
Preliminary Data

Speedster7t Configuration
User Guide (UG094)

Speedster FPGAs

Preliminary Data

Speedster7t Configuration User Guide (UG094)

Preliminary Data 2

Copyrights, Trademarks and Disclaimers
Copyright © 2021 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster,
and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other
trademarks are the property of their respective owners. All specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Preliminary Data
This document contains preliminary information and is subject to change without notice. Information provided
herein is based on internal engineering specifications and/or initial characterization data.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

Speedster7t Configuration User Guide (UG094)

Preliminary Data 3

Table of Contents

Chapter - 1: Overview . 6

Chapter - 2: Interface Performance . 8

Chapter - 3: Configuration Modes for Speedster7t FPGAs . 9
Configuration via CPU . 10

Programming Data Ordering . 13

Configuration via Flash Memories . 15
Flash Interface . 16

Flash Device Configurations . 16

Addressing Modes and Memory Organization . 19

Flash Configuration Protocol . 22

Flash Modes . 22

Registers and Addressing . 26

Configuration via JTAG . 28
JTAG Instructions . 30

Chapter - 4: Configuration Pin Tables . 33

Chapter - 5: FPGA Configuration Unit (FCU) . 37
Overview . 37

Speedster 7t1500 FCU Command List . 38
Command Formats and Details . 38

Chapter - 6: Configuration Sequence and Power-Up . 50
Device Power-Up . 50

Read Non-Volatile Memories . 51

Clear Configuration Memory . 51

Bitstream Sync, JTAG ID and Instance ID . 53

Load Configuration Bits . 53

CRC . 54

Startup Sequence . 54

User Mode . 54

Chapter - 7: Speedster7t Bitstream Generation . 56

Chapter - 8: Achronix Configuration Bus (ACB) . 59

Speedster7t Configuration User Guide (UG094)

Preliminary Data 4

Chapter - 8: Achronix Configuration Bus (ACB) . 59
ACB Address Space . 60

ACB Write and Read Protocols . 61
Write to Memory . 61

Read from Memory . 63

Chapter - 9: Partial Reconfiguration . 65
Design Considerations . 65

Partial Reconfiguration Steps . 66

Chapter - 10: Remote Update . 67
Introduction . 67

Implementation . 68
Fallback on Error . 69

Chapter - 11: Design Security for Speedster 7t FPGA . 70
Bitstream Authentication . 70

Bitstream Encryption . 70
Generating Encrypted Bitstreams . 71

Hardware Security . 71

Security Fuses . 73
Fuses Set at Manufacturing . 73

Fuses Set By Customer . 73

Default Keys . 74

Loading Encrypted Bitstreams . 74

Chapter - 12: eFuse . 75

Revision History . 77

Speedster7t Configuration User Guide (UG094)

Preliminary Data 5

Speedster7t Configuration User Guide (UG094)

Preliminary Data 6

Chapter - 1: Overview
At startup, Speedster7t FPGAs require configuration by the end user via a bitstream. This bitstream can be
programmed through one of four available interfaces in the FPGA configuration unit (FCU).

The term FPGA Configuration Unit (FCU) refers to logic that controls the configuration process of the
Speedster7t FPGA. This logic is responsible for the following:

Receiving data on a variety of core interfaces (depending on the selected programming mode)

Decoding instructions

Sending configuration bit values to the appropriate destination (core configuration memory, the core's
boundary ring configuration memory, FCU registers, etc.)

Controls the startup and shutdown sequences that drive resets to the rest of the core

CRC checks

SEU mitigation

Security

Any core-level housekeeping that occurs on the de-assertion of reset (e.g., clearing of configuration
memory)

Data from the configuration pins is brought into the FCU located in the core's boundary logic. Depending on the
configuration mode, this data passes through one of four interfaces and is then provided to the control logic and
state machines in the FCU. At this point, the data bus is standardized to a common interface (configuration mode
independent). This data is processed and propagated to the configuration registers in the core's boundary ring, to
the core's configuration memory, or to the hard IP blocks in the FPGA's I/O ring.

When all of the configuration bits are successfully loaded, the FCU transitions the Speedster7t FPGA into user
mode, allowing the user to provide stimuli and enable operation.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 7

Figure 1: Speedster7t Configuration Block

Speedster7t Configuration User Guide (UG094)

Preliminary Data 8

Chapter - 2: Interface Performance
The table below lists the various configuration interfaces supported by the Speedster7t FPGA and their
corresponding maximum operating frequency.

Table 1: Configuration Modes and Maximum Frequencies

Configuration Mode Maximum Frequency

JTAG 50 MHz

CPU 250 MHz

Serial flash 62.5 MHz

All of the programming modes and interfaces are capable of running up to 250 MHz at the configuration pins.
The FCU and all associated circuitry is also capable of running up to 250 MHz. Since the internal data bus in the
FCU is 128 bits wide, and in most configuration modes, the data pin count is less than 128, the incoming data
stream goes through a gearbox to reduce the throughput. This configuration ensures that the internal
programming circuitry runs at less than 250 MHz to process the incoming data stream. In the widest data mode
(CPU ×128), the gearbox is bypassed and the entire configuration interface can run at the full 250 MHz
bandwidth. Depending on the mode and configuration data width, the total bandwidth varies, and the
programming time changes accordingly.

Note

CPUx128 is primarily for ATE use and not a recommended mode for design configuration.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 9

Chapter - 3: Configuration Modes for Speedster7t FPGAs
Speedster7t FPGAs support four configuration modes: Flash, JTAG, CPU and PCI Express. The selection
between these modes is controlled by setting the pins to the values shown in the table FCU_CONFIG_MODESEL
below. Both JTAG and PCIe modes are independent of the pin setting and must be FCU_CONFIG_MODESEL
enabled by sending FCU commands that set the appropriate bits in FCU register space. The JTAG mode can be
enabled by writing to the user data register of the JTAG TAP controller. The PCI Express mode is enabled by
writing to the PCIe mode enable register in the FCU address space. The JTAG mode overrides all other
configuration modes until disabled.

Note

PCIe mode is enabled by writing the PCIe mode enable register in the FCU address space, refer to
. The PCIE mode is set as highest priority over the other modes listed in Configuration via PCIe Express

the Table below.

Table 2: Pin Settings for Various Configuration Modes

Configuration Mode Data
Width FCU_CONFIG_MODESEL [3:0] FCU_CONFIG_SYSCLK_BYPASS(3)FCU_CONFIG_CLKSEL(3)

JTAG(1) – XXXX(2) X 1

PCIe – XXXX X 0

Flash single device (1D)

1 (SPI) 0001

0/1 0

2 (Dual) 1000

4 (Quad) 1010

8 (Octa) 1100

Flash four devices (4D)

1 (SPI) 0010

2 (Dual) 1001

4 (Quad) 1011

8 (Octa) 1101

CPU

1 0011

1 0

8 0100

16 0101

32 0110

128(4) 0111

Speedster7t Configuration User Guide (UG094)

Preliminary Data 10

1.

2.

3.

4.

5.

Configuration Mode Data
Width FCU_CONFIG_MODESEL [3:0] FCU_CONFIG_SYSCLK_BYPASS(3)FCU_CONFIG_CLKSEL(3)

Table Notes

Always active. Enabled in the JTAG TAP controller.
If pins are set such that flash or CPU configuration mode is selected, then the JTAG FCU_CONFIG_MODELSEL[3:0]
override should be issued after flash programming has completed or the CPU mode interface is inactive.
These straps select the configuration clock source.

FCU_CONFIG_SYSCLK_BYPASS Clock Selected

0 On-chip oscillator clock

1 FCU_CPU_CLK

Speedster7t FPGAs have 32 dedicated data I/O pins for the CPU interface, which supports an up to ×32 interface. For
×128 mode, the upper 96 pins are shared with the DDR4 interface.
CPUx128 is primarily for ATE use and not a recommended mode for design configuration.

Configuration via CPU
In CPU configuration mode, an external CPU acts as the master controlling the programming operations to the
Speedster7t FPGA and offers a high-speed method for loading configuration data. Depending on the setting of
the FCU_CONFIG_MODESEL pins, the CPU mode can be either a 1-, 8-, 16-, 32- or 128-bit wide parallel
interface, clocked using , with chip select support to indicate valid data. This mode is the fastest FCU_CPU_CLK
programming mode as it provides the widest data interface and a maximum supported clock rate of 250 MHz.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 11

Figure 2: External CPU Connectivity to a Speedster7t FPGA

Note

The CPU master needs only to connect to the first 1, 8, 16, 32 bits of depending FCU_CPU_DQ_IN_OUT
on the CPU mode selected. All unused signals should be tied to ground.

As described in the section, the configuration mode-Configuration Sequence and Power-up (see page 50)
specific operations occur between the release of (indicating that the configuration FCU_CONFIG_STATUS
memory has been cleared and that the Speedster7t FPGA is ready to accept bitstream data) and the assertion of

 (stating completion of configuration). The example waveform below for CPU×8 mode FCU_CONFIG_DONE
illustrates the sequence of events, clocking and control signal states needed for successful configuration in CPU
mode:

Speedster7t Configuration User Guide (UG094)

Preliminary Data 12

1.

2.

3.

4.

After is de-asserted, must continue to cycle to ensure that the FPGA FCU_CPU_RSTN FCU_CPU_CLK
cycles through the FCU states and the configuration memory is cleared. At that point,

 is driven high.FCU_CONFIG_STATUS

After at least 5 clock cycles of being driven high, must be pulled FCU_CONFIG_STATUS FCU_CPU_CSN
low to begin writing the bitstream data into the Speedster FPGA. When the last set of data is written into
the Speedster7t FPGA, is pulled back high.FCU_CPU_CSN

When is pulled high, needs to continue being clocked. When the FCU FCU_CPU_CSN FCU_CPU_CLK
cycles through all of the configuration states, is driven high to indicate that the FCU_CONFIG_DONE
Speedster7t FPGA was successfully programmed.

As the toggles, the FCU cycles through its states to move the Speedster7t FPGA from FCU_CPU_CLK
programming mode into user mode, taking the fabric out of reset and performing operations to enable
user-mode functionality for all parts of the core. The signal is asserted to FCU_CONFIG_USER_MODE
indicate when the Speedster7t FPGA has successfully transitioned into user mode.

At any point during the configuration, if is asserted low, then the bus FCU_CPU_CSN FCU_CPU_DQ_IN_OUT
should have valid data or NOPs, if is high, the data on is ignored. When FCU_CPU_CSN FCU_CPU_DQ_IN_OUT
the bitstream is programmed, can be held low while sending NOPs to the Speedster7t FPGA. FCU_CPU_CSN
This action will not affect the assertion of or signals.FCU_CONFIG_DONE FCU_CONFIG_USER_MODE

Figure 3: Clocking and Control Signals for Successful Configuration

Figure 4: Bitstream Data Sequence for unencrypted bitstream

Note

During the 100 clock cycle wait time, CPU_CSN will be pulled high.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 13

Programming Data Ordering
In Speedster7t FPGAs, the configuration memory data bus is 128 bits wide, but the command and FCU register
buses are 32 bits wide. Data transmission occurs MSB to LSB at both the byte and 32-bit packet levels.
Commands are executed 32 bits at a time, but the data register is 128 bits wide and requires that four sets of 32-
bit packets be transmitted. At the 128-bit full payload level, the data transmission needs to occur in the following
order: i3, i2, i1, i0, where i is a 32-bit packet. The sequence of instructions is i0, i1, i2 and then i3.x

This structure makes the bitstream programming implementation very uniform for CPU×1, CPU×8, CPU×16 and
CPU×32 modes. The various potential data orders are illustrated in the example waveforms below, each showing
the transmission of the same bitstream contents in the five different CPU widths.

Note

The figures in this section are to show methodologies and generalized scenarios. For detailed
waveforms for specific commands, refer to the respective section in Also, the FCU Command List.
JTAG ID values in the waveforms below are indicative and not specific to a device.

CPU×32
As shown in the waveform below, a command is issued on each clock cycle in CPUx32 mode:

The first 128-bit payload shows that the order of loading is NOP, Instance ID, JTAG ID and then Sync,
with each 32-bit packet transmitted MSB to LSB. However, as indicated above, the sequence in which
these are processed by the FCU are Sync, JTAG ID, Instance ID and finally NOP.

The second 128-bit payload operates the same way where the 32 bit preamble data is transmitted first,
followed by the next three preamble data, but the execution occurring in the reverse order with the 1st
preamble data being executed last. Also, when a write or read command is issued, it needs to be the last
32-bit FCU command in the 128-bit sequence. This requirement is because the FCU expects data input or
provides data output immediately following the write and read operations respectively.

When the write command has been issued for a particular frame, subsequent clocks have CMEM frame
data transmitted on every clock, again in 128-bit payload sets.

The signal must be held low during the entire time when FCU commands are being issued for FCU_CPU_CSN
write operations. If is asserted during the (128/CPU_data_width) continuous clock cycles of one FCU_CPU_CSN
request, that request is discarded. When the signal returns low, the next request is handled FCU_CPU_CSN
normally.

Figure 5: Bitstream Programming in CPU×32 Mode

Speedster7t Configuration User Guide (UG094)

Preliminary Data 14

CPU×16
CPU×16 mode is very similar to CPU×32 mode. The only difference is that 16-bits of data are transmitted on
each FCU clock cycle, i.e., each FCU command is transmitted over two FCU clock cycles, MSB to LSB (as
shown in the waveform below).

Figure 6: Bitstream Programming in CPU×16 Mode

CPU×8
CPU×8 mode follows along the lines of CPU×16 and CPU×32 modes, with each FCU command requiring four
FCU clock cycles for transmission, MSB to LSB, as detailed in the waveform below.

