
www.achronix.com

Speedster7t Configuration
User Guide (UG094)

Speedster FPGAs

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 2

Copyrights, Trademarks and Disclaimers
Copyright © 2020 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster,
and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other
trademarks are the property of their respective owners. All specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 3

Table of Contents

Chapter - 1: Overview . 6

Chapter - 2: Interface Performance . 8

Chapter - 3: Configuration Modes for Speedster7t FPGAs . 9
Configuration via CPU . 10

Programming Data Ordering . 12

Data Ordering In the ACE Output File . 14

Configuration via Flash Memories . 16
Flash Device Configurations . 16

Addressing Modes and Memory Organization . 19

Flash Programming Protocol . 21

Flash Modes . 22

Registers and Addressing . 25

Configuration via JTAG . 27
JTAG Instructions . 29

Chapter - 4: Configuration Pin Tables . 32

Chapter - 5: FPGA Configuration Unit (FCU) . 36
Features . 36

FCU AXI Lite Master and Slave . 36

CRC . 37

Chapter - 6: Configuration Sequence and Power-Up . 38

Chapter - 7: Partial Reconfiguration . 39
Design considerations . 39

Chapter - 8: Remote Update . 41
Introduction . 41

Implementation . 41
Fallback on Error . 42

Chapter - 9: Design Security for Speedster 7t FPGA . 43
Bitstream Authentication . 43

Bitstream Encryption . 43
Generating Encrypted Bitstreams . 44

Hardware Security . 44

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 4

Hardware Security . 44

Security Fuses . 46
Fuses Set at Manufacturing . 46

Fuses Set By Customer . 46

Default Keys . 47

Loading Encrypted Bitstreams . 47

Revision History . 48

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 5

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 6

Chapter - 1: Overview
At startup, Speedster7t FPGAs require configuration by the end user via a bitstream. This bitstream can be
programmed through one of four available interfaces in the FPGA configuration unit (FCU).The FPGA
configuration unit (FCU) refers to logic that controls the configuration process of the Speedster7t FPGA. It is
responsible for receiving data on a variety of core interfaces (depending on a selected programming mode),
decoding instructions, and sending configuration bit values to the appropriate destination (core configuration
memory, the core's boundary ring configuration memory, FCU registers, etc.). The FCU is also responsible for
any core-level housekeeping that happens on reset de-assertion (e.g., clearing of configuration memory) as well
as controlling the startup and shutdown sequences that drive resets to the rest of the core as well as CRC
checks, SEU mitigation and security.

Data from the configuration pins is brought into the FCU located in the core's boundary logic. Depending on the
configuration mode, this data passes through one of four interfaces and is then provided to the control logic and
state machines in the FCU. At this point, the data bus is standardized to a common interface (configuration mode
independent). This data is processed and propagated to the configuration registers in the core's boundary ring, to
the core's configuration memory, or to the hard IP blocks in the FPGA's I/O ring.

Once all of the configuration bits are successfully loaded, the FCU transitions the Speedster7t FPGA into user
mode, enabling the user to provide stimuli and enable operation.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 7

Figure 1: Speedster7t Configuration Block

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 8

Chapter - 2: Interface Performance
The table below lists the various configuration interfaces supported by the Speedster7t FPGA and their
corresponding maximum operating frequency.

Table 1: Configuration Modes and Maximum Frequencies

Configuration Mode Maximum Frequency

JTAG 250 MHz

CPU 250 MHz

Serial flash 250 MHz

All of the programming modes and interfaces are capable of running up to 250 MHz at the configuration pins.
The FCU and all associated circuitry is also capable of running up to 250 MHz. Since the internal data bus in the
FCU is 128 bits wide, and in most configuration modes, the data pin count is less than 128, the incoming data
stream goes through a gearbox to reduce the throughput. This configuration ensures that the internal
programming circuitry runs at less than 250 MHz to process the incoming data stream. In the widest data mode
(CPU ×128), the gearbox is bypassed and the entire configuration interface can run at the full 250 MHz
bandwidth. Depending on the mode and configuration data width, the total bandwidth varies, and the
programming time changes accordingly.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 9

Chapter - 3: Configuration Modes for Speedster7t FPGAs
Speedster7t FPGAs support four configuration modes: Flash, JTAG, CPU and PCI Express. The selection
between these modes is controlled by setting the pins to the values shown in the table FCU_CONFIG_MODESEL
below. Both JTAG and PCIe modes are independent of the FCU_CONFIG_MODESEL pin setting and have to be
enabled by sending FCU commands that set the appropriate bits in FCU register space. The JTAG mode can be
enabled by writing to the user data register of the JTAG TAP controller and the PCI Express mode is enabled by
writing to the PCIe mode enable register in the FCU address space. JTAG mode overrides all other configuration
modes until disabled.

Table 2: Pin Settings for Various Configuration Modes

Configuration Mode Data
Width

FCU_CONFIG_MODESEL [3:
0]

FCU_CONFIG_SYSCLK_BYPASS(

3)
FCU_CONFIG_CLKSEL(

3)

JTAG(1) – XXXX(2) X 1

PCIe – XXXX X 0

NoOp – 0000 X X

Flash single device
(1D)

1 (SPI) 0001

0/1 0

2 (Dual) 1000

4 (Quad) 1010

8 (Octa) 1100

Flash four devices (4D)

1 (SPI) 0010

2 (Dual) 1001

4 (Quad) 1011

8 (Octa) 1101

CPU

1 0011

1 0

8 0100

16 0101

32 0110

128(4) 0111

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 10

1.

