and path in the box to encrypt the bitstream data.
The file must be:

an absolute or relative path to the current ACE project
a .txt file type
an AES hexadecimal value within the . txt file:

o For ACE installations 9.0 or later, any 256-bit or 64-
character value.

e For ACE installations before 9.0, any 256-bit or 64-
character value with a new line character at the end of
the AES sequence. The total file would then be 260
bits or 65 characters.

If Achronix Default Keys are not selected as the decryption key
source, enter a file name and path in the box to encrypt the
bitstream data. This must be an absolute or relative path to the
current ACE project. This should be a . pem file type created in the
Generating a Public and Private Key Pair section.

Specifies which keys on the target device are used for decryption.
Allowed values:

E-Fuse keys (0)

Achronix Default Keys (1)

Specifies which key to use as the source during encryption.
Allowed values:

Use PUF black key (0) - create the red key from the PUF black key.
Use red key (1) - treat the red key as the source.

2.2

www.achronix.com

78

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

ACE impl_option

Specifies which key to use. Bitstreams may be encrypted with 4
different AES keys. This is the index whose key value should be
assigned to the 256-bit AES encryption key filepath. This also

AES E-Fuse Key Index bitstream_encryption_key_index requires AES Decryption Key Source to be set to E-Fuse Keys,
specifying to ACE to use E-fuse keys. The index value can be 0, 1,
2, or 3. In order to decrypt the target FPGA, the AES key must be
written to the corresponding key index in the FCU.

Specifies whether subsequent bitstreams can be programmed
with the same encryption types and keys without resetting the

Enforce Same Key bitstream_encryption_same_key FPGA. If checked (1), subsequent bitstreams must use the same
key source, key type, and key index unless the FPGA has been
reset.

Table Notes

1. When using the Achronix default keys as the decryption key source, the red keys must be treated as the source, and PUF is not allowed.

For more details regarding encryption, refer to Design Security for Speedster7t FPGA (page 93).

Two-Stage Configuration Option

Two-Stage Programming
[+ Enable Two-Stage Programming

Figure 45 - ACE Bitstream Generation Options Dialog

Table 35 - Bitstream Generation Implementation Options — Two-Stage Programming

ACE impl_option

If checked (1), enables two-stage programming. This generates
files with *_stage0.* and *_stagel. * naming. This option

only creates stageO files for flash and stagel files for PCle when
enabled.

Enable Two-Stage Programming bitstream_two_stage

For more details regarding two-stage programming, refer to Bitstream Programming via PCle (page 65).

Partial Reconfiguration Configuration Options

Partial Reconfiguration
[+ Enable Partial Reconfiguration

Partial Reconfig Cluster Map (hex) 0000000000000010000

Figure 46 - ACE Partial Reconfiguration Options Dialog

2.2 79

www.achronix.com

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

Table 36 - Bitstream Generation Implementation Options — Partial Reconfiguration (Device Specific)

ACE impl_option

Enable Partial Reconfiguration

Partial Reconfig Cluster Map (hex)

bitstream_partial_reconfig

bitstream_partial_reconfig

When checked (1), enables partial reconfiguration.

20-character hexadecimal value specifying the target fabric
cluster. The ACE Clusters view should be used to find the
appropriate value.

For more details regarding partial reconfiguration, refer to Partial Reconfiguration (page 107).

FCU Configuration Options

FCU Configuration

4-bit Speedcore Instance ID (hex)
Memory Scrubbing Mode

CRC Checking Mode

[Lock FCU After Programming

0
Background Scan and Repair -
Fully Enabled -

Figure 47 - ACE FCU Configuration Options Dialog

Table 37 - Bitstream Generation Implementation Options — FCU Configuration

“ ACE impl-option

4-bit Speedcore Instance ID (hex)

Memory Scrubbing Mode

CRC Checking Mode

Lock FCU After Programming

bitstream_instance_id

bitstream_scrub_mode

bitstream_crc_mode

bitstream_fcu_lock

Specifies the 4-bit instance ID of the Speedcore device. Must be
specified as a one-character hexadecimal value. Not used for
Speedster7t.

Selects the CMEM scrubbing mode. Allowed values:
Disabled (0)

Background Scan (1)

Background Scan and Repair (2).

Selects the CRC checking mode. Allowed values:
Fully Enabled (0)

Partially Enabled (1)

Bypassed (2).

When checked (1), locks the FCU of the target device after
programming. This option is automatically set when bitstream
encryption is enabled.

2.2

www.achronix.com

80

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

Bitstream ID Configuration Options

Bitstream ID Configuration

Bitstream ID Type

31-bi

t User Defined Bitstream ID (hex)

Timestamp

00000000

Figure 48 - ACE Bitstream ID Configuration Options Dialog

Table 38 - Bitstream Generation Implementation Options — Bitstream ID Configuration

ACE impl_option

Bitstream ID Type

31-bit User Defined Bitstream ID (hex)

bitstream_id_type

bitstream_id_value

CMEM Error Injection Options

Error Injection

[Enable Error Injection 1

24-bit Frame Address 1 (hex) | 0
8-bit Cluster Offset 1 (hex) 0
8-bit Block Offset 1 (hex) 0
7-bit Bit Offset 1 (hex) 0
[_] Enable Error Injection 2

24-bit Frame Address 2 (hex) | 0
8-bit Cluster Offset 2 (hex) 0
8-bit Block Offset 2 (hex) 0
7-bit Bit Offset 2 (hex) 0

Inserts the selected type into an FCU register in the bitstream.

If None (0) is selected, all zeros are inserted. If Timestamp (1)
is selected, the epoch time during bitstream generation is

inserted. If User Defined (2) is selected, the value in
bitstream_id_value isinserted.

User-defined 8 hexadecimal character value set when
Bitstream ID Type is User Defined. MSB is set to 1 while the
other 31 bits are set by the user.

Figure 49 - Error Injection

2.2

www.achronix.com

81

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Table 39 - Bitstream Generation Implementation Options — Error Injection

ACE impl_option

When checked (1), enables the first bit error injection for the

Enable Error Injection 1 bitstream_error_inject_enl following address and bit offsets

. Specifies the 24-bit frame address for the first bit error to be
24-bit Frame Address 1 (hex) bitstream_error_inject_addrl >p) ' a
injected into the bitstream.

bitstream_error_inject_cluster_off Specifies the cluster offset into the target Frame for the first bit

8-bit Cluster Offset 1 (hex) @

setl error to be injected into the bitstream.
8-bit Block Offset 1 (hex) bitstream_error_inject_block_offse Specifies the'block ?ffset mtt? the targe[z;]clusterforthe first bit
tl error to be injected into the bitstream.

Specifies the 7-bit bit offset into the target block for the first bit

7-bit Bit Offset 1 (hex i inj i
(hex) bitstream_error_inject_bit_offsetl error to be injected into the bitstream. &)
g . - When checked (1), enables the second bit error injection for the
Enable Error Injection 2 bitstream_error_inject_en2 address and bit offsets that follow.
. Specifies the 24-bit frame address for the second bit error to be
24-bit Frame Address 2 (hex) bitstream_error_inject_addr2 . p . . 0]
injected into the bitstream.

bitstream_error_inject_cluster_off Specifies the cluster offset into the target frame for the second

8-bit Cluster Offset 2 (hex
(hex) set2 bit error to be injected into the bitstream. @

bitstream_error_inject_block_offse Specifies the block offset into the target cluster for the second

8-bit Block Offset 2 (hex) . L ;) ©
t2 bit error to be injected into the bitstream.

Specifies the 7-bit bit offset into the target block for the second

7-bit Bit Offset 2 (h i inj i
i set 2 (hex) bitstream_error_inject_bit offset2 bit error to be injected into the bitstream. @)

@ Note

1. Must be specified as a 6-character hexadecimal value.
2. Must be specified as a 2-character hexadecimal value. The valid range depends on the target device.

3. Must be specified as a 2-character hexadecimal value.

For more information on how to insert up to 2 bit errors, refer to Configuration Error Correction and SEU
Mitigation (page 84).

