
UG094 2.0 – April 02, 2024

Speedster7t Configuration
User Guide (UG094)

Speedster FPGAs

UG094 Speedster7t Configuration User Guide

ii

Copyrights, Trademarks and Disclaimers

Copyright © 2024 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and
ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks
are the property of their respective owners. All specifications subject to change without notice.

Notice of Disclaimer
The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor
Corporation does not give any representations or warranties as to the completeness or accuracy of such information
and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation
reserves the right to make changes to this document and the information contained herein at any time and without
notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at http://
www.achronix.com/legal.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

UG094 Speedster7t Configuration User Guide

iii

Table of Contents

Chapter 1 : Overview .. 1

Chapter 2 : Interface Performance... 3

Chapter 3 : Bitstream Programming Modes for Speedster7t FPGAs.......................4

Bitstream Programming Time ...5

Bitstream Programming Via CPU ...5

CPU Mode Bitstream Programming Flow ...5

Generating the CPU Mode Bitstream Files From ACE..5

How To Use the ACE-Generated CPU Bitstream File..6

CPU Mode Hardware Interface ... 7

Bitstream Programming via Flash Memories ...9

Serial Flash Bitstream Programming Flow ...9

Generating the Serial Flash Bitstream Files from ACE ..9

Using ACE-Generated Serial Flash Bitstream Files ...11

spi::program_bitstream Command ...11

spi::program_all_bitstreams Command... 12

Reading Back Data Stored In Flash .. 13

spi::read_bitstream Command .. 13

Serial Flash Hardware Interface... 14

Flash Interface ...15

Flash Device Configurations..16

UG094 Speedster7t Configuration User Guide

iv

1D Configuration.. 16

4D Configuration ... 17

Addressing Modes and Memory Organization.. 20

Address Range... 21

Flash Configuration Header (Page0 Header)... 21

Flash Configuration Protocol .. 23

Flash Modes... 24

SPI Mode..25

Dual Mode..25

Quad Mode ..26

Octa Mode ... 27

Flash Memory Size Requirements...27

Flash Configuration Using FTDI ..27

FTDI Board-Level Device Connections ... 28

Bitstream Programming via JTAG... 30

Generating the JTAG Bitstream Files From ACE ... 30

How To Use the ACE-Generated JTAG Bitstream Files... 30

JTAG Programming using the ACE Download View...31

ACE JTAG Connection Preference Page ... 31

ACE JTAG Download View ...32

JTAG Programming using the ACE Flow Steps .. 34

JTAG Programming using the Tcl Library API .. 36

Variables Under ACE Tcl Console... 36

Tcl Command Tables...37

Programming the Board Using JTAG and Read/Write Registers ...43

JTAG Hardware Overview.. 45

Introduction...45

UG094 Speedster7t Configuration User Guide

v

JTAG Configuration Overview...45

JTAG Instructions .. 49

JTAG Configuration Using FTDI... 52

Overview ..52

FTDI Board-Level Device Connections ..55

FTDI Interface in ACE ..62

Programming Speeds and Requirements...62

Known Device Limitations .. 63

Software and Driver Install for FTDI .. 64

Connecting the FTDI Device ..67

JTAG Configuration Using the Bitporter2 Pod ..68

Software and Driver Install for Bitporter2.. 69

Connecting the Bitporter2 Pod ... 71

Two-Stage Bitstream Programming via PCI Express ...75

PCIe Bitstream Programming Flow...75

Generating the PCIe Bitstream Files from ACE ..75

How to use the ACE-generated PCIe Bitstream Files ...76

Chapter 4 : FPGA Configuration Unit (FCU) ... 77

Overview .. 78

Configuration Pin Tables .. 79

Chapter 5 : Bitstream Generation Software Support in ACE...................................83

Bitstream Generation .. 83

Bitstream Output File Formats .. 83

Serial Flash Configuration Options ... 85

UG094 Speedster7t Configuration User Guide

vi

Encryption Options .. 87

Two-Stage Configuration Option...89

Partial Reconfiguration Configuration Options...90

FCU Configuration Options ..91

Bitstream ID Configuration Options ... 92

CMEM Error Injection Options.. 93

Chapter 6 : Configuration Sequence and Power-Up...95

Device Power-Up... 95

Chapter 7 : Configuration Error Correction and SEU Mitigation96

Configuration Memory Architecture and Addressing ...98

Error Injection and Reporting .. 100

ACE Implementation Options ... 100

Bitstream Error Injection ..101

Bitstream Single-Bit Error Injection Example..102

Bitstream Dual-Bit Error Injection Example .. 103

Scrubbing Reset .. 103

Scrubbing FCU Registers.. 104

Chapter 8 : Design Security for Speedster7t FPGA .. 105

Bitstream Authentication ... 105

Bitstream Encryption... 105

Generating Encrypted Bitstreams .. 106

Encrypting a Speedster7t AC7t1500 Bitstream ..107

Using the ACE GUI ..107

UG094 Speedster7t Configuration User Guide

vii

Using Tcl Commands.. 108

Hardware Security ... 109

Physically Unclonable Function .. 109

Key Derivation Function .. 109

Rules for Encryption... 110

Security Fuses ...111

Fuses Set at Manufacturing ...111

Fuses Set By Customer..111

Default Keys.. 112

Generating a Public and Private Key Pair on Speedster7t AC7t1500... 112

Programming the Encryption Keys Into Speedster7t AC7t1500 eFuses... 113

Loading Encrypted Bitstreams .. 114

Programming an AC7t1500 Encrypted Bitstream .. 115

Device DNA ..116

ACE Placements to Read Device DNA..116

Chapter 9 : Partial Reconfiguration .. 118

Design Considerations..119

Using Partial Reconfiguration ... 120

ACE Implementation Options ... 120

Partial Reconfiguration Steps .. 120

Chapter 10 : Speedster7t Configuration User Guide Revision History121

Revision History.. 121

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 1

•

•

•

•

•

•

•

•

Chapter 1 : Overview
At startup, Speedster®7t FPGAs require configuration via a bitstream. This bitstream can be programmed through
one of four available interfaces in the FPGA configuration unit (FCU), the logic controlling the configuration process.

The term FPGA configuration unit (FCU) refers to logic that controls the configuration (bitstream programming)
process of the Speedster7t FPGA. This logic is responsible for the following:

Receiving data on a variety of external interfaces (depending on the selected programming mode)

Decoding instructions

Sending configuration bit values to the appropriate destination (e.g., core configuration memory, the core
boundary ring configuration memory, FCU registers, etc.)

Controls the startup and shutdown sequences that drive resets to the on-chip logic

Bitstream CRC checks

SEU mitigation with CMEM scrubbing

Bitstream Encryption Security

Any core-level housekeeping that occurs on the de-assertion of reset (i.e., clearing of configuration memory)

Data from the configuration pins is brought into the FCU located in the core boundary logic. Depending on the
configuration mode, this data passes through one of four interfaces and is then provided to the control logic and
state machines in the FCU. At this point, the data bus is standardized to a configuration mode independent common
interface. Data is processed and propagated to the configuration registers in the core boundary ring, to the core
configuration memory, or to the hard IP blocks in the FPGA I/O ring.

When all of the configuration bits are successfully loaded, the FCU transitions the Speedster7t FPGA into user mode,
allowing full operation of the custom design.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 2

Figure 1 • Speedster7t Configuration Block

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 3

Chapter 2 : Interface Performance
The following table lists the various configuration interfaces supported by the Speedster7t FPGA and their
corresponding maximum operating frequency.

Table 1 • Configuration Modes and Maximum Frequencies

Configuration Mode Maximum Frequency

JTAG 50 MHz

CPU 250 MHz

Serial flash 62.5 MHz

All of the programming modes and interfaces are capable of running up to 250 MHz at the configuration pins. The
FCU and all associated circuitry are also capable of running up to 250 MHz. Since the internal data bus in the FCU is
128 bits wide, and in most configuration modes, the data pin count is less than 128, the incoming data stream goes
through a gearbox to reduce the throughput. This configuration ensures that the internal programming circuitry runs
at less than 250 MHz to process the incoming data stream. In the widest data mode (CPU ×128), the gearbox is
bypassed and the entire configuration interface can run at the full 250 MHz bandwidth. Depending on the mode and
configuration data width, the total bandwidth varies, and the programming time changes accordingly.

Note

CPU x128 mode is primarily for ATE use and not a recommended mode for design configuration.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 4

1.

2.

3.

4.

Chapter 3 : Bitstream Programming Modes for Speedster7t
FPGAs

Speedster7t FPGAs support four configuration modes:

Flash

JTAG

CPU

PCI Express

The selection between these modes is controlled by setting the FCU_CONFIG_MODESEL pins to the values shown in
the following table. Both JTAG and PCIe modes are independent of the FCU_CONFIG_MODESEL pin setting. The
JTAG mode overrides all other configuration modes except PCIe until disabled.

Table 2 • Pin Settings for Various Configuration Modes

Configuration Mode Data
Width

FCU_CONFIG_
MODESEL [3:0]

FCU_CONFIG_
SYSCLK_BYPASS (1)

FCU_CONFIG_
CLKSEL (1)

PCIe – XXXX X 0

JTAG (2) (3) – XXXX X 0/1

Flash single device (1D) (4)

1 (SPI) 0001

0/1 0

2 (Dual) 1000

4 (Quad) 1010

8 (Octa) 1100

Flash four devices (4D) (4)

1 (SPI) 0010

2 (Dual) 1001

4 (Quad) 1011

8 (Octa) 1101

CPU

1 0011

1 0

8 0100

16 0101

32 0110

128 (5) 0111

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 5

1.

2.

3.

Configuration Mode Data
Width

FCU_CONFIG_
MODESEL [3:0]

FCU_CONFIG_
SYSCLK_BYPASS (1)

FCU_CONFIG_
CLKSEL (1)

Bitstream Programming Time
Bitstream programming time is determined by the following formula in seconds:

(Total number of programming bits) / (programming data-width × clock frequency)

Bitstream Programming Via CPU

CPU Mode Bitstream Programming Flow

Generating the CPU Mode Bitstream Files From ACE
In ACE, select the CPU mode additional output.

Select the CPU bus width to generate .cpu and _cpu.bin files for use in CPU programming mode as shown in
the following example.

Run the Generate Bitstream flow step:

> run -step write_bitstream

1.

2.

3.

4.

5.

Table Notes

These straps select the configuration clock source:

0 – on-chip oscillator clock
1 – FCU_CPU_CLK

Always active. Enabled in the JTAG TAP controller.

If FCU_CONFIG_MODELSEL[3:0] pins are set such that flash or CPU configuration mode is selected, the JTAG override should be issued after flash
programming has completed or the CPU mode interface is inactive.

In 1D mode, the flash bitstream is downloaded from one flash device. In 4D mode, the flash bitstream is downloaded from four flash devices.

Speedster7t FPGAs have 32 dedicated data I/O pins for the CPU interface supporting up to a ×32 interface. For ×128 mode, the upper 96 pins are shared with
the DDR4 interface.

CAUTION: CPU x128 is primarily for ATE use and not a recommended mode for design configuration.

Note

When programming via JTAG, the clock frequency applied to the formula should be the frequency of
JTAG_TCK.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 6

1.

2.

Figure 2 • ACE Additional Output Options Dialog

Table 3 • Bitstream Generation Implementation Options For CPU Mode

Option ACE impl_option Description

CPU Mode (.cpu) bitstream_output_cpu

Enables generation of an additional CPU mode (.cpu) formatted
output file with the same name as the .hex file. The file contains
hexadecimal-formatted data organized with "CPU bus width"
number of bits per file line. File data is sent to the FCU CPU
interface line by line (one line per clock cycle), where the left-most
bit on each line is the MSB and the right-most bit is the LSB.
In simulation, this file can be loaded using the readmemh
function. For convenience, an additional binary representation of
the CPU mode output (_cpu.bin) file is written with the same
name as the .hex file. It contains the same data in the same bit
order as the .cpu file but in a binary format with no new-lines.

CPU Bus Width bitstream_output_cpu_width

Controls the bit width of the CPU-mode formatted output file.
When using the CPU interface in ×8 mode, set this value to 8. If
using the CPU interface in ×32 mode, set this to 32. The value
determines how many bitstream bits are printed per line in
the .cpu output file. The bit sequence required by the FCU (and
output in the generated bitstream file) might be different for each
CPU bus width setting. It is important to set this option to match
the actual CPU hardware interface width.

How To Use the ACE-Generated CPU Bitstream File
There are two different CPU mode output file formats generated by ACE:

The *.cpu file format. This file uses hexadecimal formatting and contains one CPU write per data line. If CPU
bus width is set to 8, each line in the *.cpu file contains eight bits of hex-formatted data in big-endian format.

The *_cpu.bin format. This file is a pure binary formatted file (with no newlines) and is formatted according
to the CPU bus width in little-endian format. If CPU bus width is set to 8, every eight bits of binary file data
represents the eight bits of data needed for each sequential CPU write.

To use either file format to program the ACE-generated bitstream into the FPGA, simply loop over the bitstream file
from start to end and perform a CPU write operation with (CPU bus width) bits of data from the file on the
FCU_CPU_DQ_IN_OUT bus. Details on the hardware interface follow.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 7

1.

CPU Mode Hardware Interface
In CPU configuration mode, an external CPU controls the programming operations to the Speedster7t FPGA and
offers a high-speed method for loading configuration data. Depending on the setting of the FCU_CONFIG_MODESEL
pins, the CPU mode can be either a 1-, 8-, 16- or 32-bit wide parallel interface (128-bit wide is available for ATE test
only). This interface is clocked using FCU_CPU_CLK with chip select support to indicate valid data. This mode
supports a maximum clock rate of 250 MHz.

Figure 3 • External CPU Connectivity to a Speedster7t FPGA

As described in the Configuration Sequence and Power-up (page 95) section, the configuration mode-specific
operations occur between the release of FCU_CONFIG_STATUS (indicating that the configuration memory has been
cleared and that the Speedster7t FPGA is ready to accept bitstream data) and the assertion of FCU_CONFIG_DONE
(stating completion of configuration). The following example waveform for CPU×8 mode illustrates the sequence of
events, clocking and control signal states needed for successful configuration in CPU mode:

After FCU_CONFIG_RSTN is de-asserted, FCU_CPU_CLK must continue to cycle to ensure that the FPGA
cycles through the FCU states and the configuration memory is cleared. At that point, FCU_CONFIG_STATUS is
driven high.

Note

The CPU only needs to connect to the first 1, 8, 16 or 32 bits of FCU_CPU_DQ_IN_OUT depending on the
CPU mode selected. All unused signals should be tied to ground.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 8

2.

3.

4.

After at least 5 clock cycles of FCU_CONFIG_STATUS being driven high, FCU_CPU_CSN must be pulled low to
begin writing the bitstream data into the Speedster7t FPGA. When the last set of data is written into the
Speedster7t FPGA, FCU_CPU_CSN is pulled back high.

When FCU_CPU_CSN is pulled high, FCU_CPU_CLK must continue being clocked. When the FCU cycles
through all of the configuration states, FCU_CONFIG_DONE is driven high to indicate that the Speedster7t
FPGA was successfully programmed.

As the FCU_CPU_CLK toggles, the FCU cycles through its states to move the Speedster7t FPGA from
programming mode into user mode, taking the fabric out of reset and performing operations to enable user-
mode functions for all parts of the core. The FCU_CONFIG_USER_MODE signal is asserted to indicate when the
Speedster7t FPGA has successfully transitioned into user mode.

At any point during the configuration, if FCU_CPU_CSN is asserted low, the FCU_CPU_DQ_IN_OUT bus should
contain valid data or NOPs. A NOP is represented by logic 0 on all data pins. During this time, the
FCU_CPU_DQ_VALID pin should be held low, indicating that the data pins can be driven by a device external to the
FPGA as mentioned in Configuration Pin Tables (page 79). If FCU_CPU_CSN is high, the data on
FCU_CPU_DQ_IN_OUT is ignored. When the bitstream is programmed, FCU_CPU_CSN can be held low while
sending NOPs to the Speedster7t FPGA. This action does not affect the assertion of FCU_CONFIG_DONE or
FCU_CONFIG_USER_MODE signals.

Figure 4 • Clocking and Control Signals for Successful Configuration

Figure 5 • Bitstream Data Sequence For Unencrypted Bitstream

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 9

1.

2.

Bitstream Programming via Flash Memories

Serial Flash Bitstream Programming Flow

Generating the Serial Flash Bitstream Files from ACE
In ACE, select the Serial Flash additional output to generate the .flash and _page0.flash files for use in
Serial Flash programming mode as shown in the following example.

Figure 6 • ACE Additional Output Options Dialog

Run the Generate Bitstream flow step:

> run -step write_bitstream

Table 4 • Bitstream Generation Implementation Options For Serial Flash Mode

Option ACE impl_option Description

Serial Flash (.flash) bitstream_output_flash

Enables generation of the serial flash-formatted .flash
output file and the page0 header _page0.flash files in
addition to, and with the same name as, the default .hex file.
The .flash file contains a binary image that can be directly
loaded into a single serial flash memory.

Note

During the 300 clock cycle wait time, CPU_CSN is pulled high for encrypted bitstreams.

When programming an encrypted bitstream, there are additional wait clock cycle requirements. Please
refer to the details in the Design Security for Speedster7t FPGA (page 105) section of this document.

Caution!

Speedster7t FPGAs can interface to serial NOR flash devices only. Parallel NOR, NAND or other flash
variants are not supported.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 10

The following bitstream implementation options must be set correctly for the board serial flash hardware
configuration.

Figure 7 • ACE Serial Flash Configuration Options Dialog

Table 5 • Bitstream Generation Serial Flash Configuration Options

Option ACE impl_option Description

Device Vendor bitstream_page0_vendor
Selects the flash device vendor. Allowed values:
Macronix (0)
Micron (1)

Serial Flash Clock Divider bitstream_page0_sf_clock_div

Selects serial flash clock divider. Allowed values:
2
4
8

Data Width bitstream_page0_data_width

Selects flash data readback width. Allowed values:
SPI (0)
DUAL (1)
QUAD (2)
OCT (3)

Number of Flash Devices bitstream_page0_num_devices
Selects number of devices based on targeted x1 or x4 PROM. Allowed values:
x1 (0)
x4 (1)

Addressing Width bitstream_page0_addr_width

Selects 3-byte or 4-byte addressing mode to support flash devices >1Gb. Allowed
values:
3-byte (0)
4-byte (1)

3-Byte Dummy Cycle Value
(hex) bitstream_page0_dummy_cycle_3byte

Specifies the 3-byte addressing dummy cycle value.
The default value is 00 and varies by device vendor.
Must be specified as a 2-character hex value.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 11

Option ACE impl_option Description

4-Byte Dummy Cycle Value
(hex) bitstream_page0_dummy_cycle_4byte

Specifies the 4-byte addressing dummy cycle value.
The default value is 08 and varies by device vendor.
Must be specified as a 2-character hex value.

Bitstream Start Address bitstream_page0_start_addr
Specifies the bitstream start address.
Should be a non-zero multiple of 4096.
Must be specified as an 8-character hex value.

Enable NOP Compression bitstream_page0_compress_nops

When unchecked (0), the *.flash file for I/O Ring programming is similar to
other programming modes (CPU, JTAG, Hex, etc). When checked, the *.flash
file bitstream contents are compressed, to help meet the 100ms PCIe link-up time.
This results in a different bitstream for serial flash, which is dependent on the
overall FCU data width (Number of Devices x Device Data Width).

Using ACE-Generated Serial Flash Bitstream Files
The flash device is programmed using Tcl with .flash and _page0.flash files. The
spi::program_all_bitstreams ACE Tcl command is the recommended serial flash bitstream programming
command because it automatically determines the offset and is useful for two-stage bitstream programming over
PCIe as discussed in the Two-Stage Bitstream Programming via PCI Express (page 75) section. If using
spi::program_bitstream, the command must be issued twice to first program the stage0 header flash file
followed by programming the stage1 or full flash file at the specified offset.

spi::program_bitstream Command

Example

spi::program_bitstream <board_config> <flash_file> <number_of_proms> -device_id
<pod_name/FTDI_device> -offset <int>

Arguments

Table 6 • spi::program_bitstream Command Arguments

Argument Default Description

<board_config> – The board or part name of the targeted Achronix device (e.g., MEP/
FT2232H or VectorPath/FT4232H).

<flash_file> – The bitstream flash file to program from.

<number_of_proms> –
The number of PROM devices:
1 - single PROM
4 - x4 PROM

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 12

Argument Default Description

-device_id –

Argument followed by the Bitporter 2 pod name or FTDI device
connected to the FPGA board. Use the JTAG Tcl command,
jtag::get_connected_devices, to query available FTDI devices
when more than one device is connected.

-offset 0
Argument followed by the byte offset of the flash file within all of the
PROMs. Must be specified when programming the .flash or
_stage0.flash file.

spi::program_all_bitstreams Command

Example

spi::program_all_bitstreams <board_config> <page0_file> <flash_file> <number_of_proms>
-device_id <pod_name> -stage_1_header_file <file_name>

Arguments

Table 7 • spi::program_all_bitstreams Command Arguments

Argument Default Description

<board_config> – The board or part name of the targeted Achronix device (e.g., MEP/
FT2232H or VectorPath/FT4232H).