2.

3.

Configuration Mode Data
Width

FCU_CONFIG_MODESEL [3:
0]

FCU_CONFIG_SYSCLK_BYPASS(

3)
FCU_CONFIG_CLKSEL(

3)

Table Notes

Always active. Enabled in the JTAG TAP controller.
If pins are set such that flash or CPU configuration mode is selected, then the JTAG FCU_CONFIG_MODELSEL[3:0]
override should be issued after flash programming has completed or the CPU mode interface is inactive.
These straps select the configuration clock source.

FCU_CONFIG_SYSCLK_BYPASS Clock Selected

0 On-chip oscillator clock

1 FCU_CPU_CLK

4. Speedster7t FPGAs have 32 dedicated data I/O pins for the CPU interface, which supports an up to ×32 interface. For
×128 mode, the upper 96 pins are shared with the DDR4 interface.

Configuration via CPU
In CPU configuration mode, an external CPU acts as the master controlling the programming operations to
Speedster7t FPGA and offers a high-speed method for loading configuration data. Depending on the setting of
FCU_CONFIG_MODESEL pins, the CPU mode can be either a 1-, 8-, 16-, 32-bit wide or 128-bit wide parallel
interface, clocked using , with chip select support to indicate valid data. This mode is the fastest FCU_CPU_CLK
programming mode as it provides the widest data interface and a maximum supported clock rate of 250 MHz.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 11

Figure 2: External CPU Connectivity to a Speedster7t FPGA

Note

The CPU master needs only to connect to the first 1, 8, 16, 32 bits of depending FCU_CPU_DQ_IN_OUT
on the CPU mode selected. All unused signals should be tied to ground.

As described in section, the configuration mode-specific Configuration Sequence and Power-up (see page 38)
operations occur between the release of (indicating that the configuration memory has FCU_CONFIG_STATUS
been cleared and that the Speedster7t FPGA is ready to accept bitstream data) and the assertion of

 (stating completion of configuration). The example waveform below for CPU×8 mode FCU_CONFIG_DONE
illustrates the sequence of events, clocking and control signal states needed for successful configuration in CPU
mode: PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 12

1.

2.

3.

4.

After is de-asserted, must continue to cycle to ensure that the FPGA FCU_CPU_RSTN FCU_CPU_CLK
cycles through the FCU states and the configuration memory is cleared. At that point,

 is driven high.FCU_CONFIG_STATUS

After at least 5 clock cycles of being driven high, must be pulled FCU_CONFIG_STATUS FCU_CPU_CSN
low to begin writing the bitstream data into the Speedster FPGA. When the last set of data is written into
the Speedster7t FPGA, is pulled back high.FCU_CPU_CSN

Once is pulled high, needs to continue being clocked. Once the FCU FCU_CPU_CSN FCU_CPU_CLK
cycles through all of the configuration states, is driven high to indicate that the FCU_CONFIG_DONE
Speedster7t FPGA was successfully programmed.

As the toggles, the FCU cycles through its states to move the Speedster7t FPGA from FCU_CPU_CLK
programming mode into user mode, taking the fabric out of reset and performing operations to enable
user-mode functionality for all parts of the core. The signal is asserted to FCU_CONFIG_USER_MODE
indicate when the Speedster7t FPGA has successfully transitioned into user mode.

At any point during the configuration, if is asserted low, then the bus FCU_CPU_CSN FCU_CPU_DQ_IN_OUT
should have valid data or NOPs, if is high, the data on is ignored. Once FCU_CPU_CSN FCU_CPU_DQ_IN_OUT
the bitstream is programmed, can be held low while sending NOPs to the Speedster7t FPGA. FCU_CPU_CSN
This action will not affect the assertion of or signals.FCU_CONFIG_DONE FCU_CONFIG_USER_MODE

Figure 3: Clocking and Control Signals for Successful Configuration

Programming Data Ordering
In Speedster7t FPGAs, the configuration memory data bus is 128 bits wide, but the command and FCU register
buses are 32 bits wide. Data transmission occurs MSB to LSB at both the byte and 32-bit packet levels.
Commands are executed 32 bits at a time, but the data register is 128 bits wide and requires that four sets of 32-
bit packets be transmitted. At the 128-bit full payload level, the data transmission needs to occur in the following
order: i3, i2, i1, i0, where i is a 32-bit packet. The sequence of instructions is i0, i1, i2 and then i3.x

This structure makes the bitstream programming implementation very uniform for CPU×1, CPU×8, CPU×16 and
CPU×32 modes. The various potential data orders are illustrated in the example waveforms below, each showing
the transmission of the same bitstream contents in the five different CPU widths.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 13

Note

The figures in this section are to show methodologies and generalized scenarios. For detailed
waveforms for specific commands, refer to the respective section in Also, the FCU Command List.
JTAG ID values in the waveforms below are indicative and not specific to a device.

CPU×32
As shown in the waveform below, a command is issued on each clock cycle in CPUx32 mode:

The first 128-bit payload shows that the order of loading is NOP, Instance ID, JTAG ID and then Sync,
with each 32-bit packet transmitted MSB to LSB. However, as indicated above, the sequence in which
these are processed by the FCU are Sync, JTAG ID, Instance ID and finally NOP.