2.2 82

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Chapter 6 : Configuration Sequence and Power-Up

The power-up and configuration sequence for the Speedster7t FPGA is as follows:

1

I

Configure the board to set FCU_CONFIG_MODESEL.

Power up the board.

After power-up, wait for sufficient time for the power supplies to settle to their final DC values.
Ensure that JTAG_TRSTN is stable at 0.

Ensure that FCU_CONFIG_RSTN is stable at '0".

Ideally JTAG_TCK is pulled down to '0' and is stable. If a pull-up resistor is used on JTAG_TCK, JTAG_TCK has
to be stable at '1' and should not have ringing.

7. Starttoggling the FCU_CPU_CLK. Ensure that the clock is stable and has good signal quality.
8. If the above conditions are satisfied, release FCU_CONFIG_RSTN (transition from '0' to '1").
9. Wait for FCU_CONFIG_STATUS.

10.
11.

Program the bitstream.

Check FCU_CONFIG_USER_MODE and FCU_CONFIG_DONE. If not in user mode, check
FCU_CONFIG_ERR_ENC.

Device Power-Up

The first step in bringing up the Speedster7t FPGA is to appropriately power it up. The Speedster7t Power User
Guide (UG087) details how the power supplies and configuration-related pins and signals must be asserted to
ensure a successful power-up. To summarize these requirements:

1
2.

Drive FCU_CONFIG_RSTN low.

Power-up all supplies to full rail while keeping FCU_CONFIG_RSTN low to ensure that the Speedster7t FPGA
powers up in a reset state. The FCU clock need not be running at this time.

If the FCU_CONFIG_MODESEL pins are not statically set (tied off to ground/Vpp using the resistor loading
options), drive them to set the desired configuration mode using the external interface.

Drive FCU_CONFIG_RSTN high to release the reset. Start providing clocks on the FCU clock.
Ensure that all clocks used by the Speedster7t FPGA are stable when reset is released.

() Note

FCU_CPU_CLK s limited to 250 MHz in all configuration modes.

There are no signaling or sequencing requirements for powering down. The supplies can simply be turned off.

16 https://www.achronix.com/documentation/speedster7t-power-user-guide-ug087

2.2

www.achronix.com 83

https://www.achronix.com/documentation/speedster7t-power-user-guide-ug087
http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-power-user-guide-ug087

UG094 Speedster/t Configuration User Guide

Chapter 7 : Configuration Error Correction and SEU
Mitigation

As with all SRAM devices, a single-event upset (SEU) is a potential issue within the Speedster7t FPGA. To assist in
mitigating this effect, the FCU can be instructed to scrub the configuration memory (CMEM) of the FPGA fabric
during user mode.

The following ACE implementation options pertain to scrubbing.

Table 40 - Bitstream Generation Implementation Options - Scrubbing

Selects the CMEM scrubbing mode.
Allowed values include:

Memory Scrubbing Mode bitstream_scrub_mode - Disabled (0)
- Background Scan (1)
- Background Scan and Repair (2)

Scrubbing first reads the logic cluster data and parity bits from configuration memory cells. If an SEU occurs, the
error is detected (scrub_mode=1) or corrected (scrub_mode=2) and scrubbing continues to the next frame. During a
multiple bit error, no correction is possible, and the scrubbing state machine goes into ERROR state, as the integrity
of the CMEM has been compromised. The configuration block also has dedicated registers that hold the scrub
address, block offset, bit offset, and the number of single and multiple error counts. The number of single/multiple
error count is also encoded and routed to an I/0 pad. refer to Configuration Pin Tables (page 71) for details.

If scrubbing is enabled, FCU clocks must be supplied even after entering user mode as the scrubbing state machine
must be clocked continuously. FCU clocks need not be provided after entering user mode if scrubbing is disabled. In
this case, the state machine does not run at all as there is no value in running if errors cannot be reported.

The scrubbing state machine starts when the device enters user mode as indicated by the
FCU_CONFIG_USER_MODE output pin. Scrubbing cannot occur before user mode is entered.

Scrubbing can be driven by cfg_clk or sys_clock based on the setting highlighted in the following table.

Table 41 - Scrub Clock Settings

0 cfg_clk @

1 sys_clk @

2.2 84

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Table Notes

1. Set high by setting bit 8 of the FCU register OxOOEC. See table Scrub Register Definitions (page 91) for
details about this register

2. This signal is defined by the configuration clock selected based on the pins
FCU_CONFIG_SYSCLK_BYPASS and FCU_CONFIG_CLKSEL as shown in Configuration Pin Tables (page
71).

3. This signal is defined as the clock driven by the on-chip oscillator.

Configuration Memory Architecture and Addressing

The Speedster7t FPGA configuration memory (CMEM) is organized as shown in the following table:

Table 42 - Configuration Memory Components

Clusters come in two forms, sequentially numbered from south to north within a
column, starting at O:

- Logic clusters - the arrays of RLB, BRAM, MLP, NoC tiles, and branch tiles that
form the building blocks of the programmable logic fabric. They are connected
Cluster by abutment to build the fabric of the desired size.

- Delimiter custers - do not contain any user logic and are used for clock
routing. These clusters do contain configuration bits set by ACE software
based on the user design. Since they contain configuration bits, they have ECC
logic and, consequently, they are scrubbed.

A vertical column of configuration memory cells spanning the entire array of
clusters in the Y direction. Bitstream programming and scrubbing both operate on a
frame basis with the 24-bit frame address indicating which specific column is being
targeted. There are many configuration memory frames for each IP tile column (e.g.,
RLB, BRAM, LRAM, MLP and NoC). Frames are numbered west to east across the
core, starting at 0.

Frame

Every frame within a cluster is composed of blocks. Each block consists of 128 bits
of CMEM cells. Block addressing is handled via offsets relative to where the block is
located in a cluster. Each cluster block offset starts at O, numbered south to north.
Similarly, bit offsets are relative to the block, starting with bit O at the south end of
the block. It is this addressing scheme that is used for the reporting of bit error
locations.

Block

2.2 85

www.achronix.com

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

The error information and state machine behavior across the different scrubbing operating modes are as follows:

Table 43 - Error Reporting Based On Scrubbing Mode

“

Disabled

Background scan

Background scan and repair

Nothing happens on any kind of error (nothing is reported). Registers
storing error counts are not modified.

Regardless of error type, error bits and address/offset bits are set
accordingly. The scrubbing state machine halts operation after the first
error detection. Refer to Scrubbing Reset (page 91) for details. Registers
storing total error counts independently for single and multiple errors
are incremented.

In the case of a single-bit error, the error is corrected and reported via
the single-error signal pin. The scrubbing state machine continues to
run. However, the address and offset bits for subsequent errors are not
recorded. Only information for the first error is preserved. The
mechanism described in Scrubbing Reset (page 91) is necessary to reset
the error and address/offset bits.

If the state machine sees multiple errors, the error and address/offset
bits are set accordingly, and the scrubbing state machine halts
operation after detection. Refer to Scrubbing Reset (page 91) for details.

Registers storing total error counts independently for single and
multiple errors are incremented.

2.2

www.achronix.com 86

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Error Injection and Reporting

ACE Implementation Options

Error Injection
("] Enable Error Injection 1

24-bit Frame Address 1 (hex) | 0

8-bit Cluster Offset 1 (hex) 0
8-bit Block Offset 1 (hex) 0
7-bit Bit Offset 1 (hex) 0

[_] Enable Error Injection 2

24-bit Frarme Address 2 (hex) | 0

8-bit Cluster Offset 2 (hex) 0
8-bit Block Offset 2 (hex) 0
7-bit Bit Offset 2 (hex) 0

Figure 50 - Error Injection

2.2 87

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Table 44 - Bitstream Generation Implementation Options — Error Injection

ACE impl_option

When checked (1), enables the first bit error injection for the

Enable Error Injection 1 bitstream_error_inject_enl following address and bit offsets.
. Specifies the 24-bit frame address for the first bit error to be
24-bit Frame Address 1 (hex) bitstream_error_inject_addrl >p . ' a
injected into the bitstream.
8-bit Cluster Offset 1 (hex) bitstream_error_inject_cluster_off Specifies the'cluster offset |nFo the tar[gz?t Frame for the first bit
setl error to be injected into the bitstream.

bitstream_error_inject_block_offse Specifies the block offset into the target cluster for the first bit

8-bit Block Offset 1 (hex) .) . @
t1 error to be injected into the bitstream.