Figure 7: Bitstream Programming in CPU×8 Mode

CPU×1
In CPU×1 mode, a single bit of the FCU command (or write data) is transmitted on each FCU clock cycle, MSB to
LSB, for a 32-bit packet, but in reverse order for the 128-bit payload as described in the other CPU width modes.
The waveform below shows these details.

Figure 8: Bitstream Programming in CPU×1 Mode

Speedster7t Configuration User Guide (UG094)

Preliminary Data 15

Note

Contact Achronix Support for more details on the CPU x128 mode.

CPU×32 ACE Programming File Example

Preamble 512 bit:
--
NOP
Instance ID
JTAG ID
Sync
32-bit length preamble to indicate number of 128 bit blocks of unencrypted bitstream
64 bit preamble Information only valid for encrypted bitstream
32-bit length preamble to indicate number of 128 bit blocks of encrypted bitstream
256 bits of zeros that are reserved
--
NOP
Write Cmd
NOP
NOP
NOP
Write Data
...

Configuration via Flash Memories
Caution!

Speedster7t FPGAs can interface to serial NOR flash devices only. Parallel NOR, NAND or other flash
variants are supported.not

Flash programming mode allows flash memories to be used to configure Speedster7t FPGAs. In this mode, the
FPGA is the master and supplies the clock to the flash memory.

The clock supplied from the FPGA (on the pin) to the attached flash device(s) can be driven by FCU_FLASH_SCK
the or the on-chip oscillator clock depending on the configuration options selected as described in FCU_CPU_CLK
the chapter. The frequency of this clock can be Configuration Modes for Speedster7t FPGAs (see page 9)
selected from one of four variants of the clock sources arriving at the FCU: the original (divide-by-1), divide-by-2,
divide-by-4 or divide-by-8. This selection is configured using the 'Serial Flash Clock Divider' drop-down menu in
the 'Bitstream Generation Implementation Options' section of the ACE GUI. This setting ensures that only the
flash state machine runs at the slower frequency. All other FCU and ACB circuitry continues to operate at the
original input clock frequency.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 16

Note

At power-on, the device defaults to the divide-by-4 setting. The FCU then sets the appropriate
configuration register to control the clock divider based on the user selection in ACE. The transition
from a divide-by-4 clock to any other selected clock frequency is glitch free. Also, flash write is always
SPI only while read can be in SPI, DUAL, QUAD or OCTA mode as summarized in the table below.

Flash Interface
The configuration block is equipped with a flash interface that supports flash programming and readback. A
bitstream can be programmed into flash through JTAG or the PCIe interface. Flash registers (refer to Registers

) within the configuration block assist with this process. The complete feature list of the flash (see page 26)
interface is as described in the table below.

Table 3: Flash Features

Feature Description

Programming
interface SPI – JTAG, PCIe (Remote update programming via FPGA).

Security mode Double encryption.

Device mode X1, X4.

I/O Mode SPI, DUAL, QUAD, OCTA.

Flash write SPI.

Flash Read SPI, DUAL, QUAD, OCTA.

Header Holds fallback, current address and read commands.

Two image
support Flash can store two images, golden and new image.

Remote update Flash can be stored with new or updated images remotely.

Error fallback If a CRC error occurs in the updated bitstream, the flash interface uses the fallback address
specified in the page-0 header.

Flash Device Configurations
Speedster7t FPGAs support two flash device configurations, single flash device (1D) and four flash devices (4D).

1D Configuration
The 1D programming configuration is composed of a Speedster7t FPGA acting as the master and
communicating with a single flash device. The signal is used for clocking. The o_flash_sck o_flash_sdi
signal is the data output from the FPGA to communicate instructions to the flash device and i_flash_sdo[0]
is the single-bit FPGA input pin which receives the bitstream from the flash in ×1 mode. The o_flash_csn[0]
signal is pulled low as soon as communication between the FPGA and flash device begins, and stays low during
the valid bitstream window.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 17

the valid bitstream window.

The FPGA can communicate with the flash device in SPI, Dual, Quad or Octa modes in 1D configuration.

The figure below provides a block diagram of how a serial flash device can be connected to a Speedster7t FPGA
in Octa (x8) mode.

Figure 9: Speedster7t FPGA 1D Flash Programming Configuration

Figure 10: Data Ordering 1D Flash SPI Mode Read/Write

4D Configuration
Serial 4D flash programming mode is essentially an enhanced and higher bandwidth implementation of the serial
flash 1D configuration. The FPGA is again the master, and interfaces with not one but four flash memory devices
to increase the data bandwidth four times.

When writing to the four flash memories, all four chip selects are pulled low simultaneously o_flash_csn[3:0]
. When reading from the four flash memories, and 1-bit of bitsream data is sent to each flash device in SPI mode

the FPGA pulls all of the signals low. Four-wide configuration data is read from the flash o_flash_csn[3:0]
memories and transferred to the FPGA through the ports. When bitstream operations are i_flash_sdo
complete (flash memory contents are read), transitioning from the end of the bitstream to user mode is performed
as in CPU and flash 1D modes.

Each flash device can operate in SPI, Dual, Quad or Octa modes. The figure below provides a block diagram of
how four serial flash devices (4D configuration) can be connected to a Speedster7t FPGA in Octa (x8) mode.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 18

Figure 11: Speedster7t FPGA 4D Flash Programming Configuration

Speedster7t Configuration User Guide (UG094)

Preliminary Data 19

Figure 12: 4D Flash SPI Mode Read/Write Data Ordering

Addressing Modes and Memory Organization
Addressing modes for flash memory are based on the size of the device. A three-byte addressing mode is
required for 128 Mb flash and smaller, and a four-byte addressing mode is required to support memory sizes
above 128 Mb. Writes to the flash memory occur as pages, with each page consisting of 256 bytes. The figure
below shows the memory organization:

Speedster7t Configuration User Guide (UG094)

Preliminary Data 20

Figure 13: Speedster7t FPGA Flash Memory Organization

Address Range
The following table shows the address ranges when two images are stored on a single flash device, assuming
that each image is 1Gb in size.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 21

Table 4: Address Ranges for Two Bitstream Images on a Single Device

Address
Range (32

bits)
Description Configuration Details

0x0000_0000
to
0x0000_00FF

Page-0 address space. This range contains
header information described in the flash
configuration header section. This address
range cannot be used for storing actual
bitstreams.

These addresses are not configurable by the
user.

0x0000_1000
to
0x07FF_FFFF

FPGA image 1 address space.

The start address can be configured by the user
via the current/fallback address in page-0
header. This example assumes the address
starts at 0x0000_1000 for a 1 Gb bitstream.

0x0800_0000
to
0x0FFF_FFFF

FPGA image 2 address space.

The start address can be configured by the user
via the current/fallback address in page-0
header. This example assumes the bitstream
starts at address 0x0800_0000.

Flash Configuration Header (Page-0 Header)
The first 256 bytes in the flash memory (page 0) store control information that describe how the subsequent
bitstream should be read from the flash device. This information can be written to the flash device in two ways:

Via the JTAG interface along with the bitstream.

Pre-programmed into the device by the manufacturer.

This space is not used for storing the device bitstream.

Table 5: Page-0 Header Format

Address Bits Value Description

0xC to 0xF 32 Read command.

0x8 to 0xB 32 Flash configuration header read count.

0x4 to 0x7 32 Bitstream read control.

bit 0 – Flash read enable.
bit 1 – Flash fall back enable.
bit [5:2] – Retry count.
bit [21:6] – Timeout count.
bit 22 – Enable 4-byte addressing.
bit [27:23] – Dummy read cycles.
bit [31:28] – Flash SCK div count.

0x0 to 0x3 32 Bitstream read address (new image).

0x14 to 0x17 32 Bitstream fallback address (golden image).

Speedster7t Configuration User Guide (UG094)

Preliminary Data 22

Address Bits Value Description

0x10 to 0x13 32 Fallback read command.

0x18 to 0x20 24 Reserved.

Flash Configuration Protocol
With the , and straps FCU_CONFIG_MODESEL[3:0] FCU_CONFIG_CLKSEL FCU_CONFIG_SYSCLK_BYPASS
set for serial flash programming, operations begin as soon as the FPGA is powered up and the FCU receives the
clock input. Immediately after reset is released, bitstream data is read out from the flash device through the flash
interface (at this time the default is SPI (×1) mode). The bitstream read is performed in two stages as described
below:

Stage 1 – Flash configuration header read from flash device:

The FCU sends a default read command and address of 0x0000_0000 (32 bits) in SPI mode to the flash
device and reads the flash configuration header.

Internal registers are then updated, including the start address for the bitstream and flash read command.

Stage 2 – Bitstream read from flash device:

Based on the read mode (×1/×2/×4/×8) obtained from the flash configuration header, the command and
start address are sent to the flash device.

The FCU reads the first 512 bits of bitstream data from the flash device and enters a wait state.

If encryption is not enabled, the FCU reads the complete bitstream and configures the FPGA. If encryption
is enabled and the efuse key is ready, the FCU reads the header segment0 data and sends it to the
secure boot core. The flash read state machine then waits for 2.6 ms after which the FCU reads the
complete bitstream and configures the FPGA.

Bitstream programming in all configuration modes is MSB to LSB. For transmitting a 32-bit FCU command, the
ordering in the serial ×1 mode for 1D and 4D configuration is as follows:

1D flash configuration – The flash device transmits command bit 31 on the first clock and bits 30, 29, 28,
etc. on subsequent clocks all the way down to bit 0 on the 32 (last) clock.nd

4D flash configuration – The four flash devices transmit command bits [31:28] on the first clock, all the way
down to bits [3:0] on the eighth (last) clock. The ordering within the 4-bit nibble corresponds to the flash
device ordering. Specifically, on the first clock, flash[3] transmits bit 31, flash[2] transmits bit 30, flash[1]
transmits bit 29 and flash[0] transmits bit 28

Flash Modes
The following section describes the various modes supported for read and write operations to/from an attached
flash device. Read operations from the flash device can be configured either as SPI, Quad or Octa modes for
both 1D and 4D configurations while write operations to the flash device always occur in SPI mode.

Note

A flash write can be performed by the user via either the JTAG or PCIe modes. The PCIe or JTAG port
can access the data and command registers using an indirect addressing mode.

The following table describes the different combinations of the flash device configurations and modes supported
in the Speedster7t FPGA.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 23

Table 6: Flash Device Configurations and Modes

Flash Programming Mode
/Configuration

Flash
Interface

width

No. of Flash
Devices

Write Width
SO[0] Pin × No. of

Flash Devices

Read Width
SO[n:0] × No. of

Flash Devices

SPI ×1 (1D) 1 1 1 1

SPI ×1 (4D) 1 4 4 4

Quad ×4(1D) 4 1 1 4

Quad ×4 (4D) 4 4 4 16

Octa ×8 (1D) 8 1 1 8

Octa ×8 (4D) 8 4 4 32

Read operation timing diagrams for each of the modes are described below:

SPI Mode (×1)- 1D flash

Figure 14: SPI Mode (×1) Read

Speedster7t Configuration User Guide (UG094)

Preliminary Data 24

Figure 15: SPI Mode (×1) Write

Speedster7t Configuration User Guide (UG094)

Preliminary Data 25

Quad Mode (×4)- 1D flash

Reads

Figure 16: Quad Read Mode (QREAD)

Octa Mode (×8)- 1D flash

Figure 17: OCTA Read Mode (8READ)

Speedster7t Configuration User Guide (UG094)

Preliminary Data 26

Registers and Addressing
Table 7: Flash Controller Register Map

Register Name Address Description

Flash write control register 0x1038 Flash write control register.

Flash write count 0x1048 Flash write count register.

Flash write configuration register 0x1050 Flash configuration register.

Flash write status 0x1060 Flash status register.

Flash write data1 0x1040 Flash write data register.

Flash write data2 0x11d4 Flash write data register.

Flash write data3 0x11d8 Flash write data register.

Flash write data4 0x1044 Flash write data register.

Flash bitstream current address 0x12bc Flash bitstream read current address.

Flash fallback bitstream fallback address 0x12b8 Flash bitstream read fallback address.

Flash write command 1 0x103c Flash command register.

Flash write command 2 0x104c Flash command register.

Flash write command 3 0x1054 Flash command register.

Flash write command 4 0x1058 Flash command register.

Table 8: Flash Write Control Register

Register Field Bit
Position Type Reset

value Description

Flash write enable 0 RW 0x0 Initiate the flash write operation.

Flash write clock
div count 4:1 RW 0x1 Clock divider. Set to 4’b0001 default, divide by 2 clock which is

required for JTAG mode.

Flash write Stop 5 RW 0x0 Suspend the current operation.

Flash write wait 6 RW 0x0 Flash wait operation.

Flash write ×1
mode 7 RW 0x0 Flash write in SPI ×1 device mode.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 27

Register Field Bit
Position Type Reset

value Description

Flash write ×4
mode 8 RW 0x0 Flash write in SPI ×4 device mode.

Reserved 31:9 RW 0x0 Reserved.

Table 9: Flash Write Count

Register Field Bit Position Type Reset Value Description

Flash write count 31:0 RW 'h0000_0000 Number of 128-bit blocks of data written to flash.

Table 10: Flash Write Data 1

Register Field Bit Position Type Reset Value Description

Flash write data 1 31:0 RW 'h0000_0000 Write data to flash.

Table 11: Flash Write Data 2

Register Field Bit Position Type Reset Value Description

Flash write data 2 31:0 RW 'h0000_0000 Write data to flash.

Table 12: Flash Write Data 3

Register Field Bit Position Type Reset Value Description

Flash write data 3 31:0 RW 'h0000_0000 Write data to flash.