<page0_file> –
The bitstream page0 flash file to program from: *_page0.flash for
full flash file, or *_stage0_page0.flash for two-stage bitstream
programming.

<flash_file> – The bitstream flash file name: either .flash for full flash file, or
*_stage0.flash for two-stage bitstream programming.

<number_of_proms> –
The number of PROM devices:
1 - single PROM
4 - x4 PROM

-device_id –

Argument followed by the Bitporter 2 pod name or FTDI device
connected to the FPGA board. Use the JTAG Tcl command,
jtag::get_connected_devices, to query available FTDI
devices when more than one device is connected.

-stage_1_header_file –
Argument followed by the ACE-generated bitstream binary stage1
header flash file to program from: *_stage1_header.flash (used
only with two-stage encrypted bitstream programming over PCIe).

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 13

Flash Programming Example

cmd> spi::program_bitstream config1 <flash_file> <number_of_proms> -offset 4096
-device_id <pod_name>
Device: config1 bringup board
Successfully opened SPI device: <pod_name>
 205056 of 1333712 blocks written
 410112 of 1333712 blocks written
 615168 of 1333712 blocks written
 820224 of 1333712 blocks written
 1025280 of 1333712 blocks written
 1230336 of 1333712 blocks written
Successfully programmed PROM devices with 1333968 bytes of data

Reading Back Data Stored In Flash
The contents stored in flash may be read back in ACE using the spi::read_bitstream Tcl command which
reads back the bitstream from the connected PROMs and outputs the contents to a file.

spi::read_bitstream Command

Example

spi::read_bitstream <board_config> <flash_file> <number_of_proms> <number_of_bytes>
-device_id <pod_name> -offset <int>

Arguments

Table 8 • spi::read_bitstream Command Arguments

Argument Default Description

<board_config> – The board or part name of the targeted Achronix device (e.g., MEP/
FT2232H or VectorPath/FT4232H).

<flash_file> – The bitstream binary flash file to be written. A single file is written for
either a single PROM or a x4 PROM configuration.

<number_of_proms> –
The number of PROM devices:
1 - single PROM
4 - x4 PROM

<number_of_bytes> – The total number of bytes to read back from all PROM devices.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 14

Argument Default Description

-device_id –

Argument followed by the Bitporter 2 pod name or FTDI device
connected to the FPGA board. Use the JTAG Tcl command,
jtag::get_connected_devices, to query available FTDI devices
when more than one device is connected.

-offset 0 Argument followed by the byte offset of the flash file within all of the
PROMs.

Flash Readback Example

cmd> spi::read_bitstream config1 flash_readback 1 1333968 -device_id <pod_name>
Device: config1 bringup board
Successfully opened SPI device: <pod_name>
 Prom 0 : file flash_readback_0
 205056 of 1333968 blocks read
 410112 of 1333968 blocks read
 615168 of 1333968 blocks read
 820224 of 1333968 blocks read
 1025280 of 1333968 blocks read
 1230336 of 1333968 blocks read
Successfully read back SPI device 0, into file flash_readback

Serial Flash Hardware Interface
Flash programming mode allows configuring Speedster7t FPGAs with flash memories. In this mode, the FPGA
controls the programming operations and supplies the clock to the flash memory.

The clock supplied from the FPGA (on the FCU_FLASH_SCK pin) to the attached flash device(s) can be driven either
by the FCU_CPU_CLK or the on-chip oscillator clock depending on the configuration options selected as described
in the Bitstream Programming Modes for Speedster7t FPGAs (page 4) chapter. The frequency of this clock can be
selected from one of the variants of the clock sources arriving at the FCU: the divide-by-4 or divide-by-8. This
selection is configured using the Serial Flash Clock Divider drop-down menu in the "Bitstream Generation
Implementation Options" section of the ACE GUI. This setting ensures that only the flash state machine runs at the
slower frequency. All other FCU and ACB logic continues to operate at the original input clock frequency. Details on
downloading a bitstream into the flash devices via FTDI is presented in the Flash Configuration Using FTDI (page 27)
chapter. It is very critical that the FTDI chip is used in combination with the FCU to write data to the flash devices.
Therefore, all boards that intend to make use of flash configuration must have this component mounted accordingly.
The following diagram details the appropriate connections needed to write to the flash devices and to subsequently
program the Speedster7t FPGA.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 15

Figure 8 • FTDI Cable Connection Detail

Flash Interface
The configuration block is equipped with a flash interface that supports programming the FPGA from flash memory.
A bitstream is assumed to be loaded into the flash memory using an external SPI interface. Flash registers within the
configuration block assist with this process (refer to Registers and Addressing (page 0)). The complete feature list of
the flash interface is described in the following table.

Table 9 • Flash Features

Feature Description

Programming interface SPI – JTAG, PCIe

Security mode Double encryption.

Device mode X1, X4.

Note

At power-on, the device defaults to the divide-by-8 setting. The FCU then sets the appropriate
configuration register to control the clock divider based on the user selection in ACE. The transition from a
divide-by-8 clock to any other selected clock frequency is glitch free. Also, flash write is always SPI only
while read can be in SPI, DUAL, QUAD or OCTA mode as summarized in the following table.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 16

1.

2.

Feature Description

Flash Read SPI, Dual, Quad, Octa.

Page0 Header Holds read address, read counts, and read commands.

Flash Device Configurations
Speedster7t FPGAs support two flash device configurations:

Single flash device (1D).

Four flash devices (4D).

1D Configuration
The 1D programming configuration is composed of a Speedster7t FPGA controlling communications with a single
flash device. The o_flash_sck signal is used for clocking. The o_flash_sdi signal is the data output from the
FPGA to communicate instructions to the flash device and i_flash_sdo[0] is the single-bit FPGA input pin which
receives the bitstream from the flash in ×1 mode. The o_flash_csn[0] signal is pulled low as soon as
communication between the FPGA and flash device begins, and stays low during the valid bitstream window.

The FPGA can communicate with the flash device in SPI, Dual, Quad or Octa modes in the 1D configuration.

The following figure provides a block diagram detailing how a serial flash device can be connected to a Speedster7t
FPGA in Octa mode.

Figure 9 • Speedster7t FPGA 1D Octa Mode Flash Programming Configuration

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 17

Figure 10 • 1D Flash SPI Read Data Ordering

4D Configuration
Serial 4D flash programming mode is essentially an enhanced and higher bandwidth implementation of the serial
flash 1D configuration. The FPGA again controls communications and interfaces with not one but four flash memory
devices to increase the data bandwidth four times.

When writing to the four flash memories, all four chip selects, o_flash_csn[3:0], are pulled low simultaneously
and 1-bit of bitsream data is sent to each flash device in SPI mode. When reading from the four flash memories, the
FPGA pulls all of the o_flash_csn[3:0] signals low. Four-wide configuration data is read from the flash
memories and transferred to the FPGA through the i_flash_sdo ports. When bitstream operations are complete
(i.e., flash memory contents are read), transitioning from the end of the bitstream to user mode is performed as in
CPU and flash 1D modes.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 18

Each flash device can operate in SPI, Dual, Quad or Octa modes. The following figure provides a block diagram
detailing how four serial flash devices (4D configuration) can be connected to a Speedster7t FPGA in Octa (x8) mode.

Figure 11 • Speedster7t FPGA 4D Flash Programming Configuration

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 19

Figure 12 • 4D Flash SPI Read Data Ordering

Note

The FCU_FLASH_HOLDN signal must be held high at all times for both read and write accesses to the flash.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 20

Addressing Modes and Memory Organization
Addressing modes for flash memory are based on the size of the device. A three-byte addressing mode is required
for 128 Mb flash and smaller, and a four-byte addressing mode is required to support memory sizes above 128 Mb.
Writes to the flash memory occur as pages, with each page consisting of 256 bytes. The following figure shows the
memory organization.

Figure 13 • Speedster7t FPGA Flash Memory Organization

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 21

1.

2.

Address Range
The following table shows the address ranges when two images are stored on a single flash device, assuming that
each image is 1Gb in size.

Table 10 • Address Ranges For Two Bitstream Images on a Single Device

Address Range
(32 bits) Description Configuration

Details

0x0000_0000
to

0x0000_00FF

Page-0 address space. This range contains
header information described in the flash
configuration header section. This address
range cannot be used for storing actual
bitstreams.

These addresses are not user configurable.

0x0000_1000
to

0x07FF_FFFF
FPGA current address space.

The start address can be configured via
the current address in the page-0 header.
This example assumes the address starts
at 0x0000_1000 for a 1 Gb bitstream.

Flash Configuration Header (Page0 Header)

The first 256 bytes in the flash memory (page0) holds control information that describes how the subsequent
bitstream should be read from the flash device. This information can be written to the flash device in two ways:

Via the JTAG interface along with the bitstream.

Pre-programmed into the device by the manufacturer.

This space is not used for storing the device bitstream. It is formatted as described in the following table and is
generated by ACE when the flash file output option is selected according to the flash configuration options
previously described.

Note

The page0 header information does not need to be manually created. ACE generates the _page0.flash
file during bitstream generation.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 22

Table 11 • Page0 Header Format

Address Bits Value Description Device Specifics

0x0 to 0x3 32 Stage0 or full bitstream read
address (new image).

0x4 to 0x7 32 Bitstream read control.

Bit 0 – flash read enable.
Bit 1 – flash fall back enable.
Bit [5:2] – retry count.
Bit [21:6] – timeout count.
Bit 22 – enable 4-byte addressing.
Bit [27:23] – dummy read cycles.
Bit [30:28] – flash SCK div count.
Bit [31]: 1'b1 – Micron, 1'b0 – Macronix.

Bit 1 is 1'b0 for AC7t1500/
AC7t1450

0x8 to 0xB 32 Flash configuration Stage0 or full
bitstream read count.

0xC to 0xF 32 Read command.

0x18 to 0x20 24 Reserved.

0x1C 8 Page0 Header version. 0x01, Version 1 (as of ACE 9.1.1).

0x28 2 Bitstream mode. Bit 0 - NOT encrypted.
Bit 1 - full bitstream.

0x30 to 0x33 32 Stage1 header read address (new
image).

Calculated as stage0 read address + stage0
bitstream size (in bytes), aligned at 4kB
boundary.

AC7t1500/AC7t1450 only.

0x38 to 0x3B 32 Flash configuration Stage1 header
read count. AC7t1500/AC7t1450 only.

0x40 to 0x43 32 Number of wait cycles between
Stage0 and Stage1. AC7t1500/AC7t1450 only.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 23

•

•

•

•

•

•

•

Flash Configuration Protocol
With the FCU_CONFIG_MODESEL[3:0], FCU_CONFIG_CLKSEL and FCU_CONFIG_SYSCLK_BYPASS straps set
for serial flash programming, operations begin as soon as the FPGA is powered up and the FCU receives the clock
input. Immediately after reset is released, bitstream data is read out from the flash device through the flash
interface (at this time the default is SPI (×1) mode). The bitstream read is performed in two stages described as
follows:

Stage 1 – flash configuration header read from flash device:

The FCU sends a default read command and address of 0x0000_0000 (32 bits) in SPI mode to the flash device
and reads the flash configuration header.

Internal registers are then updated, including the start address for the bitstream and flash read command.

Stage 2 – bitstream read from flash device:

Based on the read mode obtained from the flash configuration header (×1/×2/×4/×8), the command and start
address are sent to the flash device.

The FCU reads the first 512 bits of bitstream data from the flash device and enters a wait state.

If encryption is not enabled, the FCU reads the complete bitstream and configures the FPGA. If encryption is
enabled and the efuse key is ready, the FCU reads the header segment0 data and sends it to the secure boot
core. The flash read state machine then waits for 2.6 ms after which the FCU reads the complete bitstream and
configures the FPGA.

Bitstream programming in all configuration modes is MSB to LSB. For transmitting a 32-bit FCU command, the
ordering in the serial ×1 mode for 1D and 4D configuration is as follows:

1D flash configuration – the flash device transmits command bit 31 on the first clock and bits 30, 29, 28, etc. on
subsequent clocks all the way down to bit 0 on the 32nd (last) clock.

4D flash configuration – the four flash devices transmit command bits [31:28] on the first clock, all the way
down to bits [3:0] on the eighth (last) clock. The ordering within the 4-bit nibble corresponds to the flash device
ordering. Specifically, on the first clock, flash[3] transmits bit 31, flash[2] transmits bit 30, flash[1] transmits bit
29 and flash[0] transmits bit 28

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 24

Flash Modes
The following section describes the various modes supported for read operations from attached flash device(s).
Read operations from the flash device can be configured either as SPI, quad or octa modes for both 1D and 4D
configurations. To write to the flash device(s), please consult the Flash Configuration Using FTDI (page 27) section.

The following table describes the different combinations of the flash device configurations and modes supported in
the Speedster7t FPGA.

Table 12 • Flash Device Configurations and Modes

Flash Programming
Mode/Configuration Flash Interface Width No. of Flash Devices

Read Width
SO[n:0] × No. of Flash

Devices

SPI (1D) 1 1 1

SPI (4D) 1 4 4

Dual (1D) 2 1 2

Dual (4D) 2 4 8

Quad (1D) 4 1 4

Quad (4D) 4 4 16

Octa (1D) 8 1 8

Octa (4D) 8 4 32

Note

A flash write can be performed via either the JTAG or PCIe modes. The PCIe or JTAG port can access the
data and command registers using an indirect addressing mode.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 25

Following are read operation timing diagrams for each of the flash interface widths.

SPI Mode

Figure 14 • SPI Read Mode Timing

Dual Mode

Figure 15 • Dual Read Mode (DREAD) Timing

Note

These diagrams pertain to Macronix devices. For details regarding other device vendors, please consult the
flash device vendor datasheet.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 26

Quad Mode

Figure 16 • Quad Read Mode (QREAD) Timing

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 27

Octa Mode

Figure 17 • Octa Read Mode (8READ) Timing

Flash Memory Size Requirements
As a general rule of thumb to cover the largest bitstream size, a 1 Gb flash memory is recommended to store one
bitstream.

Flash Configuration Using FTDI
The FTDI device multi-protocol synchronous serial engine (MPSEE) is configured for USB-to-SPI communication to
program the flash device. SPI protocol lines are implemented using the MPSEE channels ADBUS0-7, ACBUS0,
ACBUS3, and BCBUS5.

Warning!

Octa Mode Device Limitations:

For Octa Mode, Speedster7t devices currently only support flash devices in the 1-1-8 mode.

For context, normally flash devices have a SPI sequence that sets a configuration register value that fully
converts everything to octa. Command,address,(return) data are all in octa: 8-bits on 8 lines throughout, or
8-8-8 mode. Some flash devices have a read command that works more like QSPI, and does not require
writing a configuration register to enable. The command and address are sent on a single line (SDI) similar
to SPI, and after a fixed number of dummy cycles, the data is read on all 8 lines. This is referred to as 1-1-8
mode.

The following figure represents 8-8-8 mode.

Note

Please work with the Achronix support team to evaluate the best Flash device size for any specific target
device and end user design application.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 28

•

•

•

FTDI Board-Level Device Connections
ACE supports flash programming for three types of pin-out connections from FTDI to the flash device:

Configuration 1

Configuration 2

Configuration 3

The FTDI devices supported by ACE are FT2232 and FT4232H. For pin-out connections config1 and config3, the
signal SPI_MODE_EN is not required but can be used in situations where a multiplexer is placed between the FTDI
device and another device that can access the flash memory. The three configuration connection types are
described in the following tables.

FTDI Flash Pinout To FT2232

Table 13 • FTDI FT2232-to-Flash Connections (Configuration 1)

FTDI
Port Name

FTDI Device
Pin Number

FTDI
Net name

Flash
Pin

ADBUS0 16 FTDI_AD0 SPI_CLK

ADBUS1 17 FTDI_AD1 FCU_DQ1

ADBUS2 18 FTDI_AD2 FCU_DQ9

ADBUS3 19 FTDI_AD3 FCU_DQ17

ADBUS4 21 FTDI_AD4 FCU_DQ25

ADBUS5 22 FTDI_AD5 SPI_SDI

ADBUS6 23 FTDI_AD6 SPI_CS_N[3]

ADBUS7 24 FTDI_AD7 SPI_CS_N[2]

ACBUS0 26 FTDI_ACBUS[0] SPI_CS_N[0]

ACBUS3 29 FTDI_ACBUS[3] SPI_CS_N[1]

BCBUS5 57 FTDI_BCBUS[5] SPI_MODE_EN

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 29

FTDI Flash Pinout To FT4232H

Table 14 • FTDI FT4232-to-Flash Connections (Configuration 2)

FTDI
Port Name

FTDI Device
Pin Number

FTDI
Net name

Flash
Pin

ADBUS0 16 FTDI_AD0 SPI_CLK

ADBUS1 17 FTDI_AD1 NC

ADBUS2 18 FTDI_AD2 SPI_CS_N[1]

ADBUS3 19 FTDI_AD3 SPI_CS_N[2]

ADBUS4 21 FTDI_AD4 SPI_CS_N[3]

ADBUS5 22 FTDI_AD5 SPI_MOSI

ADBUS6 23 FTDI_AD6 SPI_MISO

ADBUS7 24 FTDI_AD7 SPI_CS_N[0]

FTDI Flash Pinout To FT2232/4232H

Table 15 • FTDI FT2232/4232H-to-Flash Connections (Configuration 3)

FTDI
Port Name

FTDI Device
Pin Number

FTDI
Net name

Flash
Pin

ADBUS0 16 FTDI_AD0 SPI_CLK

ADBUS1 17 FTDI_AD1 SPI_MOSI

ADBUS2 18 FTDI_AD2 SPI_MISO

ADBUS3 19 FTDI_AD3 SPI_CS_N[2]

ADBUS4 21 FTDI_AD4 SPI_CS_N[3]

Note

Configuration 2 is the hardware configuration used with the VectorPath® S7t-VG6 accelerator card.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 30

•

•

•

FTDI
Port Name

FTDI Device
Pin Number

FTDI
Net name

Flash
Pin

ADBUS5 22 FTDI_AD5 SPI_CS_N[0]

ADBUS6 23 FTDI_AD6 SPI_CS_N[1]

BCBUS5 57 FTDI_BCBUS[5] SPI_MODE_EN

Bitstream Programming via JTAG

Generating the JTAG Bitstream Files From ACE
The JTAG .hex file is the default file and is always generated when running the Generate Bitstream flow step (run
-step write_bitstream). Advanced bitstream features are covered in the Design Security for Speedster7t
FPGA (page 105), Partial Reconfiguration (page 118), and Configuration Error Correction and SEU Mitigation (page 96)
sections.

How To Use the ACE-Generated JTAG Bitstream Files
There are three ways to program a JTAG bitstream .hex file created during the Generate Bitstream flow step to
program over JTAG. These methods are detailed in the following pages.

JTAG Programming using the ACE Download View (page 31)

JTAG Programming using the ACE Flow Steps (page 34)

JTAG Programming using the Tcl Library API (page 36)

Note

If using configuration 3 with the FTDI FT4232H, the SPI_MODE_EN pin is not used because it is not
available on that device.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 31

JTAG Programming using the ACE Download View

ACE JTAG Connection Preference Page

Figure 18 • Configure JTAG Connection Preference Page Example

Table 16 • Configure JTAG Interface Preference Page Options

Option Description

JTAG Programmer Device Name (1)

The name of the JTAG device which should be used for all ACE
JTAG interactions with the chosen FPGA or eFPGA. If the name is
not specified, auto-detection of JTAG devices is attempted.

JTAG Scan Chain

IR Bits Before the Target FPGA Device (2) Sets the (decimal) number of instruction register bits between the
board JTAG TDI pin and the target device.

IR Bits After the Target FPGA Device (2) Sets the (decimal) number of instruction register bits between the
target device and the board JTAG TDO pin.

Target FPGA Device Offset in Scan Chain (2) Sets the device count (in decimal) between the board JTAG TDI pin
and target FPGA device.

Performance Tip

Even if only one JTAG device is connected, specifying the
JTAG device by name (instead of relying upon auto-
detection) can save up to several seconds of initialization
time on every JTAG connection.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 32

Option Description

ACE JTAG Download View
The Download view provides a graphical interface for choosing and downloading (via JTAG) a bitstream *.hex file to
an Achronix FPGA connected to the workstation using USB via a Bitporter2 pod or FTDI FT2232H or FT4232H device.

Figure 19 • Download View Example

1.

2.

Table Notes

Auto-detection can only be used safely when just one JTAG pod/device is connected. If more than one
pod/device is automatically detected while no name is specified, JTAG interactions fail, stating that it is
required to specify which pod/device to use. The Tcl command jtag::get_connected_devices
provides a list of connected JTAG device names. See the Speedster7t Configuration User Guide (UG094)
for more information.

The default value of zero is always correct for single-device JTAG scan chains. For multi-device scan
chains, the default values of all zeros never work.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 33

Table 17 • Download View Options

Option Description

JTAG Programming

JTAG Programming Options

Perform an FCU reset to clear the (e)FPGA config
memory.

When checked, performs a soft reset and clears all device configuration
memory before beginning programming. This reset is typically only
disabled for multi-stage programming (after stage 0 programming has
completed, before programming later stages begins), or for "partial
reconfig" when partial bitstreams are in use (see the chapter titled
Partial Reconfiguration in the Speedster7t Configuration User Guide
(UG094) for more details).

Browse Allows choosing any *.hex bitstream file from the file system using a
graphical file system browser.