Specifies the 7-bit bit offset into the target block for the first bit

7-bit Bit Offset 1 (hex i inj i
(hex) bitstream_error_inject_bit_offsetl error to be injected into the bitstream. &)
g . - When checked (1), enables the second bit error injection for the
Enable Error Injection 2 bitstream_error_inject_en2 address and bit offsets that follow.
. Specifies the 24-bit frame address for the second bit error to be
24-bit Frame Address 2 (hex) bitstream_error_inject_addr2 P 1)

injected into the bitstream. (

bitstream_error_inject_cluster_off Specifies the cluster offset into the target frame for the second

8-bit Cluster Offset 2 (hex) @

set2 bit error to be injected into the bitstream.
8-bit Block Offset 2 (hex) bitstream_error_inject_block_offse Spe0|f|es the !?Ic?ck offs-et into th-e target c(l;)sterforthe second
t2 bit error to be injected into the bitstream.

Specifies the 7-bit bit offset into the target block for the second

7-bit Bit Offset 2 (h i inj i
tE set 2 (hex) bitstream_error_inject_bit offset2 bit error to be injected into the bitstream. @)

@ Note

1. Must be specified as a 6-character hexadecimal value.
2. Must be specified as a 2-character hexadecimal value. The valid range depends on the target device.

3. Must be specified as a 2-character hexadecimal value.

Bitstream Error Injection

ACE provides a set of previously referenced project implementation options to automatically insert up to dual-bit
errors into the generated bitstream output file. This feature is helpful when simulating the Speedster7t FFGA CMEM
scrubbing interface. The error injection implementation options allow bit errors to be inserted, but generate
bitstream CRC values that still allow the bitstream programming to enter user mode. The CRC value does not
account for the inserted errors, so it is not necessary to disable CRCs to inject errors using this feature. If manually
editing the generated bitstream file to inject ECC scrubbing errors, the bitstream CRC mode option must be set to
bypass the CRCs.

To successfully inject an error into the ACE-generated bitstream output file, first understand which frame addresses
are being programmed and know the valid cluster, block, and bit offset ranges for the target device. The cluster
offset only affects the Y dimension (i.e., it is only a function of the number of rows of clusters). For example, with a

2.2 88

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Speedster7t FPGA with 8 rows, the valid range for bitstream_error_inject_cluster_offset optionsis 0
to 16. Even numbers inject errors into delimiter clusters while odd numbers inject errors into rows:

- Each logic cluster has eight 128-bit blocks of addressable space. Thus, for logic clusters, the valid range for
bitstream_error_inject_block_offset optionsis 0to 7 (hex).

- Each delimiter cluster has one 128-bit block of addressable space. Thus, for delimiter clusters, the valid range
forbitstream_error_inject_block_offset optionsis only O (hex).

The valid range of bitstream_error_inject_bit_offset isalways 0 to Ox7F.

Bitstream Single-Bit Error Injection Example

In this example, a single-bit error is injected into a valid frame address at a valid location inside cluster 9 (a logic
cluster) at block offset 1 and bit offset 6. To inject this single-bit error:

1. Start the ACE GUI and load the ACE project.

2. Inthe Options view, under the Bitstream Generation section, check the box to enable the CMEM Address and
Data Export (.address) output file. Ensure the check-boxes, Enable Error Injection 1 and Enable Error Injection
2, are not checked. Before enabling error injection, a valid frame address must first be found. Configure any
other bitstream options to meet the test requirements.

~ Bitstream Generation
Additional Outputs
| Serial Flash (.flash)
[_| CPU Mode (.cpu, .bin)
8 -
[_IPCle {.pcie)
[+ CMEM Address and Data Export (.address)

Figure 51 - CMEM Address and Data Export

3. Inthe Flow view, double-click the Generate Bitstream flow step to generate the initial bitstream output files.

4. With a text editor, open the . address output file located in <ace_project_dir>/<impl_dir>/output/
<design>.address.

5. Locate a valid 24-bit frame address by finding any line that begins with "CMEM Address:". The leftmost six
characters (upper 24-bits) of the 32-bit hexadecimal value on that line represents a valid 24-bit frame address
to use with the ACE bitstream error injection feature. This example assumes the following frame address from
inside the .address output file: 50801100. The resulting 24-bit frame address is 508011.

6. Inthe Options view, under the Bitstream Generation section, set the Memory Scrubbing Mode option to either
Background Scan or Background Scan and Repair to enable detection of the inserted ECC bit error, and check
the option Enable Error Injection 1.

7. Enter the following values:
° 508011 for the 24-bit Frame Address 1 (hex) field.
o 9 for the 8-bit Cluster Offset 1 (hex) field
o 1 for the 8-bit Block Offset 1 (hex) field
o 6 for the 7-bit Bit Offset 1 (hex) field.

2.2 89

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

8.

10.

(Optional) to save copies of the original bitstream output file prior to injecting an error, make copies of the files
now. The next step overwrites the current bitstream output files on the file system.

In the Flow view, double-click the Generate Bitstream flow step to generate the new error-injected bitstream
output files.

When simulating programming the Speedster7t FPGA instance with this error-injected bitstream, some time
after entering, the Speedster7t FPGA pin interface indicates a single-bit scrubbing error in address 508011 in

block offset 1 and bit offset 6. Ensure to set the cluster select pins to a value of 4'h9 to select cluster 9 and tie
the scrubbing enable pin high to enable scrubbing.

Bitstream Dual-Bit Error Injection Example

In this example, a dual-bit error is inserted into a valid frame address at a valid location inside cluster 9 (a logic
cluster) with the first bit error at block offset 1 and bit offset 6, and the second bit error at block offset 5 and bit
offset 1A. To insert this dual-bit error:

1
2.

Repeat Steps 1to 7 from the Bitstream Single-Bit Error Injection Example (page 89).

In the Options view, under the Bitstream Generation section, check the option Enable Error Injection 2 to enable
the second error bit to be injected.

3. Enter the following values:

o 508011 for the 24-bit Frame Address 2 (hex) option.
o 9 for the 8-bit Cluster Offset 1 (hex) option.

o 5 for the 8-bit Block Offset 1 (hex) option.

o 1A for the 7-bit Bit Offset 1 (hex) option.

4. (Optional) to save copies of the original bitstream output file prior to injecting an error, make copies of the files
now. The next step overwrites the current bitstream output files on the file system.

5. Inthe Flow view, double-click to Generate Bitstream flow step to generate the new error-injected bitstream
output files.

6. When simulating programming a Speedster7t FPGA instance with this error-injected bitstream, some time after
entering user mode, the Speedster7t FPGA pin interface indicates a dual-bit scrubbing error in address 508011
(block and bit offset outputs should be ignored in this case). Ensure to set the cluster select pins to a value of
4'h9 to select cluster 9 and tie the scrubbing enable pin high to enable scrubbing.

(@ Note

Configuration memory scrubbing operates independently on each cluster within a given frame. To cause a
dual-bit error, both errors must be injected into the same cluster offset. If two errors are inserted into the
same frame but at different cluster offsets, they are treated as two independent single-bit errors, and both
may be corrected if Background Scan and Repair is selected for Memory Scrubbing Mode.
If dual-bit errors are injected into the same cluster offset in the same frame, the dual-bit error can only be
detected and not repaired. The Speedster7t FPGA memory scrubbing interface outputs indicate the frame
address and cluster offset of the dual-bit error, but do not report the block offset and bit offset. The block
and bit offset outputs should be ignored in this case.

2.2 90

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Scrubbing Reset

The registers feeding the error address/offset values, as well as the FCU error counter registers, can be cleared
simultaneously in one of three ways:

1. A complete power-cycle of the Speedster7t FPGA instance, involving powering the core down and powering it
back up.

2. Are-initialization sequence which can be accomplished by toggling FCU_CONFIG_RSTN.
3. Loading a new ACE-generated bitstream image.