The second 128-bit payload operates the same way where the write command is transmitted first followed
by three NOPs but the execution occurring in the reverse order with the write command being executed
last. Also, when a write or read command is issued, it needs to be the last 32-bit FCU command in the
128-bit sequence. This requirement is because the FCU expects data input or provides data output
immediately following the write and read operations respectively.

Once the write command has been issued for a particular frame, subsequent clocks have CMEM frame
data transmitted on every clock, again in 128-bit payload sets.

The signal must be held low during the entire time when FCU commands are being issued for FCU_CPU_CSN
write operations. If is asserted during the (128/CPU_data_width) continuous clock cycles of one FCU_CPU_CSN
request, that request is discarded. Once the signal returns low, the next request is handled FCU_CPU_CSN
normally.

Figure 4: Bitstream Programming in CPU×32 Mode

CPU×16
CPU×16 mode is very similar to CPU×32 mode. The only difference is that 16-bits of data are transmitted on
each FCU clock cycle, i.e., each FCU command is transmitted over two FCU clock cycles, MSB to LSB (as
shown in the waveform below).PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 14

Figure 5: Bitstream Programming in CPU×16 Mode

CPU×8
CPU×8 mode follows along the lines of CPU×16 and CPU×32 modes, with each FCU command requiring four
FCU clock cycles for transmission, MSB to LSB, as detailed in the waveform below.

Figure 6: Bitstream Programming in CPU×8 Mode

CPU×1
In CPU×1 mode, a single bit of the FCU command (or write data) is transmitted on each FCU clock cycle, MSB to
LSB, for a 32-bit packet, but in reverse order for the 128-bit payload as described in the other CPU width modes.
The waveform below shows these details.

Figure 7: Bitstream Programming in CPU×1 Mode

Note

Contact Achronix Support for more details on the CPU x128 mode.

Data Ordering In the ACE Output File

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 15

Data Ordering In the ACE Output File
The programming files generated by ACE lists the FCU commands/data in the exact same transmission order as
shown in the waveforms above. The code snippets below highlight this ordering in the CPU×32 and CPU×128
modes.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 16

CPU×32 ACE Programming File Snippet

NOP
Instance ID

JTAG ID
Sync

Write Cmd
NOP

NOP
NOP

Write Data
Write Data

....

CPU×128 ACE Programming File Snippet

{NOP, Instance ID, JTAG ID, Sync}

{NOP, NOP, NOP, NOP}
{NOP, NOP, NOP, NOP}

{NOP, NOP, NOP, NOP}
{Write Cmd, NOP, NOP, NOP}

{NOP, NOP, NOP, NOP}
{NOP, NOP, NOP, NOP}

{NOP, NOP, NOP, NOP}
{Write Data, Write Data, Write Data, Write Data}

....

Configuration via Flash Memories
Caution!

Speedster7t devices can interface to serial NOR flash devices only. Parallel NOR, NAND or other flash
variants are supported.not

Flash programming mode allows flash memories to be used to configure Speedster7t devices. In this mode the
FPGA is the master, and therefore, supplies the clock to the flash memory.

The clock supplied from the FPGA (on the pin) to the attached flash device(s) can be driven FCU_FLASH_SCK
by the or the on-chip oscillator clock depending on the configuration options selected as FCU_CPU_CLK
described in . The frequency of this clock can be Configuration Modes for Speedster7t FPGAs (see page 9)
selected from one of four variants of the clock sources arriving at the FCU: the original (divide-by-1), divide-by-2,
divide-by-4 or divide-by-8. This selection is configured using the 'Serial Flash Clock Divider' drop-down menu in
the 'Bitstream Generation Implementation Options' section of the ACE GUI. This setting ensures that only the
flash state machine runs at the slower frequency. All other FCU and ACB circuitry will still operate at the original
input clock frequency.

Notes

At power-on, the device defaults to divide-by-4 setting. The FCU then sets the appropriate configuration
register to control the clock divider based on the user selection in ACE. The transition from a divide-by-
4 clock to any other selected clock frequency is glitch-free.

Flash Device Configurations

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 17

Flash Device Configurations
Speedster7t FPGAs support two flash device configurations, single flash device (1D) and four flash devices (4D).

1D Configuration
The 1D programming configuration is composed of a Speedster7t FPGA acting as the master and
communicating with a single flash device. The signal is used for clocking, is the o_flash_sck o_flash_sdi
data output from the FPGA to communicate instructions to the flash device, and is the single-i_flash_sdo[0]
bit FPGA input pin which receives the bitstream from the flash in x1 mode. The signal is o_flash_csn[0]
pulled low as soon as communication between the FPGA and flash device begins, and stays low during the valid
bitstream window.

The FPGA can communicate with the flash device in SPI, Dual, Quad or Octa modes in 1D configuration.

The figure below provides a block diagram of how a serial flash device can be connected to a Speedster7t FPGA
and a SPI header for programming in ×1 mode.

Figure 8: Speedster7t 1D Flash Programming Configuration

4D Configuration
Serial 4D flash programming mode is essentially an enhanced and higher bandwidth implementation of the serial
flash 1D configuration. The FPGA is again the master, and interfaces with not one but four flash memory devices
to increase the data bandwidth four times.