 Download Bitstream
Pressing this button performs the actual download by calling the
appropriate Tcl commands in the jtag:: namespace. See also:
Speedster7t Configuration User Guide (UG094).

Suggested Bitstream Files

From active implementation.
A list of all *.hex bitstream files (shown as hyperlinks) found in the
output directory of the current Active Implementation. Select any of
these hyperlinks to choose that file for download.

Recently used.
A list of the most recently used *.hex bitstream files (shown as
hyperlinks). Select any of these hyperlinks to choose that file for
download.

JTAG Utilities

Report a list of all available USB-connected JTAG
devices by ID.

Press the button to run a Tcl command
(jtag::get_connected_devices) to report a list of all connected
JTAG devices in the Tcl Console view.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 34

JTAG Programming using the ACE Flow Steps
ACE has a flowstep that, upon completion of the "Generate Bitstream" flowstep, allows downloading a generated
bitstream into a connected Speedster7t FPGA.

Figure 20 • ACE FPGA Download Flow Step

Figure 21 • ACE FPGA Download Options Dialog

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 35

Table 18 • FPGA Download Implementation Options - JTAG Scan Chain

Option ACE impl_option Description

JTAG Device ID (jtag_id) download_jtag_id

Specifies the JTAG programming device name to attempt
connecting to during FPGA download. If not populated, auto-
detection of JTAG programming devices is attempted, and the
download fails if more than one JTAG device is auto-detected.

Single Device Chain download_single_device

This option should be enabled when the target is the only device
on the JTAG scan chain (single-device JTAG scan chain). If this
option is set to 0, the pre-IR, post-IR, and chain offset options are
used to configure the scan chain.

IR Bits Before Target download_preir_padding

Sets the (decimal) number of instruction register bits between the
board JTAG TDI pin and the target device instruction register. Used
for multi-device scan chains in order to pad the IR chain properly
with ones, placing other devices in bypass mode.

IR Bits After Target download_postir_padding

Sets the (decimal) number of instruction register bits between the
target device and the board JTAG TDO pin. Used for multi-device
scan chains in order to pad the IR chain properly with ones, placing
other devices in bypass mode.

Chain Offset of Target download_chain_offset
Sets the device count (in decimal) between the board JTAG TDI pin
and target FPGA device. Setting this to 1 selects the second device
on the chain, and so on.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 36

JTAG Programming using the Tcl Library API
This section provides a list of JTAG Tcl commands for high-level general use and low-level specific use.

Variables Under ACE Tcl Console
When running in the ACE Tcl console, there are two types of Tcl variables used by the script: obligatory and optional.
Both can be set in the Tcl console window before running a script.

Starting with ACE 10.0, global variables are no longer just set to affect the ACE Tcl library.

To set a TCL variable:
set var ACP1234X
To clear a TCL variable:
unset var
To determine the setting of a variable:
puts $var

#
Accessor functions are available for the JTAG Tcl Library.

To set the jtag-id used in subsequent operations:
set_global_jtag_id ACP1234X
To determine what value a variable is set to:
puts []

Table 19 • Variables Under ACE Tcl Console

Variable Name Mandatory Description

jtag_id Yes

Must be set before scripts are run. Must match the JTAG
ID value of the particular programming pod. To obtain a list
of available programming pods, issue the
jtag::get_connected_devices command.

quiet_script No

If set to any value other than 0, the
jtag::apb_write() and jtag::apb_read()
commands are called without the -print option for scripts
to run cleanly without excessive console logging.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 37

Tcl Command Tables

Namespace Commands

There is a specific Tcl namespace within the API for each Speedster7t FPGA. The commands within each
namespace are high-level commands such that each of these commands must be prefixed with its respective
device namespace. For example, to read from a specific register in the Speedster7t AC7t1500 FPGA, the
csr_read_named command must be prefixed with the correct namespace as: ac7t1500::csr_read_named.
The same action in the Speedster AC7t1450 FPGA requires the ac7t1450::csr_read_named command.

Acting On Read Returned Values

Under ACE, read commands operate as expected by interrogating the relevant registers and returning the values
read to the ACE Tcl console. These values can then be used in further Tcl commands.

Commands

The following commands are specific to each device namespace.

Table 20 • High-Level Commands

Command Arguments Function Description

Interrogate the Dictionaries

get_dict_spaces (1) None Return the top address map spaces. See list of available tokens under level 1.

get_dict_spaces (1) <top level space token> Return the level 2 tokens under the top
level space. See list of available tokens under level 2.

get_dict_spaces (1) <level 1 token> <level 2
token>

Returns list of level 2 tokens. If using
CSR_SPACE, these are the CSR IP
areas under the specific IP.

See level 3 token descriptions.

get_dict_space CSR_SPACE IP_NAME <IP area> Returns a list of CSR registers under the
specific IP and IP ID. Returns register names (list can be long).

get_dict_space CSR_SPACE IP_NAME <IP area>
<register_name>

Gets the entry for the specified register
name.

Returns an entry consisting of {addr[23:0]
reg_size default_value}.

get_csr_reg_name (1) address
Reverse dictionary lookup, providing
the token hierarchy of the specified
address.

Given the address (must be 11 hex digits), returns the
tokens that specify that address.
For example, given 08091340264, returns:

get_csr_reg_name()
success. The address
08091340264 equates to
CSR_SPACE DDR4 PHY
MICRORESET

Named CSR Register Accesses

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 38

Command Arguments Function Description

csr_write_named CSR_SPACE IP_NAME IP_AREA
REG_NAME <value> Writes to selected register. Value is treated as hex with or without the "0x"

prefix.

csr_reset_named CSR_SPACE IP_NAME IP_AREA
REG_NAME

Resets selected register to its default
value. The default value is stored in dictionaries.

csr_read_named (2) CSR_SPACE IP_NAME IP_AREA
REG_NAME [expected value] Reads the selected register. Function returns register read (under ACE).

csr_verify_named CSR_SPACE IP_NAME IP_AREA
REG_NAME <value>

Verifies selected register is equal to
value. When run outside of ACE, function always returns 0.

csr_read_all_
regs_named CSR_SPACE IP_NAME IP_AREA Reads all registers in an IP area. Prints register name to console while reading the

register.

csr_set_bits_named
(2)

CSR_SPACE IP_NAME IP_AREA
REG_NAME <low_bit>
<high_bit> [expected value]

Sets bits [high_bit:low_bit] to
1'b1 in the selected register.

Performs a read-modify-write on the register. To set
a single bit, assign high_bit = low_bit. The
optional argument, expected value, is used in
simulation only.

csr_clear_
bits_named (2)

CSR_SPACE IP_NAME IP_AREA
REG_NAME <low_bit>
<high_bit> [expected value]

Clears bits [high_bit:low_bit] to
1'b0 in the selected register.

Performs a read-modify-write on the register. To
clear a single bit, assign high_bit = low_bit.
The optional argument, expected value, is used
in simulation only.

Based CSR Register Accesses – these functions rely on a stateful Tcl flow. The base addresses must be set first before the functions can make calls using the based
address. These functions apply when a script is focused on a single IP block, saving the need to repeatedly re-enter values.

csr_named_base CSR_SPACE IP_NAME [IP_AREA] Declares the arguments to be the
stateful base address values.

Supports 2 to 3 arguments. If IP_AREA is not
specified, the stateful IP ID variable is set to
BASE_IP (= 0).

csr_write_based REG_NAME <value> Writes to the selected register. The value is treated as hex with or without the "0x"
prefix.

csr_reset_based REG_NAME Resets the selected register to its
default value. The default value is stored in dictionaries.

csr_read_based (2) REG_NAME [expected value] Reads the selected register. The function returns the register read (under ACE).

csr_verify_based REG_NAME <value> Verifies the selected register is equal to
value.

When run outside of ACE, the function always returns
0.

Individual CSR Access

csr_named_addr CSR_SPACE IP_NAME [IP_AREA]
[REG_NAME] Returns the base address of the space.

Between 2 and 4 arguments are supported. The
returned address is the base address of the provided
arguments. If all four arguments are provided, the
address is the full register address.

noc_write (3) <addr value> Writes to any location in the address
map.

The addr value must be an eleven-character, 42-bit
hex value and can be up to 32-bit hex. If
csr_named_addr is used to obtain the base
address, this function can be used by simply adding
on the offsets to known registers.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 39

Command Arguments Function Description

noc_read (2) (3) <addr> [expected value] Reads from any location in the address
map.

The addr value must be an eleven-character, 42-bit
hex value. If csr_named_addr is used to obtain
the base address, this function can be used by simply
adding on the offsets to known registers.

noc_verify (3) <addr> <value> Reads and verifies the result from any
location in the address map.

The addr value must be an eleven-character, 42-bit
hex value. If csr_named_addr is used to obtain
the base address, this function can be used by simply
adding on the offsets to known registers.

set_bits_addressed <addr> <low_bit> <high_bit> Sets bits [high_bit:low_bit] to
1'b1 in the selected address.

Performs a read-modify-write on the address
location. To set a single bit, assign high_bit =
low_bit.

clear_bits_
addressed <addr> <low_bit> <high_bit> Clears bits [high_bit:low_bit] to

1'b0 in the selected address.

Performs a read-modify-write on the address
location. To clear a single bit, assign high_bit =
low_bit.

NAP Access – these commands access the NAP address space, not the CSR address space.

nap_axi_write NAP_SPACE <column row
address> <value>

Creates an AXI write from the selected
NAP.

The address and data are only 32-bits wide. The
address is the AXI write address, awaddr and does
not relate to selecting the NAP which uses column
and row. The write data is relocated to the
appropriate byte lane, selected by the address, in the
256-bit output from the NAP.

nap_axi_read (2) NAP_SPACE <column row
address> [expected value]

Creates an AXI read at the selected AXI
NAP.

The address and data are only 32-bits wide. The
address is the AXI read address, araddr and does
not relate to selecting the NAP which uses column
and row. The read data is relocated to the
appropriate byte lane, selected by the address, in the
256-bit input from the NAP.

nap_axi_verify NAP_SPACE <column row
address> <value>

Creates an AXI read at the selected
NAP. Compares the read value against
the expected value.

The address and data are only 32-bits wide. The
address is the AXI read address, araddr and does
not relate to selecting the NAP which uses column
and row. The read data is relocated to the
appropriate byte lane, selected by the address, in the
256-bit input from the NAP.

GDDR6 and DDR4 Memory Access – writes directly into the GDDR memory arrays. To access the GDDR CSR registers, use the CSR commands. The controllers must have
completed initialization and training for these reads and writes to be successful.

memory_write GDDR6_SPACE <controller>
<channel> <address> <value>

Writes to the selected GDDR memory
space.

<controller> is one of {GDDR_0 to GDDR_7}.
<channel> is one of {CH_0 CH_1}. The address
is up to a 33-bit hex field and the value is up to a 32-
bit hex field.

memory_read GDDR6_SPACE <controller>
<channel> <address>

Reads from the selected GDDR memory
space.

<controller> is one of {GDDR_0 to GDDR_7}.
<channel> is one of {CH_0 CH_1}. The address
is up to a 33-bit hex field and the returned value is 32-
bit hex.

memory_write DDR4_SPACE <address>
<value>

Writes to the selected DDR4 memory
space.

<address> is up to a 40-bit hex field. <value> is
up to a 32-bit hex field.

memory_read DDR4_SPACE <address> Reads from the selected DDR4 memory
space.

<address> is up to a 40-bit hex field The returned
value is a 32-bit hex field.

Delay or Wait – inserts a wait into the command file. When run under ACE, there is at minimum an approximate 1ms delay between commands.

UG094 Speedster7t Configuration User Guide

1 https://www.achronix.com/documentation/runtime-programming-speedster-fpgas-an025

2.0 www.achronix.com 40

Command Arguments Function Description

wait_us <wait value (decimal)> Adds a wait value μs delay to the
simulation command file.

The value is decimal, not hex. The wait is based on
the FCU BFM cfg_clk. By default, this is 250MHz
(4ns). If this clock is changed, this function must be
updated. There is an associated ACE command only
if the value exceeds 1,000 (>1ms).

wait_ns <wait value (decimal)> Adds a wait value ns delay to the
simulation command file.

The value is decimal, not hex. The wait is based on
the FCU BFM cfg_clk. By default this is 250MHz
(4ns). If this clock is changed, this function must be
updated. The delay is in multiples of 4ns. This
command is only really applicable to simulation as
the time between JTAG commands to the FCU in
hardware is in the order of hundreds of μs or even
ms. There is an associated ACE command only if the
value exceeds 1,000,000 (>1ms).

Programming When Running Under ACE

program_hex_file <hex filename (with extension)>
[<optional arguments>]

Programs a hex file. This operation
opens the JTAG port and leaves it open.

The optional arguments are:
-encrypted – encrypted hex file.
-do_not_enter_user_mode – after
programming, remain in configuration mode. Holds
most of the IORing IP in reset.
To use Windows backslashes, enclose the filename
and path in braces "{}" (i.e., program_hex_file
{C:\Users\me\my_dir\test\my_hex.hex}.

1.

2.

3.

Table Notes

More details on available tokens can be found in the Application Note, Runtime Programming of Speedster FPGAs (AN025).1

The argument, expected value, is optional for functions that read from registers.

Excludes FCU registers. ACE has a specific command to access the FCU registers.

https://www.achronix.com/documentation/runtime-programming-speedster-fpgas-an025
https://www.achronix.com/documentation/runtime-programming-speedster-fpgas-an025

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 41

Low-level JTAG Tcl Commands

Table 21 • JTAG Tcl Commands in jtag:: namespace

Tcl Command Description

jtag::open <jtag_id> Opens a new connection to the JTAG device. Sets the initial clock frequency.

jtag::get_connected_devices Gets the list of connected JTAG devices from the host machine. Returns the serial
number (jtag_id) to be used with the jtag::open command.

jtag::get_open_connections Returns the list of open connected JTAG devices in the ACE session.

jtag::close <jtag_id> Closes an existing connection to a JTAG device.

jtag::initialize_scan_chain <jtag_id> <pre_ir_bits>
<post_ir_bits><target_device_offset> -single_device
-target_device <string>

Configures a scan chain. This function sets the initial clock frequency (based on the
target device), checks the number of devices and IR length, sets preamble/postamble
IR/DR bits, and checks IDCODE.

jtag::read <jtag_id> <bit_length> -irscan Performs a JTAG read. Specify -irscan to perform an IRSCAN. Returns a hex string of
the read-back data.

jtag::write <jtag_id> <bit_length> <data> -irscan Performs a JTAG write to the connected JTAG device. Specify -irscan to perform an
IRSCAN.

jtag::write_read <jtag_id> <bit_length> <data> -irscan Performs a JTAG write and read (scan with capture) to the connected JTAG device.
Specify -irscan to perform an IRSCAN. Returns a hex string of the read-back data.

jtag::set_clock_frequency <jtag_id> <frequency>
Sets the TCK frequency of the connected JTAG device. Returns the actual set
frequency since the exact frequency cannot always be obtained. Waits in idle for 100
cycles.

jtag::wait <jtag_id> <tap_state> <clock_ticks> (1) Waits in the specified TAP state for the specified number of TCK cycles.

jtag::set_trst_n <jtag_id> <value> Asserts the specified value (0 or 1) on the TRST_N pin. A value of 0 asserts TRSTN and
a value of 1 deasserts TRSTN.

jtag::set_tap_state <jtag_id> <tap_state> (1) Sets the JTAG TAP state to one of the legal TAP states.

jtag::get_tap_state <jtag_id> (1) Returns the current JTAG TAP state.

jtag::read_config_rstn <jtag_id> -print Returns the value of FCU_CONFIG_RSTN.

jtag::read_config_status <jtag_id> -print Returns the value of FCU_CONFIG_STATUS.

jtag::read_config_done <jtag_id> -print Returns the value of FCU_CONFIG_DONE.

jtag::initialize_fcu <jtag_id> -reset

Performs initial setup. Must be run after the jtag::initialize_scan_chain
command. The -reset option performs a soft reset and waits for configuration
memory to be cleared. This action is required prior to bitstream programming with
the jtag::program_bitstream command. When performing basic register/
cmem read/write operations, the -reset option should not be used (all registers are
reset).

Warning!

These lower-level commands should only be used if no higher-level commands are available.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 42

Tcl Command Description

jtag::exit_fcu <jtag_id> This command indicates to the FCU that it can exit JTAG mode and allow
communication from other interfaces (such as the CPU).

jtag::lock_fcu <jtag_id> This command locks the FCU after jtag::program_bitstream or locks the FCU
after it is unlocked with jtag::unlock_fcu.

jtag::unlock_fcu <jtag_id> -instance_id This command should be run after the jtag::program_bitstream command to
unlock the FCU if locked after programming the bitstream.

jtag::program_bitstream <jtag_id> <hex_file>
-encrypted -stay_in_fcu_mode <bool> (1)

Performs a bulk write to the Speedster7t FPGAs using data from the supplied hex file.
Programs the bitstream and enters user mode. Must be run after
jtag::initialize_scan_chain and jtag::initialize_fcu -reset.
The optional -encrypted flag sends an encrypted bitstream hex file. This option
adds the additional wait cycles needed for the Athena encryption engine. After the
first 12,688 bytes of the encrypted bitstream, the code must wait in idle (pulsing TCK)
520,000 cycles. Refer to the Design Security for Speedster7t FPGA (page 105) section for
details.

jtag::read_cmem <jtag_id> <word_count> <word_step>
<address> -print

Reads a frame of 9344-bit data from the CMEM (Core/BRAM/LRAM/CFF/DFF) data
space starting at frame address <address>. The address is the 24-bit frame address
(upper 24-bits out of the 32-bit address). The read-back data is returned as a hex string
to the caller. The -print option prints a message indicating the address and data
read back.

jtag::write_cmem <jtag_id> <address> -data <9344-bit
string> -print

Writes a frame of 9344-bit data to the CMEM (CORE/BRAM/LRAM/CFF/DFF) data space
at address <address>. If no data is specified, the command writes all ones. The
-print option prints a message indicating the write address.

jtag::read_acb <jtag_id> <address> <word_count>
<word_step> -print

Reads <word_count> 32-bit words of data from the ACB data space (boundary ring)
starting at word address <address>. The address is the full 24-bit ACB address. If
multiple words are read back, the address increments by <word_step> for each
read operation. The read-back data is returned as a Tcl list of hex strings to the caller.
The -print option prints a message indicating the address and data read back.

jtag::write_acb <jtag_id> <address> <data> -flush
<int> -print

Writes 32 bits of <data> into the register at address <address>. The address is the
full 24-bit ACB address. The -print option prints a message indicating the write
address.

jtag::read_apb <jtag_id> <address> <word_count>
<word_step> -print

Read <word_count> 32-bit words of data from the full 42-bit address space, which
can talk to CSR, GDDR6, DDR4, FCU, PCIE, or NAP data space starting at word address
<address>. The address is the full 42-bit address. If multiple words are read back,
the address increments by <word_step> for each read operation. The read-back
data is returned as a Tcl list of hex strings to the caller. The -print option can be
used to print a message indicating the address and data read back.
Examples:

Bulk read
jtag::read_apb $jtag_id {08060000048
08070000050 0816000003c 08170000030} 1 1
Single read
jtag::read_apb $jtag_id 08060000048 1 1

jtag::write_apb <jtag_id> <address> <data> -flush
<int> -print

Writes 32 bits of <data> into the register at address <address>. The address is the
full 42-bit address. The -flush option adds <int> clock ticks to wait in IDLE after
the write to flush it. The default is 300 clock cycles. The -print option prints a
message indicating the write address.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 43

•

•

•

Tcl Command Description

jtag::read_fcu <jtag_id> <address> <word_count>
<word_step> -print

Reads <word_count> 32-bit words of data from the FCU register space (Internal FCU
Registers) starting at word address <address>. The address is the full 16-bit FCU
address. If multiple words are read back, the address increments by <word_step>
for each read operation. The read-back data is returned as a Tcl list of hex strings to
the caller. The -print option prints a message indicating the address and data read
back.

jtag::write_fcu <jtag_id> <address> <data> -print
Writes 32 bits of <data> into the FCU register at <address>. <address> is the full
16-bit FCU address. The -print option displays a message indicating the target
address.

Programming the Board Using JTAG and Read/Write Registers

Speedster7t Flow

To program a bitstream using JTAG Tcl, a *.hex file must be generated which appears in the <design>/ace/
<impl>/output/ directory. The implementation option bitstream_output_hex is enabled by default for
Speedster7t FPGAs.

The following Tcl commands must be run to:

Open the JTAG Connection

Program the Bitstream

Enter User Mode

set jtag_id [jtag::get_connected_devices]
jtag::open $jtag_id
jtag::initialize_scan_chain $jtag_id 0 0 0
jtag::initialize_fcu $jtag_id -reset
jtag::program_bitstream $jtag_id <*.hex file>

If the bitstream_fcu_lock impl option is set, the FCU locks at the end of programming. This prevents the FCU
registers from being accessed. The FCU must be unlocked in order to regain access. However, the FCU cannot be
unlocked on encrypted bitstreams. To unlock the FCU after entering user mode, add the following command:

jtag::unlock_fcu $jtag_id

If the device is already programmed, the -reset option must be skipped:

1.