After reset and reconfiguration, scrubbing can begin again (if enabled).

Scrubbing FCU Registers

The following table lists the FCU registers pertaining to scrubbing. For more information on accessing the FCU
registers, consult the "Speedster7t Tcl Commands" section in JTAG Programming using the Tcl Library API (page 32).

2.2 91

www.achronix.com

http://www.achronix.com

UG094

Speedster/t Configuration User Guide

Table 45 - Scrub Register Definitions

CONFIG_REG_ADDR_SCRUB_CONTROL

CONFIG_REG_ADDR_SCRUB_
SINGLE_ERROR_STATUS

CONFIG_REG_ADDR_SCRUB_
MULTIPLE_ERROR_STATUS

16'hOOEC

16'h11f8

16'hllifc

« 1:0-scrubenable.
+ 2-scrub mode.

« 16:12 - scrub cluster select.

+ Bit 2:0 - internal scrubbing state.

+ Bit 31:3 - indicates scrub single error status of all delimiter and
logic clusters.

The lowest-order bit physically represents the southern most cluster.
Any MSBs greater than the number of clusters in a given fabric are tied
to 0.

Indicates scrub multiple error status of all delimiter and logic clusters.
The lowest-order bit physically represents the southern most cluster.
Any MSBs greater than the number of clusters in a given fabric are tied
to 0.

2.2

www.achronix.com 92

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Chapter 8 : Design Security for Speedster/t FPGA

Achronix recognizes the importance of protecting the sensitive IP placed onto the FPGA. To provide a high level of
protection, Speedster7t FPGAs have a number of features to support bitstream encryption as well as authentication.
These features ensure that the design configuration on the FPGA cannot be accessed and also ensures that the
design is the one intended. Speedster7t FPGAs provide this high level of security through the following features:

-+ Support for ECDSA authenticated and AES-GCM encrypted bitstream
- Dynamic power analysis (DPA) protection to prevent side-channel attacks

- Physically unclonable function (PUF) for tamper-proof protection
- Securely stores both public and encrypted private keys

With this security solution deployed, customer designs are secure. Even with possession of the device, the
underlying design cannot be extracted, cannot be reverse engineered, nor can the design be altered in any way.

Bitstream Authentication

Authentication of a bitstream ensures that the FPGA is configured with the intended design. Achronix provides a
two-step authentication process that first authenticates an encrypted bitstream before decrypting it, and then
performs authentication a second time on the decrypted bitstream before configuring the device:

1. A bitstream is encrypted using AES-GCM, which provides authenticated encryption.
2. The user provides an asymmetric private key to sign the encrypted bitstream using ECDSA.

3. When the FPGA is configured with an encrypted and signed bitstream, it uses the public key stored in an
internal electronic fuse (eFuse) to authenticate the bitstream using the public key.

4. When authenticated, the bitstream decryption is enabled, and the bitstream is authenticated a second time
while decrypting with AES-GCM.

5. After the second authentication, the bitstream is used to configure the FPGA.

(@ Note

AC7t1400 has a predefined authentication key that is built into ACE and stored into the eFuse during
manufacturing. Any attempt to change the device public authentication key renders the device inoperable.

Bitstream Encryption

Bitstreams consist of the sensitive intellectual property of the designer. Achronix provides tools to generate
bitstreams that are encrypted and signed using very strong encryption with hardware designed to be resilient to
side-channel attacks, such as dynamic power analysis (DPA). Additionally, the key derivation function (KDF) inside
the secure boot portion of the FPGA, along with the physically unclonable function (PUF) ensure protection of the
secret keys to decode and authenticate the bitstreams. Together these systems provide a solution that is safe from
attacks such that even with possession of the device, an adversary cannot extract the underlying design, cannot
change the system to perform another task other than the intended task, and cannot reverse engineer the core
intellectual property.

2.2 93

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

The following figure shows an overview of the security system and how elements work together to protect the
bitstream. Blocks shown in grey represent encryption/decryption elements. Blocks shown in blue are authentication
elements and green blocks handle authenticated and encrypted bitstreams.

Speedster7t FPGA

Secret Key
(256-bit
symmetric)

Encrypted
secret key
stored in

eFuse

Double-authenticated,
decrypted bitstream to
configuration memory

Derive multiple
rotating keys

Key derivation
function
(decryption)

Derive multiple
rotating keys

1. Encrypt and sign blocks using
AES-GCM with rotating keys
generated from secret key

with rotating keys (also
provides additional layer
of authentication)

Encrypted, Enable "1
b.s'g”Ed Authenticate using decryption
. . itstream .
2. Sign encrypted blocks using public key and
private key and ECDSA ECDSA | o p;\‘r;;iﬁe‘n‘tagsign
to protect against
Authenticated, encrypted bitstream side-channel attacks

Private Key
(Asymmetric for
aunthentication)

Public key stored

|
|
1
|
|
|
1
|
|
1
1
|
|
1
|
|
|
|
|
|
|
|
|
|
Decrypt using AES-GCM i
i
|
|
|
|
|
|
|
|
|
|
1
|
|
|
)
|
|
i
in eFuse |
|
|

47419535-01.2022.11.25

Figure 52 - Bitstream Encryption/Authentication Block Diagram

Generating Encrypted Bitstreams

To generate an encrypted bitstream, a 256-bit secret key is provided to ACE. In order to provide better protection
against side-channel attacks, ACE does not simply use this secret key to encrypt the entire bitstream. Instead, the
secret key is used as an initial key. ACE then generates new derived keys based on the initial secret key to encrypt
smaller segments of the bitstream, each with a different derived key and a new nonce. Here the nonce, also known
as an initialization vector (1V), is a random number only used once per segment such that the same pattern is not
generated while replaying or encrypting the same bitstream. Bitstream encryption is performed using the highly
secure 256-bit AES-GCM encryption standard. Galois/counter mode (GCM) is an advanced form of symmetric-key
block encryption which enhances the 256-bit advanced encryption standard (AES) by using a nonce (one-time use
random value) and a counter mode so that each segment of data is uniquely encrypted. ACE also uses a Galois
message authentication code (GMAC) to simultaneously sign and authenticate the data, including the unencrypted
preamble section of the bitstream to guarantee the bitstream has not been altered. To further protect the bitstream,
ACE also signs each segment of the encrypted bitstream using ECDSA. See the section on Bitstream
Authentication (page 93) for more details on the ECDSA authentication.

2.2 94

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

& Caution!

The AC7t1400 comes pre-programmed from the factory with one 256-bit secret key used to encrypt the
entire bitstream within ACE, which has the same secret key. No attempt should be made to program this
AES private key. Three additional programmable AES private key slots are provided.

Encrypting a Speedster7t AC7t1500 Bitstream

Using the ACE GUI
1. Go to Bitstream Generation in the ACE options panel.

[&5] Options 52 | B Multiprocess
Project: gpio_user_guide_top
Implementation: impl_1

+ Design Preparation

+ Advanced Design Preparation
» Place and Route

+ Report Generation

+ Timing Analysis

» Bitstream Generation

» FPGA Download

Figure 53 - ACE Options Panel

2. Configure the AES Encryption options.

Encryption
[+ Encrypt Bitstream

256-bit AES Encryption Key Filepath

Authentication Private Key Filepath

AES Decryption Key Source Achronix Default Keys -
AES Decryption Key Type Use red key -
AES E-Fuse Key Index 0 -

[Enforce Same Key

Figure 54 - AC7t1500 AES Encryption Configuration Options

a. Check the Encrypt Bitstream option.

b. If Achronix Default Keys is not selected for the AES Decryption Key Source, enter a file name and path in
the 256-bit AES Encryption Key Filepath box to encrypt the bitstream data.

2.2 www.achronix.com 9

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

This file must be:
= An absolute or relative path to the current ACE project
= A . txtfiletype
= An AES hexadecimal value within the . txt file:
1. For ACE installations 9.0 or later, any 256-bit or 64-character value.