When writing to the four flash memories, the four-channel multiplexer must ensure that is o_flash_csn[3:0]
asserted for only a single flash memory at any given time. Through the SPI header, data is written to each flash
device in sequence. When reading from the four flash memories, the FPGA pulls all of the o_flash_csn[3:0]
signals low. Four-wide configuration data is read from the flash memories and transferred to the FPGA through
the ports. Once bitstream operations are complete (flash memory contents are read), transitioning i_flash_sdo
from the end of the bitstream to user mode is done the same way as in CPU and flash 1D modes.

Each flash device can operate in SPI, Dual, Quad or Octa modes. The figure below provides a block diagram of
how four flash memories can be connected to a Speedster7t FPGA in a 4D configuration.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 18

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 19

Figure 9: Speedster7t 4D Flash Programming Configuration

Addressing Modes and Memory Organization
Addressing modes for the flash memory are based on the size of the device. A three-byte addressing mode is
required for 128 Mb flash and smaller and a four-byte addressing mode is required to support memory sizes
above 128 Mb. Writes to the flash memory are done as pages, with each page consisting of 256 bytes. The
figure below shows the memory organization:

Figure 10: Speedster7t Flash Memory Organization

Address Range

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 20

Address Range
The below table shows the address ranges when two images are stored on a single flash devices, assuming that
each image is 1Gb in size.

Table 3: Address Ranges for Two Bitstream Images on a Single Device

Address
Range (32

bits)
Description Configuration Details

0x0000_0000
to
0x0000_00FF

Page-0 address space. This range contains
header information described in the flash
configuration header section. This address
range cannot be used for storing actual
bitstreams.

These addresses are not configurable by the
user.

0x0000_0100
to
0x0800_00FF

FPGA image 1 address space.

The start address can be configured by the user
via the current/fallback address in page-0
header. This example assumes the address
starts at 0x0000_1000 for a 1 Gb bitstream.

0x0800_0100
to
0x1000_00FF

FPGA image 2 address space

The start address can be configured by the user
via the current/fallback address in page-0
header. This example assumes the bitstream
starts at address 0x0800_0100.

Flash Configuration Header (Page-0 Header)
The first 256 bytes in the flash memory (page 0) store control information that describe how the subsequent
bitstream should be read from the flash device. This information can be written to the flash device in two ways:

Via the JTAG interface along with the bitstream.

Pre-programmed into the device by the manufacturer.

This space is not used for storing device bitstream.

Table 4: Page-0 Header Format

Address Bits Value Description

0x0 to 0x3 32 Read command

0x4 to 0x7 32 Flash configuration header read count

0x8 to 0xB 32 Bitstream read control

bit 0 – Flash read enable
bit 1 – Flash fall back enable
bit [7:2] – Retry count
bit [21:8] – Timeout count
bit 22 – Enable 4-byte addressing
bit [27:23] – Dummy read cycles
bit [31:28] – Flash SCK div countPR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 21

Address Bits Value Description

0xC to 0xF 32 Bitstream read address (new image)

0x10 to 0x13 32 Bitstream fallback address (golden image)

0x14 to 0x17 32 Fallback read command

0x18 to 0x20 24 Reserved

Flash Programming Protocol
With the , and straps FCU_CONFIG_MODESEL[3:0] FCU_CONFIG_CLKSEL FCU_CONFIG_SYSCLK_BYPASS
set for serial flash programming, operations begin as soon as the FPGA is powered up and the FCU receives the
clock input.

Immediately after reset is released, bitstream data is read out from flash device through the flash interface (at
this time the default is SPI (×1) mode). The bitstream read is done as two stages as described below:

Stage-1 – Flash configuration header read from flash device.

The FCU sends a default read command and address of 0x0000_0000 (32 bits) in SPI mode to the
flash device and reads the flash configuration header.

Internal registers are then updated, including the start address for the bitstream and flash read
command.

Stage-2 – Bitstream read from flash device

Based on the read mode (×1/×2/×4/×8) obtained from the flash configuration header, the command
and start address are sent to the flash device.

The FCU reads the first 512 bits of bitstream data from flash device and enters a wait state.

If encryption is not enabled, the FCU reads the complete bitstream and configures the FPGA. If
encryption is enabled and the efuse key is ready, the FCU reads the header segment0 data and
sends it to the secure boot core. The flash read state machine now waits for 2.6 ms after which the
FCU reads the complete bitstream and configures the FPGA.

Bitstream programming in all configuration modes is MSB to LSB. For transmitting a 32-bit FCU command, the
ordering in the serial ×1 mode for 1D and 4D configuration is as follows:

1D flash configuration – The flash device transmits command bit 31 on the first clock and bits 30, 29, 28,
etc. on subsequent clocks all the way down to bit 0 on the 32 (last) clock.nd

4D flash configuration – The four flash devices transmit command bits [31:28] on the first clock, all the way
down to bits [3:0] on the eighth (last) clock. The ordering within the 4-bit nibble corresponds to the flash
device ordering. In other words, on the first clock, flash[3] transmits bit 31, flash[2] transmits bit 30, flash[1]
transmits bit 29 and flash[0] transmits bit 28.