Table Notes

Legal JTAG TAP states:

CAPTURE_DR, CAPTURE_IR, EXIT1_DR, EXIT1_IR,
EXIT2_DR, EXIT2_IR, IDLE, PAUSE_DR,
PAUSE_IR, RESET, SELECT_DR_SCAN, SELECT_IR_SCAN,
SHIFT_DR, SHIFT_IR, UPDATE_DR, UPDATE_IR.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 44

set jtag_id [jtag::get_connected_devices]
jtag::open $jtag_id
jtag::initialize_scan_chain $jtag_id 0 0 0
jtag::initialize_fcu $jtag_id

Following either code path, where appropriate, register reads and writes can be executed. The following are some
example registers to read and write:

jtag::read_fcu $jtag_id 1000 -print
jtag::write_fcu $jtag_id 1064 00003001 -print
jtag::read_fcu $jtag_id 1064 1 4 -print
jtag::write_fcu $jtag_id 1064 00000000 -print
jtag::read_fcu $jtag_id 1064 1 4 -print

To release the JTAG lock, execute the following command:

jtag::close $jtag_id

UG094 Speedster7t Configuration User Guide

2 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 www.achronix.com 45

•

•

JTAG Hardware Overview

Introduction
When a design has successfully completed the ACE design flow, it is ready for FPGA programming. ACE has a
straightforward interface to generate the bitstream files required to implement all of the supported configuration
modes. The bitstream files are generated during the the FPGA Programming – Generate Bitstream step of the
compilation flow (see the Concepts, View, Flow View section in the ACE User Guide (UG070)2 for more details).

The bitstream hex file needed for JTAG mode configuration is always generated by default. The "Bitstream
Generation" section of the Project Options menu, also provides a menu selection to generate bitstream files for the
other configuration modes.

The configuration options are unique to each device and ACE supports a number of settings for the features
supported by each device.

JTAG Configuration Overview
The embedded programming and configuration logic in the Speedster7t FPGA is designed to support a variety of
programming and debugging options. There are two external interfaces that can be used as communication
channels between Achronix hardware and software:

The Achronix Bitporter2 pod – provides a JTAG-only interface via USB to Achronix FPGAs. Device configuration
must be completed via JTAG, along with communication with debug tools such as Snapshot. See JTAG
Configuration Using the Bitporter2 Pod (page 68).

An FTDI FT2232H/FT4232H device – provides a lower-cost JTAG interface to Achronix FPGAs through USB.
This interface also allows debug tools to be accessible via JTAG. See JTAG Configuration Using FTDI (page 52).

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 46

The following figure outlines the basic block diagram of the programming and configuration logic. The configuration
management unit is responsible for configuring the device with a bitstream and controls the startup and shutdown
sequence from configuration mode to user mode and back.

Figure 22 • Configuration Options Block Diagram

UG094 Speedster7t Configuration User Guide

3 https://support.achronix.com/hc/en-us/sections/360010558151-Board-Level-Issues

2.0 www.achronix.com 47

Board-Level Device Connections

The following figure details the board-level electrical connections to the JTAG header used to connect the
Bitporter2. The subsequent figure provides the mechanical specifications (The value of VDDO_JTAG is dependent on
the I/O voltage of the JTAG target chip).

For board-level connection details, access board schematic documents on the Achronix support portal, Board Level
Issues3 (requires signed NDA to view board schematics).

Figure 23 • JTAG Header Electrical Connections

Caution

The Tck signal produced by both the FT2232H/FT4232H device, and by all Bitporter 2 devices, is only
present during programming. Further, its frequency accuracy and stability cannot be guaranteed.
Therefore, it is not recommended to use this clock for any other purpose than JTAG programming of the
device.

https://support.achronix.com/hc/en-us/sections/360010558151-Board-Level-Issues
https://support.achronix.com/hc/en-us/sections/360010558151-Board-Level-Issues

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 48

Figure 24 • JTAG Header Mechanical Specifications

JTAG TAP Controller Overview

The Speedster7t FPGA JTAG TAP controller is IEEE Std 1149.1 compliant and is used for programming the bitstream
and debug via Snapshot in ACE. The JTAG_TMS and JTAG_TCK inputs determine whether an instruction register
scan or data register scan is performed. JTAG_TMS and JTAG_TDI are sampled on the rising edge of JTAG_TCK,
while JTAG_TDO changes on the falling edge. JTAG configuration and operation mode is independent of
FCU_CONFIG_MODESEL settings.

JTAG implementation in Speedster7t FPGAs, which allows for bitstream programming as well as real-time in-system
control and observation, is composed of the blocks shown in the following figure.

The external interface is a standard 5-pin JTAG interface, connected directly to the JTAG TAP controller. The TAP
controller operates independently from the Speedster7t FPGA FCU. It is always active and uses JTAG_TCK for
clocking. The TAP controller takes the data from the pins and converts it to DR instructions to communicate to the
JTAG logic in the FCU. It also takes in data in the form of load/read requests, translating it to the appropriate signals
to drive and expect on the JTAG pins.

The JTAG logic in the FCU interprets these DR instructions and generates input data in the standard 128-bit
Speedster7t FPGA frame size format, along with a data valid indicator, to be forwarded to the FCU data mux and,
ultimately, to the FCU state machine for configuration memory loading. The FCU data mux accepts 128-bit output
data from the FCU, which has an associated valid signal for debug and read-back operations. The mux also provides
an acknowledge signal to indicate to downstream circuitry that the data transfer was successful.

The FCU data mux simply selects between the configuration mode-specific data buses entering the FCU. This logic
is controlled by the static FCU_CONFIG_MODESEL straps and the JTAG override logic from the JTAG TAP controller.

Finally, the FCU state machine accepts incoming data for loading the configuration memory. Conversely, it also
provides output data from the configuration memory or Snapshot to forward upstream.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 49

Figure 25 • Block Diagram for JTAG Instruction Processing in the FCU

JTAG Instructions
The following table lists all JTAG instructions supported by Speedster7t FPGAs.

Table 22 • JTAG Instructions

Instruction Opcode DR
Width Function

BYPASS 23'b00000000000000000000000 1

The required BYPASS instruction allows a Speedster7t FPGA to
remain in a functional mode and selects the bypass register to be
connected between JTAG_TDI and JTAG_TDO. This instruction
allows serial data to be transferred through the FCU from
JTAG_TDI to JTAG_TDO without affecting FPGA operation.

EXTEST 23'b11111111111111111101000 –

The required EXTEST instruction places the Speedster7t FPGA into
an external boundary-test mode and selects the boundary-scan
register to be connected between JTAG_TDI and JTAG_TDO.
Output pins operate in test mode, driven from the contents of the
boundary-scan update latch. Input data are captured in boundary-
scan latches prior to shift operation. During this instruction, the
boundary-scan register is accessed to drive test data outside the
FPGA via the boundary outputs and receive test data from outside
the FPGA via the boundary inputs.

EXTEST_PULSE 23'b11111111111111111101001 – Generates a single pulse by entering and exiting the Run-Test/Idle
state of the 1149.1 TAP controller.

EXTEST_TRAIN 23'b11111111111111111101010 –

Generates a stream of pulses while in the Run-Test/Idle state. A
BSDL file for an 1149.6 device specifies the minimum number of
pulses and the maximum time period allowed for pulse generation
in the Run-Test/Idle state.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 50

Instruction Opcode DR
Width Function

SAMPLE/
PRELOAD 23'b11111111111111111111000 –

The required SAMPLE/PRELOAD instruction allows a Speedster7t
FPGA to remain in its functional mode and selects the boundary-
scan register to be connected between JTAG_TDI and JTAG_TDO.
The output and input pins operate in normal mode. Input pin data
and core logic output data are captured in the boundary-scan
latches. During this instruction, the boundary-scan register can be
accessed via a data scan operation to take a sample of the
functional data entering and leaving the FPGA. This instruction is
also used to preload test data into the boundary-scan register
before loading an EXTEST instruction.

IDCODE 23'b11111111111111111111110 32

The optional IDCODE instruction allows a Speedster7t FPGA to
remain in its functional mode and selects the optional device
identification register to be connected between JTAG_TDI and
JTAG_TDO. The IDCODE register appears between JTAG_TDI
and JTAG_TDO after power-up, after the TAP has been reset using
the optional TRST pin, or by otherwise moving to the Test-Logic-
Reset state.

HIGHZ 23'b11111111111111111001111 –

The optional HIGHZ instruction sets all outputs (including two-
state as well as three-state types) to a disabled (high-impedance)
state and selects the bypass register to be connected between
JTAG_TDI and JTAG_TDO.

CLAMP 23'b11111111111111111101111 –

Provides for "guarding" chip outputs during in-circuit test or
boundary-scan functional test. Output pins operate in test mode,
driven from the content of the boundary-scan update latch. The
one-bit bypass register is selected for shifting.

INTDR 23'b00000000000000000111101 97
Provides access to the test data register implemented internal to
the TAP controller. This internal register is used for global
configuration and monitoring of global status signals.

JLOAD 23'b00000100000001100111010 128

Enables the scan-in of the configuration bitstream to the
configuration logic (in this mode, the SHIFT-DR state is used to scan
in the bitstream). For the read-back, the data register is read back.
All of these operations are performed internally using a 128-bit
parallel bus. Data is latched every 128 bits in the UPDATE-DR state.

JREAD 23'b00000100000001000111010 128

Enables the data register for read-back. When this instruction is
decoded and CAPTURE-DR is executed, the data from the
configuration logic is sampled as 32-bit data plus a valid bit.
Multiple words of the configuration memory can be read back by
cycling through the CAPTURE-DR/SHIFT-DR states. The 33-bit
status register is selected between JTAG_TDI and JTAG_TDO.

JUSR1 (1) 23'b00000100000000100111010 User
defined Enables the USER1 TDR.

JUSR2 (1) 23'b00000100000000000111010 User
defined Enables the USER2 TDR.

JASYNCERR 23'b00000000000001110111010 – Enables the connection to the fabric error status scan register.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 51

Instruction Opcode DR
Width Function

1.

Table Notes

This TDR is implemented in the fabric and is used for supporting debug functions in the fabric.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 52

JTAG Configuration Using FTDI

Overview
The FTDI device provides a low-cost JTAG interface to Achronix Speedster7t FPGAs and Speedcore eFPGAs through
a USB 2.0 (USB 1.0/3.0 compatible) interface, enabling both debug and configuration interfaces. Achronix supports
interfacing only with FTDI FT2232H and FT4232H devices.

The following diagram shows how Speedcore/Speedster7t FPGAs interface to ACE via the FT2232H/FT4232H
device. In this setup, the FTDI multi-protocol synchronous serial engine (MPSEE) is configured for single-chip USB-
to-JTAG communication. The FTDI device interfaces to the host PC via USB. ACE allows configuring and debugging
the FPGA using the built-in FTDI drivers.

Figure 26 • FTDI Interface Example

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 53

1.
2.

3.

The FT2232H has two independent 16-bit configurable interfaces while the FT4232H has four independent 8-bit
configurable interfaces.

The FTDI configuration flow is as follows:

Generate a design_name.hex file from a placed-and-routed design within ACE.
Connect a USB cable between the on-board FTDI programming port and the USB port of the host PC.

Program the device through JTAG using one of three methods:

Using the FPGA download flow step after generating a bitstream

Using the ACE GUI Download view:

Figure 27 • Programming Device Connections In ACE Download View

Figure 28 • Hex File Actions in ACE Download View

Using the Tcl console with the program_hex_file command

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 54

The following figure shows the basic block diagram of the FTDI devices.

Figure 29 • FTDI FT2232H/FT4232H Basic Block Diagram

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 55

•

•

•

•

•

FTDI Board-Level Device Connections

FTDI JTAG Pinout

Achronix tools expect the BDBUS pins of the FTDI chip to be connected to JTAG as specified in the following table.

Table 23 • FTDI-to-FPGA JTAG Connections

JTAG Signal
Name

JTAG Header
Pin Number

FTDI Port
Name

FT2232H
Pin Number

FT4232H
Pin Number

TRST_N 1 BDBUS[4] 43 30

TCK 9 BDBUS[0] 38 26

TMS 7 BDBUS[3] 41 29

TDI 3 BDBUS[1] 39 27

TDO 5 BDBUS[2] 40 28

FTDI Voltage Compatibility

The FTDI devices have two voltage rails:

VCORE

VCCIO

VCORE must be connected to 1.8V, while VCCIO must be connected 3.3V. As a result, the output ports from the FTDI
chips have a 3.3V range. However, Speedcore and Speedster7t devices both require 1.8V for the configuration
signals, including JTAG. Therefore, it is necessary to insert voltage level shifters between the output of the FTDI and
the JTAG input signals of the target device.

FTDI EEPROM Interface

An external EEPROM helps select the FTDI operating mode. Adding an external EEPROM allows each of the chip
channels to be independently configured to one of three modes:

Serial UART (RS232 mode)

Parallel FIFO (245) mode

Fast serial (opto-isolation) mode

Note

On Achronix boards, BDBUS[5] is connected to JTAG_MODE_EN_N, an active-low signal that is inverted
into JTAG_MODE_EN, which is used as a mux between the FTDI chip and the JTAG header.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 56

•

•

•

•

•

•

•

•

The EEPROM must be programmed using the Achronix template file to allow the Achronix device drivers to find and
communicate with the FTDI device. When used without an external EEPROM, the FTDI device defaults to a USB-to-
dual-asynchronous-serial-port device. This mode is not supported by Achronix.

The external EEPROM can also be used to customize the following FTDI device USB parameters:

VID

PID

Serial Number

Product Description Strings

Power Descriptor value

Other parameters controlled by the EEPROM include the following:

Remote wake up

Soft pull-down on power-off

I/O pin drive strength

The following table summarizes modes that are configurable using the EEPROM:

Table 24 • EEPROM Configuration Modes

Configuratio
n

Method

ASYNC
Serial
UART

ASYNC
FIFO
(245)

SYNC
FIFO
(245)

ASYN
C

Bit-
bang

SYNC
Bit-

bang

MPS
SE

Fast
Serial

Interfac
e

CPU-
Style
FIFO

Host
Bus

Emulati
on

EEPROM
Configured YES YES YES YES YES

Application
Software
Configured

YES YES YES YES YES

UG094 Speedster7t Configuration User Guide

4 http://www.ftdichip.com/Support/Utilities.htm#FT_PROG
5 https://support.achronix.com/hc/en-us/articles/4496793147668

2.0 www.achronix.com 57

Programming the EEPROM

The FTDI utility, FT_PROG4, can be used to program the EEPROM. A generic template file,
Achronix_EEPROM_Template_for_FTDI4232.zip5, is available on the Achronix support portal for programming the
EEPROM.

Unzip the file to a local folder. The archive contains a template file: FT4232_VP3.xml.

The following table lists the values of the parameters in the Achronix generic EEPROM file.

Table 25 • Generic Achronix EEPROM File Contents

Variable Value Programmable Comments

Manufacturer BittWare Yes Specifies the Vendor name.

Product Description Achronix VectorPath Yes String "Achronix" is required
anywhere in the value.

Serial Number Yes Must be a non-zero/non-null value
starting with "AC".

Vendor ID 0x0403 No Do not modify this value.

Product ID 0x6011 No Do not modify this value.

http://www.ftdichip.com/Support/Utilities.htm#FT_PROG
https://support.achronix.com/hc/en-us/articles/4496793147668
http://www.ftdichip.com/Support/Utilities.htm#FT_PROG
https://support.achronix.com/hc/en-us/articles/4496793147668

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 58

1.

Follow these steps to program the EEPROM:

Launch FT_PROG and open the example Achronix Speedcore EEPROM template .xml file:

Figure 30 • Opening FT4232_VP3.xml

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 59

The parameter list can be seen on the left side under Device Tree. The Vendor ID and Product ID fields are
under USB Device Descriptor. These fields should not be modified; otherwise, ACE cannot recognize the FTDI
device.

Figure 31 • Reviewing FT4232_VP3.xml

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 60

2. If required, modify the Manufacturer and Product Description fields under USB String Descriptors. A serial
number can be specified manually or auto-generated.

Figure 32 • Modifying The FT4232_VP3.xml File

Note

The value set for Product Description must contain the string "Achronix" to ensure proper operation.
Achronix software uses the serial number to uniquely identify JTAG connections. Thus, it is highly
recommended that the serial number be set to auto-generate. If the Achronix software cannot read a
serial number, or finds it to be null/blank/empty, the Achronix software ignores the connected
FT2232H/FT4232H device.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 61

EEPROM Interface – Board Implementation

The following figure shows the connection between EEPROM and FTDI chip on board.

Figure 33 • EEPROM FTDI Board-Level Connection

FTDI Crystal Requirements

A 12 MHz crystal should be connected to the OSCI and OSCO pins of the FTDI 2232H chip. A 12KΩ resistor should be
connected between REF and GND on the PCB. The value for the loading capacitors should be selected as per
manufacturer recommendation.

Figure 34 • FTDI Crystal Board-Level Connection

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 62

FTDI Interface in ACE
To use the FTDI interface in ACE, select Window → Preferences → Configure JTAG Connection and input the
relevant information for the programmer device name and the scan chain details. ACE then knows to use FTDI for
Snapshot, Download View (bitstream programming), and JTAG browser (and even SerDes link tuning). If no name is
entered, ACE/STAPL player autodetects to select the programming device.

Figure 35 • Configuring the FTDI Interface in ACE

Programming Speeds and Requirements

JTAG Interface

The possible FT2232H/FT4232H frequencies are limited by FTDI to:

F = 60 MHz / ((1 + clkDiv) × 2)

…where clkDiv must be an integer ranging from 0 to 0xFFFF, thus providing an effective frequency range from 30
MHz (maximum) to 457.763 Hz (minimum).

The STAPL JTAG tools allow arbitrary frequencies to be requested (in integer Hz), but the drivers then choose the
fastest frequency which is still less than or equal to the requested frequency.

Note

The STAPL frequency is presently not a user-editable value and is hard-coded in the STAPL player by
Achronix in all current use cases.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 63

Known Device Limitations
While the Achronix JTAG tools can support multi-device JTAG scan chains, the Speedster7t AC7t1500ES0 FPGA
JTAG test access port (TAP) does not support the JTAG BYPASS instruction. Because JTAG BYPASS is not
supported, affected Speedster7t AC7t1500ES0 PPGAs must be the only JTAG device on its own JTAG scan chain.
The JTAG BYPASS feature us fully supported for Speedster7t AC7t1500/AC7t1450 production FPGAs.

Caution!

The Tck produced by the FTDI device is only present during programming. Further, its frequency accuracy
and stability cannot be guaranteed. Therefore, it is not recommended to use this clock for any other
purpose than JTAG programming of the device.

UG094 Speedster7t Configuration User Guide

6 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

2.0 www.achronix.com 64

Software and Driver Install for FTDI

Introduction

Prior to device configuration, the FTDI USB drivers must be installed on the host system. The JTAG Tcl library and
the USB drivers are included as part of the ACE software suite. Intended for general use, ACE includes a graphical
download tool, the Snapshot debugging tool, the JTAG Browser tool, the HW Demo tool, as well as the JTAG Tcl
library to aid in command-line configuration from ACE.

ACE and the Components Installation

When the ACE software suite is installed, a copy of the FTDI USB drivers is included. ACE installation is covered in a
separate document, the ACE Installation and Licensing Guide (UG002)6.

Windows

Near the end of the install, the ACE package prompts to install the FTDI CDM USB drivers:

Figure 36 • ACE Installation Choose Components Dialog Example

https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 65

•

•

•

•

•

•

•

•

•

Linux

Linux USB Driver Installation

In Linux, the USB driver installation script can be found in the system/cmd/ directory. Special udev rules must be
created to set the permissions so that regular users may write to the FT2232H device. To update these rules,
execute the following as root:

% system/cmd/install_acx_bitporter_usb.pl

Supported Operating Systems

JTAG interactions are currently supported with FTDI Interface or Bitporter 2 under the following operating systems.

64-bit Red Hat Enterprise Linux Release 7.9 and above

64-bit CentOS 7.9-2009

Rocky Linux 8.7 and above

64-bit Microsoft Windows 10, 11

Ubuntu 20.04 LTS, 22.04 LTS

SUSE 15.4+

Minimum Hardware Requirements

Pentium-class PC with a minimum of 512 MB of memory (2 GB for Windows 10)

A USB 2.0 port if configuring through FTDI interface

A powered USB 2.0 port if configuring through the Bitporter 2 pod

Note

When using the FTDI FT2232H connection from Linux, RHEL/CentOS 7.4 and up have been successfully
tested.

Note

If using Ubuntu, it is recommended to use the following syntax:

% sudo system/cmd/install_acx_bitporter_usb.pl

The USB cables might need to be disconnected and re-connected after the install script is run. Whether or
not the new rules are already applied depends upon implementation details within the Linux distribution.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 66

1.

2.

Note

USB 1.0 and 1.1 ports may be used for the Bitporter 2 and FTDI interfaces, but USB 2.0 is strongly
recommended for performance reasons.

USB 3.x ports may be used for Bitporter2 or FTDI (both Linux and Windows) interfacing, but
performance is limited to USB 2.0 speeds.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 67

1.

2.

3.

1.

2.

3.

Connecting the FTDI Device

Connecting to the FT2232H or FT4232H via USB

Before connecting the FTDI USB port to the host PC, ensure that the software installation has completed (refer to
Software and Driver Install for FTDI (page 64)).