2. For ACE installations before 9.0, any 256-bit or 64-character value with a new line character at
the end of the AES sequence. This would make the total file 260 bits or 65 characters.

c. If Achronix Default Keys is not selected as the AES Decryption Key Source, enter a file name and path in
the Authentication Private Key Filepath box to encrypt the bitstream data.

This file must be:
= An absolute or relative path to the current ACE project
= A .pemfile type that was created in the Generating a Public and Private Key Pair (page 101) section

d. For AES Decryption Key Source, select whether to use E-Fuse Keys (0) or the Achronix Default Keys (1)
for decryption.

e. For AES Decryption Key Type, select whether to Use PUF black key (0) to create the red key from the black
key or Use red key (1) to treat the red key as the source during encryption.

() Note

When using Achronix Default Keys as the AES Decryption Key Source, the red keys must be
treated as the source, and PUF is not allowed.

f. For AES E-Fuse Key Index, select which key to use. Bitstreams have the ability to be encrypted with 4
different AES keys. This is the AES key index whose key value should be assigned to the data in the 256-bit
AES Encryption Key Filepath. This also requires AES Decryption Key Source to be set to E-Fuse Keys (0).
In order to decrypt the target FPGA bitstream, the AES key must be written to the corresponding key index
in the FCU. The AES E-Fuse Key Index value can be 0, 1, 2, or 3. Additional details on using the key index are
in the Programming the Encryption Keys (page 102) section.

g. Check the Enforce Same Key option if programming multiple encrypted bitstreams. This option specifies
whether subsequent bitstreams can be programmed with the same encryption types and keys without
resetting the FPGA. If checked, subsequent bitstreams must use the same key source, key type, and key
index unless the FPGA has been reset.

Using Tcl Commands

If preferred, these options may be specified by entering the following commands into the ACE project file, or directly
into the ACE Tcl console:

set_impl_option -project <ace project name> —-impl impl_1 bitstream_encrypted "1"
set_impl_option -project <ace project name> —impl impl_1
bitstream_encryption_aes_key_file "key_files/aes.txt"

set_impl_option -project <ace project name> —impl impl_1
bitstream_encryption_pem_key_file "key_files/my_eckey.privkey.pem"

2.2 96

www.achronix.com

http://www.achronix.com

UGo94

Speedster/t Configuration User Guide

set_impl_option
lloll
set_impl_option
lllll
set_impl_option
lloll
set_impl_option
lloll

-project
-project
-project

-project

<ace

<ace

<ace

<ace

project name>
project name>
project name>

project name>

-impl
-impl
-impl

-impl

Encrypting a Speed AC7t1400 Bitstream

Using ACE GUI

1. Go to Bitstream Generation in the ACE options panel.

impl_1 bitstream_encryption_key_source
impl_1 bitstream_encryption_key_type
impl_1 bitstream_encryption_key_index

impl_1 bitstream_encryption_same_key

[5] Options &8 | B Multiprocess

Project:

Implementation: impl_1

+ Design Preparation

gpio_user_guide_top

+ Advanced Design Preparation

» Place and Route

+ Report Generation

+ Timing Analysis

» Bitstream Generation

» FPGA Download

Figure 55 - ACE Options Panel

2. Configure the AES Encryption options:

Encryption
[+ Encrypt Bitstream

256-bit AES Encryption Key Filepath

AES Decryption Key Type

AES E-Fuse Key Index

Use red key

0

[_| Enforce Same Key

Figure 56 - AC7t1400 AES Encryption Configuration Options

1. Check the Encrypt Bitstream option.

2. Enter a file name and path in the 256-bit AES Encryption Key Filepath box to encrypt the bitstream data.

The file must be:

2.2

www.achronix.com

97

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

3.

4.

o An absolute or relative path to the current ACE project
° A . txtfiletype
o An AES hexadecimal value within the . txt file:
i. For ACE installations 9.0 or later, any 256-bit or 64-character value
ii. For ACE installations before 9.0, any 256-bit or 64-character value with a newline character at the end
of the AES sequence. This would make the total file 260 bits or 65 characters.
For AES Decryption Key Type, select whether to Use PUF black key (0) to create the red key from the black key
or Use red key (1) to treat the red key as the source during encryption.

For AES E-Fuse Key Index, select which key to use. Bitstreams have the ability to be encrypted with 4 different
AES keys. This is the AES key index whose key value should be assigned to the data in the 256-bit AES
Encryption Key Filepath. In order to decrypt the target FPGA bitstream, the AES key must be written to the
corresponding key index in the FCU. The AES E-Fuse Key Index value can be 0, 1, 2, or 3. Additional details on
using the key index are in the Programming the Encryption Keys (page 102) section.

Note
The key value at E-Fuse Key Index "0" has already been populated by Achronix and cannot be altered. If the

user wishes to utilize the predefined key value offered by Achronix, choose key index "0".

Check the Enforce Same Key option if programming multiple encrypted bitstreams. This option specifies
whether subsequent bitstreams can be programmed with the same encryption types and keys without resetting
the FPGA. If checked, subsequent bitstreams must use the same key index unless the FPGA has been reset.

Using Tcl Commands

If preferred, these options may be specified by entering the following commands into the ACE project file, or directly
into the ACE Tcl console:

set_impl_option -project <ace project name> —-impl impl_1 bitstream_encrypted "1"
set_impl_option —-project <ace project name> —impl impl_1
bitstream_encryption_aes_key_file "key_files/aes.txt"

set_impl_option —-project <ace project name> —-impl impl_1 bitstream_encryption_key_type

lllll
set_impl_option —-project <ace project name> —-impl impl_1 bitstream_encryption_key_index
"0"
set_impl_option —-project <ace project name> —-impl impl_1 bitstream_encryption_same_key
"0"

Hardware Security

There are several security features available in the hardware to support decryption of encrypted bitstreams, safe
storage of secret keys, and strict rule enforcement which locks the device if security rules are violated. The main
features for decryption and safe storage of keys use the physically unclonable function (PUF) which provides a
unique secret value per individual FPGA, and the key derivation function (KDF) which uses the PUF as the key to
encrypt/decrypt the actual secret keys from the encrypted keys that are stored in an electronic fuse (eFuse).

2.2

www.achronix.com 98

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Physically Unclonable Function

The PUF generates a unique secret identifier for each individual FPGA. It is created from random physical variations
that occur during the semiconductor manufacturing process, such that the same logic on an FPGA creates
completely different and unique values on each individual FPGA, even those on the same wafer. The value of the
PUF is random per individual FPGA, but remains constant over the lifetime of that device. The PUF value is not
known to Achronix or the manufacturer, and the value cannot be observed without destroying or altering the value of
the PUF. This PUF value can be used to encrypt the user secret key and store an encrypted version of the secret key
in an eFuse. Then when an encrypted bitstream is loaded into the FPGA, the PUF value is used to temporarily
decrypt the stored encrypted secret key. This secret key is then used to generate the multiple rotating keys to
decrypt the bitstream blocks that configure the FPGA.

Key Derivation Function

The KDF uses 256-bit AES encryption in conjunction with the PUF to create an encrypted version of the user secret
key that can be stored in an eFuse. While it is theoretically possible to observe the contents of the eFuse if an
adversary is in possession of the device and has access to advanced reverse engineering equipment, the stored key
is an encrypted version of the secret key that uses the PUF value as the master key for encryption. Again, the PUF
value cannot be known and is unique to each individual device, thus making the stored key safe. Additionally, when
the KDF needs to decrypt an encrypted bitstream, it loads the encrypted key from the eFuse along with the PUF
value and temporarily decrypts the secret key. The secret key is then used as the initial key for the module that
generates the multiple derived keys for AES-GCM decryption of the bitstream prior to loading it into the
configuration memory in the FPGA.

The following two figures show how the PUF and KDF are used to generate a secure encrypted key to store in an
eFuse, and how they are used to recreate the secret key to decrypt the bitstream.