Table 13: Flash Write Data 4

Register Field Bit Position Type Reset Value Description

Flash write data 4 31:0 RW 'h0000_0000 Write data to flash.

Table 14: Flash Write Configuration Register

Register
Field

Bit
Position Type Reset

Value Description

Flash
write data
valid

0

RW
[Write
on
clear]

0x0
Write data valid, Indicates to the flash interface when data is written to the
flash write register. Cleared when the flash interface reads the data and
writes it into the internal registers.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 28

Register
Field

Bit
Position Type Reset

Value Description

Flash
write
command
valid

1 RW 0x0 Flash write command valid, Indicates to the flash interface when the write
command is written to the flash write register.

Flash
write
command
count

8:2 RW 0x8 Write command count in number of bits.

Flash
write data
count

15:9 RW 0x127 Write data count in number of bits.

Flash
write data
request

16 R 0x1 Request write data, PCIe, should poll these bits, cleared when data is
shifted to internal registers.

Table 15: Flash Write Status

Register Field Bit Pposition Type Reset Value Description

Flash write error 0 RO 0x0 Flash write error, flags flash device status.

Flash read error 1 RO 0x0 Flash read error, CRC error.

Flash write done 2 RO 0x0 Flash write is complete.

Flash read done 3 RO 0x0 Flash read is complete.

Flash state machine status [8:4] RO 0x0 Write state machine status.

Reserved 31:9 RO 0x0 Reserved.

Configuration via JTAG
The Speedster7t FPGA JTAG TAP controller is compliant to IEEE Std 1149.1 and is used for programming the
bitstream and debug via Snapshot in ACE. The and inputs determine whether an JTAG_TMS JTAG_TCK
instruction register scan or data register scan is performed. and are sampled on the rising JTAG_TMS JTAG_TDI
edge of , while changes on the falling edge. JTAG configuration and operation mode is JTAG_TCK JTAG_TDO
independent of settings.FCU_CONFIG_MODESEL

JTAG implementation in Speedster7t FPGAs, which allows for bitstream programming as well as real-time in-
system control and observation, is composed of the blocks shown in the below.figure (see page 29)

The external interface is a standard 5-pin JTAG interface, connected directly to the JTAG TAP controller. The
TAP controller operates independently from the Speedster7t FPGA FCU. It is always active and uses JTAG_TCK

for clocking. The TAP controller takes the data from the pins and converts it to DR instructions to communicate to

Speedster7t Configuration User Guide (UG094)

Preliminary Data 29

1.

2.

3.

4.

5.

6.

for clocking. The TAP controller takes the data from the pins and converts it to DR instructions to communicate to
the JTAG logic in the FCU. It also takes in data in the form of load/read requests, translating it to the appropriate
signals to drive and expect on the JTAG pins.

The JTAG logic in the FCU interprets these DR instructions and generates input data in the standard 128-bit
Speedster7t FPGA frame size format, along with a data valid indicator, to be forwarded to the FCU data mux
and, ultimately, to the FCU state machine for configuration memory loading. The FCU data mux takes in 128-bit
output data from the FCU, which also comes with a valid signal for debug and read-back operations. The mux
also provides an acknowledge signal to indicate to downstream circuitry that the data transfer was successful.

The FCU data mux simply selects between the configuration mode specific data buses coming in to the FCU.
This logic is controlled by the static straps and the JTAG override circuitry from the FCU_CONFIG_MODESEL
JTAG TAP controller.

Finally, the FCU state machine takes incoming data and uses it for loading the configuration memory.
Conversely, it also provides output data from the configuration memory or Snapshot to be forwarded upstream.

Figure 18: Block Diagram for JTAG Instruction Processing in FCU

The JTAG programming sequence is highlighted in the following to show the sequence waveform (see page 30)
of internal procedures that occur in the ACE generated jam file. An explanation of these steps follows:

DO_RESET_CHIP – In this step, an internal signal generates a pulse on the FCU reset circuitry to reset it,
similar to providing a pulse on the input pin.FCU_CONFIG_RSTN

DO_ENTER_JTAG – This step provides a TAP command (override) to place the Speedster7t FPGA FCU
in JTAG mode. After this step, regardless of the settings, the FCU configuration FCU_CONFIG_MODESEL
mode (and the data muxes) are set to listen to the JTAG inputs, and the FCU clock is sourced from

.JTAG_TCK

DO_ERASE – This step cycles through the FCU states to ensure that the configuration memory is
cleared. After this step, is asserted.FCU_CONFIG_STATUS

DO_PROGRAM – In this step, the actual bitstream loading occurs. This operation consists of DRSCAN
loops for every bit in the bitstream. Since the size of the bitstream is pre-determined, the loop count is set
appropriately by ACE.

DO_ENTER_USER_MODE – In this step, IRSCAN and DRSCAN commands are provided to cycle
through additional FCU states. Idle clocks are provided to ensure that the start-up state machine
completes successfully and, in the process, and are o_config_done FCU_CONFIG_USER_MODE
asserted. After this step, functions hosted within a Speedster7t FPGA are active.

DO_EXIT_JTAG – This step provides another TAP command, performed in parallel at the start of user-
mode operations, to quickly provide additional instructions to remove the JTAG override on the FCU.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 30

Figure 19: JTAG Bitstream Programming Sequence

JTAG Instructions
The table below lists all JTAG instructions supported by Speedster7t FPGAs.

Table 16: JTAG Instructions

Instruction Opcode DR
Width Function

BYPASS 23'b00000000000000000000000 1

The required BYPASS instruction allows a
Speedster7t FPGA to remain in a functional mode
and selects the bypass register to be connected
between and . The BYPASS JTAG_TDI JTAG_TDO
instruction allows serial data to be transferred
through the FCU from to JTAG_TDI JTAG_TDO
without affecting the operation of the Speedster7t
FPGA.

EXTEST 23'b11111111111111111101000 –

The required EXTEST instruction places the
Speedster7t FPGA into an external boundary-test
mode and selects the boundary-scan register to be
connected between and . JTAG_TDI JTAG_TDO
Output pins operate in test mode, driven from the
contents of the boundary-scan update latch. Input
data are captured in boundary-scan latches prior to
shift operation. During this instruction, the
boundary-scan register is accessed to drive test
data outside of the Speedster7t FPGA via the
boundary outputs and receive test data from
outside of the Speedster7t FPGA via the boundary
inputs.

EXTEST_PULSE 23'b11111111111111111101001 –
The EXTEST_PULSE instruction generates a
single pulse by entering and exiting the Run-Test
/Idle state of the 1149.1 TAP controller.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 31

Instruction Opcode DR
Width Function

EXTEST_TRAIN 23'b11111111111111111101010 –

EXTEST_TRAIN generates a stream of pulses
while in the Run-Test/Idle state. A BSDL file for an
1149.6 device specifies the minimum number of
pulses and the maximum time period allowed for
pulse generation in the Run-Test/Idle state.

SAMPLE
/PRELOAD 23'b11111111111111111111000 –

The required SAMPLE/PRELOAD instruction allows
a Speedster7t FPGA to remain in its functional
mode and selects the boundary-scan register to be
connected between and . JTAG_TDI JTAG_TDO
The output and input pins operate in normal mode.
Input pin data and core logic output data are
captured in the boundary-scan latches. During this
instruction, the boundary-scan register can be
accessed via a data scan operation to take a
sample of the functional data entering and leaving
the Speedster7t FPGA. This instruction is also used
to preload test data into the boundary-scan register
before loading an EXTEST instruction.

IDCODE 23'b11111111111111111111110 32

The optional IDCODE instruction allows a
Speedster7t FPGA to remain in its functional mode
and selects the optional device identification
register to be connected between and JTAG_TDI

. The IDCODE register appears between JTAG_TDO
 and after power-up, after the JTAG_TDI JTAG_TDO

TAP has been reset using the optional TRST pin, or
by otherwise moving to the Test-Logic-Reset state.

HIGHZ 23'b11111111111111111001111 –

The optional HIGHZ instruction sets all outputs
(including two-state as well as three-state types) to
a disabled (high-impedance) state and selects the
bypass register to be connected between

 and .JTAG_TDI JTAG_TDO

CLAMP 23'b11111111111111111101111 –

The CLAMP instruction provides for “guarding” chip
outputs during in-circuit test or boundary-scan
functional test. Output pins operate in test mode,
driven from the content of the boundary-scan
update latch. The one-bit bypass register is
selected for shifting.

INTDR 23'b00000000000000000111101 97

This instruction provides access to the test data
register that is implemented internal to the TAP
controller. This internal register is used for global
configuration and monitoring of global status
signals.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 32

Instruction Opcode DR
Width Function

JLOAD 23'b00000100000001100111010 128

The JLOAD instruction enables the scan in of the
configuration bitstream to the configuration logic (in
this mode, the SHIFT-DR state is used to scan in the
bitstream). For the read-back, the data register is
read back. All of these operations are performed
internally using a 128-bit parallel bus. Data is latched
every 128 bits in the UPDATE-DR state.

JREAD 23'b00000100000001000111010 128

The JREAD instruction enables the data register for
read-back. When this instruction is decoded and
CAPTURE-DR is executed, the data from the
configuration logic is sampled as 32-bit data plus a
valid bit. Multiple words of the configuration memory
can be read back by cycling through the CAPTURE-
DR/SHIFT-DR states. The 33-bit status register is
selected between and .JTAG_TDI JTAG_TDO

JUSR1 23'b00000100000000100111010 User
defined The JUSR1 instruction enables the USER1 TDR.(†)

JUSR2 23'b00000100000000000111010 User
defined The JUSR2 instruction enables the USER2 TDR.(†)

JASYNCERR 23'b00000000000001110111010 – The JSYNCERR instruction enables the connection
to the fabric error status scan register.

Table Note

† This TDR is implemented in the fabric and is used for supporting debug functionality in the fabric.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 33

Chapter - 4: Configuration Pin Tables
Table 17: Interface Pin Table

Pin Name Direction Usage

Configuration Interface

FCU_CONFIG_MODESEL[3:0] Input

FPGA configuration unit (FCU) configuration mode selection inputs.

Configuration Mode CFG_MODESEL[3:0]

CPU x1 0011

CPU x8 0100

CPU x16 0101

CPU x32 0110

CPU x128 0111

Flash SPI (x1)-1D 0001

Flash SPI (x1)-4D 0010

Flash Quad (x2)-1D 1000

Flash Quad (x2)-4D 1010

Flash Quad (x4)-4D 1011

Flash Octa (x8)-1D 1100

Flash Octa (x8)-4D 1101

JTAG Always active mode

FCU_CONFIG_STATUS(4) Inout(6)

Active-high configuration status open-drain output signal indicating that the FCU
has completed initial start-up and has cleared the CMEM and is awaiting FCU
commands for bitstream programming. When high, it remains asserted until the
FCU is power cycled or reset for a re-initialization sequence or a CRC error is seen
during bitstream load.

FCU_CONFIG_DONE(4) Inout(6)

Active-high configuration done open-drain output signal indicating that bitstream
loading completed successfully and that the device is ready to enter user mode.
When high, it remains asserted until the FCU is power cycled or reset for a re-
initialization sequence. If a device configuration error occurs, the CONFIG_DONE
output will remain low. Holding this pin low on the board must be used as a method
to synchronize the start-up of multiple devices.

FCU_CONFIG_RSTN(1) Input Asynchronous active-low reset input clearing the configuration memory in the
device and the logic in the FPGA configuration unit (FCU).

Speedster7t Configuration User Guide (UG094)

Preliminary Data 34

Pin Name Direction Usage

FCU_CONFIG_USER_MODE(4) Output
Active-high output indicating that the device has transitioned into user mode. When
high, it remains asserted until the FCU is power cycled or reset for a re-initialization
sequence.

FCU_CONFIG_SYSCLK_BYPASS
[FCU_CONFIG_CLKSEL

Input

Active-high bypass configuration system clock setting. Along with CFG_CLKSEL,
this setting allows for clock selection during programming.

SYSCLK_BY
PASS

CFG_CLKS
EL CFG_MODESEL[3:0] Configurat

io Clock

0 0 0000, 0001, 0010, 1000 to 1101 On-chip
Oscillator

1 0 0000, 0001, 0010,1000 to 1101 CPU
Clock

X 0 0011, 01XX CPU
Clock

X 1 XXXX JTAG
TCK

FCU_CONFIG_BYPASS_CLEAR Input Active-high input pin to bypass configuration memory clear during device
initialization.

FCU_CONFIG_ERR_ENC[2:0] Output

Active-high bypass configuration system clock setting. Along with CFG_CLKSEL,
this setting allows for clock selection during programming.

FCU_CONFIG
_ERR_ENC[2:

0]
Status Priority

001 CRC Error. 0 (Lowest)

010 Single-bit/multiple-bit scrubbing error. 1

011 Secure Boot Failure OR Security error. 2

100 Efuse PUF enrollment error. 3

101
Asserted when the AXI interface of the IP
configuration space register block does not receive
a ready from the master.

4
(Highest)

Other Undefined.

FCU_LOCK Output Active-high status bit to indicate the FCU lock/unlock status.

FCU_OSC_CLK Output This clock is internally generated from a ring oscillator. For debug purposes, it can
be bypassed and the external clock, CPU_CLK, can be used.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 35

Pin Name Direction Usage

FCU_PARTIAL_CONFIG_DONE Inout(6)

Active-high configuration done open-drain output signal indicating
that bitstream loading completed successfully for partial
reconfiguration of the device and that the device is ready to enter
user mode.

FCU_STAP_SEL Input

When asserted high, this signal enables the JTAG interface pins
to be directly connected to the JTAG controller in the SerDes
PMA blocks allowing SerDes configuration, debug and
performance monitoring directly from the JTAG interface. For
bitstream download and design debug using the JTAG interface,
this pin must be held low. For SerDes PMA debug only mode,
this pin must be held high.