Disconnecting the FT2232H or FT4232H Interface

To end a programming session and disconnect the FTDI USB cable from the target hardware:

Wait until ACE Tcl Console finishes running.

Close an existing connection to a JTAG device using the following command:

jtag::close <jtag_id>

Disconnect the USB cable from the target hardware.

Verifying the Setup

Connectivity Self Test

To verify that the USB drivers and FTDI JTAG interface are functioning together correctly:

Open a Tcl console in ACE.

At the command prompt, execute:

jtag::get_connected_devices

The command gets the list of connected JTAG devices from the host machine along with the serial number
(jtag_id).

Use the following command to open a new connection to the JTAG device using the jtag_id returned by the
previous command.

jtag::open <jtag_id>

Handling Multiple FTDI Devices Connected to the Same PC

The ACE Tcl Console can support multiple users sharing a collection or pool of FTDI devices connected to a single PC
via USB.

Note

Depending upon the specific configuration of the FTDI chip on the board, in some cases the USB cable must
be connected to a powered USB port on the host PC. In other configurations, an un-powered USB port
suffices. Consult the board documentation for details.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 68

1.
2.

If no specific connection is open, use the mentioned jtag::open command to open the connection. If a connection
is already identified, close the current connection and open the connection to the desired device using the
commands mentioned in the JTAG Programming using the Tcl Library API (page 36) section.

JTAG Configuration Using the Bitporter2 Pod
The Bitporter2 pod (pictured below) connects between a host PC via USB (1.x, 2.x, or 3.x) connection and a JTAG-
compliant connector on the target system. When connected, the Bitporter2 pod supports device configuration and
debug.

Figure 37 • Bitporter2 Pod

The JTAG configuration flow is as follows:
Generate a design_name.hex file from a placed-and-routed design within ACE.
Connect the Bitporter pod to the USB port of the host PC and to the JTAG port of the target system.

Warning!

When multiple JTAG devices are connected to a single PC, the desired JTAG connection must be specified.

Note

USB 1.0 through 3.1 are supported, but are limited to USB 2.0 "High-Speed" or lower.

UG094 Speedster7t Configuration User Guide

7 https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

2.0 www.achronix.com 69

•

•

•

Software and Driver Install for Bitporter2

Introduction

The Bitporter2 pod utilizes the FTDI 2232 USB→JTAG interface chip. Prior to device configuration, the FTDI USB
drivers must be installed on the host system. Intended for general use, ACE includes:

A graphical download tool

The Snapshot debugging tool

The HW Demo tool

ACE and the Components Installation

When the ACE software suite is installed, a copy of the FTDI USB drivers is included. ACE installation is covered in a
separate document, the ACE Installation and Licensing Guide (UG002)7.

Windows

Near the end of the install, the ACE package prompts to install the FTDI CDM USB drivers:

Figure 38 • ACE Installation Choose Components Dialog Example

https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002
https://www.achronix.com/documentation/ace-installation-and-licensing-guide-ug002

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 70

•

•

•

•

•

•

•

•

•

Linux

Linux USB Driver Installation

In Linux, the USB driver installation script can be found in the system/cmd/ directory. Special udev rules must be
created to set the permissions so that regular users may write to the FT2232H device. To update these rules,
execute the following as root:

% system/cmd/install_acx_bitporter_usb.pl

Supported Operating Systems

JTAG interactions are currently supported with FTDI Interface or Bitporter 2 under the following operating systems.

64-bit Red Hat Enterprise Linux Release 7.9 and above

64-bit CentOS 7.9-2009

Rocky Linux 8.7 and above

64-bit Microsoft Windows 10, 11

Ubuntu 20.04 LTS, 22.04 LTS

SUSE 15.4+

Minimum Hardware Requirements

Pentium-class PC with a minimum of 512 MB of memory (2 GB for Windows 10)

A USB 2.0 port if configuring through FTDI interface

A powered USB 2.0 port if configuring through the Bitporter 2 pod

Note

When using the FTDI FT2232H connection from Linux, RHEL/CentOS 7.4 and up have been successfully
tested.

Note

If using Ubuntu, it is recommended to use the following syntax:

% sudo system/cmd/install_acx_bitporter_usb.pl

The USB cables might need to be disconnected and re-connected after the install script is run. Whether or
not the new rules are already applied depends upon implementation details within the Linux distribution.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 71

•

•

•

•

Connecting the Bitporter2 Pod
The Bitporter2 pod has two labeled jacks and two LED indicators:

JTAG – used by the 14-pin JTAG ribbon cable

USB – USB mini-B jack for communication with the host computer

PWR LED – lights to indicate power from USB interface is present

ACT LED – flashes to indicate data transfer to/from target

The Bitporter2 is powered by its USB interface.

Since the pod requires power, it does not work if it is not connected to a powered USB port.

Bitporter2 Board-Level Device Connections

JTAG Pinout

Table 26 • Bitporter2 Connections

Signal Pin

TRST_N 1

TCK 9

TMS 7

TDI 3

TDO 5

V_JTAG 14

Ground 2, 4, 6, 8, 10

1.

2.

Note

USB 1.0 and 1.1 ports may be used for the Bitporter 2 and FTDI interfaces, but USB 2.0 is strongly
recommended for performance reasons.

USB 3.x ports may be used for Bitporter2 or FTDI (both Linux and Windows) interfacing, but
performance is limited to USB 2.0 speeds.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 72

1.

2.

3.

4.

5.

6.

7.

Bitporter2 Voltage Compatibility

The Bitporter2 derives power from the USB interface at 5V. Internally, it regulates this input to two voltage rails: 1.8V
and 3.3V. The pod includes level shifters in order to match the JTAG interface voltage to that of the target. The
target must supply the proper voltage on the JTAG interface pin 14.

Connecting the Bitporter2 Pod via USB

Turn off the power to the target hardware.

Connect one end of the JTAG flat ribbon cable to the target JTAG connector. Pin 1 is indicated by the red strip.

Connect the other end of the JTAG flat ribbon cable to the Bitporter2 pod. The connector is keyed.

Connect one end the USB cable to the host PC.

Connect the other end of USB cable to the Bitporter2 pod.

Pod initialization:

During the pod initialization, the Bitporter2 pod PWR LED turns on and the ACT LED might flash.

When pod initialization completes successfully, the power LED remains lit, and the ACT LED turns off.

Turn on the power to the target hardware.

Caution!

Before connecting the Bitporter2 pod: Do not connect the Bitporter2 USB cable until after the software is
installed (see Software and Driver Install for Bitporter2 (page 69)). If the Bitporter2 USB cable is connected to
the workstation during USB driver installation, the USB driver might not install correctly.

Note

If the target JTAG connector is not keyed, the target user guide should specify the location of pin 1 on
the target JTAG connector.

Note

In Windows, after pod initialization is complete, a temporary notification might appear indicating
that device drivers were successfully installed.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 73

1.

2.

3.

Verifying the Setup

Bitporter2 Connectivity Self Test

To verify that the USB drivers and Bitporter2 pod are correctly functioning together:

Open a Tcl console in ACE.

At the command prompt, enter:

jtag::get_connected_devices

The command returns a listing of all correctly connected and currently available pods (those not actively in use).

Execute the following command to open a new connection to the JTAG device using the jtag_id returned by
the previous command.

jtag::open <jtag_id>

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 74

1.

2.

3.

Bitporter2-to-Target-Device Connectivity Test

After the Bitporter2 connectivity self test has successfully completed, it is still useful to ensure the Bitporter2 is
properly connected to the target device via the JTAG ribbon cable. See the previous information in this chapter
which describes the proper way to connect the Bitporter2.

Open a Tcl console in ACE.

Enter the following command:

jtag::initialize_scan_chain <jtag_id> <pre_ir_bits> <post_ir_bits>
<target_device_offset> -target_device <string>

This command configures a scan chain. It sets the initial clock frequency (based on the target device), checks
the number of devices and IR length, sets preamble/postamble IR/DR bits, and checks IDCODE.

After successfully starting communications with the Bitporter Pod, the program returns the device ID code of
the target device.

The following is an example of the text output including the IDCODE:

Checking JTAG device chain:
IR bits before target device: 0
IR bits after target device: 0
Target device offset: 0
Number of devices detected on scan chain: 1
Instruction Register Length is: 23
Set pre-IR padding to: 0
Set post-IR padding to: 0
Set pre-DR padding to: 0
Set post-DR padding to: 0
Verifying expected device is at the expected location...
Found JTAG IDCODE: 30400641
Achronix device detected: AC7t1500
...Verified Achronix device found at expected location.

Note

The <project_name>.hex file can be generated from the user design or by using the quickstart
design.

Note

The actual text output, including the ID code, varies slightly by device type and revision.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 75

Two-Stage Bitstream Programming via PCI Express
Programming over PCI express requires two-stage programming, in which part of the I/O Ring (PCIe, PLLs, and
clocks) is programmed via Flash, CPU, or JTAG while the remainder of the I/O ring plus core fabric is programmed
via PCIe. The size of the bitstream for the core fabric is significantly larger than that for the I/O ring. In stage 0, the
entire I/O ring does not need programming, only the PLLs, related I/O, and the PCIe subsystem. Other subsystems
(e.g., Ethernet/DDR4/GDDR6, clock networks to fabric, reset networks, NoC components, and the core fabric) are all
programmed in stage 1.

PCIe Bitstream Programming Flow

Generating the PCIe Bitstream Files from ACE
In ACE, select the PCIe additional output to generate the .pcie file and, optionally, select the Flash additional
output if programming stage0 over flash.

Figure 39 • ACE Additional Output Options Dialog

Option ACE impl_option Description

PCIe (.pcie) bitstream_output_pcie

Enables the generation of an additional PCIe-formatted
output file, with the same name as the .hex file, but having a
.pcie extension. This file is binary-formatted and can only
be used with two-stage programming or partial
reconfiguration.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 76

The Two-Stage Programming option must also be selected since programming over PCIe first requires PCIe
enumeration attained with a _stage0.flash or _stage0.hex file. When using encryption, an additional file
called _stage1_header.hex or _stage1_header.flash is generated and must be used during programming.

Figure 40 • ACE Bitstream Generation Options Dialog

Table 27 • Bitstream Generation Implementation Options — Two-Stage Programming

Option ACE impl_option Description

Enable Two-Stage
Programming bitstream_two_stage

If checked (1), enables two-stage programming. This generates files with
_stage0. and *_stage1.* naming. This option only creates stage0 files for
flash and stage1 files for PCIe when enabled.

How to use the ACE-generated PCIe Bitstream Files
The ACE-generated .pcie file can be programmed using the Achronix PCIe driver API after the device is
enumerated. In order to enumerate the device, the FPGA must be configured with a stage0 bitstream.

Refer to Bitstream Programming via JTAG (page 30) and Bitstream Programming via Flash Memories (page 9) to
program the stage0 and, optionally, the stage1 header bitstream over JTAG or flash, respectively. When using
encryption, the automatically-generated stage 1 header must be programmed into the flash or over JTAG following
the stage0 bitstream.

It is also necessary for the PCIe CSR space and the FCU space to be mapped to the PCIe base access registers
(BARs). Programming over PCIe utilizes registers in the PCIe CSR space (for DMA transactions) and FCU space (to
enable PCIE programming). Therefore, the address space must be made available from the PCIe side.

An example of how the stage 1 PCIe bitstream is downloaded can be found in the "program_bitstream" example of
the Achronix SDK.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 77

•

•

•

•

•

•

•

•

Chapter 4 : FPGA Configuration Unit (FCU)
The term FPGA configuration unit (FCU) refers to logic that controls the configuration (bitstream programming)
process of the Speedster7t FPGA. This logic is responsible for the following:

Receiving data on a variety of external interfaces (depending on the selected programming mode)

Decoding instructions

Sending configuration bit values to the appropriate destination (e.g., core configuration memory, the core
boundary ring configuration memory, FCU registers, etc.)

Controls the startup and shutdown sequences that drive resets to the on-chip logic

Bitstream CRC checks

SEU mitigation with CMEM scrubbing

Bitstream Encryption Security

Any core-level housekeeping that occurs on the de-assertion of reset (i.e., clearing of configuration memory)

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 78

•

•

•

•

•

•

•

•

Overview
The following features are supported by the FCU:

Multiple bitstream programming configuration modes (see Bitstream Programming Modes for Speedster7t
FPGAs (page 4))

Bitstream CRC (page 0) checks

AES encryption/decryption and bitstream security (Design Security for Speedster7t FPGA (page 105))

Configuration memory scrubbing and SEU mitigation (single-bit error correction, dual-bit error detection)
(Configuration Error Correction and SEU Mitigation (page 96))

Read-back (Configuration Memory Read)

The FCU has 3 main operating modes:

Power-on – triggered after the input signal FCU_CONFIG_RSTN is driven high. When the FCU state machine
starts, it progresses through a number of housekeeping activities, including the clearing of the configuration
memory if needed. This housekeeping happens without any additional user input. All instructions sent via one of
the programming interfaces during this time are ignored. At the end of this mode, the output pin
FCU_CONFIG_STATUS (earlier driven low) is driven high, and the FCU returns to the instruction processing
mode.

Bitstream Programming – in this mode, the FCU functions as a simple CPU, processing incoming instructions
and sending control signals downstream as directed. Instructions are received on 128-bit boundaries but
processed 32 bits per clock cycle. The FCU can request data from the host or stall when it is processing the
previous instruction. Depending on the programming interface being used, a set of output status signals
generated by the FCU are used to determine how to proceed. Refer to Bitstream Programming Modes for
Speedster7t FPGAs (page 4) for additional details. While the bitstream is being programmed,
FCU_CONFIG_STATUS is driven high. When all of the bitstream data is loaded, FCU_CONFIG_DONE is
asserted if the bitstream download was successful. The FCU then signals the startup state machine to release
resets and enter user mode. If there were any errors programming the bitstream, FCU_CONFIG_DONE stays
low and the FCU_CONFIG_ERR_ENC bus can be checked to determine the error.
User Mode - if the bitstream programming sequence completed successfully, and the startup state machine
has completed release of all startup sequenced resets, FCU_CONFIG_DONE remains high and
FCU_CONFIG_USER_MODE is raised.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 79

Configuration Pin Tables

Table 28 • Interface Pin Table

Pin Name Direction Usage

Configuration Interface

FCU_CONFIG_MODESEL[3:0] Input

FPGA configuration unit (FCU) configuration mode selection inputs.

Configuration Mode CFG_MODESEL[3:0]

CPU x1 0011

CPU x8 0100

CPU x16 0101

CPU x32 0110

CPU x128 0111

Flash SPI (x1)-1D 0001

Flash SPI (x1)-4D 0010

Flash Dual (x2)-1D 1000

Flash Dual (x2)-4D 1001

Flash Quad (x4)-1D 1010

Flash Quad (x4)-4D 1011

Flash Octa (x8)-1D 1100

Flash Octa (x8)-4D 1101

JTAG Always active mode

FCU_CONFIG_STATUS (1) Inout (2)

Active-high configuration status open-drain output signal indicating that the FCU has completed initial start-
up, has cleared the CMEM, and is awaiting FCU commands for bitstream programming. When Hi-Z, it remains
Hi-Z until the FCU is power-cycled, reset for a re-initialization sequence, or a CRC error is seen during bitstream
load.

FCU_CONFIG_DONE (1) Inout (2)

Active-high configuration done open-drain output signal indicating that bitstream loading completed
successfully and that the device is ready to enter user mode. When Hi-Z, it remains Hi-Z until the FCU is power-
cycled or reset for a re-initialization sequence. If a device configuration error occurs, the CONFIG_DONE output
remains low. Holding this pin low on the board must be used as a method to synchronize the start-up of
multiple devices. In addition, this pin must be tied high (even if not externally driven) as the FCU proceeds only
if a high value is present on this pin (see note 6).

FCU_CONFIG_RSTN (3) Input Asynchronous active-low reset input clearing the configuration memory in the device and the logic in the FCU.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 80

Table 29 • Interface Pin Table (continued)

Pin Name Direction Usage

FCU_CONFIG_USER_MODE (1) Output Active-high output indicating the device has transitioned to user mode. When high, it remains asserted until the
FCU is power-cycled or reset for a re-initialization sequence.

FCU_CONFIG_SYSCLK_BYPASS

FCU_CONFIG_CLKSEL (4) Input

Active-high bypass configuration system clock setting. Along with CFG_CLKSEL, this setting allows for clock
selection during programming. Setting SYSCLK_BYPASS high and CFG_CLKSEL low is the most
recommended setting since it is compatible with all programming modes.

SYSCLK_BYPASS CFG_CLKSEL CFG_MODESEL[3:0] Configuration
Clock

0 0 0000, 0001, 0010, 1000 to 1101
On-chip

Oscillator (5)

1 0 0000, 0001, 0010, 1000 to 1101 CPU Clock (5)

X 0 0011, 01XX CPU Clock (5)

X 1 XXXX JTAG TCK

FCU_CONFIG_BYPASS_CLEAR Input Active-high input pin to bypass configuration memory clear during device initialization.

FCU_CONFIG_ERR_ENC[2:0] Output (6)

Error status

FCU_CONFIG_
ERR_ENC[2:0] Status Priority

000 No error

010 CRC Error. 0 (Lowest)

001 Single-bit/multiple-bit scrubbing error. 1

011 Secure Boot Failure OR Security error. 2

100 Efuse PUF enrollment error. 3

101 Asserted when the AXI interface of the IP configuration space
register block does not receive a ready from the initiator. 4

110 Secure boot authorization error. 5 (Highest)

Other Undefined.

FCU_LOCK Output AC7t1500 – this pin is set high when the FCU is unlocked and low when FCU is locked.
AC7t800 – this pin is set high when stage0 bitstream programming is complete.

FCU_OSC_CLK Output
This clock is internally generated from a ring oscillator. For debug purposes, it can be bypassed and the
external clock, CPU_CLK, can be used. This is an internal ring oscillator used to provide a free-running clock to
the FCU and its frequency can vary by process and temperature.

FCU_PARTIAL_CONFIG_DONE Inout (2) Active-high configuration done open-drain output signal indicating that bitstream loading completed
successfully for partial reconfiguration of the FPGA and that it is ready to enter user mode.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 81

Table 30 • Interface Pin Table (continued)

Pin Name Direction Usage

FCU_STAP_SEL Input

When asserted high, this signal enables the JTAG interface pins to be directly connected to the JTAG controller
in the SerDes PMA blocks allowing SerDes configuration, debug, and performance monitoring directly from the
JTAG interface. For bitstream download and design debug using the JTAG interface, this pin must be held low.
For SerDes PMA debug only mode, this pin must be held high.

FCU_STATUS[1:0] Output

Status bits showing the FCU state.

FCU_STATUS State

11 fcu_locked

10 sync_found

01 ID found

00 instance ID found / FCU unlocked

FCU_STRAP[2:0] Inputs Test mode input pins. When FCU_STRAP[0] is 0, FCU is in functional mode and when FCU_STRAP[0] is 1,
FCU_CPU_CSN is gated and only controllable via test logic.

JTAG Interface

JTAG_TCK Input Clock input to the FCU JTAG controller.

JTAG_TRSTN Input Active-low reset input to the FCU JTAG controller.

JTAG_TDI Input Serial data input to the FCU JTAG controller. Synchronous to JTAG_TCK.

JTAG_TDO Output Serial data output from the FCU JTAG controller. Synchronous to JTAG_TCK.

JTAG_TMS Input Mode select input to the FCU JTAG controller. Synchronous to JTAG_TCK.

Flash Memory Interface

FCU_FLASH_SCK Output Clock output from FCU to flash memory device(s).

FCU_FLASH_HOLDN Output
Active-low hold output to flash memory device(s). This signal is used to pause serial communications between
the Speedster7t FPGA and the flash device without deselecting the device or stopping the serial clock.
Synchronous to FLASH_SCK.

FCU_FLASH_CSN[3:0] Output Active-low chip select to enable/disable one or more of the attached flash memory devices. For x1 mode, only
CSN[0] is used. For x4 mode, connect each CSN[3:0] to a flash device.

CPU Interface

FCU_CPU_CLK (7) Input
Input clock from external CPU. The data/address bus is synchronous to this clock. This signal must be driven
continuously, regardless of programming mode and also during user mode. This clock must operate at 100 MHz
when programming any design bitstream that uses the Achronix Device Manager.

FCU_CPU_CSN (8) Input Active-low CPU mode chip select.

FCU_CPU_DQ_IN_OUT[31:0] Input/
Output

Data Input/Output pins shared between the CPU and Flash interfaces. The CPU interface is inaccessible when
the Flash mode is in use and vice-versa.

UG094 Speedster7t Configuration User Guide

8 https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

2.0 www.achronix.com 82

Table 31 • Interface Pin Table (continued)

Pin Name Direction Usage

FCU_CPU_DQ_VALID Output Active-high control bit to indicate to the CPU the clock cycles when the CPU_DQ bus has valid read-back data.
Synchronous to FCU_CPU_CLK.

1.

2.

3.

4.

5.

6.

7.

8.

Table Notes

Refer to the Configuration Sequence and Power-Up (page 95) section of the user guide for details.

This output is an open-drain signal. In the default mode of operation, it is recommended that this signal be connected to an LED as an indicator on the
board. In this case, use an external 10kΩ ±5% pull-up resistor to 3.3V to drive a 1kΩ resistor to the input of a FET to turn on the LED. If LED usage is not
desired, this signal must be pulled-up to 1.8V (FCU_CB_VDDIO) instead using the same 10kΩ pull-up resistor. The I/O standard for this is SSTL-18 and the
recommended minimum pull-up impedance is 68Ω.