Store Key in a Secure Location Decrypt Stored Key in the Field

Speedster7t FPGA Speedster7t FPGA
User’s Recreate user’s
secret key secret key

% — eFuse % eFuse

Encrypted key

Encrypted key
Secret key used

@_" for rotating keys @_"
(not observable)

47419535-02.2022.11.25

Figure 57 - Safe Secret Key Storage

Rules for Encryption

When using encrypted bitstreams, the FPGA enforces a set of rules. If the security rules are violated, the FPGA locks
up and cannot be used in any way without powering down the device. First, there is an ordering rule determining how
bitstreams are to be loaded. Speedster7t FPGA bitstreams have three phases and must follow these ordering rules:

1. Zero, one, or multiple pre-configuration (stage0) bitstreams.

2.2 99

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

2. One, and only one, full configuration bitstream.

3. Zero, one, or multiple partial reconfiguration bitstreams.

Additionally, there are rules to determine which keys can be used for the encryption. The eFuses can store up to four
secret keys — bitstreams can be encrypted using up to four different initial keys. These rules must be followed to
prevent locking the device:

AC7t1400 allows three of the four AES keys to be programmable by customers. The first AES key is predefined by
Achronix and cannot be modified.

1. Ifthe encrypted_bitstreams_only eFuse bit has been set for the FPGA, the device only accepts
encrypted bitstreams.

2. If any pre-configuration bitstream is encrypted, all pre-configuration bitstreams must be encrypted using the
same key.

3. If either the pre-configuration bitstream or the full bitstream are encrypted, they both must be encrypted and
both must use the same key.

4. Any partial reconfiguration bitstreams may use a different key if and only if the previous bitstream sets the

same_key bit to 0 in the preamble, and the partial reconfiguration bitstream also sets that same bit to O in its
preamble.

(@ Note

It is acceptable to load an unencrypted bitstream after a previous encrypted bitstream. It is not acceptable
to load an encrypted bitstream after a previous unencrypted bitstream.

Security Fuses

There are several eFuses that are related to the security features in Speedster7t FPGAs. Some of these are set
during manufacturing and cannot be changed by the customer, and others are available for customer use. See the
eFuse chapter for details.

Fuses Set at Manufacturing

There are two fuses that can be set at manufacturing time to limit the features of the FPGA (The part number of the
device indicates if these limitations exist in a part):
- Bitstream decrypt disable - if set, the FPGA cannot accept encrypted bitstreams

- DPA disable for bitstream decrypt - if set, the FPGA still supports encrypted bitstreams, but there is limited
hardware protection for differential power analysis (DPA) side-channel attacks that can potentially expose
secret keys

This product only supports encrypted Bitstreams. Bitstream decrypt disable is not applicable to the Speedster7t
AC7t1400.

Fuses Set By Customer

There are several eFuses that can be set by the customer if using encrypted bitstreams:

2.2 100

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

- Bitstream authentication key - this fuse contains a 768-bit hash of the public key used for first-level
authentication of encrypted bitstreams. This fuse is not readable.

- Bitstream decryption key - these fuses contain the four 256-bit secret keys that can be used for decryption
and authentication of encrypted bitstreams. These fuses can contain the actual secret keys or the encrypted
version of the secret keys (using PUF and KDF). These fuses are not readable.

- Bitstream user register - this fuse contains the 32-bit value set by the user to identify the key version used.
The secret key itself cannot be read back, but the user register value can be read. The user keeps a mapping of
key versions to keys.

- Bitstream user lock - this one-bit fuse, if set, disables further updates to the authentication key, decryption
key, and user register.

- Encrypted bitstreams only - this one-bit fuse, if set, forces the FPGA to only accept encrypted bitstreams that
use one of the keys stored in the fuses.

In the Speedster7t AC7t1400, the Bitstream authentication key is predefined and should never be set by the
customer. Only three of the Bitstream decryption keys are available for customer use, the first one is reserved for
Speedster7t AC7t1400 use.

The Encrypted bitstreams only fuse is set at manufacturing for the Speedster7t AC7t1400.

Default Keys

Achronix provides a default public key for authentication and a default secret key for encryption/decryption of the
bitstream. These keys are available for testing to provide confidence the security system works. The default keys
should not be used to protect sensitive designs — they are only made available for testing purposes. Additionally,
when the eFuse is set to accept encrypted bitstreams only, the FPGA no longer accepts the default keys.

The default keys are not available in the Speedster7t AC7t1400. It comes with a pre-programmed authentication key
and one secret key. These keys cannot be modified.

Generating a Public and Private Key Pair on Speedster/7t AC7t1500

The Athena key generator is a tool delivered to ACE users and can be found within the installation directory. Use the
Athena authentication key generator to create unique asymmetric public and private key pairs. The key generator,
geneckey, is located at KACE_INSTALL_DIR>/system/cmd64/geneckey. To use geneckey, provide an output
base file name. It either creates 3 files in the current directory, or if a path before the base file name is provided, it
creates these files in the chosen directory.

$ cd <ACE_INSTALL_DIR>
<ACE_INSTALL_DIR>S$ system/cmd64/geneckey /path/to/output/file/<base_file_name>

For example, if the base file name is "my_eckey", the key generator outputs three files:

- The private key, my_eckey.privkey.pem. This is used with the bitstream implementation option
bitstream_encryption_pem_key_filein ACE. The . pemfile type is typically used for secure protocols
such as with encryption. The following is an example . pem file generated with the the Athena authentication
key generator:

2.2 101

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

< PEM
key
value
here >

- A768-bit hash of the public key, my_eckey.pubkey. txt. This is used when writing to the FPGA eFuses
before programming.

- The public key, my_eckey.pubkey.pem. This is only created by the key generator and the user does not need
to write this value during bitstream creation or when writing to the eFuses.

Programming the Encryption Keys Into Speedster/7t AC7t1500 eFuses

The following eFuse programming steps are a one-time process per part, as an eFuse can only be programmed once
per part. These steps only need to be repeated if it is desired to write a new key value in an eFuse that was not
previously programmed with encryption keys.
1. Apply power to the Speedster7t FPGA from a powered-off state or initiate a FCU reset by asserting the
FCU_CONFIG_RSTN pin. Refer to the Speedster7t 7t1500 Pin Table'/for the specific ball number.
2. Establish a JTAG connection. For detailed instructions on how to establish a JTAG connection and issue
commands, please refer to the ACE User Guide (UG070).

3. If using the Achronix default keys, there is no need to use the following commands. If the user selects to use
their own E-Fuse keys, then the following commands must be issued in the ACE Tcl console with the AES and
PEM key values.

jtag::write_ecdsa_authentication_key_efuse $jtag_id <Public PEM key>
jtag::write_aes_encryption_key_efuse $jtag_id <E-Fuse Key Index> <256-bit AES
Encryption Key>

> Public PEM key is the value in the my_eckey . pubkey. txt file generated in the first section with
geneckey and the Athena key generator

o The E-Fuse key index and 256-bit AES encryption key values those set in the ACE options while encrypting
a bitstream

4. Reset the FPGA by cycling the power.

Programming the Encryption Keys into Speedster7t AC7t1400 eFuses

A future version of ACE is to enable users to program the AES keys into Speedster7t AC7t1400 eFuses.

17 https://achronix.com/documentation/speedster7t-7t1500-pin-table
18 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 www.achronix.com 102

https://achronix.com/documentation/speedster7t-7t1500-pin-table
https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://achronix.com/documentation/speedster7t-7t1500-pin-table
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster/t Configuration User Guide

Loading Encrypted Bitstreams

Loading an encrypted bitstream is similar to loading an unencrypted bitstream. However, the most important
difference is that when the unencrypted 512-bit preamble of the bitstream is loaded, the FPGA disables all data
read-out, thus securing the device containing a sensitive user IP and protecting it from being known, reverse
engineered, or altered in any way. Encrypted bitstreams are loaded following these steps:

1. When the hardware detects the loading of an encrypted bitstream, all readout and debug features are disabled,
preventing the reading of any internal state related to the FPGA fabric or the FCU.

2. Security rules for loading encrypted bitstreams are checked. If the rule checker fails, the FPGA enters a locked
state and can only be re-enabled with a power cycle or FCU reset.