FCU_STATUS[1:0] Output

Status bits showing the FCU state.

FCU_STATUS State

11 fcu_locked

10 sync_found

01 ID found

00 instance ID found / FCU unlocked

FCU_STRAP[2:0] Output Unconnected spare outputs.

JTAG Interface

JTAG_TCK Input Clock input to the FCU JTAG controller.

JTAG_TRSTN Input Active-low reset input to the FCU JTAG controller.

JTAG_TDI Input Serial data input to the FCU JTAG controller. Synchronous to
JTAG_TCK.

JTAG_TDO Output Serial data output from the FCU JTAG controller. Synchronous to
JTAG_TCK.

JTAG_TMS Input Mode select input to the FCU JTAG controller. Synchronous to
JTAG_TCK.

Flash Memeory Interface

FCU_FLASH_SCK Output Clock output from FCU to flash memory device(s).

FCU_FLASH_HOLDN Output

Active-low hold output to flash memory device(s). This signal is
used to pause serial communications between the Speedster7t
FPGA and the flash device without deselecting the device or
stopping the serial clock. Synchronous to FLASH_SCK.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 36

1.

2.

3.

4.

5.

6.

Pin Name Direction Usage

FCU_FLASH_CSN[3:0] Output
Active-low chip select to enable/disable one or more of the
attached flash memory devices. For x1 mode, only CSN[0] is
used. For x4 mode, connect each CSN[3:0] to a flash device.

CPU Interface

FCU_CPU_CLK(5) Input Input clock from external CPU. The data/address bus is
synchronous to this clock.

FCU_CPU_CSN(2) Input Active-low CPU mode chip select.

FCU_CPU_DQ_IN_OUT[31:0] Input/Output
Data Input/Output pins shared between the CPU and Flash
interfaces. The CPU interface is inaccessible when the Flash
mode is in use and vice-versa.

FCU_CPU_DQ_VALID Output
Active-high control bit to indicate to the CPU the clock cycles
when the CPU_DQ bus has valid read-back data. Synchronous to
FCU_CPU_CLK.

Table Notes

FCU_CONFIG_RSTN must be held low, and cannot glitch during device power-up. All other input pins
need only be stable when i_config_rstn is ready to be released after power-up.
Refer to the FCU_CPU_CSN Behavior and Implementation Details section of the user guide for details.
All configuration status related output signals are driven from registers. The reset value for these registers
is '0', and the transition from '0' to '1' is glitch free after reset de-assertion and when reaching the
appropriate FCU states.
Refer to the Power-Up and Configuration Sequence section of the user guide for details.
FCU_CPU_CLK can either start with a rising or falling edge.
This output is an open-drain signal. In the default mode of operation, it is recommended that this signal be
connected to an LED as an indicator on the board. In this case, use an external 10 kΩ ±5% pull-up
resistor to 3.3V and drive a 1 kΩ resistor to the input of a FET to turn on the LED. If LED usage is not
desired, this signal must be pulled-up to 1.8V (FCU_CB_VDDIO) instead using the same 10 kΩ pull-up
resistor.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 37

Chapter - 5: FPGA Configuration Unit (FCU)
The term FPGA Configuration Unit (FCU) refers to logic that controls the configuration process of the
Speedster7t FPGA. This logic is responsible for the following:

Receiving data on a variety of core interfaces (depending on the selected programming mode)

Decoding instructions

Sending configuration bit values to the appropriate destination (core configuration memory, the core's
boundary ring configuration memory, FCU registers, etc.)

Controls the startup and shutdown sequences that drive resets to the rest of the core

CRC checks

SEU mitigation

Security

Any core-level housekeeping that occurs on the de-assertion of reset (e.g., clearing of configuration
memory)

Overview
The following features are supported by the FCU:

Multiple configuration modes (see)Configuration Modes for Speedster7t FPGAs (see page 9)

Bitstream CRC (see page 54)

AES encryption/decryption and bitstream security
()Design Security for Speedster 7t FPGA (see page 70)

Configuration memory scrubbing and SEU mitigation (single-bit error correction, dual-bit error detection)
()Configuration Error Correction and SEU Mitigation

Read-back()Configuration Memory Read (see page 42)

The FCU has two operating modes:

Power-on – Triggered after the input signal is driven high. When the FCU state FCU_CONFIG_RSTN
machine starts, it progresses through a number of housekeeping activities, including the clearing of the
configuration memory if needed. This housekeeping happens without any additional inputs from the user;
all instructions sent via one of the programming interfaces during this time are ignored. At the end of this
mode, the output pin is driven high (it was driven low earlier), and the FCU returns FCU_CONFIG_STATUS
to the instruction processing mode.

Instruction processing – The main mode of operation for the state machine. In this mode, the FCU
functions as a simple CPU, processing incoming instructions and sending control signals downstream as
directed. Instructions are received on 128-bit boundaries but processed 32 bits per clock cycle. The FCU
can request data from the host or stall when it is processing the previous instruction. Depending on the
programming interface being used, a set of output status signals generated by the FCU are used to
determine how to proceed. Refer to and Configuration Modes (see page 9) FCU Command List (see

for additional details.page 38)

Speedster7t Configuration User Guide (UG094)

Preliminary Data 38

Speedster 7t1500 FCU Command List
Bistream programming involves instruction processing and the following commands are supported by the
Speedster7t FPGA FCU:

FCU write and read transactions to registers within the FCU which enable/disable Speedster7t FPGA
features and modes.

ACB writes and reads to configure registers within Interface clusters.

AXI read and write to IP CSR register space.

Configuration memory read-back transactions to read contents of frames that are programmed in the
fabric.

Table 18: Configuration Commands

Command Shorthand setting

CONFIG_CMD_NOP - 4'h0

CONFIG_CMD_REG_WRITE CMD_W 4'h2

CONFIG_CMD_REG_READ CMD_R 4'h3

CONFIG_CMD_ACB_WRITE CMD_AW 4'h4

CONFIG_CMD_ACB_READ CMD_AR 4'h5

CONFIG_CMD_MEM_READ CMD_MR 4'h7

CONFIG_CMD_AXI_WRITE CMD_AXW 4'hC

CONFIG_CMD_AXI_READ CMD_AXR 4'hD

CONFIG_CMD_CLK_ENABLE CMD_CE 4'h8

CONFIG_CMD_CLK_DISABLE CMD_CD 4'h9

Command Formats and Details
Command sets are ordered in 128-bit payload groups at 32-bit packet boundaries. The examples below highlight
the ordering and data format for the seven sets of commands available to customers. Each example is illustrated
as a 128-bit payload with the color coding indicating the 32-bit boundaries. The bit numbering is used to identify
the various 32-bit packets inside the 128-bit data register.

FCU Register Write
An FCU register write consists of two parts, each contained in one 32-bit packet:

The first packet has the 4-bit opcode for an FCU register write, dummy bits (12'b0) and the 16-bit FCU
register address for the write.

The second packet contains the 32-bit data to be written to that FCU register address.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 39

The FCU register addresses and data configurations are pre-determined by Achronix.

The figures below provide representations of an example 128-bit payload consisting of two writes to FCU
registers. There is no requirement for the payload to contain two writes to FCU registers or that there should
even be two writes. The sequence could be a write to an FCU register followed by an ACB write or vice versa. If
there is a single FCU write command, the other 64-bits can simply be set to all zeros (NOPs).

The two figures represent the same command implementation. The first shows the two FCU writes as they are
stored in the data register in the correct bit-order (127 through 0). This is also the order in which the 32-bit
packets are transmitted (left-to-right) across FCU clock cycles. The second figure depicts the order in which the
32-bit packets are accessed for execution after they have been loaded.

After the 128-bit payload is loaded, there is one clock to capture the configuration in the data register, four clocks
for the FCU to execute each of the 32-bit packets, two clocks to do the actual writing of the data bits to the FCU
registers (for two FCU writes), and one final clock for those to take effect. Cycle-accuracy is generally not
required here since these commands control modes and features for the Speedster7t FPGA instance.

Figure 20: Write to Two FCU Registers (Storage/Transmission Order)

Figure 21: Write to Two FCU Registers (Execution Order)

ACB Register Write
Similar to the FCU register write case, an ACB register write consists of two parts, each contained in one 32-bit
packet:

The first packet has the 4-bit opcode for an ACB register write, dummy bits (4'b0) and the 24-bit ACB
address for the write.

The second packet contains the 32-bit data to be written to that ACB address.

The format for the 24-bit ACB address is specified in the section of the ACB Address Space (see page 60)
 chapter.Achronix Configuration Bus (ACB) Interface (see page 59)

The figure below provides an example of a 128-bit payload consisting of two writes to ACB registers in execution
order. The latency for this write is highly variable, and the selection of blocking vs non-blocking mode also
dictates whether or not additional ACB commands can be accommodated before an acknowledgement is
received for that write. Refer to the section of the ACB Write and Read Protocols (see page 61) Achronix

 chapter for further details.Configuration Bus (ACB) Interface (see page 59)

Speedster7t Configuration User Guide (UG094)

Preliminary Data 40

Figure 22: Write to Two ACB Registers (Transmission Order)

FCU/ACB Register Write Waveforms
The two waveforms below detail the sequence of operations in CPU×32 and CPU×128 modes for single and
continuous FCU/ACB register write operations. The figures assume that the ACB register writes use the default
non-blocking mode of operation. For narrower CPU widths, refer to Programming Data Ordering. (see page 13)

Figure 23: Single and Multiple Register Write Operation in CPU×32 Mode

Note

During bitstream programming in CPUx128 mode, CMEM frame data can be processed by transferring
128 bits of data to the CMEM blocks at every clock cycle. However, FCU and ACB register writes are
processed entirely by the FCU, 32 bits at every clock cycle. Therefore, unlike CMEM write data, with
FCU and ACB register writes placing a 128-bit payload into the FCU in a single clock cycle, three
additional NOP idle clocks are needed to provide time for the FCU to process all four sets of 32-bit
packets as shown in the figure above.

In the figure above, denoted by , the latency between subsequent sets of FCU commands, in which (†)

 is high, can be variable. In fact, if the user wishes to perform back-to-back writes, i_cpu_csn
 need not even be pulled high. The signal can remain low the entire time between these i_cpu_csn

sets of commands. If is driven high, it can be kept high as long as needed without i_cpu_csn
restriction. When the signal is returned low, the next command is immediately processed by the FCU.

FCU Register Read
An FCU register read command is provided in a single 32-bit packet. However, it be provided as the must last
command in a 128-bit payload, as the execution begins immediately afterward.

Similar to the FCU register write command, the read command consists of the 4-bit FCU register read command
opcode, dummy bits (12'b0), and the 16-bit FCU register address to be read. The payload below, shown in
execution order, illustrates the sets of NOPs, followed by the actual FCU register read command. As is the case
with the FCU register writes, it takes six clock cycles for the packets to be processed and the read command to
take effect, after which the read data is returned.

The user should rely on the mode-specific read-valid signal to ensure that the correct data is captured and not try
to rely on any cycle-accurate implementation.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 41

Figure 24: Read from FCU Register (Execution Order)

ACB Register Read
An ACB register read command is provided in a single 32-bit packet. Like the FCU register read, it be must
provided as the command in a 128-bit payload, as the execution begins immediately afterward.last

The ACB register read consists of the 4-bit ACB register read command opcode, dummy bits (4'b0), and the 24-
bit FCU register address to be read. The payload below, shown in execution order, illustrates the three sets of
NOPs, followed by the actual ACB register read command. Refer to the ACB Write and Read Protocols (see

 section of the chapter for details of the page 61) Achronix Configuration Bus (ACB) Interface (see page 59)
ACB register read operation.

Figure 25: Read from ACB Register (Execution Order)

FCU/ACB Register Read Waveforms
The waveform below details the sequence of operation in CPU×32 modes for back-to-back FCU/ACB register
read operations. While there is no burst read function, back-to-back reads can be performed without needing to
pull high, by simply issuing the same 128-bit "READ CMD, NOP, NOP, NOP" payload.i_cpu_csn

For narrower CPU widths, refer to Programming Data Ordering. (see page 13)

Figure 26: Back-to-Back Register Read Operations in CPU×32 Mode

Speedster7t Configuration User Guide (UG094)

Preliminary Data 42

The FCU/ACB register read operations are very similar to the configuration memory read operations. The one
notable difference is that the time between cpu_dq_oen going low and o_cpu_dq_valid going high has variable
latency (between 1 clock cycle and a larger number). For FCU register read operations, this would still be 1 or 2
clock cycles. However, for ACB register reads, this would depend on the ACB address and implementation, since
the number of pipeline stages in the architecture dictate the latency here. In all cases, this latency is never less
than 1 clock cycle, but might be as high as tens of clock cycles depending on the ACB implementation.

AXI Write
The IP registers are configured by providing AXI write commands. The FCU enters AXI write command state,
and transfers the data and address to the AXI interface block. AXI write is non-blocking which can accept the 128
bits of data at every 4 cycles. The first cycle consists of bits 127:96 , the second cycle consists of bits 95:64, the
third cycle consists of bits 63:32 and the fourth cycle consist of bits 31:0 in CPUx32 mode.

Figure 27: AXI Write (Transmission order)

AXI Read
The IP register read is performed by issuing an AXI read command. The FCU enters AXI read command state
and transfers the address to the AXI interface block. The AXI read is a blocking read in that a new read
command cannot be accepted until the response from earlier commands is received. The first cycle consists of
bits 127:96, the second cycle consists of bits 95:64, the third cycle consists of bits 63:32 and the 4th cycle
consist of bits 31:0 in CPUx32 mode.