FCU_CONFIG_RSTN must be held low, and cannot glitch during device power-up. All other input pins need only be stable when i_config_rstn is ready to be
released after power-up.

Regardless of configuration mode, FCU_CONFIG_CLKSEL must be set to "0" and FCU_CONFIG_SYSCLK_BYPASS must be set to "1" when programming
any design bitstream that uses the Achronix Device Manager. This is also necessary in order for CSR access after a bitstream has been downloaded into the
FPGA. Achronix recommends this as the default setting as well.

In JTAG configuration mode, soft control is used to select the JTAG clock as the configuration clock for the duration of the bitstream download.

All configuration status related output signals are driven from registers. The reset value for these registers is "0", and the transition from "0" to "1" is glitch
free after reset de-assertion and when reaching the appropriate FCU states.

FCU_CPU_CLK can either start with a rising or falling edge. An SMA connector or input circuit must be utilized to apply this clock signal. An FCU_CPU_CLK
input provision is required in order to utilize the Achronix Device Manager. For more details about the Achronix Device Manager, consult the Speedster7t Soft
IP User Guide (UG103)8.

Refer to the FCU_CPU_CSN Behavior and Implementation Details section of the user guide for details.

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103
https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

UG094 Speedster7t Configuration User Guide

9 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 www.achronix.com 83

Chapter 5 : Bitstream Generation Software Support in ACE

Bitstream Generation
ACE has a straightforward interface to generate the bitstream files required to implement all of the supported
configuration modes. The bitstream file is generated during the the "FPGA Programming – Generate Bitstream" step
of the compilation flow (see "Flow View" in the ACE User Guide (UG070)9 for more details). This page is a
consolidated list of all implementation options for reference. For specific use cases, refer to the sections above.

Bitstream Output File Formats
ACE provides a set of implementation options to generate the bitstream in various file formats for each of the
supported bitstream programming modes. The .hex file needed for JTAG mode configuration is always generated
by default. The Additional Outputs section of the Project Options menu, shown in the following figure, also provides
a menu option to generate bitstream files for the other configuration modes.

Figure 41 • ACE Additional Output Options Dialog

Table 32 • Bitstream Generation Implementation Options — Additional Outputs

Option ACE impl_option Description

Serial Flash (.flash) bitstream_output_flash

Enables the generation of an additional serial flash-formatted output file, and the
page0 header file, having the same name as the .hex file, but with a .flash
extension. The file contains a binary image that can be directly loaded into a
single serial flash memory.

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 84

Option ACE impl_option Description

CPU Mode (.cpu) bitstream_output_cpu

Enables the generation of an additional CPU-Mode-formatted output file, having
the same name as the .hexfile, but with a .cpu extension. The file contains
hexadecimal-formatted data organized with (CPU bus width) number of bits per
file line. Data from this file is sent to the FCU CPU interface line by line (one line
per clock cycle) from the top to the bottom of the file, where the left-most bit on
each line is the MSB and the right-most bit is the LSB.
In simulation, this file can be loaded using the readmemh function. For
convenience, an additional binary representation of the CPU Mode output file is
written, having the same name as the .hex file, but with a _cpu.bin extension.
It contains the same data in the same bit order as the .cpu file, but in binary
format with no new-lines.

CPU Bus Width bitstream_output_cpu_width

Controls the bit width of the CPU-mode-formatted output file. When using the
CPU interface in ×8 mode, set this value to 8. If using the CPU interface in ×32
mode, set this to 32. The value determines how many bitstream bits are printed
per line in the .cpu output file. The bit sequence required by the FCU (and output
in the generated bitstream file) might be different for each CPU bus width setting.
Therefore, it is important to set this option to match the actual CPU hardware
interface width.

PCIe (.pcie) bitstream_output_pcie

Enables the generation of an additional PCIe formatted output file, having the
same name as the .hex file, but with a .pcie extension. This option is binary-
formatted and can only be used with two-stage programming or partial
reconfiguration.

CMEM Address and Data
Export (.address) bitstream_output_address

Enables an additional CMEM address and data export output file. All addresses
listed in this file are "used" in the bitstream. The data in this file can be compared
against readback data. The file has the same name as the .hex file, but with the
.address extension.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 85

Serial Flash Configuration Options

Figure 42 • ACE Serial Flash Configuration Options Dialog

Table 33 • Bitstream Generation Serial Flash Configuration Options

Option ACE impl_option Description

Device Vendor bitstream_page0_vendor
Selects the flash device vendor. Allowed values:
Macronix (0)
Micron (1)

Serial Flash Clock Divider bitstream_page0_sf_clock_div

Selects serial flash clock divider. Allowed values:
2
4
8

Data Width bitstream_page0_data_width

Selects flash data readback width. Allowed values:
SPI (0)
DUAL (1)
QUAD (2)
OCT (3)

Number of Flash Devices bitstream_page0_num_devices
Selects number of devices based on targeted x1 or x4 PROM. Allowed values:
x1 (0)
x4 (1)

Addressing Width bitstream_page0_addr_width

Selects 3-byte or 4-byte addressing mode to support flash devices >1Gb. Allowed
values:
3-byte (0)
4-byte (1)

3-Byte Dummy Cycle Value
(hex) bitstream_page0_dummy_cycle_3byte

Specifies the 3-byte addressing dummy cycle value.
The default value is 00 and varies by device vendor.
Must be specified as a 2-character hex value.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 86

Option ACE impl_option Description

4-Byte Dummy Cycle Value
(hex) bitstream_page0_dummy_cycle_4byte

Specifies the 4-byte addressing dummy cycle value.
The default value is 08 and varies by device vendor.
Must be specified as a 2-character hex value.

Bitstream Start Address bitstream_page0_start_addr
Specifies the bitstream start address.
Should be a non-zero multiple of 4096.
Must be specified as an 8-character hex value.

Enable NOP Compression bitstream_page0_compress_nops

When unchecked (0), the *.flash file for I/O Ring programming is similar to
other programming modes (CPU, JTAG, Hex, etc). When checked, the *.flash
file bitstream contents are compressed, to help meet the 100ms PCIe link-up time.
This results in a different bitstream for serial flash, which is dependent on the
overall FCU data width (Number of Devices x Device Data Width).

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 87

•

•

•

Encryption Options

Figure 43 • ACE Encryption Options Dialog (Showing AC7t1500 Options)

Table 34 • Bitstream Generation Implementation Options — Encryption

Option ACE impl_option Description

Encrypt Bitstream bitstream_encrypted Check the box if bitstream should be encrypted. This option is always enabled for
certain devices.

256-bit AES Encryption Key
Filepath (Device Specific) bitstream_encryption_aes_key_file

If the Achronix default Keys are not selected as the key source, enter a file name
and path in the box to encrypt the bitstream data. The file must be:

an absolute or relative path to the current ACE project

a .txt file type

an AES hexadecimal value within the .txt file:

For ACE installations 9.0 or later, any 256-bit or 64-character value.

For ACE installations before 9.0, any 256-bit or 64-character value
with a new line character at the end of the AES sequence. The total
file would then be 260 bits or 65 characters.

Authentication Private Key
Filepath (Device Specific) bitstream_encryption_pem_key_file

If Achronix Default Keys are not selected as the decryption key source, enter a file
name and path in the box to encrypt the bitstream data. This must be an absolute
or relative path to the current ACE project. This should be a .pem file type created
in the Generating a Public and Private Key Pair section.

AES Decryption Key Source bitstream_encryption_key_source
Specifies which keys on the target device are used for decryption. Allowed values:
E-Fuse keys (0)
Achronix Default Keys (1)

AES Decryption Key Type (1) bitstream_encryption_key_type
Specifies which key to use as the source during encryption. Allowed values:
Use PUF black key (0) – create the red key from the PUF black key.
Use red key (1) – treat the red key as the source.

AES E-Fuse Key Index bitstream_encryption_key_index

Specifies which key to use. Bitstreams may be encrypted with 4 different AES keys.
This is the index whose key value should be assigned to the 256-bit AES encryption
key filepath. This also requires AES Decryption Key Source to be set to E-Fuse
Keys, specifying to ACE to use E-fuse keys. The index value can be 0, 1, 2, or 3. In
order to decrypt the target FPGA, the AES key must be written to the
corresponding key index in the FCU.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 88

Option ACE impl_option Description

Enforce Same Key bitstream_encryption_same_key

Specifies whether subsequent bitstreams can be programmed with the same
encryption types and keys without resetting the FPGA. If checked (1), subsequent
bitstreams must use the same key source, key type, and key index unless the FPGA
has been reset.

For more details regarding encryption, refer to Design Security for Speedster7t FPGA (page 105).

1.

Table Notes

When using the Achronix default keys as the decryption key source, the red keys must be treated as the source, and PUF is not allowed.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 89

Two-Stage Configuration Option

Figure 44 • ACE Bitstream Generation Options Dialog

Table 35 • Bitstream Generation Implementation Options — Two-Stage Programming

Option ACE impl_option Description

Enable Two-Stage
Programming bitstream_two_stage

If checked (1), enables two-stage programming. This generates files with
_stage0. and *_stage1.* naming. This option only creates stage0 files for
flash and stage1 files for PCIe when enabled.

For more details regarding two-stage programming, refer to Two-Stage Bitstream Programming via PCI
Express (page 75).

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 90

Partial Reconfiguration Configuration Options

Figure 45 • ACE Partial Reconfiguration Options Dialog

Table 36 • Bitstream Generation Implementation Options — Partial Reconfiguration (Device Specific)

Option ACE impl_option Description

Enable Partial
Reconfiguration bitstream_partial_reconfig When checked (1), enables partial reconfiguration.

Partial Reconfig Cluster Map
(hex) bitstream_partial_reconfig 20-character hexadecimal value specifying the target fabric cluster. The ACE

Clusters view should be used to find the appropriate value.

For more details regarding partial reconfiguration, refer to Partial Reconfiguration (page 118).

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 91

FCU Configuration Options

Figure 46 • ACE FCU Configuration Options Dialog

Table 37 • Bitstream Generation Implementation Options — FCU Configuration

Option ACE impl_option Description

4-bit Speedcore Instance ID
(hex) bitstream_instance_id Specifies the 4-bit instance ID of the Speedcore device. Must be specified as a one-

character hexadecimal value. Not used for Speedster7t.

Memory Scrubbing Mode bitstream_scrub_mode

Selects the CMEM scrubbing mode. Allowed values:
Disabled (0)
Background Scan (1)
Background Scan and Repair (2).

CRC Checking Mode bitstream_crc_mode

Selects the CRC checking mode. Allowed values:
Fully Enabled (0)
Partially Enabled (1)
Bypassed (2).

Lock FCU After
Programming bitstream_fcu_lock When checked (1), locks the FCU of the target device after programming. This

option is automatically set when bitstream encryption is enabled.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 92

Bitstream ID Configuration Options

Figure 47 • ACE Bitstream ID Configuration Options Dialog

Table 38 • Bitstream Generation Implementation Options — Bitstream ID Configuration

Option ACE impl_option Description

Bitstream ID Type bitstream_id_type

Inserts the selected type into an FCU register in the bitstream. If None (0) is
selected, all zeros are inserted. If Timestamp (1) is selected, the epoch time
during bitstream generation is inserted. If User Defined (2) is selected, the value
in bitstream_id_value is inserted.

31-bit User Defined
Bitstream ID (hex) bitstream_id_value User-defined 8 hexadecimal character value set when Bitstream ID Type is User

Defined. MSB is set to 1 while the other 31 bits are set by the user.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 93

CMEM Error Injection Options

Figure 48 • Error Injection

Table 39 • Bitstream Generation Implementation Options — Error Injection

Option ACE impl_option Description

Enable Error Injection 1 bitstream_error_inject_en1 When checked (1), enables the first bit error injection for the following
address and bit offsets.

24-bit Frame Address 1
(hex) bitstream_error_inject_addr1 Specifies the 24-bit frame address for the first bit error to be injected into the

bitstream. Must be specified as a 6-character hexadecimal value.

8-bit Cluster Offset 1 (hex) bitstream_error_inject_cluster_offset1
Specifies the cluster offset into the target Frame for the first bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value. The valid range of values depends on the target device.

8-bit Block Offset 1 (hex) bitstream_error_inject_block_offset1
Specifies the block offset into the target cluster for the first bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value. The valid range depends on the target device.

7-bit Bit Offset 1 (hex) bitstream_error_inject_bit_offset1
Specifies the 7-bit bit offset into the target block for the first bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value.

Enable Error Injection 2 bitstream_error_inject_en2 When checked (1), enables the second bit error injection for the address and
bit offsets that follow.

24-bit Frame Address 2
(hex) bitstream_error_inject_addr2 Specifies the 24-bit frame address for the second bit error to be injected into

the bitstream. Must be specified as a 6-character hexadecimal value.

8-bit Cluster Offset 2 (hex) bitstream_error_inject_cluster_offset2
Specifies the cluster offset into the target frame for the second bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value. The valid range depends on the target device.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 94

Option ACE impl_option Description

8-bit Block Offset 2 (hex) bitstream_error_inject_block_offset2
Specifies the block offset into the target cluster for the second bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value. The valid range depends on the target device.

7-bit Bit Offset 2 (hex) bitstream_error_inject_bit_offset2
Specifies the 7-bit bit offset into the target block for the second bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value.

For more information on how to insert up to 2 bit errors, refer to Configuration Error Correction and SEU
Mitigation (page 96).

UG094 Speedster7t Configuration User Guide

10 https://www.achronix.com/documentation/speedster7t-power-user-guide-ug087

2.0 www.achronix.com 95

1.
2.

3.

4.
5.

6.

1.

2.

3.

4.
5.

Chapter 6 : Configuration Sequence and Power-Up
The power-up and configuration sequence for the Speedster7t FPGA is as follows:

Configure the board to set FCU_CONFIG_MODESEL.
Power up the board.

Release FCU_CONFIG_RSTN.

Wait for FCU_CONFIG_STATUS.
Program the bitstream.

Check FCU_CONFIG_USER_MODE and FCU_CONFIG_DONE.

If not in user mode, check FCU_CONFIG_ERR_ENC.

Device Power-Up
The first step in bringing up the Speedster7t FPGA is to appropriately power it up. The Speedster7t Power User
Guide (UG087)10 details how the power supplies and configuration-related pins and signals must be asserted to
ensure a successful power-up. To summarize these requirements:

Drive FCU_CONFIG_RSTN low.

Power-up all supplies to full rail while keeping FCU_CONFIG_RSTN low to ensure that the Speedster7t FPGA
powers up in a reset state. The FCU clock need not be running at this time.

If the FCU_CONFIG_MODESEL pins are not statically set (tied off to ground/VDD using the resistor loading
options), drive them to set the desired configuration mode using the external interface.

Drive FCU_CONFIG_RSTN high to release the reset. Start providing clocks on the FCU clock.
Ensure that all clocks used by the Speedster7t FPGA are stable when reset is released.

There are no signaling or sequencing requirements for powering down. The supplies can simply be turned off.

Note

FCU_CPU_CLK is limited to 250 MHz in all configuration modes.

https://www.achronix.com/documentation/speedster7t-power-user-guide-ug087
https://www.achronix.com/documentation/speedster7t-power-user-guide-ug087

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 96

Chapter 7 : Configuration Error Correction and SEU
Mitigation

As with all SRAM devices, a single-event upset (SEU) is a potential issue within the Speedster7t FPGA. To assist in
mitigating this effect, the FCU can be instructed to scrub the configuration memory (CMEM) of the FPGA fabric.

The following ACE implementation options pertain to scrubbing.

Table 40 • Bitstream Generation Implementation Options — Scrubbing

Option ACE impl_option Description

Memory Scrubbing Mode bitstream_scrub_mode

Selects the CMEM scrubbing mode.
Allowed values include:
Disabled (0)
Background Scan (1)
Background Scan and Repair (2)

CRC Checking Mode bitstream_crc_mode

Selects the CRC checking mode.
Allowed values include:
Fully Enabled (0)
Partially Enabled (1)
Bypassed (2).

Scrubbing first reads the logic cluster data and parity bits from configuration memory cells, then performs single-bit
error detection and correction. If it is more than a single error, the number of errors is incremented and the operation
repeats. The configuration block also has dedicated registers that hold the scrub address, block offset, bit offset, and
the number of single and multiple error counts. The number of single/multiple error count is also encoded and
routed to an I/O pad. refer to Configuration Pin Tables (page 79) for details.

If scrubbing is enabled, FCU clocks must be supplied even after entering user mode as the scrubbing state machine
must be clocked continuously. FCU clocks need not be provided after entering user mode if scrubbing is disabled. In
this case, the state machine does not run at all as there is no value in running if errors cannot be reported.

The scrubbing state machine starts when the device enters user mode as indicated by the
FCU_CONFIG_USER_MODE output pin. Scrubbing cannot occur before user mode is entered.

Bitstream errors are detected by CRC, and the bitstream fails to program if a CRC error is detected.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 97

Scrubbing can be driven by cfg_clk or sys_clock based on the setting highlighted in the following table.

Table 41 • Scrub Clock Settings

cfg_ipcsr_clk_sw (1) scrub_clk

0 cfg_clk (2)

1 sys_clk (3)

1.

2.

3.

Table Notes

Set high by setting bit 8 of the FCU register 0x00EC.
See table Scrub Register Definitions (page 104) for details about this register

This signal is defined by the configuration clock selected based
on the pins FCU_CONFIG_SYSCLK_BYPASS and FCU_CONFIG_CLKSEL
as shown in Configuration Pin Tables (page 79).

This signal is defined as the clock driven by the on-chip oscillator.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 98

Configuration Memory Architecture and Addressing
The Speedster7t FPGA configuration memory (CMEM) is organized as shown in the following table:

Table 42 • Configuration Memory Components

Component Description

Cluster

Clusters come in two forms, sequentially numbered from south to north within a
column, starting at 0:
Logic Clusters – the arrays of RLB, BRAM, MLP, and NoC tiles that form the building
blocks of the programmable logic fabric. They are connected by abutment to build
the fabric of the desired size.
Delimiter Clusters – do not contain any user logic and are used for clock routing.
These clusters do contain configuration bits set by ACE software based on the user
design. Since they contain configuration bits, they have ECC logic and,
consequently, they are scrubbed.

Frame

A vertical column of configuration memory cells spanning the entire array of
clusters in the Y direction. Bitstream programming and scrubbing both operate on a
frame basis with the 24-bit frame address indicating which specific column is being
targeted. There are many configuration memory frames for each IP tile column (e.g.,
RLB, BRAM, LRAM, MLP and NoC). Frames are numbered west to east across the
core, starting at 0.

Block

Every frame within a cluster is composed of blocks. Each block consists of 128 bits
of CMEM cells. Block addressing is handled via offsets relative to where the block is
located in a cluster. Each cluster block offset starts at 0, numbered south to north.
Similarly, bit offsets are relative to the block, starting with bit 0 at the south end of
the block. It is this addressing scheme that is used for the reporting of bit error
locations.

The error information and state machine behavior across the different scrubbing operating modes are as follows:

Table 43 • Error Reporting Based On Scrubbing Mode

Mode Operation

Disabled Nothing happens on any kind of error (nothing is reported). Registers storing error
counts are not modified.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 99

Mode Operation

Background scan

Regardless of error type, error bits and address/offset bits are set accordingly. The
scrubbing state machine halts operation after the first error detection. Refer to
Scrubbing Reset (page 103) for details. Registers storing total error counts
independently for single and multiple errors are incremented.

Background scan and
repair

In the case of a single-bit error, the error is corrected and reported via the single-error
signal pin. The scrubbing state machine continues to run. However, the address and
offset bits for subsequent errors are not recorded. Only information for the first error
is preserved. The mechanism described in Scrubbing Reset (page 103) is necessary to
reset the error and address/offset bits.
If the state machine sees multiple errors, the error and address/offset bits are set
accordingly, and the scrubbing state machine halts operation after detection. Refer to
Scrubbing Reset (page 103) rot details.
Registers storing total error counts independently for single and multiple errors are
incremented.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 100

Error Injection and Reporting

ACE Implementation Options

Figure 49 • Error Injection

Table 44 • Bitstream Generation Implementation Options — Error Injection

Option ACE impl_option Description

Enable Error Injection 1 bitstream_error_inject_en1 When checked (1), enables the first bit error injection for the following
address and bit offsets.

24-bit Frame Address 1
(hex) bitstream_error_inject_addr1 Specifies the 24-bit frame address for the first bit error to be injected into the

bitstream. Must be specified as a 6-character hexadecimal value.

8-bit Cluster Offset 1 (hex) bitstream_error_inject_cluster_offset1
Specifies the cluster offset into the target Frame for the first bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value. The valid range of values depends on the target device.

8-bit Block Offset 1 (hex) bitstream_error_inject_block_offset1
Specifies the block offset into the target cluster for the first bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value. The valid range depends on the target device.

7-bit Bit Offset 1 (hex) bitstream_error_inject_bit_offset1
Specifies the 7-bit bit offset into the target block for the first bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value.

Enable Error Injection 2 bitstream_error_inject_en2 When checked (1), enables the second bit error injection for the address and
bit offsets that follow.