If a board management controller is used to load in the bitstreams, there are additional requirements to be
aware of:

a. After the 512-bit preamble of the bitstream, the board management controller must pause and wait for 300
clock cycles before sending the next portion of the encrypted bitstream.

b. After the first 12,688 bytes of the encrypted bitstream, the board management controller must pause and
wait at least 520,000 FCU clocks, or about 2 ms (assuming a 32-bit data path and 250 MHz FCU clock).

c. For encrypted bitstreams, the board management controller is limited to sending 32-bits per FCU clock. For
unencrypted bitstreams, the controller can send data at a rate up to 128-bits per FCU clock.

When using encrypted bitstreams, it is not possible to use any debug features of the FPGA. Debug features are

only available when using unencrypted bitstreams.
2.6 ms wait time Bitstream

47419535-03.2022.11.25

512 bits Preamble ‘ 300 clock cycles wait time
unencrypted format ‘

Segment for preamble authentication

Figure 58 - Encrypted Bitstream Loading Sequence

Programming an AC7t1500 Encrypted Bitstream

After writing the eFuses, the encrypted bitstream programming can proceed following these steps:

1. Establish a JTAG connection. For detailed instructions on establishing a JTAG connection and issuing
commands, refer to the ACE User Guide (UG070)'°.

2. Program the encrypted bitstream using the —encrypted switch:

ac7tl500: :program_hex_file <path to bitstream> -encrypted

3. Verify the encrypted bitstream has been configured:

a. Check that the FCU_CONFIG_USER_MODE ball is asserted high, indicating that the device has transitioned
into user mode.

19 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 103

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster/t Configuration User Guide

(® Note

FCU_CONFIG_USER_MODE only transitions from O to 1 when the encrypted bitstream is full and
not a stageO or partial reconfiguration. Refer to the Speedster7t 7t1500 Pin Table?C for the specific
ball number.

Additionally, VectorPath card users can verify that the FPGA is configured by reading the configuration
status register in the BMC. To read the BMC on the VectorPath card, the BittWare software development
kit must be installed.

Refer to the Knowledge Base article,Where Can | Download the Software Development Kit for a
VectorPath Card??! for additional information.

b. After installing the SDK, run the following command in the ACE Tcl console:

bw_bmc_configure fpga

4. If the device has successfully configured and entered user mode, the console displays the following message:

FPGA Configuration: Configured Normal

FPGA Boot Source: User

Figure 59 - Successful Configuration Status From the BMC

Programming an AC7t1400 Encrypted Bitstream

After writing the eFuses, the encrypted bitstream programming can proceed following these steps:

1. Establish a JTAG connection. For detailed instructions on establishing a JTAG connection and issuing
commands, refer to the ACE User Guide (UG070)%.

2. Program the encrypted bitstream:

ac7t1l400: :program_hex_file <path to bitstream>

(@ Note
In this command, the —encrypted switch is not needed as it is built into the Speedster7t AC7t1400
library.
3. Verify the encrypted bitstream has been configured:

a. Checkthatthe FCU_CONFIG_USER_MODE ball is asserted high indicating that the device has transitioned
into user mode.

20 https://achronix.com/documentation/speedster7t-7t1500-pin-table
21 https://support.achronix.com/hc/en-us/articles/4415140267156
22 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 104

www.achronix.com

https://achronix.com/documentation/speedster7t-7t1500-pin-table
https://support.achronix.com/hc/en-us/articles/4415140267156
https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://support.achronix.com/hc/en-us/articles/4415140267156
https://www.achronix.com/documentation/ace-user-guide-ug070
https://achronix.com/documentation/speedster7t-7t1500-pin-table

UG094 Speedster/t Configuration User Guide

(® Note

FCU_CONFIG_USER_MODE only transitions from O to 1 when the encrypted bitstream is full and

not a stageO or partial reconfiguration. Refer to the Speedster7t 7t1500 Pin Table?® for the specific
ball number.

Additionally, VectorPath card users can verify that the FPGA is configured by reading the configuration
status register in the BMC. To read the BMC on the VectorPath card, the BittWare software development
kit must be installed. Refer to the Knowledge Base article,Where Can | Download the Software
Development Kit for a VectorPath Card??* for additional information.

b. After installing the SDK run the following command in the ACE Tcl console:

bw_bmc_configure fpga

4. If the device has successfully configured and entered user mode, the console displays the following message:

FPGA Configuration: Configured Normal

FPGA Boot Source: User

Figure 60 - Successful Configuration Status From the BMC

Device DNA

The Speedster7t family of FPGAs contains a set of internal fuses that can be opened during production, resulting in
stored read only logical values. One of these fuses stores a 32-bit sequence known as Device_DNA. The device DNA
is similar to a serial number in that it is a value that uniquely identifies a specific part. This 32-bit sequence, which
can be read from the fabric via IPINs after the FPGA has been programmed, consists of a randomly-generated string
of 16 ones and 16 zeroes. Each code is unique.

ACE Placements to Read Device DNA

To connect the fabric inputs to the IPINs and read the device DNA, three elements in the design are required:
- The top-level port declaration
- PDC file to create and place IPINs for those ports

- Soft logic that routes the IPIN outputs to a user-visible register. For example, an instance of the
register_control_block macro.

Top-Level Port Declaration

The top-level port can be given any name desired, but for this example it is named i_dna.

23 https://achronix.com/documentation/speedster7t-7t1500-pin-table
24 https://support.achronix.com/hc/en-us/articles/4415140267156

2.2 www.achronix.com 105

https://achronix.com/documentation/speedster7t-7t1500-pin-table
https://support.achronix.com/hc/en-us/articles/4415140267156
http://www.achronix.com
https://support.achronix.com/hc/en-us/articles/4415140267156
https://achronix.com/documentation/speedster7t-7t1500-pin-table

UG094 Speedster/t Configuration User Guide

input wire [31 : 0] i_dna

PDC

The PDC file creates an IPIN instance for each port and place it on a top-level GPIO input pin using the pin's symbolic
hardware port name. Those port names may be different on different fabrics.

AC7t1500

for {set i 0} {$i < 32} {dincr i} {
create_boundary_pins "p:i_dna\[$i\]" "i_dna_ipin\[$i\]" -purpose CFG
set_placement -fixed -batch "p:i_dna\[$i\]" "d:cfg2efuse_scratch_fuse\[$i\]"

AC7t800

for {set i 0} {$i < 32} {incr i} {
create_boundary_pins "p:i_dna\[$i\]" "i_dna_ipin\[$i\]" -purpose CFG
set_placement -fixed -batch "p:i_dna\[$i\]" "d:i_efuse2core_scratch_fuse\[$i\]"

2.2 106

www.achronix.com

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

Chapter 9 : Partial Reconfiguration

Partial reconfiguration enables reprogramming a portion of the fabric with a smaller bitstream while leaving the
remaining configuration intact. Each region that can be reconfigured independently is called a fabric cluster, or
simply, "cluster". The Speedster7t AC7t1500 FPGA has 80 clusters which can be reconfigured independently. Partial
reconfiguration can only be initiated after the FPGA has entered user-mode.

SerDes (1-112 Gbps)

400 Gbps Ethernet PCle Gen5

Al

2D Network-on-Chip

=
<
)~
c
e
x
S
o
=
2
()
=
(]
~

Secure Configuration DDR4

120569590-01.2023.01.27

Figure 61 - AC7t1500 FPGA Partial Reconfiguration Fabric Cluster Layout

(@ Note
The Speedster7t AC7t800 FPGA has 36 clusters.

There are many advantages to partial-reconfiguration:

2.2 www.achronix.com 107

http://www.achronix.com

UG094 Speedster/t Configuration User Guide

- Enable dynamic functions for certain blocks in the design

- Dynamic load balancing of accelerator cores

- Smaller FPGA logic functions can be loaded into the FPGA only when needed (hardware overlays)
- Faster programming times

Design Considerations

Partial-reconfiguration introduces additional complexity into the design. Defining correct functional hierarchy is very
important for designs that utilize dynamically-reconfigured modules. In order to avoid functional issues while
performing partial reconfiguration, system-level logic must be implemented to stop and start communications with
the portions of the user design being reconfigured while the remainder of the design is operating.