Figure 28: AXI Read (Transmission order)

Configuration Memory Read
The Speedster7t FPGA supports reading back content for the CMEM, LRAM, BRAM bits and RLB registers by
sending configuration memory read commands to the designated frame addresses. While the exact read-back
command is specified in the table above, the read operation for a Configuration Commands (see page 38)
specific frame, or set of frames, is somewhat complex. The procedure is described in detail below for both
CPU×32 and CPU×128 modes.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 43

1.

2.

3.

4.

5.

Note

Between the bitstream configuration and read-back operations, there can never be valid data on the
 and buses at the same time. Therefore, it is possible to use i_cpu_dq_in o_cpu_dq_out

bidirectional I/O for both the input and output bus functions, with the signal specifying cpu_dq_oen
which direction to set the bidirectional I/O based on the designated FCU operation.
Read-back data from the FCU is not a single continuous stream for the entire fabric. Every FCU read-
back command triggers the retrieval of data from one fabric frame/address. The data for a single frame
arrives on back-to-back cycles. However, there are gaps between frames as read-frame commands are
issued.

The Speedster7t FPGA supports read-back in both JTAG and CPU modes:

Read-back in JTAG mode is performed entirely by instructing ACE to generate the necessary STAPL
commands and uses the JTAG pins to scan out and ultimately compare the resulting data with the content
of the configuration bitstream.

For read-back In CPU mode, ACE generates a file with a list of frame addresses and programmed data at
those addresses. With this information, it is then up to the user to generate the set of commands and
implementation in the desired CPU width, based on the details in this section, to successfully implement
the read-back.

Note

Read-back operations for the configuration memory (CMEM), BRAM and LRAM be enabled cannot
while scrubbing is active because scrubbing requires the ability to read core fabric frame contents, and
as needed, repair and write back into the CMEM. Since this circuitry is common and shared for CMEM
/BRAM/LRAM read-back operations and CMEM scrubbing operations, scrubbing must first be disabled
before a successful CMEM/BRAM/LRAM read-back command can be issued. There are no such
restrictions for performing RLB, FCU or ACB register read-back when scrubbing is active.

Data Ordering

The CPU mode read-back data ordering is slightly different from what is used for bitstream programming. The
bits within the mode width are ordered from MSB to LSB, but the ordering across clock cycles is LSB to MSB.
This ordering makes the FCU implementation more uniform as it prevents the need to determine which bits to
transmit based on what is being read back. Also, every read command sends back a 128-bit packet; therefore,
the user should be aware of this situation and account for it appropriately.

For a 32-bit FCU register read, the ordering of the bits for the different CPU modes is as follows:

CPU×128 – is set to all zeros. The 32 bits are transferred with the MSB on o_cpu_dq_out[127:32]
 and the LSB on .o_cpu_dq_out[31] o_cpu_dq_out[0]

CPU×32 – contains 32 bits with the MSB on and the LSB o_cpu_dq_out[31:0] o_cpu_dq_out[31]
on . There are three extra clock cycles with 32 bits of all zeros on each additional o_cpu_dq_out[0]
clock cycle.

CPU×16 – contains bits 15 through 0 on the first clock followed by bits 31 o_cpu_dq_out[15:0]
through 16 on the second clock cycle. There are six extra clock cycles with 16 bits of all zeros on each
additional clock cycle.

CPU×8 – contains bits 7 through 0 on the first clock, bits 15 through 8 on the o_cpu_dq_out[7:0]
second clock, bits 23 through 16 on the third clock and bits 31 through 24 on the fourth clock cycle. There
are 12 extra clock cycles with 8 bits of all zeros on each additional clock cycle.

CPU×1 – contains bit 0 of the 32 bits in the first clock cycle, bit 1 on the second clock o_cpu_dq_out[0]

Speedster7t Configuration User Guide (UG094)

Preliminary Data 44

5.

1.

2.

3.

4.

CPU×1 – contains bit 0 of the 32 bits in the first clock cycle, bit 1 on the second clock o_cpu_dq_out[0]

cycle all the way up to bit 31 on the 32 clock cycle. There are 96 extra clock cycles with a zero on each nd

additional clock cycle.

Commands

The full read-back procedure requires providing clock-enable/clock-disable commands and issuing additional
commands to flush out stale data. This process is necessary because there is a two-stage pipe of data registers
used in bitstream programming and read-back. The first stage is used to scan data in, and the second stage is
used to clock the scanned data into a final register set which can then be used as inputs to the configuration
frame array. Therefore, it is critical that the read-back data associated with a command is received with a two
read command latency when performing configuration memory read-back

There are four commands needed for the successful implementation of read-back:

CONFIG_CMD_CLK_ENABLE – Enables clocking for the second stage of the data registers needed to
write or read data from the fabric.

CONFIG_CMD_REG_WRITE – This FCU register write is needed to specify the CMEM frame address for
the read-back. Since the address is actually a 32-bit field, it cannot be provided as part of the memory
read-back command itself.

CONFIG_CMD_MEM_READ – This payload simply contains the FCU command to execute the
instruction.

CONFIG_CMD_CLK_DISABLE – Disables clocking for the second stage of the data registers needed to
write or read data from the fabric.

The figures for the 128-bit payloads needed to execute the above commands are shown below.

Figure 29: Clock Enable Command (Transmission Order)

Figure 30: FCU Register Writes for CMEM Size and Address Specification
(Transmission Order)

Speedster7t Configuration User Guide (UG094)

Preliminary Data 45

Figure 31: Configuration Memory Read Command (Transmission Order)

Figure 32: Clock Disable Command (Transmission Order)

Speedster7t Configuration User Guide (UG094)

Preliminary Data 46

The sequence of commands, events and expectations when performing a configuration memory read-back of
one frame, two frames and the entire Speedster7t FPGA fabric is illustrated in the example command snippet
below. The frame address starts at 0. Refer to the Appendix for total frame size and count.

Speedster7t FPGA Read-Back Procedure and Command List

(Single Frame Read)

CONFIG_CMD_CLK_ENABLE

CONFIG_CMD_REG_WRITE - Set frame address to 0

CONFIG_CMD_MEM_READ - Ignore return data (Clock enabled)

CONFIG_CMD_CLK_DISABLE

CONFIG_CMD_MEM_READ - Ignore return data (Clock disabled)

CONFIG_CMD_MEM_READ - Capture data at frame address 0 (Clock disabled)

(Two Frame Reads)

CONFIG_CMD_CLK_ENABLE

CONFIG_CMD_REG_WRITE - Set frame address to 0

CONFIG_CMD_MEM_READ - Ignore return data (Clock enabled)

CONFIG_CMD_REG_WRITE - Set frame address to 1

CONFIG_CMD_MEM_READ - Ignore return data (Clock enabled)

CONFIG_CMD_CLK_DISABLE

CONFIG_CMD_MEM_READ - Capture data at frame address 0 (Clock disabled)

CONFIG_CMD_MEM_READ - Capture data at frame address 1 (Clock disabled)

(Readback of the entire fabric - N Frames)

CONFIG_CMD_CLK_ENABLE

CONFIG_CMD_REG_WRITE - Set frame address to 0

CONFIG_CMD_MEM_READ - Ignore return data (Clock enabled)

CONFIG_CMD_REG_WRITE - Set frame address to 1

CONFIG_CMD_MEM_READ - Ignore return data (Clock enabled)

CONFIG_CMD_REG_WRITE - Set frame address to 2

CONFIG_CMD_MEM_READ - Capture data at frame address 0 (Clock enabled)

CONFIG_CMD_REG_WRITE - Set frame address to 3

CONFIG_CMD_MEM_READ - Capture data at frame address 1 (Clock enabled)

...

CONFIG_CMD_REG_WRITE - Set frame address to N

CONFIG_CMD_MEM_READ - Capture data at frame address N-2 (Clock enabled)

CONFIG_CMD_CLK_DISABLE

CONFIG_CMD_MEM_READ - Capture data at frame address N-1 (Clock disabled)

CONFIG_CMD_MEM_READ - Capture data at frame address N (Clock disabled)

ACE provides support for performing an entire fabric configuration read-back in JTAG mode by generating the
file with all of the necessary commands to run the JTAG operations. For CPU mode, ACE can provide a file with
a list of all of the written frame addresses in the currently loaded bitstream configuration, as well as the data
written at each address.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 47

Waveforms and Descriptions

The waveforms below show how the above instruction sequences are translated into actual operations. Also, a
procedure for a successful configuration memory read of the entire fabric in CPU×32 is detailed. Both of these
waveforms appear in two parts. The first part provides a macro view of the signals over time while the second is
a detailed view referring to the cycle-per-cycle behavior shown in the portion of the first waveform with the gray
background.

Figure 33: Configuration Memory Read of the Entire Fabric in CPU×32 Mode

Figure 34: Configuration Memory Read of the Entire Fabric in CPU×32 Mode
(Detail Waveform)

Following is a description of the above behavior for CPU×32:

Speedster7t Configuration User Guide (UG094)

Preliminary Data 48

1.

2.

3.

4.

a.

b.

5.

6.

7.

8.

9.

10.

Following is a description of the above behavior for CPU×32:

The signal is first pulled low on the negative edge of . This active-low chip select i_cpu_csn i_cpu_clk
for the FCU CPU then enables commands and data to be provided on the data input bits.

At the first positive edge of after is brought low, the first set of FCU commands i_cpu_clk i_cpu_csn
need to be provided on . As described in the code block sequence above, these are i_cpu_dq_in
CONFIG_CMD_CLK_ENABLE, CONFIG_CMD_REG_WRITE (for frame 0) and
CONFIG_CMD_MEM_READ. This sequence serves as the first dummy configuration memory read.

When the FCU receives and processes this command (which can be from 3 clock cycles in x128 mode, 5
in x32 mode, and up to 10 clock cycles after it has been issued), the FCU brings low to cpu_dq_oen
indicate that the bidirectional I/O must be set to output mode.

For a period of clock cycles as shown in the 'detail waveform', the signal is driven low. X cpu_dq_oen
Since this is a dummy configuration memory read, remains low during this entire o_cpu_dq_valid
period of time.

The value of X is dependent on the CPU data width mode and the number of blocks within the
frame. The only other variables that need to be accounted for are the clock cycles between the
rising/falling edge of and the rising/falling edge of . The exact o_cpu_dq_valid cpu_dq_oen
formula is:

[Block_count x (128/CPU_data_width)] + [(2 or 3) for CPU×32 mode and (2 to 5) for CPU×128
mode]

For CPU×32 mode, with a block count of 73 on the Speedster7t FPGA, then X = [73 x 4] + 2 or 3 =
294 or 295.

The second set of commands are then issued in much the same way as the first set. As described in the
code block sequence above, these are CONFIG_CMD_REG_WRITE (for frame 1) and
CONFIG_CMD_MEM_READ. This sequence starts the second dummy configuration memory read.

Steps 3 through 5 described above are then repeated to complete the second dummy configuration
memory read.

After two dummy reads (instruction set 0 and 1), for instruction sets 2 through N, the sets of commands
used are the same. As before, CONFIG_CMD_REG_WRITE should be issued (incrementally for each
frame 2 through N), followed by CONFIG_CMD_MEM_READ.

Unlike the first two dummy reads though, these reads actually return valid data on the o_cpu_dq_out
bus. The signal is driven high at the designated points shown in the o_cpu_dq_valid CPU×32 Mode

.(Detail Waveform) (see page 47)

When the read-back from instruction set N has been completed, a CONFIG_CMD_CLK_DISABLE
command is provided before issuing the CONFIG_CMD_MEM_READ command for instruction set N+1, to
read back data from frame N-1.

A final CONFIG_CMD_MEM_READ command is then issued. This command is the instruction set N+2 to
read back from frame N.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 49

note

CMEM read can only be performed on an unencrypted waveform.

Important

It is important to re-iterate the fact that not all CMEM frames are used and that CMEM cells are not
populated for every bit of the 128-bit block in every CMEM frame. During bitstream programming, while
it might appear as though all bits in the bitstream are being used to program CMEM SRAM cells, in fact,
that is not the case. Similarly, for configuration memory read-back, the read-back data shows 0s for bits
which do not have actual CMEM SRAM cells associated with them. As described in Bitstream File

, users should rely on the ACE-generated CMEM bitmap file to identify these Generation Through ACE
sections.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 50

1.

2.

3.

4.

5.

Chapter - 6: Configuration Sequence and Power-Up
The requirements for the power-up and configuration sequencing for the Speedster7t FPGA are illustrated in the
table below and followed by a description of each step.

Table 19: Power-up and Configuration Sequence

Step Event

1 Device power-up

2 Read non-volatile memories and BRAM Redundancy

3 Clear configuration memory

4 Bitstream sync, JTAG ID, instance ID and preamble data

5 Load configuration bits

6 CRC

7 Startup sequence

8 User mode

Device Power-Up
The first step in bringing up the Speedster7t FPGA is to appropriately power it up. The Speedster7t Power User

 details how the power supplies and configuration related pins/signals need to be asserted to ensure a Guide
successful power-up. To summarize these requirements:

Drive low.FCU_CONFIG_RSTN

Power-up all supplies to full rail while keeping low to ensure that the Speedster7t FCU_CONFIG_RSTN
FPGA powers up in a reset state. The FCU clock need not be running at this time.

If the pins are not statically set (tied off to ground/V using resistor loading FCU_CONFIG_MODESEL DD
options), drive them to set the desired configuration mode using the external interface.

Drive high to release the reset. Start providing clocks on the FCU clock.FCU_CONFIG_RSTN

The user must ensure that all clocks used by Speedster7t FPGA are stable when reset is released.

Note

FCU_CLK is limited to 250 MHz in all configuration modes.