24-bit Frame Address 2
(hex) bitstream_error_inject_addr2 Specifies the 24-bit frame address for the second bit error to be injected into

the bitstream. Must be specified as a 6-character hexadecimal value.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 101

Option ACE impl_option Description

8-bit Cluster Offset 2 (hex) bitstream_error_inject_cluster_offset2
Specifies the cluster offset into the target frame for the second bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value. The valid range depends on the target device.

8-bit Block Offset 2 (hex) bitstream_error_inject_block_offset2
Specifies the block offset into the target cluster for the second bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value. The valid range depends on the target device.

7-bit Bit Offset 2 (hex) bitstream_error_inject_bit_offset2
Specifies the 7-bit bit offset into the target block for the second bit error to be
injected into the bitstream. Must be specified as a 2-character hexadecimal
value.

Bitstream Error Injection
ACE provides a set of previously referenced project implementation options to automatically insert up to 2 bit errors
into the generated bitstream output file. This feature is helpful when simulating the Speedster7t FPGA configuration
memory scrubbing interface. The error injection implementation options allow bit errors to be inserted, but generate
bitstream CRC check values that still allow the bitstream programming to enter user mode. The CRC value does not
account for the inserted errors, so it is not necessary to disable CRC checking to inject errors using this feature. If
manually editing the generated bitstream file to inject ECC scrubbing errors, the bitstream CRC checking mode
option must be set to bypass the CRC checks.

To successfully inject an error into the ACE-generated bitstream output file, first understand which frame addresses
are being programmed and know the valid cluster, block, and bit offset ranges for the target device. The cluster
offset only affects the Y dimension (i.e., it is only a function of the number of rows of clusters). For example, with a
Speedster7t FPGA with 8 rows, the valid range for bitstream_error_inject_cluster_offset options is 0
to 16. Even numbers inject errors into delimiter clusters while odd numbers inject errors into rows.

Each logic cluster has eight 128-bit blocks of addressable space. Thus, for logic clusters, the valid range for
bitstream_error_inject_block_offset options is 0 to 7 (hex).

Each delimiter cluster has one 128-bit block of addressable space. Thus, for delimiter clusters, the valid range for
bitstream_error_inject_block_offset options is only 0 (hex).

The valid range of bitstream_error_inject_bit_offset is always 0 to 0x7F.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 102

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Bitstream Single-Bit Error Injection Example
In this example, a single-bit error is injected into a valid frame address at a valid location inside cluster 9 (a logic
cluster) at block offset 1 and bit offset 6. To inject this single-bit error:

Start the ACE GUI and load the ACE project.

In the Options view, under the Bitstream Generation section, check the box to enable the CMEM Address and
Data Export (.address) output file. Make sure the checkboxes, Enable Error Injection 1 and Enable Error
Injection 2 are not checked. Before enabling error injection, a valid frame address must first be found. Configure
any other bitstream options to meet the test requirements.

Figure 50 • CMEM Address and Data Export

In the Flow view, double-click the Generate Bitstream flow step to generate the initial bitstream output files.

With a text editor, open the .address output file located in <ace_project_dir>/<impl_dir>/output/
<design>.address.
Locate a valid 24-bit frame address by finding any line that begins with "CMEM Address:". The leftmost six
characters (upper 24-bits) of the 32-bit hexadecimal value on that line represents a valid 24-bit frame address
to use with the ACE bitstream error injection feature. This example assumes the following frame address from
inside the .address output file: 50801100. The resulting 24-bit frame address is 508011.
In the Options view, under the Bitstream Generation section, set the Memory Scrubbing Mode option to either
Background Scan or Background Scan and Repair to enable detection of the inserted ECC bit error, and check
the option Enable Error Injection 1.

Enter the following values:

508011 for the 24-bit Frame Address 1 (hex) field.

9 for the 8-bit Cluster Offset 1 (hex) field

1 for the 8-bit Block Offset 1 (hex) field

6 for the 7-bit Bit Offset 1 (hex) field.
(Optional) to save copies of the original bitstream output file prior to injecting an error, make copies of the files
now. The next step overwrites the current bitstream output files on the file system.

In the Flow view, double-click the Generate Bitstream flow step to generate the new error-injected bitstream
output files.

When simulating programming the Speedster7t FPGA instance with this error-injected bitstream, some time
after entering, the Speedster7t FPGA pin interface indicates a single-bit scrubbing error in address 508011 in
block offset 1 and bit offset 6. Make sure to set the cluster select pins to a value of 4'h9 to select cluster 9 and
tie the scrubbing enable pin high to enable scrubbing.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 103

1.

2.

3.

4.

5.

6.

1.

2.
3.

Bitstream Dual-Bit Error Injection Example
In this example, a dual-bit error is inserted into a valid frame address at a valid location inside cluster 9 (a logic
cluster) with the first bit error at block offset 1 and bit offset 6, and the second bit error at block offset 5 and bit
offset 1A. To insert this dual-bit error:

Repeat Steps 1 to 7 from the Bitstream Single-Bit Error Injection Example (page 102).

In the Options view, under the Bitstream Generation section, check the option Enable Error Injection 2 to
enable the second error bit to be injected.

Enter the following values:

508011 for the 24-bit Frame Address 2 (hex) option.

9 for the 8-bit Cluster Offset 1 (hex) option.

5 for the 8-bit Block Offset 1 (hex) option.

1A for the 7-bit Bit Offset 1 (hex) option.
(Optional) to save copies of the original bitstream output file prior to injecting an error, make copies of the files
now. The next step overwrites the current bitstream output files on the file system.

In the Flow view, double-click to Generate Bitstream flow step to generate the new error-injected bitstream
output files.

When simulating programming a Speedster7t FPGA instance with this error-injected bitstream, some time after
entering user mode, the Speedster7t FPGA pin interface indicates a dual-bit scrubbing error in address 508011
(block and bit offset outputs should be ignored in this case). Make sure to set the cluster select pins to a value
of 4'h9 to select cluster 9 and tie the scrubbing enable pin high to enable scrubbing.

Scrubbing Reset
The registers feeding the error address/offset values, as well as the FCU error counter registers, can be cleared
simultaneously in one of three ways:

A complete power-cycle of the Speedster7t FPGA instance, involving powering the core down and powering it
back up.

A re-initialization sequence which can be accomplished by toggling FCU_CONFIG_RSTN.
Loading a new ACE-generated bitstream image.

After reset and reconfiguration, scrubbing can begin again (if enabled).

Note

Configuration memory scrubbing operates independently on each cluster within a given frame. To cause a
dual-bit error, both errors must be injected into the same cluster offset. If two errors are inserted into the
same frame but at different cluster offsets, they are treated as two independent single-bit errors, and both
may be corrected if Background Scan and Repair is selected for Memory Scrubbing Mode.

If two bit errors are injected into the same cluster offset in the same frame, the dual-bit error can only be
detected and not repaired. The Speedster7t FPGA memory scrubbing interface outputs indicate the frame
address and cluster offset of the dual-bit error, but do not report the block offset and bit offset. The block
and bit offset outputs should be ignored in this case.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 104

Scrubbing FCU Registers
The following table lists the FCU registers pertaining to scrubbing. For more information on accessing the FCU
registers, consult the "Speedster7t Tcl Commands" section in JTAG Programming using the Tcl Library API (page 36).

Table 45 • Scrub Register Definitions

Scrub Register Address Description

CONFIG_REG_ADDR_SCRUB_CONTROL 16'h00EC
1:0 – scrub enable.
2 – scrub mode.
16:12 – scrub cluster select.

CONFIG_REG_ADDR_SCRUB_
SINGLE_ERROR_STATUS 16'h11f8

Bit 2:0 – internal scrubbing state.
Bit 31:3 – indicates scrub single error status of all delimiter and
logic clusters.
The lowest-order bit physically represents the southern most
cluster.
Any MSBs greater than the number of clusters in a given fabric
are tied to 0.

CONFIG_REG_ADDR_SCRUB_
MULTIPLE_ERROR_STATUS 16'h11fc

Indicates scrub multiple error status of all delimiter and logic
clusters.
The lowest-order bit physically represents the southern most
cluster.
Any MSBs greater than the number of clusters in a given fabric
are tied to 0.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 105

•

•

•

•

1.

2.

3.

4.

5.

Chapter 8 : Design Security for Speedster7t FPGA
Achronix recognizes the importance of protecting the sensitive IP placed onto the FPGA. To provide a high level of
protection, Speedster7t FPGAs have a number of features to support bitstream encryption as well as authentication.
These features ensure that the design configuration on the FPGA cannot be accessed and also ensures that the
design is the one intended. Speedster7t FPGAs provide this high level of security through the following features:

Support for ECDSA authenticated and AES-GCM encrypted bitstream

Dynamic power analysis (DPA) protection to prevent side-channel attacks

Physically unclonable function (PUF) for tamper-proof protection

Securely stores both public and encrypted private keys

With this security solution deployed, customer designs are secure. Even with possession of the device, the
underlying design cannot be extracted, cannot be reverse engineered, nor can the design be altered in any way.

Bitstream Authentication
Authentication of a bitstream ensures that the FPGA is configured with the intended design. Achronix provides a
two-step authentication process that first authenticates an encrypted bitstream before decrypting it, and then
performs authentication a second time on the decrypted bitstream before configuring the device:

A bitstream is encrypted using AES-GCM, which provides authenticated encryption.

The user provides an asymmetric private key to sign the encrypted bitstream using ECDSA.

When the FPGA is configured with an encrypted and signed bitstream, it uses the public key stored in an
internal electronic fuse (eFuse) to authenticate the bitstream using the public key.

When authenticated, the bitstream decryption is enabled, and the bitstream is authenticated a second time
while decrypting with AES-GCM.

After the second authentication, the bitstream is used to configure the FPGA.

Bitstream Encryption
Bitstreams consist of the sensitive intellectual property of the designer. Achronix provides tools to generate
bitstreams that are encrypted and signed using very strong encryption with hardware designed to be resilient to
side-channel attacks, such as dynamic power analysis (DPA). Additionally, the key derivation function (KDF) inside
the secure boot portion of the FPGA, along with the physically unclonable function (PUF) ensure protection of the
secret keys to decode and authenticate the bitstreams. Together these systems provide a solution that is safe from
attacks such that even with possession of the device, an adversary cannot extract the underlying design, cannot
change the system to perform another task other than the intended task, and cannot reverse engineer the core
intellectual property.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 106

The following figure shows an overview of the security system and how elements work together to protect the
bitstream. Blocks shown in grey represent encryption/decryption elements. Blocks shown in blue are authentication
elements and green blocks handle authenticated and encrypted bitstreams.

Figure 51 • Bitstream Encryption/Authentication Block Diagram

Generating Encrypted Bitstreams
To generate an encrypted bitstream, a 256-bit secret key is provided to ACE. In order to provide better protection
against side-channel attacks, ACE does not simply use this secret key to encrypt the entire bitstream. Instead, the
secret key is used as an initial key. ACE then generates new derived keys based on the initial secret key to encrypt
smaller segments of the bitstream, each with a different derived key and a new nonce. Here the nonce, also known
as an initialization vector (IV), is a random number only used once per segment such that the same pattern is not
generated while replaying or encrypting the same bitstream. Bitstream encryption is performed using the highly
secure 256-bit AES-GCM encryption standard. Galois/counter mode (GCM) is an advanced form of symmetric-key
block encryption which enhances the 256-bit advanced encryption standard (AES) by using a nonce (one-time use
random value) and a counter mode so that each segment of data is uniquely encrypted. ACE also uses a Galois
message authentication code (GMAC) to simultaneously sign and authenticate the data, including the unencrypted
preamble section of the bitstream to guarantee the bitstream has not been altered. To further protect the bitstream,
ACE also signs each segment of the encrypted bitstream using ECDSA. See the section on Bitstream
Authentication (page 105) for more details on the ECDSA authentication.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 107

1.

2.

a.

b.

1.

2.

Encrypting a Speedster7t AC7t1500 Bitstream

Using the ACE GUI
Go to Bitstream Generation in the ACE options panel.

Figure 52 • ACE Options Panel

Configure the AES Encryption options.

Figure 53 • AC7t1500 AES Encryption Configuration Options

Check the Encrypt Bitstream option.

If Achronix Default Keys is not selected for the AES Decryption Key Source, enter a file name and path in
the 256-bit AES Encryption Key Filepath box to encrypt the bitstream data.

This file must be:

An absolute or relative path to the current ACE project

A .txt file type

An AES hexadecimal value within the .txt file:
For ACE installations 9.0 or later, any 256-bit or 64-character value.

For ACE installations before 9.0, any 256-bit or 64-character value with a new line character at
the end of the AES sequence. This would make the total file 260 bits or 65 characters.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 108

c.

d.

e.

f.

g.

If Achronix Default Keys is not selected as the AES Decryption Key Source, enter a file name and path in
the Authentication Private Key Filepath box to encrypt the bitstream data.

This file must be:

An absolute or relative path to the current ACE project

A .pem file type that was created in the Generating a Public and Private Key Pair (page 112) section

For AES Decryption Key Source, select whether to use E-Fuse Keys (0) or the Achronix Default Keys (1)
for decryption.

For AES Decryption Key Type, select whether to Use PUF black key (0) to create the red key from the black
key or Use red key (1) to treat the red key as the source during encryption.

For AES E-Fuse Key Index, select which key to use. Bitstreams have the ability to be encrypted with 4
different AES keys. This is the AES key index whose key value should be assigned to the data in the 256-bit
AES Encryption Key Filepath. This also requires AES Decryption Key Source to be set to E-Fuse Keys (0).
In order to decrypt the target FPGA bitstream, the AES key must be written to the corresponding key index
in the FCU. The AES E-Fuse Key Index value can be 0, 1, 2, or 3. Additional details on using the key index are
in the Programming the Encryption Keys (page 113) section.

Check the Enforce Same Key option if programming multiple encrypted bitstreams. This option specifies
whether subsequent bitstreams can be programmed with the same encryption types and keys without
resetting the FPGA. If checked, subsequent bitstreams must use the same key source, key type, and key
index unless the FPGA has been reset.

Using Tcl Commands
If preferred, these options may be specified by entering the following commands into the ACE project file, or directly
into the ACE Tcl console:

set_impl_option -project <ace project name> -impl impl_1 bitstream_encrypted "1"
set_impl_option -project <ace project name> -impl impl_1
bitstream_encryption_aes_key_file "key_files/aes.txt"
set_impl_option -project <ace project name> -impl impl_1
bitstream_encryption_pem_key_file "key_files/my_eckey.privkey.pem"
set_impl_option -project <ace project name> -impl impl_1 bitstream_encryption_key_source
"0"
set_impl_option -project <ace project name> -impl impl_1 bitstream_encryption_key_type
"1"
set_impl_option -project <ace project name> -impl impl_1 bitstream_encryption_key_index
"0"
set_impl_option -project <ace project name> -impl impl_1 bitstream_encryption_same_key
"0"

Note

When using Achronix Default Keys as the AES Decryption Key Source, the red keys must be
treated as the source, and PUF is not allowed.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 109

Hardware Security
There are several security features available in the hardware to support decryption of encrypted bitstreams, safe
storage of secret keys, and strict rule enforcement which locks the device if security rules are violated. The main
features for decryption and safe storage of keys use the physically unclonable function (PUF) which provides a
unique secret value per individual FPGA, and the key derivation function (KDF) which uses the PUF as the key to
encrypt/decrypt the actual secret keys from the encrypted keys that are stored in an electronic fuse (eFuse).

Physically Unclonable Function
The PUF generates a unique secret identifier for each individual FPGA. It is created from random physical variations
that occur during the semiconductor manufacturing process, such that the same logic on an FPGA creates
completely different and unique values on each individual FPGA, even those on the same wafer. The value of the
PUF is random per individual FPGA, but remains constant over the lifetime of that device. The PUF value is not
known to Achronix or the manufacturer, and the value cannot be observed without destroying or altering the value of
the PUF. This PUF value can be used to encrypt the user secret key and store an encrypted version of the secret key
in an eFuse. Then when an encrypted bitstream is loaded into the FPGA, the PUF value is used to temporarily
decrypt the stored encrypted secret key. This secret key is then used to generate the multiple rotating keys to
decrypt the bitstream blocks that configure the FPGA.

Key Derivation Function
The KDF uses 256-bit AES encryption in conjunction with the PUF to create an encrypted version of the user secret
key that can be stored in an eFuse. While it is theoretically possible to observe the contents of the eFuse if an
adversary is in possession of the device and has access to advanced reverse engineering equipment, the stored key
is an encrypted version of the secret key that uses the PUF value as the master key for encryption. Again, the PUF
value cannot be known and is unique to each individual device, thus making the stored key safe. Additionally, when
the KDF needs to decrypt an encrypted bitstream, it loads the encrypted key from the eFuse along with the PUF
value and temporarily decrypts the secret key. The secret key is then used as the initial key for the module that
generates the multiple derived keys for AES-GCM decryption of the bitstream prior to loading it into the
configuration memory in the FPGA.

The following two figures show how the PUF and KDF are used to generate a secure encrypted key to store in an
eFuse, and how they are used to recreate the secret key to decrypt the bitstream.

Figure 54 • Safe Secret Key Storage

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 110

1.

2.

3.

1.

2.

3.

4.

Rules for Encryption
When using encrypted bitstreams, the FPGA enforces a set of rules. If the security rules are violated, the FPGA locks
up and cannot be used in any way without powering down the device. First, there is an ordering rule determining how
bitstreams are to be loaded. Speedster7t FPGA bitstreams have three phases and must follow these ordering rules:

Zero, one, or multiple pre-configuration (stage0) bitstreams.

One, and only one, full configuration bitstream.

Zero, one, or multiple partial reconfiguration bitstreams.

Additionally, there are rules to determine which keys can be used for the encryption. The eFuses can store up to four
secret keys — bitstreams can be encrypted using up to four different initial keys. These rules must be followed to
prevent locking the device:

If the encrypted_bitstreams_only eFuse bit has been set for the FPGA, the device only accepts
encrypted bitstreams.

If any pre-configuration bitstream is encrypted, all pre-configuration bitstreams must be encrypted using the
same key.

If either the pre-configuration bitstream or the full bitstream are encrypted, they both must be encrypted and
both must use the same key.

Any partial reconfiguration bitstreams may use a different key if and only if the previous bitstream sets the
same_key bit to 0 in the preamble, and the partial reconfiguration bitstream also sets that same bit to 0 in its
preamble.

Note

It is acceptable to load an unencrypted bitstream after a previous encrypted bitstream. It is not acceptable
to load an encrypted bitstream after a previous unencrypted bitstream.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 111

•

•

•

•

•

•

•

Security Fuses
There are several eFuses that are related to the security features in Speedster7t FPGAs. Some of these are set
during manufacturing and cannot be changed by the customer, and others are available for customer use. See the
eFuse chapter for details.

Fuses Set at Manufacturing
There are two fuses that can be set at manufacturing time to limit the features of the FPGA (The part number of the
device indicates if these limitations exist in a part):

Bitstream decrypt disable – if set, the FPGA cannot accept encrypted bitstreams

DPA disable for bitstream decrypt – if set, the FPGA still supports encrypted bitstreams, but there is limited
hardware protection for differential power analysis (DPA) side-channel attacks that can potentially expose
secret keys

Fuses Set By Customer
There are several eFuses that can be set by the customer if using encrypted bitstreams:

Bitstream authentication key – this fuse contains a 768-bit hash of the public key used for first-level
authentication of encrypted bitstreams. This fuse is not readable.

Bitstream decryption key – these fuses contain the four 256-bit secret keys that can be used for decryption
and authentication of encrypted bitstreams. These fuses can contain the actual secret keys or the encrypted
version of the secret keys (using PUF and KDF). These fuses are not readable.

Bitstream user register – this fuse contains the 32-bit value set by the user to identify the key version used.
The secret key itself cannot be read back, but the user register value can be read. The user keeps a mapping of
key versions to keys.

Bitstream user lock – this one-bit fuse, if set, disables further updates to the authentication key, decryption
key, and user register.

Encrypted bitstreams only – this one-bit fuse, if set, forces the FPGA to only accept encrypted bitstreams that
use one of the keys stored in the fuses.

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 112

•

•

•

Default Keys
Achronix provides a default public key for authentication and a default secret key for encryption/decryption of the
bitstream. These keys are available for testing to provide confidence the security system works. The default keys
should not be used to protect sensitive designs — they are only made available for testing purposes. Additionally,
when the eFuse is set to accept encrypted bitstreams only, the FPGA no longer accepts the default keys.

Generating a Public and Private Key Pair on Speedster7t AC7t1500
The Athena key generator is a tool delivered to ACE users and can be found within the installation directory. Use the
Athena authentication key generator to create unique asymmetric public and private key pairs. The key generator,
geneckey, is located at <ACE_INSTALL_DIR>/system/cmd64/geneckey. To use geneckey, provide an output
base file name. It either creates 3 files in the current directory, or if a path before the base file name is provided, it
creates these files in the chosen directory.

$ cd <ACE_INSTALL_DIR>
<ACE_INSTALL_DIR>$ system/cmd64/geneckey /path/to/output/file/<base_file_name>

For example, if the base file name is "my_eckey", the key generator outputs three files:

The private key, my_eckey.privkey.pem. This is used with the bitstream implementation option
bitstream_encryption_pem_key_file in ACE. The .pem file type is typically used for secure protocols
such as with encryption. The following is an example .pem file generated with the the Athena authentication
key generator:

-----BEGIN PRIVATE KEY-----
< PEM
key
value
here >
-----END PRIVATE KEY-----

A 768-bit hash of the public key, my_eckey.pubkey.txt. This is used when writing to the FPGA eFuses
before programming.