Error Fallback
The 'Error Fallback' feature helps in providing instructions to the FCU in the event of a failure during bitstream
loading. Such a failure can happen due to the following scenarios:

No IDCODE match after timeout expires

CRC error after timeout expiresPR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 22

If any of these checks fail, loading is retried N times (as specified in the bitstream read control register in the
flash configuration header). If failures persist and a fallback bitstream is enabled by the user, a fast read is issued
to the fallback address but if there is no fallback bitstream enabled, the FCU abandons the bitstream loading
operation.

Flash Modes
The following section describes the various modes supported for read and write operations to/from the flash
device. Read operations from the flase device can be configured either as SPI, Quad or Octa modes for both 1D
and 4D configurations while write operations to the flash device is always done in SPI mode.

Note

A flash write can be done by the user either the JTAG mode or PCIe mode. The PCIe or JTAG can
access the data and command registers by indirect mode of addressing.

The following table describes the different combinations of the flash device configurations and modes supported
in Speedster7t FPGA.

Flash programming mode
/configuration

Flash
interface

width

No of flash
devices

Write width
SO[0] pin x No of

Flash device

Read Width
SO[n:0] x No of

Flash device

SPI x1 (1D) 1 1 1 1

SPI x1 (4D) 1 4 4 4

Quad x4(1D) 4 1 1 4

Quad x4 (4D) 4 4 4 16

Octa x8 (1D) 8 1 1 8

Octa x8 (4D) 8 4 4 32

Read operation timing diagrams for each of the modes is described below:

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 23

SPI Mode (×1)

Figure 11: SPI Mode (×1) Read

Figure 12: SPI Mode (×1) WritePR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 24

Quad Mode (×4)

Reads

Figure 13: Quad Read Mode (QREAD)

Figure 14: 4× I/O Read (SPI Mode)PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 25

Figure 15: 4× I/O Read (QPI Mode)

Octa Mode (×8)

Figure 16: Octa Mode (×8) Read

Registers and Addressing
Table 5: Flash Controller Register Map

Register Name Address Description

Flash write control register 0x1038 Flash write control register

Flash write count 0x1048 Flash write count register

Flash write configuration register 0x1050 Flash configuration register

Flash write status 0x1060 Flash status register

Flash write data1 0x1040 Flash write data register

Flash write data2 0x11d4 Flash write data registerPR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 26

Register Name Address Description

Flash write data3 0x11d8 Flash write data register

Flash write data4 0x1044 Flash write data register

Flash current bitstream current address 0x12bc Flash bitstream read current address

Flash fallback bitstream fallback address 0x12b8 Flash bitstream read fallback address

Flash write command 1 0x103c Flash command register

Flash write command 2 0x104c Flash command register

Flash write command 3 0x1054 Flash command register

Flash write command 4 0x1058 Flash command register

Table 6: Flash Write Control Register

Register Field Bit
Position Type Reset

value Description

Flash write enable 0 RW 0x0 Initiate the flash write operation.

Flash write clock
div count 4:1 RW 0x1 Clock divider. Set to 4’b0001 default, divide by 2 clock which is

required for JTAG mode.

Flash write Stop 5 RW 0x0 Suspend the current operation.

Flash write wait 6 RW 0x0 Flash wait operation.

Flash write ×1
mode 7 RW 0x0 Flash write in SPI ×1 device mode.

Flash write ×4
mode 8 RW 0x0 Flash write in SPI ×4 device mode.

Reserved 31:9 RW 0x0 Reserved.

Table 7: Flash Write Configuration Register

Register
Field

Bit
Position Type Reset

Value Description

Flash
write data
valid

0

RW
[Write
on
clear]

0x0
Write data valid, Indicates to the flash interface when data is written to
flash write register. Cleared when the flash interface reads the data and
writes it into the internal registers.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 27

Register
Field

Bit
Position Type Reset

Value Description

Flash
write
command
valid

1 RW 0x0 Flash write command valid.

Flash
write
command
count

8:2 RW 0x8 Write command count in number of bits.

Flash
write data
count

15:9 RW 0x127 Write data count in number of bits.

Flash
write data
request

16 R 0x1 Request write data, PCIe, should poll this bits, will be cleared once data is
shifted to internal registers.

Table 8: Flash Write Status

Register Field Bit Pposition Type Reset Value Description

Flash write error 0 RO 0x0 Flash write error, flags flash device status

Flash read error 1 RO 0x0 Flash read rrror, CRC error

Flash write done 2 RO 0x0 Flash write is complete

Flash read done 3 RO 0x0 Flash read is complete

Flash state machine status [8:4] RO 0x0 Write state machine status

Reserved 31:9 RO 0x0 Reserved

Configuration via JTAG
The Speedster7t JTAG TAP controller is compliant to IEEE Std 1149.1 and is used for programming the
bitstream and debug via Snapshot in ACE. The and inputs determine whether an JTAG_TMS JTAG_TCK
instruction register scan or data register scan is performed. and are sampled on the rising JTAG_TMS JTAG_TDI
edge of , while changes on the falling edge. JTAG configuration and operation mode is JTAG_TCK JTAG_TDO
independent of settings.FCU_CONFIG_MODESEL

JTAG implementation in Speedster7t FPGAs, which allows for bitstream programming as well as real-time in-
system control and observation, is composed of the blocks shown in the figure below.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 28

1.