There are no signaling or sequencing requirements for powering down . The supplies can simply be turned off.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 51

Read Non-Volatile Memories
When is released and the FCU is supplied with a running clock, device initialization can FCU_CONFIG_RSTN
start. Device initialization begins with the reading of the non-volatile memory (fuse) contents and storing the
value in the appropriate FCU registers. These fuses are factory set to zero. Manufacturing and ID related fuses
are programmed during device ATE testing. Fuses that pertain to design security are available for customers to
program (refer to for details).Design Security (see page 70)

Even if non-volatile memories are not used to enable security and/or redundancy, the FCU requires 17290 clock
cycles to shift in BRAM redundancy bits. These clocks need to be factored in when calculating clock cycle
requirements for different steps in the power-up and start-up procedures.

After receiving a trigger, the state machines progresses through 32 start-up (or shut-down) states. There is an
option to have each state wait for one or more PLLs to lock before continuing to the next state. The final startup
state waits for assertion of the signal before asserting .FCU_CONFIG_DONE FCU_USER_MODE

Clear Configuration Memory
After the non-volatile memory is read, the FCU begins to clear the configuration memory one frame at a time by
writing 0s to each memory cell location. The user must continue to supply FCU clocks during this operation and
at least until the Speedster7t FPGA enters user mode. If scrubbing is disabled, no further clocking of the FCU is
needed. If scrubbing is enabled, FCU clocking must continue even in user mode. If the configuration memory
clear state is entered after a full FPGA power-up, it is imperative that all configuration memory be cleared.

This step can be bypassed as a debug or optimization step by asserting the pin if FCU_CONFIG_BYPASS_CLEAR
the application requires re-configuring the FPGA without a power-down. Bypassing the configuration memory
clear requires a very precise implementation to ensure that the subsequent bitstream program load occurs
successfully. Care must be taken because a standard configuration file generated by ACE only writes to frames
that need to have cells programmed to 1s. 'All 0' frames need not be written to since they are assumed to contain
0s through the configuration memory clear process. However, when is asserted FCU_CONFIG_BYPASS_CLEAR
and the configuration memory clear is not performed, the user needs to ensure that frames that had '1's written
into in the first bitstream not being programmed in the second bitstream (because they are supposed to be and
all 0s) are actually programmed to be all 0s and not simply bypassed. The figures below illustrate this concept.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 52

Figure 35: Frames Needing to be Programmed in First Bitstream (Shown in Purple)

Figure 36: Frames Needing to be Programmed in Second Bitstream (Shown in
Orange); Green Frames Must be Zeroed

Speedster7t Configuration User Guide (UG094)

Preliminary Data 53

1.

2.

1.

2.

When the memory clear is complete, the pin is asserted high by the device to indicate FCU_CONFIG_STATUS
that the FCU is ready to read the bitstream.

Note

During this step, only the configuration memory is cleared. The embedded BRAM and LRAM memory
cells are cleared and should be assumed to power up to unknown states after configuration and in not
user mode. Preloading memory contents is done separately. See section BRAM72K_SDP-Memory

 in for details.Initialization Speedster7t FPGA IP Component Library User Guide

When the device powers up, the (output pin might temporarily be in an unknown state). FCU_CONFIG_STATUS
Therefore, the signal should not be monitored if is low. After FCU_CONFIG_STATUS FCU_CONFIG_RSTN

 is pulled high, can be monitored. When goes FCU_CONFIG_RSTN FCU_CONFIG_STATUS FCU_CONFIG_STATUS
high, the FCU is ready to accept the bitstream.

Bitstream Sync, JTAG ID and Instance ID
Speedster7t FPGA bitstreams always start with a pre-programmed sync code and one or more device-specific ID
codes set by the ACE software. The ID codes are checked to avoid programming Speedster instances with
bitstreams meant for other devices.

There are two ID codes present in Speedster7t FPGAs:

JTAG ID – Hard-coded inside a Speedster7t FPGA instance to differentiate between different variants,
products or silicon revisions.

Speedster7t FPGA instance ID – A unique 4-bit identifiers to distinguish between instances of the same
product or variant on a die, package or board.Instance ID is not used in the Speedster7t FPGA, it is set to
4'h0.

The sync and JTAG ID code is followed by a 512 bit preamble to be sent to the security block for processing the
encrypted bitstream. If the bitstream sync code ("AA55AA55") is never received or the ID codes do not match,
the FCU simply ignores the rest of the bitstream and remains in an idle state.

Load Configuration Bits
The configuration bitstream is a series of data words which are loaded into configuration memory frames in the
FPGA fabric. The bitstream also includes command words which control whether the I/O ring configuration
registers or the core configuration memory is programmed.

Configuration file sizes and configuration times are directly proportional to the FPGA size and resource counts
and the number of configuration memory frames that need to be programmed within the fabric. The configuration
file size is also dependent on the programming mode used, but the raw hex file for the bitstream can vary from
<1 MB for very small designs to >10 MB for the largest designs on Speedster7t FPGAs that fill the entire fabric
and preload the BRAM memories (see also).Bitstream File Generation Through ACE (see page 56)

Preloading the BRAMs is performed in one of two ways:

In the RTL by configuring the appropriate BRAM parameters. The 1024 72-bit parameters initd_0 through
initd_1023 can be used to designate the initial contents for a particular BRAM instance or set of instances
in the design. Refer to section in BRAM72K_SDP-Memory Initialization Speedster7t IP Component Library

 for details of BRAM preload.User Guide

By specifying in the RTL that a memory initialization file needs to be read. This file would contain

Speedster7t Configuration User Guide (UG094)

Preliminary Data 54

2. By specifying in the RTL that a memory initialization file needs to be read. This file would contain
hexadecimal entries for the required memory contents, with the first entry corresponding to address zero
and moving upward.

When the bitstream is generated, ACE reads these parameters and uses them to provide configuration data that
allow for programming of the BRAM, SRAM frames along with the CMEM frames.

CRC
If CRC is enabled completely, an accumulative CRC is computed for each 128-bit data packet that passes
through the configuration data mux. The final CRC must match a hard-coded value in order to allow a startup or
shutdown sequence to begin. The CRC register is set to 32’hFFFFFFFF on reset and whenever the CRC register
is written. The current CRC computation can be read back at any time via an FCU register. CRC check can also
be completely bypassed.

Startup Sequence
The FCU has a startup sequencing block responsible for the initial power-up sequence out of reset. During
power-on and bitstream programming, the startup state machine remains in its default IDLE state. After
programming is finished and the chip is ready to be put into user mode, the state machine progresses through a
number of startup states, de-asserting resets to the rest of the chip in a certain sequence. The final state of the
startup process is user mode where it remains until it receives a request to initiate the shutdown process. The
shutdown process is much like the startup process, but performed in reverse (asserting resets along the way)
and ending in the IDLE state.

Figure 37: FCU Startup Sequence

The FCU startup sequencing block has three stages, the first two to support two-stage programming of the fabric
and the third for partial reconfiguration. The FCU startup state machine generates 32 resets where 16 resets are
connected to fabric and the other 16 resets are connected to the hard IPs. The fabric resets are staggered to
avoid inrush currents.

User Mode
When the device enters user mode as indicated by the assertion of the signal, the FCU_CONFIG_USER_MODE
design has been fully programmed and the user can start sending and receiving data to/from the FPGA and
performing intended operations.

If scrubbing is enabled, the user continue providing free-running clocks on FCU_CLK to have the scrubbing must
state machine (which is clocked with FCU_CLK) perform the necessary operations. If scrubbing is not enabled,

the user can gate FCU_CLK if and until ACB operations are required. There are no specific requirements for

Speedster7t Configuration User Guide (UG094)

Preliminary Data 55

the user can gate FCU_CLK if and until ACB operations are required. There are no specific requirements for
gating FCU_CLK beyond ensuring that it happens glitch free. The clock rest state can be high or low. It is even
possible to start issuing ACB clocks before enabling ACB operations through FCU commands.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 56

Chapter - 7: Speedster7t Bitstream Generation
ACE has a straightforward interface to generate the bitstream files required to implement all of the supported
configuration modes. The bitstream file is generated during the the 'FPGA Programming – Generate Bitstream'
step of the compilation flow (see in the e (UG070) for more details).Flow View ACE Software User Guid

The STAPL Jam file needed for JTAG mode configuration is always generated by default. The 'Bitstream
Generation' section of the Project Options menu, shown in the following figure, also provides a menu option to
generate bitstream files for the other configuration modes.

Figure 38: ACE Bitstream Generation Options Dialog

Speedster7t Configuration User Guide (UG094)

Preliminary Data 57

Table 20: Bitstream Generation Implementation Options - Additional Outputs

Option TCL Option Description

Serial Flash ().flash bitstream_output_flash

This option enables the generation of an additional serial flash formatted
output file. This file is named the same as the STAPL file, but with a .

 extension. The file contains a binary image that can be directly flash
loaded into a single serial flash memory.

4x Serial Flash
().flash4x_0-3

bitstream_output_4xflash

This option enables the generation of four additional 4x serial flash
formatted output files. These files are named the same as the STAPL file,
but with a to extension. Each file contains a .flash4x_0 .flash4x_3
binary image that can be directly loaded into each serial flash memory in
a x4 configuration.

Serial Flash Page 0
Header bitstream_output_page0

This option enables the generation of the flash Page0 header file which is
a binary file.

CPU Mode (.cpu) bitstream_output_cpu

This option enables the generation of an additional CPU Mode formatted
output file. This file is named the same as the STAPL file, but with a .cpu
extension. The file contains hexadecimal-formatted data organized with
"CPU Bus Width" number of bits per file line. Data from this file is sent to
the FCU CPU interface line by line (one line per clock cycle) from the top
to the bottom of the file, where the left-most bit on each line is the MSB
and the right-most bit is the LSB.
In simulation, this file can be loaded using the readmemh function. For
convenience, an additional binary representation of the CPU Mode output
file is written, named the same as the STAPL file, but with a _cpu.bin
extension. It contains the same data in the same bit order as the .cpu
file.

CPU Bus Width bitstream_output_cpu_width

This option controls the bit width of the CPU-mode formatted output file.
When using the CPU interface in ×8 mode, set this value to 8. If using the
CPU interface in ×128 mode, set this to 128. The value determines how
many bitstream bits are printed per line in the output file. The bit .cpu
sequence required by the FCU (and output in the generated bitstream
file) might be different for each CPU Bus Width setting; therefore, it is
important to set this option to match the actual CPU hardware interface
width.

Raw Hex (.hex) bitstream_output_hex
This option enables the generation of an additional Raw Hex formatted
output file. This file is named the same as the STAPL file, but with a .hex
extension. This file is used for debug purposes.

CMEM Address and
Data Export (.address) bitstream_output_address

This option can be used to enable an additional CMEM Address and Data
Export output file. All addresses listed in this file are "used" in the
bitstream. The data in this file can be compared against readback data.
The file is named the same as the STAPL file, but with a .address
extension.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 58

Table 21: Bitstream Generation Implementation Options - FCU Configuration

Option TCL Option Description

Memory
Scrubbing
Mode

bitstream_scrub_mode
Selects the CMEM scrubbing mode. Allowed values include Disabled
(), (), and ().0 Background Scan 1 Background Scan and Repair 2

CRC
Checking
Mode

bitstream_crc_mode
Selects the CRC checking mode. Allowed values include Fully

 (), (), and ().Enabled 0 Partially Enabled 1 Bypassed 2

Serial Flash
Clock Divider bitstream_sf_clock_div Selects the serial flash clock divider value.

Table 22: Bitstream Generation Implementation Options - JTAG Scan Chain

Option TCL Option Description

Single Device
Chain bitstream_single_device

Specifies whether the bitstream STAPL file is output for a single-
device JTAG scan chain (the target device is the only device on
the JTAG scan chain). Set this to to indicate a single device. If 1
this option is set to (indicating multiple devices in the scan 0
chain), then either the chain description file is used or the pre-IR,
post-IR, and chain offset options are used to generate the
bitstream STAPL file with knowledge of the scan chain.

Use JESD32
Chain
Description
File

bitstream_use_chain_file
When using a multi-device JTAG scan chain, specifies whether to
use a JESD32 chain description file, or to use the explicit pre-IR,
post-IR, and chain offset implementation options.

Chain
Description
File

bitstream_chain_file
Specifies the optional JESD32 chain description file used by the
bitstream generator to automatically pad the JTAG IR chain for
multi-device chains.

Chain Offset
of Target bitstream_chain_offset

Specifies the offset of the target device on the JTAG scan chain
for multi-device chains. Setting this to selects the first device on 0
the chain, selects the second device on the chain, and so on.1

IR Bits Before
Target bitstream_preir_padding

Specifies the total number of Instruction Register bits on the
JTAG scan chain prior to the target device Instruction Register.
This option is used for multi-device scan chains in order to pad
the IR chain properly with 1s to put other devices in bypass
mode.

IR Bits After
Target bitstream_postir_padding

Specifies the total number of Instruction Register bits on the
JTAG scan chain after the target device Instruction Register. This
option is used for multi-device scan chains in order to pad the IR
chain properly with 1s to put other devices in bypass mode.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 59

Chapter - 8: Achronix Configuration Bus (ACB)
The ACB interface is provided to configure the interface cluster registers through the ACB pipe block. There are
4 ACB ports as indicated in the block diagram below namely P0, P1, P2 and P3. P0 and P1 are internal to
Achronix, P2 and P3 are unused.

A diagram showing a high-level view of the ACB interface is provided below.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 60

Figure 39: Achronix Configuration Bus Interface

ACB Address Space
The ACB circuitry in the FCU is implemented using a 4-port scheme. For the Speedster7t FPGA, Ports 0 and 1
are used to interface with the internal boundary circuitry while ports 2 and 3 are not used. A 22-bit address is
provided by the FCU to interface with the ACB structure plus 2 bits which are allocated to ACB chain select;
namely P0, P1, P2 or P3. The 24-bit Internal Interface address is detailed in the following table.