The public key, my_eckey.pubkey.pem. This is only created by the key generator and the user does not need
to write this value during bitstream creation or when writing to the eFuses.

UG094 Speedster7t Configuration User Guide

11 https://www.achronix.com/sites/default/files/docs/Speedster7t_7t1500_Pin_Table.xlsx
12 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 www.achronix.com 113

1.

2.

3.

4.

Programming the Encryption Keys Into Speedster7t AC7t1500 eFuses
The following eFuse programming steps are a one-time process per part, as an eFuse can only be programmed once
per part. These steps only need to be repeated if it is desired to write a new key value in an eFuse that was not
previously programmed with encryption keys.

Apply power to the Speedster7t FPGA from a powered-off state or initiate a FCU reset by asserting the
FCU_CONFIG_RSTN pin. Refer to the Speedster7t 7t1500 Pin Table11 for the specific ball number.
Establish a JTAG connection. For detailed instructions on how to establish a JTAG connection and issue
commands, please refer to the ACE User Guide (UG070)12.
If using the Achronix default keys, there is no need to use the following commands. If the user selects to use
their own E-Fuse keys, then the following commands must be issued in the ACE Tcl console with the AES and
PEM key values.

jtag::write_ecdsa_authentication_key_efuse $jtag_id <Public PEM key>
jtag::write_aes_encryption_key_efuse $jtag_id <E-Fuse Key Index> <256-bit AES
Encryption Key>

Public PEM key is the value in the my_eckey.pubkey.txt file generated in the first section with
geneckey and the Athena key generator

The E-Fuse key index and 256-bit AES encryption key values those set in the ACE options while encrypting
a bitstream

Reset the FPGA by cycling the power.

https://www.achronix.com/sites/default/files/docs/Speedster7t_7t1500_Pin_Table.xlsx
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/sites/default/files/docs/Speedster7t_7t1500_Pin_Table.xlsx
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 114

1.

2.

a.

b.

c.

Loading Encrypted Bitstreams
Loading an encrypted bitstream is similar to loading an unencrypted bitstream. However, the most important
difference is that when the unencrypted 512-bit preamble of the bitstream is loaded, the FPGA disables all data
read-out, thus securing the device containing a sensitive user IP and protecting it from being known, reverse
engineered, or altered in any way. Encrypted bitstreams are loaded following these steps:

When the hardware detects the loading of an encrypted bitstream, all readout and debug features are disabled,
preventing the reading of any internal state related to the FPGA fabric or the FCU.

Security rules for loading encrypted bitstreams are checked. If the rule checker fails, the FPGA enters a locked
state and can only be re-enabled with a power cycle or FCU reset.

If a board management controller is used to load in the bitstreams, there are additional requirements to be
aware of:

After the 512-bit preamble of the bitstream, the board management controller must pause and wait for 300
clock cycles before sending the next portion of the encrypted bitstream.

After the first 12,688 bytes of the encrypted bitstream, the board management controller must pause and
wait at least 520,000 FCU clocks, or about 2 ms (assuming a 32-bit data path and 250 MHz FCU clock).

For encrypted bitstreams, the board management controller is limited to sending 32-bits per FCU clock. For
unencrypted bitstreams, the controller can send data at a rate up to 128-bits per FCU clock.

Figure 55 • Encrypted Bitstream Loading Sequence

Note

When using encrypted bitstreams, it is not possible to use any debug features of the FPGA. Debug
features are only available when using unencrypted bitstreams.

UG094 Speedster7t Configuration User Guide

13 https://www.achronix.com/documentation/ace-user-guide-ug070
14 https://www.achronix.com/sites/default/files/docs/Speedster7t_7t1500_Pin_Table.xlsx
15 https://support.achronix.com/hc/en-us/articles/4415140267156

2.0 www.achronix.com 115

1.

2.

3.

a.

b.

4.

Programming an AC7t1500 Encrypted Bitstream
After writing the eFuses, the encrypted bitstream programming can proceed following these steps:

Establish a JTAG connection. For detailed instructions on establishing a JTAG connection and issuing
commands, refer to the ACE User Guide (UG070)13.

Program the encrypted bitsteam using the -encrypted switch:

ac7t1500::program_hex_file <path to bitstream> -encrypted

Verify the encrypted bitstream has been configured:

Check that the FCU_CONFIG_USER_MODE ball is asserted high, indicating that the device has transitioned
into user mode.

Additionally, VectorPath card users can verify that the FPGA is configured by reading the configuration
status register in the BMC. To read the BMC on the VectorPath card, the BittWare software development
kit must be installed.

Refer to the Knowledge Base article,Where Can I Download the Software Development Kit for a
VectorPath Card?15 for additional information.
After installing the SDK, run the following command in the ACE Tcl console:

bw_bmc_configure fpga

If the device has successfully configured and entered user mode, the console displays the following message:

Figure 56 • Successful Configuration Status From the BMC

Note

FCU_CONFIG_USER_MODE only transitions from 0 to 1 when the encrypted bitstream is full and
not a stage0 or partial reconfiguration. Refer to the Speedster7t 7t1500 Pin Table14 for the specific
ball number.

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/sites/default/files/docs/Speedster7t_7t1500_Pin_Table.xlsx
https://support.achronix.com/hc/en-us/articles/4415140267156
https://www.achronix.com/documentation/ace-user-guide-ug070
https://support.achronix.com/hc/en-us/articles/4415140267156
https://www.achronix.com/sites/default/files/docs/Speedster7t_7t1500_Pin_Table.xlsx

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 116

Device DNA
The Speedster7t family of FPGAs contains a set of internal fuses that can be opened during production, resulting in
stored read only logical values. One of these fuses stores a 32-bit sequence known as Device_DNA. The device_DNA
is similar to a serial number in that it is a value that uniquely identifies a specific part. This 32-bit sequence, which
can be read from the fabric via IPINs after the FPGA has been programmed, consists of a randomly-generated string
of 16 ones and 16 zeroes. Each code is unique.

ACE Placements to Read Device DNA
To connect the fabric inputs to the IPINs and read the device DNA, the following ace_placements.pdc file must
be input to an ACE project.

To accommodate this file, the top-level core fabric design must include an input port bus of i_dna[31:0].

create_boundary_pins {p:i_dna[0]} {i_dna_ipin[0]} -purpose CFG
set_placement -fixed -batch {p:i_dna[0]} {d:cfg2efuse_scratch_fuse[0]}
create_boundary_pins {p:i_dna[1]} {i_dna_ipin[1]} -purpose CFG
set_placement -fixed -batch {p:i_dna[1]} {d:cfg2efuse_scratch_fuse[1]}
create_boundary_pins {p:i_dna[2]} {i_dna_ipin[2]} -purpose CFG
set_placement -fixed -batch {p:i_dna[2]} {d:cfg2efuse_scratch_fuse[2]}
create_boundary_pins {p:i_dna[3]} {i_dna_ipin[3]} -purpose CFG
set_placement -fixed -batch {p:i_dna[3]} {d:cfg2efuse_scratch_fuse[3]}
create_boundary_pins {p:i_dna[4]} {i_dna_ipin[4]} -purpose CFG
set_placement -fixed -batch {p:i_dna[4]} {d:cfg2efuse_scratch_fuse[4]}
create_boundary_pins {p:i_dna[5]} {i_dna_ipin[5]} -purpose CFG
set_placement -fixed -batch {p:i_dna[5]} {d:cfg2efuse_scratch_fuse[5]}
create_boundary_pins {p:i_dna[6]} {i_dna_ipin[6]} -purpose CFG
set_placement -fixed -batch {p:i_dna[6]} {d:cfg2efuse_scratch_fuse[6]}
create_boundary_pins {p:i_dna[7]} {i_dna_ipin[7]} -purpose CFG
set_placement -fixed -batch {p:i_dna[7]} {d:cfg2efuse_scratch_fuse[7]}
create_boundary_pins {p:i_dna[8]} {i_dna_ipin[8]} -purpose CFG
set_placement -fixed -batch {p:i_dna[8]} {d:cfg2efuse_scratch_fuse[8]}
create_boundary_pins {p:i_dna[9]} {i_dna_ipin[9]} -purpose CFG
set_placement -fixed -batch {p:i_dna[9]} {d:cfg2efuse_scratch_fuse[9]}
create_boundary_pins {p:i_dna[10]} {i_dna_ipin[10]} -purpose CFG
set_placement -fixed -batch {p:i_dna[10]} {d:cfg2efuse_scratch_fuse[10]}
create_boundary_pins {p:i_dna[11]} {i_dna_ipin[11]} -purpose CFG
set_placement -fixed -batch {p:i_dna[11]} {d:cfg2efuse_scratch_fuse[11]}
create_boundary_pins {p:i_dna[12]} {i_dna_ipin[12]} -purpose CFG
set_placement -fixed -batch {p:i_dna[12]} {d:cfg2efuse_scratch_fuse[12]}
create_boundary_pins {p:i_dna[13]} {i_dna_ipin[13]} -purpose CFG
set_placement -fixed -batch {p:i_dna[13]} {d:cfg2efuse_scratch_fuse[13]}
create_boundary_pins {p:i_dna[14]} {i_dna_ipin[14]} -purpose CFG
set_placement -fixed -batch {p:i_dna[14]} {d:cfg2efuse_scratch_fuse[14]}
create_boundary_pins {p:i_dna[15]} {i_dna_ipin[15]} -purpose CFG
set_placement -fixed -batch {p:i_dna[15]} {d:cfg2efuse_scratch_fuse[15]}
create_boundary_pins {p:i_dna[16]} {i_dna_ipin[16]} -purpose CFG
set_placement -fixed -batch {p:i_dna[16]} {d:cfg2efuse_scratch_fuse[16]}

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 117

create_boundary_pins {p:i_dna[17]} {i_dna_ipin[17]} -purpose CFG
set_placement -fixed -batch {p:i_dna[17]} {d:cfg2efuse_scratch_fuse[17]}
create_boundary_pins {p:i_dna[18]} {i_dna_ipin[18]} -purpose CFG
set_placement -fixed -batch {p:i_dna[18]} {d:cfg2efuse_scratch_fuse[18]}
create_boundary_pins {p:i_dna[19]} {i_dna_ipin[19]} -purpose CFG
set_placement -fixed -batch {p:i_dna[19]} {d:cfg2efuse_scratch_fuse[19]}
create_boundary_pins {p:i_dna[20]} {i_dna_ipin[20]} -purpose CFG
set_placement -fixed -batch {p:i_dna[20]} {d:cfg2efuse_scratch_fuse[20]}
create_boundary_pins {p:i_dna[21]} {i_dna_ipin[21]} -purpose CFG
set_placement -fixed -batch {p:i_dna[21]} {d:cfg2efuse_scratch_fuse[21]}
create_boundary_pins {p:i_dna[22]} {i_dna_ipin[22]} -purpose CFG
set_placement -fixed -batch {p:i_dna[22]} {d:cfg2efuse_scratch_fuse[22]}
create_boundary_pins {p:i_dna[23]} {i_dna_ipin[23]} -purpose CFG
set_placement -fixed -batch {p:i_dna[23]} {d:cfg2efuse_scratch_fuse[23]}
create_boundary_pins {p:i_dna[24]} {i_dna_ipin[24]} -purpose CFG
set_placement -fixed -batch {p:i_dna[24]} {d:cfg2efuse_scratch_fuse[24]}
create_boundary_pins {p:i_dna[25]} {i_dna_ipin[25]} -purpose CFG
set_placement -fixed -batch {p:i_dna[25]} {d:cfg2efuse_scratch_fuse[25]}
create_boundary_pins {p:i_dna[26]} {i_dna_ipin[26]} -purpose CFG
set_placement -fixed -batch {p:i_dna[26]} {d:cfg2efuse_scratch_fuse[26]}
create_boundary_pins {p:i_dna[27]} {i_dna_ipin[27]} -purpose CFG
set_placement -fixed -batch {p:i_dna[27]} {d:cfg2efuse_scratch_fuse[27]}
create_boundary_pins {p:i_dna[28]} {i_dna_ipin[28]} -purpose CFG
set_placement -fixed -batch {p:i_dna[28]} {d:cfg2efuse_scratch_fuse[28]}
create_boundary_pins {p:i_dna[29]} {i_dna_ipin[29]} -purpose CFG
set_placement -fixed -batch {p:i_dna[29]} {d:cfg2efuse_scratch_fuse[29]}
create_boundary_pins {p:i_dna[30]} {i_dna_ipin[30]} -purpose CFG
set_placement -fixed -batch {p:i_dna[30]} {d:cfg2efuse_scratch_fuse[30]}
create_boundary_pins {p:i_dna[31]} {i_dna_ipin[31]} -purpose CFG
set_placement -fixed -batch {p:i_dna[31]} {d:cfg2efuse_scratch_fuse[31]}

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 118

Chapter 9 : Partial Reconfiguration
Partial reconfiguration enables reprogramming a portion of the fabric with a smaller bitstream while leaving the
remaining configuration intact. Each region that can be reconfigured independently is called a fabric cluster, or
simply, "cluster". The Speedster7t AC7t1500 FPGA has 80 clusters which can be reconfigured independently. Partial
reconfiguration can only be initiated after the FPGA has entered user-mode.

Figure 57 • AC7t1500 FPGA Partial Reconfiguration Fabric Cluster Layout

The Speedster7t AC7t800 FPGA has 36 clusters.

UG094 Speedster7t Configuration User Guide

16 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 www.achronix.com 119

•

•

•

•

There are many advantages to partial-reconfiguration:

Enable dynamic functions for certain blocks in the design

Dynamic load balancing of accelerator cores

Smaller FPGA logic functions can be loaded into the FPGA only when needed (hardware overlays)

Faster programming times

Design Considerations
Partial-reconfiguration introduces additional complexity into the design. Defining correct functional hierarchy is very
important for designs that utilize dynamically-reconfigured modules. In order to avoid functional issues while
performing partial reconfiguration, system-level logic must be implemented to stop and start communications with
the portions of the user design being reconfigured while the remainder of the design is operating.

The partial reconfiguration flow is greatly simplified by leveraging the 2D NoC. All data and communication between
a partial reconfiguration module and the remainder of the user design and I/O ring IP (PCIe, Ethernet, GDDR6, DDR4,
etc) can be via NAP connections inside the fabric clusters you intend to reconfigure. These connections allow the
module to talk to any node in the system without any logic or data signal routing crossing between the partial
reconfiguration fabric cluster boundary and the remainder of the design. Utilizing NAP connections allows the partial
reconfiguration module to be self-contained and portable — it can be moved to any other set of fabric clusters
within the FPGA.

The only signals not self-contained are clocks and (optionally) any global resets or enables. Partial reconfiguration
bitstreams do not reconfigure the global clock trunk, the clock branches, or the clock minitrunks. Clocks and global
signals must be pre-routed as part of the base bitstream.

All clocks in the system must continue to run during partial reconfiguration since other logic in the fabric also
continues to run live and may be using those clocks. Partial reconfiguration bitstreams do configure the connections
between the clock stems and the clock branch, and all other logic and routing in the fabric clusters. To connect the
local clock stems to the clock branch within the context of a running base design, the partial bitstream must connect
to the proper clock branch tracks.

To manage this, ACE provides a set of tools and constraints for pre-routing clocks and global signals. Up-front
planning must be performed for clocks and other global signals (e.g., resets and enables) which must be routed into
partial reconfiguration regions. See the ACE User Guide (UG070)16 for details and a full tutorial.

It is also important to define the correct placement constraints so that the target module is completely contained
within the cluster marked for partial reconfiguration. The resources for the module cannot exceed the available
resources for a cluster and optimizations across the cluster should be disabled.

Currently, there is no support in software for virtual pin placement constraints for the router, which would be needed
to support any data nets going into or out of the partially-reconfigured clusters (with the exception of pre-routed
clocks and global signals which use the clock network).

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster7t Configuration User Guide

17 https://www.achronix.com/documentation/ace-user-guide-ug070

2.0 www.achronix.com 120

1.

2.

3.

Using Partial Reconfiguration

ACE Implementation Options

Figure 58 • ACE Partial Reconfiguration Options Dialog

Table 46 • Bitstream Generation Implementation Options — Partial Reconfiguration (Device Specific)

Option ACE impl_option Description

Enable Partial
Reconfiguration bitstream_partial_reconfig When checked (1), enables partial reconfiguration.

Partial Reconfig Cluster Map
(hex) bitstream_partial_reconfig 20-character hexadecimal value specifying the target fabric cluster. The ACE

Clusters view should be used to find the appropriate value.

Partial Reconfiguration Steps
To leverage partial reconfiguration, first program a base bitstream, which at least configures the I/O ring, clocks, and
and global signal pre-routes.

A partial bitstream can be generated for a given module in ACE by setting the Partial Reconfiguration Cluster Map
and Partial Reconfiguration implementation options shown above prior to generating the bitstream. This generates a
partial bitstream which can be programmed on top of (after) the base bitstream. Multiple partial bitstreams can be
programmed sequentially. Please see the ACE User Guide (UG070)17 for details.

The partial reconfiguration bitstream generated from ACE includes the following sequence:

Write a value of 32'h1000_0000 to CONFIG_REG_CRC and a value of 32'h0000_0000 to the
CONFIG_REG_CRC2 register. This brings the partial state machine to shutdown state and asserts the partial
reset.

Send the SYNC, JTAG ID and the preamble header, then program the selected clusters using the partial
bitstream.

Write a value of 32'h0200_0000 to CONFIG_REG_CRC and a value of 32'h0000_0000 to the
CONFIG_REG_CRC2 register. This releases the reset to the partial clusters and generates
partial_config_done.

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

UG094 Speedster7t Configuration User Guide

2.0 www.achronix.com 121

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 10 : Speedster7t Configuration User Guide Revision
History

Revision History

Version Date Description

1.0 20 Apr 2021 Initial Achronix release

1.0.1 26 Apr 2021
Change images Read from FCU Register and Read from ACB Register to
execution order

1.0.2 16 Sep 2021 Minor changes to reflect new FCU features

1.0.3 01 Feb 2022 Correction to FLASH configuration header (page 22) bit[31]

1.0.4 22 Feb 2022 Removed original (divide-by-1), divide-by-2 (page 9) support for the flash clock

1.0.5 25 Sep 2023 Deprecate references to Speedster AC7t1550 device

2.0 02 Apr 2024

Added information on two-stage programming via PCIe

Added information on dual-mode flash programming

Added information on design security

Added information on device DNA

Removed references to .stapl files

Merged user guide with JTAG Configuration User guide

	Overview
	Interface Performance
	Bitstream Programming Modes for Speedster7t FPGAs
	Bitstream Programming Time
	Bitstream Programming Via CPU
	CPU Mode Bitstream Programming Flow
	CPU Mode Hardware Interface

	Bitstream Programming via Flash Memories
	Serial Flash Bitstream Programming Flow
	Serial Flash Hardware Interface
	Flash Interface
	Flash Device Configurations
	Addressing Modes and Memory Organization
	Flash Configuration Protocol
	Flash Modes
	Flash Memory Size Requirements
	Flash Configuration Using FTDI

	Bitstream Programming via JTAG
	Generating the JTAG Bitstream Files From ACE
	How To Use the ACE-Generated JTAG Bitstream Files
	JTAG Programming using the ACE Download View
	JTAG Programming using the ACE Flow Steps
	JTAG Programming using the Tcl Library API
	JTAG Hardware Overview
	JTAG Configuration Using FTDI
	JTAG Configuration Using the Bitporter2 Pod

	Two-Stage Bitstream Programming via PCI Express
	PCIe Bitstream Programming Flow

	FPGA Configuration Unit (FCU)
	Overview
	Configuration Pin Tables

	Bitstream Generation Software Support in ACE
	Bitstream Generation
	Bitstream Output File Formats
	Serial Flash Configuration Options
	Encryption Options
	Two-Stage Configuration Option
	Partial Reconfiguration Configuration Options
	FCU Configuration Options
	Bitstream ID Configuration Options
	CMEM Error Injection Options

	Configuration Sequence and Power-Up
	Device Power-Up

	Configuration Error Correction and SEU Mitigation
	Configuration Memory Architecture and Addressing
	Error Injection and Reporting
	ACE Implementation Options
	Bitstream Error Injection

	Scrubbing Reset
	Scrubbing FCU Registers

	Design Security for Speedster7t FPGA
	Bitstream Authentication
	Bitstream Encryption
	Generating Encrypted Bitstreams
	Encrypting a Speedster7t AC7t1500 Bitstream
	Hardware Security

	Security Fuses
	Fuses Set at Manufacturing
	Fuses Set By Customer
	Default Keys
	Generating a Public and Private Key Pair on Speedster7t AC7t1500
	Programming the Encryption Keys Into Speedster7t AC7t1500 eFuses

	Loading Encrypted Bitstreams
	Programming an AC7t1500 Encrypted Bitstream

	Device DNA
	ACE Placements to Read Device DNA

	Partial Reconfiguration
	Design Considerations
	Using Partial Reconfiguration
	ACE Implementation Options
	Partial Reconfiguration Steps

	Speedster7t Configuration User Guide Revision History
	Revision History