2.

3.

4.

5.

6.

The external interface is a standard 5-pin JTAG interface, connected directly to the JTAG TAP controller. The
TAP controller operates independently from the Speedster7t FPGA FCU. It is always active and uses JTAG_TCK
for clocking. The TAP controller takes the data from the pins and converts it to DR instructions to communicate to
the JTAG logic in the FCU. It also takes in data in the form of load/read requests, translating it to the appropriate
signals to drive and expect on the JTAG pins.

The JTAG logic in the FCU uses these DR instructions and generates input data in the standard 128-bit
Speedster7t FPGA frame size format, along with a data valid indicator, to be forwarded to the FCU data mux and
ultimately FCU state machines for configuration memory loading. It also takes in 128-bit output data from the
FCU, which also comes with a valid signal for debug and read-back operations. It provides an acknowledge
signal to indicate to downstream circuitry that the data transfer was successful.

The FCU data mux simply selects between the configuration mode specific data buses coming in to the FCU.
This logic is controlled by the static straps and the JTAG override circuitry from the FCU_CONFIG_MODESEL
JTAG TAP controller.

Finally, the FCU state machine takes incoming data and uses it for loading the configuration memory.
Conversely, it also provides output data from the configuration memory or Snapshot to be forwarded upstream.

Figure 17: Block Diagram for JTAG Instruction Processing in FCU

The JTAG programming sequence is highlighted in the waveform below to show the sequence of internal
procedures that occur in the ACE generated jam file. An explanation of these steps is as follows:

DO_RESET_CHIP – An internal signal generates a pulse on the FCU reset circuitry to reset it, similar to
providing a pulse on the input pin.FCU_CONFIG_RSTN

DO_ENTER_JTAG – A TAP command (override) is provided to place the Speedster7t FPGA FCU in
JTAG mode. After this point, regardless of the settings, the FCU configuration FCU_CONFIG_MODESEL
mode (and the data muxes) are set to listen to the JTAG inputs, and the FCU clock is sourced from

.JTAG_TCK

DO_ERASE – This step cycles through the FCU states to ensure that the configuration memory is
cleared. After this step, is asserted.FCU_CONFIG_STATUS

DO_PROGRAM – This is where the actual bitstream loading occurs. This operation consists of DRSCAN
loops for every bit in the bitstream. Since the size of the bitstream is pre-determined, the loop count is set
appropriately by ACE.

DO_ENTER_USER_MODE – IRSCAN and DRSCAN commands are provided to cycle through additional
FCU states. Idle clocks are provided to ensure that the start-up state machine completes successfully, and
in the process, and is asserted. After this step, functions o_config_done FCU_CONFIG_USER_MODE
hosted within a Speedster7t FPGA are active.

DO_EXIT_JTAG – This is another TAP command performed in parallel once user-mode operations start
to quickly provide additional instructions to remove the JTAG override on the FCU.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 29

Figure 18: JTAG Bitstream Programming Sequence

JTAG Instructions
Table below lists all JTAG instructions supported by Speedster7t FPGAs.

Table 9: JTAG Instructions

Instruction Opcode DR
Width Function

BYPASS 23'b00000000000000000000000 1

The required BYPASS instruction allows a
Speedster7t FPGA to remain in a functional mode
and selects the bypass register to be connected
between and . The BYPASS JTAG_TDI JTAG_TDO
instruction allows serial data to be transferred
through the FCU from to JTAG_TDI JTAG_TDO
without affecting the operation of a Speedster7t
FPGA.

EXTEST 23'b11111111111111111101000 –

The required EXTEST instruction places a
Speedster7t FPGA into an external boundary-test
mode and selects the boundary-scan register to be
connected between and . JTAG_TDI JTAG_TDO
Output pins operate in test mode, driven from the
contents of the boundary-scan update latch. Input
data captured in boundary-scan latches prior to
shift operation. In other words, during this
instruction, the boundary-scan register is accessed
to drive test data outside of a Speedster7t FPGA
via the boundary outputs and receive test data from
outside of a Speedster7t FPGA via the boundary
inputs.

EXTEST_PULSE 23'b11111111111111111101001 –

As the names suggest, EXTEST_PULSE
generates a single pulse by entering and exiting
the Run-Test/Idle state of the 1149.1 TAP
controller.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 30

Instruction Opcode DR
Width Function

EXTEST_TRAIN 23'b11111111111111111101010 –

EXTEST_TRAIN generates a stream of pulses
while in the Run-Test/Idle state. A BSDL file for an
1149.6 device specifies the minimum number of
pulses and the maximum time period allowed for
pulse generation in the Run-Test/Idle state.

SAMPLE
/PRELOAD 23'b11111111111111111111000 –

The required SAMPLE/PRELOAD instruction
allows a Speedster7t FPGA to remain in its
functional mode and selects the boundary-scan
register to be connected between and JTAG_TDI

. The output and input pins operate in JTAG_TDO
normal mode. Input pin data and core logic output
data captured in the boundary-scan latches. In
other words, during this instruction, the boundary-
scan register can be accessed via a data scan
operation to take a sample of the functional data
entering and leaving a Speedster7t FPGA. This
instruction is also used to preload test data into the
boundary-scan register before loading an EXTEST
instruction.