Table 23: ACB Internal Interface Address

Speedster7t Configuration User Guide (UG094)

Preliminary Data 61

Table 23: ACB Internal Interface Address

Bits Description

23:22 Chain select, P0, P1, P2 or P3

21:16 Client ID

15:0 Client address

ACB Write and Read Protocols
ACB operations consist of writes and reads to the memory space in the IP+Control units inside the Speedster7t
FPGA. These are split as follows:

Write to Memory
These operations come in two forms, non-blocking and blocking as described below:

Non-blocking – The default mode of operation for writes. Allows writes to be pipelined without needing to
wait for an acknowledgment or hready signal from the destination or client logic.

Blocking – The non-blocking write mode assumes that clients are able to process write requests as they
are received without any stalling. Since there is no mechanism for writes to exert back-pressure, the non-
blocking write scheme will work if clients cannot process the write requests as they arrive. In this case, not
the mode of operation for writes can be changed via an FCU register to blocking. In blocking mode, writes
cannot be pipelined. Every write request that is issued requires an acknowledgement by returning an
hready pulse before the request for the next write can be processed.

Timeout – If the acknowledgement does not come within a predetermined time period (which could be
due to many factors like illegal addressing or incorrect client IDs, etc.), the FCU times out. The period for
timeout is configurable via an FCU register, and has a max value of 64k clocks (16-bits). An FCU status
bit, which can be read back by the user, indicates whether or not the timeout actually happened. If and
when the timeout occurs, the write request is flushed, and the FCU waits for or implements the next
command.

Note

The timeout status bit is cleared when the next ACB operation is issued. There is no counter to
indicate the number of timeouts that have occurred.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 62

1.

2.

3.

4.

The mode is configured using a drop-down menu selection in the ACE GUI and only applies to ACB writes after
bitstream programming has completed and the Speedster7t FPGA has transitioned to user mode. The ACB
writes during bitstream loading are all performed in non-blocking mode. Based on the user selection, at the end
of bitstream loading, and before entering user mode, there is an FCU command to update the mode for ACB
writes. For additional clarity, the sequence of operations is as follows:

After power-up, the register controlling the ACB write mode is set to its default mode of operation, which is
non-blocking mode.

All of the bitstream operations are performed in this mode.

At the end of the bitstream, just before the final CRC check, another FCU command is issued to set the
desired mode (determined using the provided drop-down menu). The CRC check does not gate the
change to ACB blocking mode. Moreover, the ACB blocking mode setting is retained even after the CRC
check. The CRC check does gate the FCU from entering user mode (asserting FCU_CONFIG_USER_MODE
) in the next step.

The Speedster7t FPGA is then taken through startup to enter user mode.

The two sub-sections below provide additional details on the non-blocking and blocking write protocols.

Non-Blocking Write
The figure below shows two back-to-back non-blocking writes on a port (specified by the). o_acb_hsel_P0/P1
DATA1 and DATA2 are written to addresses ADDR1 and ADDR2 respectively with o_acb_hwrite_P0/P1
asserted. After this, and is de-asserted.o_acb_hsel_P0/P1 o_acb_hwrite_P0/P1

Figure 40: Non-blocking ACB Write

Blocking Write
The waveform below shows a blocking write. This mode is not selected by default and must be enabled via an
FCU register. With a blocking write, a write request is issued by asserting . The required o_acb_hwrite_P0/P1
data, DATA1, is on , the address is specified by ADDR1 on o_acb_hwdata_P0/P1[31:0] o_acb_haddr_P0

, and the request is going to port with set. The FCU then waits for a pulse on /P1[21:0] o_acb_hsel_P0/P1
 some non-deterministic time later. After this pulse, the FCU can issue the next write i_acb_hready_P0/P1

request as shown below with value in DATA2 needing to be written to the address in ADDR2.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 63

Figure 41: Blocking ACB Write

Read from Memory
All reads are blocking. When a read request is issued, no additional requests can be issued until the read data
and corresponding hready signal is returned, or the FCU times out due to the requested data not being returned
in time. The period for timeout is configurable via an FCU register and has a maximum value of 64k clocks (16-
bits). An FCU status bit, which can be read back by the user, indicates whether the timeout actually happened. If
and when the timeout occurs, the read request is flushed and the FCU waits for or implements the next
command.

While there are four independent ACB networks, they cannot operate independently of one another — all of the
circuitry controlling and observing the four ports in the FCU is common. As a result, a port x operation followed
by a port y operation are treated the same way regardless of whether x and y are the same or different ports.

The waveform below shows an ACB read operation which, as described above, can only be blocking. The FCU
needs to wait for an acknowledgment in the form of an pulse (or a timeout) to proceed o_acb_hready_P0/P1
with the next request. In this waveform, after reset de-assertion, a read request is made on a given port with

 set, setting to the desired location of ADDR1, and by keeping the o_acb_hsel_P0/P1 o_acb_haddr_P0/P1
 signal low. At some non-deterministic time later, read data is provided on the o_acb_hwrite_P0/P1

 port with the pulse on indicating when that data is i_acb_hrdata_P0/P1[31:0] i_acb_hready_P0/P1
valid.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 64

Figure 42: ACB Read

Speedster7t Configuration User Guide (UG094)

Preliminary Data 65

Chapter - 9: Partial Reconfiguration
Partial reconfiguration enables the user to reprogram a part of the fabric with a smaller bitstream while leaving
the remaining configuration intact. Each region that can be reconfigured independently is called a fabric cluster or
just cluster. The Speedster7t FPGA has 80 clusters which can be reconfigured independently. Partial
reconfiguration can only be initiated after the device has entered user-mode.

Figure 43: Speedster7t FPGA Partial Reconfiguration Fabric Cluster Layout

There are many advantages to partial-reconfiguration:

Enable dynamic functions for certain blocks in the design

Smaller FPGA logic functions can be programmed on the FPGA when needed

Faster programming times

Design Considerations
Partial-reconfiguration introduces additional complexity in the design. Defining correct functional hierarchy is very
important for designs that use partially reconfigurable modules. It is important to ensure that there are no
functional issues when the target module is being partially reconfigured. No outputs driven from that module can

be actively used during partial-bitstream programming since the remaining FPGA fabric is alive and performing

Speedster7t Configuration User Guide (UG094)

Preliminary Data 66

1.

2.

3.

be actively used during partial-bitstream programming since the remaining FPGA fabric is alive and performing
regular tasks during partial reconfiguration.

Reconfigured regions cannot have any clock configurations that affect elements outside of the re-configured
region. For this reason, a re-configured cluster cannot change where clocks are routed down the branch but it
can choose how those existing clocks are connected inside the cluster.

Timing paths into and out of the module might change after partial reconfiguration. It is important to ensure that
there are no timing violations after partial-reconfiguration for a design that met timing earlier. A good practice is to
use the most challenging module for initial timing closure and, ideally, register all inputs and outputs.

Also, port definitions for the the new module and the module being swapped out must be the same. The reset
scheme for the target module should be correctly defined and understood.

It is also important to define the correct placement constraints so that the target module is completely contained
within the cluster marked for partial-reconfiguration. The resources for the module cannot exceed the available
resources for a cluster and optimizations across the cluster should be disabled.

Partial Reconfiguration Steps
Partial re-configuration can be entered when in user mode as described below. To enable partial re-
configuration, complete these steps:

Write a value of 32'h1000_0000 to CONFIG_REG_CRC and a value of 32'h0000_0000 to the
CONFIG_REG_CRC2 register. This brings the partial state machine to shutdown state and asserts the
partial reset.

Send SYNC, JTAG ID and the preamble header, then program the selected clusters using the partial
bitsream.

Write a value of 32'h0200_0000 to CONFIG_REG_CRC and a value of 32'h0000_0000 to
CONFIG_REG_CRC2 register. This releases the reset to the partial clusters and generates
partial_config_done.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 67

Chapter - 10: Remote Update

Introduction
The remote Update feature in Speedster7t FPGAs implements device reconfiguration using dedicated remote
system upgrade logic in the FCU eliminating the need for expensive custom external logic. The ability to upgrade
an image remotely in an FPGA deployed in the field allows delivery of feature enhancements and bug fixes
without recalling a product, reduces time-to-market and extends product life.

The Remote Update logic within the FCU commands the configuration module to start a reconfiguration cycle.
Error detection is enabled during and after the configuration process. If any errors are detected, the logic
facilitates system recovery by reverting back to a safe, default factory configuration image and then provides
error status information.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 68

Implementation

Figure 44: Speedster7t FPGA Remote Update Feature

Speedster7t Configuration User Guide (UG094)

Preliminary Data 69

1.

a.

b.

2.

3.

4.

5.

6.

7.

8.

a.

b.

c.

1.

a.

b.

2.

3.

4.

Remote update follows this procedure:

The flash device holds two bitstreams:

Known good working image, "Golden bitstream".

New bitstream with enhanced features and/or bug fixes, "New Bitstream".

Initially the device boots from the golden bitstream and enters user mode.

System software initializes the "Current Bitstream Address" register, which is the start address of the New
Bitstream programmed by the user.

System software initializes the "Golden Bitstream Address" register, which is the start address of the
Golden Bitstream programmed by the user.

Based on configuration modes, software writes the command and start address into the flash configuration
header.

The system initiates a reset, the FPGA re-configures from the Current Bitstream Address and reads the
first 512 bits of the New Bitstream data from the flash device and enters into wait state.

If encryption is not enabled, the complete bitstream is read and the FPGA is re-configured.

If encryption is enabled and the eFuse key is ready:

The header segment0 data is read and sent to the secure boot core.

The flash read state machine enters into a wait state of 2.6 ms.

The flash interface reads the complete bitstream and configures the FPGA.

Fallback on Error
In the event of a bitstream load failure, The fallback procedure is invoked:

After bitstream load, failure can occur in two scenarios:

No IDCODE match after timeout expires.

CRC error after timeout expires.

If these checks fail, a retry is attempted N times (the number of retries is described in the flash
configuration header).

If the failures persist and the system is unable to boot from the New Bitstream and fallback is present in
the FPGA configuration header, a fast read is issued from the header fallback address.

The user should then update the New Bitstream or point the default boot address to the Golden Bitstream.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 70

1.

2.

3.

4.

5.

Chapter - 11: Design Security for Speedster 7t FPGA
Achronix recognizes the importance of protecting the sensitive IP a customer downloads onto their FPGA. To
provide a high level of protection, Speedster7t FPGAs have a number of features to support bitstream encryption
as well as authentication. These features ensure that no one can access the design configuration on the FPGA
and also ensures that the design is the intended design. Speedster7t FPGAs provide this high level of security
through the following features:

Support for ECDSA authenticated and AES-GCM encrypted bitstream

Dynamic power analysis (DPA) protection to prevent side-channel attacks

Physically unclonable function (PUF) for tamper-proof protection

Securely stores both public and encrypted private keys

With this security solution deployed, a customer's design is secure. Even with possession of the device, no one
can extract the underlying design, the design cannot be reverse engineered, nor can the design be altered in any
way.

Bitstream Authentication
Authentication of a bitstream ensures that the design on the device is the intended design. Achronix provides a
two-step authentication process that first authenticates an encrypted bitstream before decrypting it, and then
performs authentication a second time on the decrypted bitstream before configuring the device:

A bitstream is encrypted using AES-GCM, which provides authenticated encryption.

The user provides an asymmetric private key to sign the encrypted bitstream using ECDSA.

When an encrypted and signed bitstream is loaded into the FPGA, the device uses the public key stored
in an electronic fuse (eFuse) on the device to authenticate the bitstream using the public key.

When authenticated, the bitstream decryption is enabled, and the bitstream is authenticated a second time
while decrypting with AES-GCM.

After the second authentication, the bitstream is used to configure the FPGA.

Bitstream Encryption
Bitstreams consist of sensitive intellectual property of the designer. Achronix provides tools to generate
bitstreams that are encrypted and signed using very strong encryption with hardware designed to be resilient to
side-channel attacks, such as dynamic power analysis (DPA). Additionally, the key derivation function (KDF)
inside the secure boot portion of the FPGA, along with the physically unclonable function (PUF) ensure
protection of the secret keys to decode and authenticate the bitstreams. Together these systems provide a
solution that is safe from attacks such that even with possession of the device, an adversary cannot extract the
underlying design, cannot change the system to perform another task other than the intended task, and cannot
reverse engineer the core intellectual property.

The following figure shows an overview of the security system and how elements work together to protect the
bitstream. Blocks shown in yellow represent encryption/decryption elements. Blocks shown in blue are
authentication elements and green blocks handle authenticated and encrypted bitstreams.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 71

Figure 45: Bitstream Encryption/Authentication Block Diagram

Generating Encrypted Bitstreams
To generate an encrypted bitstream, the user provides a 256-bit secret key to ACE. In order to provide better
protection against side-channel attacks, ACE does not simply use this secret key to encrypt the entire bitstream.
Instead, the secret key is used as an initial key. ACE then generates new derived keys based on the initial secret
key to encrypt smaller segments of the bitstream, each with a different derived key and a new nonce. Here the
nonce, also known as an initialization vector (IV), is a random number only used once per segment such that the
same pattern is not generated while replaying or encrypting the same bitstream. Bitstream encryption is
performed using the highly secure 256-bit AES-GCM encryption standard. Galois/counter mode (GCM) is an
advanced form of symmetric-key block encryption which enhances the 256-bit advanced encryption standard
(AES) by using a nonce (one-time use random value) and a counter mode so that each segment of data is
uniquely encrypted. ACE also uses a Galois message authentication code (GMAC) to simultaneously sign and
authenticate the data, including the unencrypted preamble section of the bitstream to guarantee the bitstream
has not been altered. To further protect the bitstream, ACE also signs each segment of the encrypted bitstream
using ECDSA. See the section on above for more details on the ECDSA Bitstream Authentication (see page 70)
authentication.