The partial reconfiguration flow is greatly simplified by leveraging the 2D NoC. All data and communication between
a partial reconfiguration module and the remainder of the user design and I/0 ring IP (PCle, Ethernet, GDDR6, DDR4,
etc) can be via NAP connections inside the fabric clusters you intend to reconfigure. These connections allow the
module to talk to any node in the system without any logic or data signal routing crossing between the partial
reconfiguration fabric cluster boundary and the remainder of the design. Utilizing NAP connections allows the partial
reconfiguration module to be self-contained and portable — it can be moved to any other set of fabric clusters
within the FPGA.

The only signals not self-contained are clocks and (optionally) any global resets or enables. Partial reconfiguration
bitstreams do not reconfigure the global clock trunk, the clock branches, or the clock minitrunks. Clocks and global
signals must be pre-routed as part of the base bitstream.

All clocks in the system must continue to run during partial reconfiguration since other logic in the fabric also
continues to run live and may be using those clocks. Partial reconfiguration bitstreams do configure the connections
between the clock stems and the clock branch, and all other logic and routing in the fabric clusters. To connect the
local clock stems to the clock branch within the context of a running base design, the partial bitstream must connect
to the proper clock branch tracks.

To manage this, ACE provides a set of tools and constraints for pre-routing clocks and global signals. Up-front
planning must be performed for clocks and other global signals (e.g., resets and enables) which must be routed into
partial reconfiguration regions. See the ACE User Guide (UG070)?5 for details and a full tutorial.

It is also important to define the correct placement constraints so that the target module is completely contained
within the cluster marked for partial reconfiguration. The resources for the module cannot exceed the available
resources for a cluster and optimizations across the cluster should be disabled.

Currently, there is no support in software for virtual pin placement constraints for the router, which would be needed
to support any data nets going into or out of the partially-reconfigured clusters (with the exception of pre-routed
clocks and global signals which use the clock network).

25 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 108

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster/t Configuration User Guide

Using Partial Reconfiguration

ACE Implementation Options

Partial Reconfiguration
[+ Enable Partial Reconfiguration

Partial Reconfig Cluster Map (hex) 0000000000000010000

Figure 62 - ACE Partial Reconfiguration Options Dialog

Table 46 - Bitstream Generation Implementation Options — Partial Reconfiguration (Device Specific)

ACE impl_option

Enable Partial Reconfiguration bitstream_partial_reconfig When checked (1), enables partial reconfiguration.

20-character hexadecimal value specifying the target fabric
Partial Reconfig Cluster Map (hex) bitstream_partial_reconfig cluster. The ACE Clusters view should be used to find the
appropriate value.

Partial Reconfiguration Steps

To leverage partial reconfiguration, first program a base bitstream, which at least configures the 1/0 ring, clocks, and
and global signal pre-routes.

A partial bitstream can be generated for a given module in ACE by setting the Partial Reconfiguration Cluster Map
and Partial Reconfiguration implementation options shown above prior to generating the bitstream. This generates a
partial bitstream which can be programmed on top of (after) the base bitstream. Multiple partial bitstreams can be
programmed sequentially. Please see the ACE User Guide (UG070)?® for details.

The partial reconfiguration bitstream generated from ACE includes the following sequence:

1. Writeavalueof 32'h1000_0000 to CONFIG_REG_CRC and a value of 32'h0000_0000 to the
CONFIG_REG_CRC2 register. This brings the partial state machine to shutdown state and asserts the partial

reset.

2. Send the SYNC, JTAG ID and the preamble header, then program the selected clusters using the partial
bitstream.

3. Write a value of 32'h0200_0000 to CONFIG_REG_CRC and a value of 32'h0000_0000 to the
CONFIG_REG_CRC2 register. This releases the reset to the partial clusters and generates
partial_config_done.

26 https://www.achronix.com/documentation/ace-user-guide-ug070

2.2 109

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094

Speedster/t Configuration User Guide

Chapter 10 : Revision History

“

10

101

1.0.2

1.0.3

1.04

105

2.0

21

2.2

20 Apr 2021

26 Apr 2021

16 Sep 2021

01 Feb 2022

22 Feb 2022

25 Sep 2023

02 Apr 2024

26 Mar 2025

22 Oct 2025

- Initial Achronix release

- Change images Read from FCU Register and Read from ACB Register to

execution order

- Minor changes to reflect new FCU features

- Correction to FLASH configuration header (page 20) bit[31]

- Removed original (divide-by-1), divide-by-2 (page 9) support for the flash clock
- Deprecate references to Speedster AC7t1550 device

- Added information on two-stage programming via PCle
- Added information on dual-mode flash programming

- Added information on design security

- Added information on device DNA

- Removed references to .stapl files

- Merged user guide with JTAG Configuration User guide

- Clean-up of device names for change to AC7t1400
- Updates to Bitstream Programming via PCle (page 65)
- Minor edits to wording and corrections

- Updates to clarify the power on reset sequence and signal stability

requirements in Configuration Sequence and Power-Up. (page 83)

- Requirements for FCU_CPU_CLK updated in Configuration Pin Tables (page

71).

- Device DNA (page 105) updated.

2.2

www.achronix.com 110

http://www.achronix.com

	Overview
	Interface Performance
	Bitstream Programming Modes for Speedster7t FPGAs
	Bitstream Programming Time
	Bitstream Programming Via CPU
	CPU Mode Bitstream Programming Flow
	CPU Mode Hardware Interface

	Bitstream Programming via Flash Memories
	Serial Flash Bitstream Programming Flow
	Serial Flash Hardware Interface
	Flash Interface
	Flash Device Configurations
	Addressing Modes and Memory Organization
	Flash Configuration Protocol
	Flash Modes
	Flash Memory Size Requirements
	Flash Configuration Using FTDI

	Bitstream Programming via JTAG
	Generating the JTAG Bitstream Files From ACE
	How To Use the ACE-Generated JTAG Bitstream Files
	JTAG Programming using the ACE Download View
	JTAG Programming using the ACE Flow Steps
	JTAG Programming using the Tcl Library API
	JTAG Hardware Overview
	JTAG Configuration Using FTDI
	JTAG Configuration Using the Bitporter2 Pod

	Bitstream Programming via PCIe
	Design Requirements for Programming via PCIe
	How to Generate the PCIe Bitstream Files with ACE
	How to Program a Device with the PCIe Bitstream Files

	FPGA Configuration Unit (FCU)
	Overview
	Configuration Pin Tables

	Bitstream Generation Software Support in ACE
	Bitstream Generation
	Bitstream Output File Formats
	Serial Flash Configuration Options
	Encryption Options
	Two-Stage Configuration Option
	Partial Reconfiguration Configuration Options
	FCU Configuration Options
	Bitstream ID Configuration Options
	CMEM Error Injection Options

	Configuration Sequence and Power-Up
	Device Power-Up

	Configuration Error Correction and SEU Mitigation
	Configuration Memory Architecture and Addressing
	Error Injection and Reporting
	ACE Implementation Options
	Bitstream Error Injection

	Scrubbing Reset
	Scrubbing FCU Registers

	Design Security for Speedster7t FPGA
	Bitstream Authentication
	Bitstream Encryption
	Generating Encrypted Bitstreams
	Encrypting a Speedster7t AC7t1500 Bitstream
	Encrypting a Speed AC7t1400 Bitstream
	Hardware Security

	Security Fuses
	Fuses Set at Manufacturing
	Fuses Set By Customer
	Default Keys
	Generating a Public and Private Key Pair on Speedster7t AC7t1500
	Programming the Encryption Keys Into Speedster7t AC7t1500 eFuses
	Programming the Encryption Keys into Speedster7t AC7t1400 eFuses

	Loading Encrypted Bitstreams
	Programming an AC7t1500 Encrypted Bitstream
	Programming an AC7t1400 Encrypted Bitstream

	Device DNA
	ACE Placements to Read Device DNA

	Partial Reconfiguration
	Design Considerations
	Using Partial Reconfiguration
	ACE Implementation Options
	Partial Reconfiguration Steps

	Revision History