IDCODE 23'b11111111111111111111110 32

The optional IDCODE instruction allows a
Speedster7t FPGA to remain in its functional mode
and selects the optional device identification
register to be connected between and JTAG_TDI

. The IDCODE register appears JTAG_TDO
between and after power-JTAG_TDI JTAG_TDO
up, after the TAP has been reset using the optional
TRST pin, or by otherwise moving to the Test-
Logic-Reset state.

HIGHZ 23'b11111111111111111001111 –

The optional HIGHZ instruction sets all outputs
(including two-state as well as three-state types) to
a disabled (high-impedance) state and selects the
bypass register to be connected between

 and .JTAG_TDI JTAG_TDO

CLAMP 23'b11111111111111111101111 –

Provides for “guarding” chip outputs during in-
circuit test or boundary-scan functional test. Output
pins operate in test mode, driven from content of
boundary-scan update latch. The one-bit bypass
register is selected for shifting.

INTDR 23'b00000000000000000111101 97

Test data register is implemented internally to the
TAP controller. This internal register is used for
global configuration and monitoring of global status
signals. These registers are associated with a
specific user-defined instruction.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 31

Instruction Opcode DR
Width Function

JLOAD 23'b00000100000001100111010 128

Enables the scan in of the configuration bitstream
into the configuration logic (in this mode, the SHIFT-
DR state is used to scan in the bitstream). For the
read-back, the data register is read back. All of
these operations are done internally using a 128-bit
parallel bus. Data is latched every 128 bits in the
UPDATE-DR state.

JREAD 23'b00000100000001000111010 128

Enables the data register for read-back. When this
instruction is decoded and CAPTURE-DR is
executed, the data from the configuration logic is
sampled as 32-bit data plus a valid bit. Multiple
words of the configuration memory can be read
back by cycling through the CAPTURE-DR/SHIFT-
DR states. The 33-bit status register is selected
between and .JTAG_TDI JTAG_TDO

JUSR1 23'b00000100000000100111010 User
defined This instruction enables the USER1 TDR.(†)

JUSR2 23'b00000100000000000111010 User
defined This instruction enables the USER2 TDR.(†)

JASYNCERR 23'b00000000000001110111010 – This instruction enables the connection to the fabric
error status scan register.

Table Note

† This TDR is implemented in the fabric and is used for supporting debug functionality in the fabric.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 32

Chapter - 4: Configuration Pin Tables
Table 10: Interface Pin Table

Pin Name Direction Usage

Configuration Interface

FCU_CONFIG_M
ODESEL[3:0] Input

Configuration mode selection inputs to define the FPGA configuration unit (FCU) mode of operation.

Configuration Mode CFG_MODESEL[3:0]

Flash Serial 1x 0001

Flash Serial 4x 0010

CPU x1,x8,x16,x32,x128 0011 to 0111

Flash Dual x1 1000

Flash Dual x4 1001

Flash Quad x1 1010

Flash Quad x4 1011

Flash Octa x1 1100

Flash Octa x4 1101

JTAG Always active mode

FCU_CONFIG_ST
ATUS(4) Output

Active-high configuration status output signal indicating that the FCU has completed initial start-up
and has cleared the CMEM and is awaiting FCU commands for bitstream programming. Once high, it
stays asserted until the FCU is power cycled or reset for a re-initialization sequence or a CRC error is
seen during bitstream load.

FCU_CONFIG_D
ONE(4) Output

Active-high configuration done output signal indicating that bitstream loading completed successfully
and that the device is ready to enter user mode. Once high, it stays asserted until the FCU is power
cycled or reset for a re-initialization sequence.If a device configuration error occurs, the
CONFIG_DONE output will remain low. Holding this pin low on the board can be used as a method
to synchronize the start-up of multiple devices.

FCU_CONFIG_R
STN(1) Input Asynchronous active-low reset input clearing the configuration memory in the device and the logic in

the FPGA configuration unit (FCU).

FCU_CONFIG_U
SER_MODE(4) Output Active-high output indicating that the device has transitioned into user mode. Once high, it stays

asserted until the FCU is power cycled or reset for a re-initialization sequence.PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 33

Pin Name Direction Usage

FCU_CONFIG_S
YSCLK_BYPASS Input

Active-high bypass configuration system clock setting. Along with CFG_CLKSEL, this setting allows
for clock selection during programming.

SYSCLK_BYPASS CFG_CLKSEL CFG_MODESEL[3:0] Configuration Clock

0 0
0000, 0001, 0010
1000 to 1101

On-chip Oscillator

1 0 0000, 0001, 0010,1000 to 1101 CPU clock

X 0 0011, 01XX CPU clock

X 1 XXXX JTAG TCK

FCU_CONFIG_B
YPASS_CLEAR Input Active-high input pin to bypass configuration memory clear during device initialization.

FCU_CONFIG_E
RR_ENC[2:0] Output

Active-high output pins highlighting the presence of a CRC, scrubbing or other errors in the bitstream
during device programming. If asserted, it continues to stay high and users should expect that
configuration loading never complete, and user mode is never entered.