Hardware Security
There are several security features available in the hardware to support decryption of encrypted bitstreams, safe
storage of secret keys, and strict rule enforcement which locks the device if security rules are violated. The main
features for decryption and safe storage of keys use the physically unclonable function (PUF) which provides a
unique secret value per individual chip, and the key derivation function (KDF) which uses the PUF as the key to
encrypt/decrypt the real secret keys from the encrypted keys that are stored in an electronic fuse (eFuse).

Speedster7t Configuration User Guide (UG094)

Preliminary Data 72

1.

2.

3.

Physically Unclonable Function
The PUF generates a unique secret identifier for each individual chip. It is created from random physical
variations that occur during the semiconductor manufacturing process, such that the same circuit on a device
creates completely different and unique values on each chip, even chips on the same wafer. The value of the
PUF is random per individual chip, but remains constant over the lifetime of that chip. The PUF value is not
known to Achronix or the manufacturer, and the value cannot be observed without destroying or altering the
value of the PUF. This PUF value can be used to encrypt the user's secret key and store an encrypted version of
the secret key in an eFuse. Then when an encrypted bitstream is loaded into the FPGA, the PUF value is used to
temporarily decrypt the stored encrypted secret key. This secret key is then used to generate the multiple rotating
keys to decrypt the bitstream blocks that configure the FPGA.

Key Derivation Function
The KDF uses 256-bit AES encryption in conjunction with the PUF to create an encrypted version of the user's
secret key that can be stored in an eFuse. While it is theoretically possible to observe the contents of the eFuse if
an adversary is in possession of the device and has access to advanced reverse engineering equipment, the
stored key is an encrypted version of the secret key that uses the PUF value as the master key for encryption.
Again, the PUF value cannot be known and is unique to each individual device, thus making the stored key safe.
Additionally, when the KDF needs to decrypt an encrypted bitstream, it loads the encrypted key from the eFuse
along with the PUF value and temporarily decrypts the secret key. The secret key is then used as the initial key
for the module that generates the multiple derived keys for AES-GCM decryption of the bitstream prior to loading
it into the configuration memory in the FPGA.

The following two figures show how the PUF and KDF are used to generate a secure encrypted key to store in
an eFuse, and how they are used to recreate the secret key to decrypt the bitstream.

Figure 46: Safe Secret Key Storage

Rules for Encryption
When using encrypted bitstreams, the FPGA enforces a set of rules. If the security rules are violated, the FPGA
locks up and cannot be used in any way without powering down the device. First, there is an ordering rule
determining how bitstreams are to be loaded. Speedster7t FPGA bitstreams have three phases and must follow
these ordering rules:

Zero, one, or multiple pre-configuration bitstreams.

One, and only one, full configuration bitstream.

Zero, one, or multiple partial reconfiguration bitstreams.

Speedster7t Configuration User Guide (UG094)

Preliminary Data 73

1.

2.

3.

4.

Additionally, there are rules to determine which keys can be used for the encryption. The eFuses can store up to
four secret keys — bitstreams can be encrypted using up to four different initial keys. These rules must be
followed to prevent locking the device:

If the eFuse bit has been set for the FPGA, the device only accepts encrypted_bitstreams_only
encrypted bitstreams.

If any pre-configuration bitstream is encrypted, all pre-configuration bitstreams must be encrypted using
the same key.

If either the pre-configuration bitstream or the full bitstream are encrypted, they both must be encrypted
and both must use the same key.

Any partial reconfiguration bitstreams may use a different key if and only if the previous bitstream sets the
 bit to 0 in the preamble, and the partial reconfiguration bitstream also sets that same bit to 0 in same_key

its preamble.

Note

It is acceptable to load an unencrypted bitstream after a previous encrypted bitstream. It is not
acceptable to load an encrypted bitstream after a previous unencrypted bitstream.

Security Fuses
There are several eFuses that are related to the security features in Speedster7t FPGAs. Some of these are set
during manufacturing and cannot be changed by the customer, and others are available for customer use. See
the chapter for details.eFuse (see page 75)

Fuses Set at Manufacturing
There are two fuses that can be set at manufacturing time to limit the features of the FPGA (The part number of
the device indicates if these limitations exist in a part):

Bitstream decrypt disable – If set, the FPGA cannot accept encrypted bitstreams.

DPA disable for bitstream decrypt – If set, the FPGA still supports encrypted bitstreams, but there is
limited hardware protection for differential power analysis (DPA) side-channel attacks that can potentially
expose secret keys.

Fuses Set By Customer
There are several eFuses that can be set by the customer if using encrypted bitstreams:

Bitstream authentication key – This fuse contains a 768-bit hash of the public key used for first-level
authentication of encrypted bitstreams. This fuse is not readable.

Bitstream decryption key – These fuses contain the four 256-bit secret keys that can be used for
decryption and authentication of encrypted bitstreams. These fuses can contain the actual secret keys or
the encrypted version of the secret keys (using PUF and KDF). These fuses are not readable.

Bitstream user register – This fuse contains the 32-bit value set by the user to identify the key version
used. The secret key itself cannot be read back, but the user register value can be read. The user keeps a
mapping of key versions to keys.

Bitstream user lock – This one-bit fuse, if set, disables further updates to the authentication key,
decryption key, and user register.

Encrypted bitstreams only – This one-bit fuse, if set, forces the FPGA to only accept encrypted

Speedster7t Configuration User Guide (UG094)

Preliminary Data 74

1.

2.

1.

2.

3.

Encrypted bitstreams only – This one-bit fuse, if set, forces the FPGA to only accept encrypted
bitstreams that use one of the keys in the fuses.

Default Keys
Achronix provides a default public key for authentication and a default secret key for encryption/decryption of the
bitstream. These keys are available for testing, so that a user has confidence the security system works. The
default keys should not be used to protect sensitive designs — they are only made available for testing purposes.
Additionally, when a user sets the eFuse to accept encrypted bitstreams only, the FPGA no longer accepts the
default keys.

Loading Encrypted Bitstreams
Loading an encrypted bitstream is similar to loading an unencrypted bitstream. However, the most important
difference is that when the unencrypted 512-bit preamble of the bitstream is loaded, the FPGA disables all data
read-out, thus securing the device containing a user's sensitive IP and protecting it from being known, reverse
engineered, or altered in any way. Encrypted bitstreams are loaded following these steps:

When the hardware detects the loading of an encrypted bitstream, all readout and debug features are
disabled, preventing the reading of any internal state related to the FPGA fabric or the FCU.

Security rules for loading encrypted bitstreams are checked. If the rule checker fails, the FPGA enters a
locked state and can only be re-enabled with a power cycle.

If a board management controller is used to load in the bitstreams, there are additional requirements to be aware
of:

After the 512-bit preamble of the bitstream, the board management controller must pause and wait for 300
clock cycles before sending the next portion of the encrypted bitstream.

After the first 12,688 bytes of the encrypted bitstream, the board management controller must pause and
wait at least 520,000 FCU clocks, or about 2 ms (assuming a 32-bit data path and 250 MHz FCU clock).

For encrypted bitstreams, a board management controller is limited to sending 32-bits per FCU clock. For
unencrypted bitstreams, the controller can send data at a rate up to 128-bits per FCU clock.

Note

When using encrypted bitstreams, it is possible to use any debug features of the FPGA. Debug not
features are available when using unencrypted bitstreams.only

Figure 47: Encrypted bitstream loading sequence

Speedster7t Configuration User Guide (UG094)

Preliminary Data 75

Chapter - 12: eFuse
The eFuse blocks hold:

Four 256-bit bitstream decryption keys

One 768-bit public key for secure boot authentication

BRAM redundancy bits

Other control information

Additionally, the blocks hold the default redkey and public key. eFuse registers are mapped within the FCU
registers space and the configuration block has a built-in eFuse interface that generates the required signals for
eFuse reads and writes.

An eFuse read can be performed after POR, where the configuration block triggers the eFuse read operation
(refer to). The eFuse interface has clock dividers which generate Read Non-Volatile Memories (see page 50)
the required clock using a default clock divider value to meet the minimum time requirements. The maximum
clock considered here is 250 MHz.

The eFuse can be written through the FCU registers by loading a bitstream with the JTAG/PCIe/CPU interface.
The write is performed using an unencrypted bitstream. During eFuse write, the clock divider register can be
reconfigured by the user based on the clock source in order to generate the eFuse clock to meet the min/max
requirements.

Table 24: eFuse Registers

Register Name Address Description

CONFIG_REG_ADDR_EFUSE_VERSION_ID 16’h1240 KEY Version.

CONFIG_REG_ADDR_EFUSE_UNIQUE_DEVID1 16’h1244

96 bit unique device ID.CONFIG_REG_ADDR_EFUSE_UNIQUE_DEVID2 16’h1248

CONFIG_REG_ADDR_EFUSE_UNIQUE_DEVID3 16’h124c

CONFIG_REG_EFUSE_CNTRL 16'h107C eFuse control register.

CONFIG_REG_ADDR_EFUSE_CLK_DIV_ADDR 16’h12c0 eFuse clock divider.

CONFIG_REG_EFUSE_KEY_ADDR 16'h1080 eFuse key write address.

CONFIG_REG_EFUSE_KEY_DATA0 16'h1084

256 bit key data to eFuse.

CONFIG_REG_EFUSE_KEY_DATA1 16'h1088

CONFIG_REG_EFUSE_KEY_DATA2 16'h108C

CONFIG_REG_EFUSE_KEY_DATA3 16'h1090

CONFIG_REG_EFUSE_KEY_DATA4 16'h1094

Speedster7t Configuration User Guide (UG094)

Preliminary Data 76

Register Name Address Description

CONFIG_REG_EFUSE_KEY_DATA5 16'h1098

CONFIG_REG_EFUSE_KEY_DATA6 16'h109C

CONFIG_REG_EFUSE_KEY_DATA7 16'h10A0

CONFIG_REG_EFUSE_BRAM_ADDR 16'h10A4 eFuse bram/control write address

CONFIG_REG_EFUSE_BRAM_DATA 16'h10A8 eFuse BRAM red data/control data

Table 25: eFuse Control Register

Register Name Bit
position Type Reset

value Description

CONFIG_REG_BIT_EFUSE_CNTRL_PUF_EN 0 RW ‘h0 PUF enable, which enables the
key encryption and decryption

CONFIG_REG_BIT_EFUSE_CNTRL_KEYWR_EN 1 RW ‘h0 Key write start

Table 26: eFuse Clock Divider Register

Register Name Bit position Type Reset value Description

CONFIG_REG_BIT_EFUSE_CLK_DIV 31:0 RW ‘d100 eFuse clock divider

Table 27: eFuse Key Write Address

Register Name Bit
position Type Reset

value Description

CONFIG_REG_BIT_EFUSE_KEY_ADDR 10:0 RW ‘h0

eFuse physical write address for
Keys
Each key needs 16 eFuse locations
to store the information
Start address for each key is 0, 16,
32, 48

Speedster7t Configuration User Guide (UG094)

Preliminary Data 77

Revision History

Version Date Description

1.0 20 Apr 2021 Initial release.

1.0.1 26 Apr 2021 Change images and Read from FCU Register (see page 41) Read from ACB
 to execution order.Register (see page 41)

	Overview
	Interface Performance
	Configuration Modes for Speedster7t FPGAs
	Configuration via CPU
	Programming Data Ordering
	CPU×32
	CPU×16
	CPU×8
	CPU×1

	Configuration via Flash Memories
	Flash Interface
	Flash Device Configurations
	1D Configuration
	4D Configuration

	Addressing Modes and Memory Organization
	Address Range
	Flash Configuration Header (Page-0 Header)

	Flash Configuration Protocol
	Flash Modes
	SPI Mode (×1)- 1D flash
	Quad Mode (×4)- 1D flash
	Reads

	Octa Mode (×8)- 1D flash

	Registers and Addressing

	Configuration via JTAG
	JTAG Instructions

	Configuration Pin Tables
	FPGA Configuration Unit (FCU)
	Overview
	Speedster 7t1500 FCU Command List
	Command Formats and Details
	FCU Register Write
	ACB Register Write
	FCU/ACB Register Write Waveforms
	FCU Register Read
	ACB Register Read
	FCU/ACB Register Read Waveforms
	AXI Write
	AXI Read
	Configuration Memory Read
	Data Ordering
	Commands
	Waveforms and Descriptions

	Configuration Sequence and Power-Up
	Device Power-Up
	Read Non-Volatile Memories
	Clear Configuration Memory
	Bitstream Sync, JTAG ID and Instance ID
	Load Configuration Bits
	CRC
	Startup Sequence
	User Mode

	Speedster7t Bitstream Generation
	Achronix Configuration Bus (ACB)
	ACB Address Space
	ACB Write and Read Protocols
	Write to Memory
	Non-Blocking Write
	Blocking Write

	Read from Memory

	Partial Reconfiguration
	Design Considerations
	Partial Reconfiguration Steps

	Remote Update
	Introduction
	Implementation
	Fallback on Error

	Design Security for Speedster 7t FPGA
	Bitstream Authentication
	Bitstream Encryption
	Generating Encrypted Bitstreams
	Hardware Security
	Physically Unclonable Function
	Key Derivation Function
	Rules for Encryption

	Security Fuses
	Fuses Set at Manufacturing
	Fuses Set By Customer
	Default Keys

	Loading Encrypted Bitstreams

	eFuse
	Revision History