FCU_CONFIG_E
RR_ENC[2:0] Status Priori

ty

001 CRC Error.
0
(Lowe
st)

010 Single-bit/multiple-bit scrubbing error 1

011 Secure Boot Failure OR Security error. 2

100 Efuse PUF enrollment error. 3

101 Asserted when AXI interface of IP configuration space register block
does not receive a ready from the master

4
(High
est)

Other Undefined

FCU_LOCK Output Active-high status bit to indicate the FCU lock/unlock status

FCU_OSC_CLK Output This clock is internally generated from a ring oscillator. For debug purposes it can be bypassed and
the external clock CPU_CLK can be used.

FCU_PARTIAL_C
ONFIG_DONE Output Active-high configuration done output signal indicating that bitstream loading completed successfully

for partial reconfiguration of the device and that the device is ready to enter user mode.

FCU_STAP_SEL Input

When asserted high, this signal enables the JTAG interface pins to be directly connected to the
JTAG controller in the SerDes PMA blocks allowing SerDes configuration, debug and performance
monitoring directly from the JTAG interface. For bitstream download and design debug using the
JTAG interface, this pin must be held low. For SerDes PMA debug only mode, this pin must be held
high.PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 34

Pin Name Direction Usage

FCU_STATUS[1:
0] Output

FCU status bits showing the FCU state

FCU_STATUS State

11 fcu_locked

10 sync_found

01 ID found

00 instance ID found / FCU unlocked

FCU_STRAP[2:0] Output Unconnected spare outputs

JTAG Interface

JTAG_TCK Input Clock input to the JTAG controller in the FCU.

JTAG_TRSTN Input Active-low reset input to the JTAG controller in the FCU.

JTAG_TDI Input Serial data input to the JTAG controller in the FCU. Synchronous to JTAG_TCK.

JTAG_TDO Output Serial data output from the JTAG controller in the FCU. Synchronous to JTAG_TCK.

JTAG_TMS Input Mode select input to the JTAG controller in the FCU. Synchronous to JTAG_TCK.

Flash Memory Interface

FCU_FLASH_SC
K Output Clock output from FCU to flash memory device(s).

FCU_FLASH_HO
LDN Output

Active-low hold output to flash memory device(s). This signal is used to pause serial communications
between Speedster and the flash device without deselecting the device or stopping the serial clock.
Synchronous to FLASH_SCK.

FCU_FLASH_CS
N[3:0] Output Active-low chip select to enable/disable one or more of the attached flash memory devices.For x1

mode, only CSN[0] is used, for x4 mode connect each CSN[3:0] to a flash device

CPU Interface

FCU_CPU_CLK Input Input clock from external CPU. The data/address bus is synchronous to this clock.

FCU_CPU_CSN Input Active-low CPU mode chip select.

FCU_CPU_DQ_IN
_OUT[31:0] Input/Output Data Input/Output pins shared between the CPU and Flash interfaces. The CPU interface is

inaccessible when the Flash mode is in use and vice-versa.

FCU_CPU_DQ_V
ALID Output Active-high control bit to indicate to the CPU the clock cycles when the CPU_DQ bus has valid read-

back data. Synchronous to FCU_CPU_CLK.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 35

1.

2.

3.

4.

5.

Pin Name Direction Usage

Table Notes

FCU_CONFIG_RSTN needs to be held low, and cannot glitch during device power-up. All other input pins need only be
stable when i_config_rstn is ready to be released after power-up.
Refer to the FCU_CPU_CSN Behavior and Implementation Details section of the user guide for details.
All configuration status related output signals are driven from registers. The reset value for these registers is '0', and the
transition from '0' to '1' is glitch free after reset de-assertion and when reaching the appropriate FCU states.
Refer to the Power-Up and Configuration Sequence section of the user guide for details.
FCU_CPU_CLK can either start with a rising or a falling edge

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 36

Chapter - 5: FPGA Configuration Unit (FCU)
The FPGA configuration unit (FCU) refers to logic that controls the configuration process of the Speedster7t
FPGA. It is responsible for receiving data on a variety of core interfaces (depending on a selected programming
mode), decoding instructions, and sending configuration bit values to the appropriate destination (core
configuration memory, the core's boundary ring configuration memory, FCU registers, etc.). The FCU is also
responsible for any core-level housekeeping that happens on reset de-assertion (e.g., clearing of configuration
memory) as well as controlling the startup and shutdown sequences that drive resets to the rest of the core as
well as CRC checks, SEU mitigation and security.

Features
The following features are supported by the FCU:

Multiple configuration modes (see Configuration Modes)

Bitstream CRC

AES encryption/decryption and bitstream security

Configuration memory scrubbing and SEU mitigation (single-bit error correction, dual-bit error detection)

Read-back

The FCU has two operating modes:

Power-on – Triggered after the input is driven high. Once the FCU state machine FCU_CONFIG_RSTN
starts, it progresses through a number of housekeeping activities, including the clearing of the
configuration memory if needed. All of this processing happens without any additional inputs from the
user; all instructions sent via one of the programming interfaces during this time are ignored. At the end of
this mode the output pin is driven high (it was driven low earlier) and the FCU FCU_CONFIG_STATUS
returns to the instruction processing mode.

Instruction processing – The main mode of operation for the state machine. In this mode, the FCU
functions as a simple CPU, processing incoming instructions and sending control signals downstream as
directed. Instructions are received on 128-bit boundaries but processed 32 bits per clock cycle. The FCU
can request data from the host or stall when it is processing the previous instruction. Depending on the
programming interface being used, a set of output status signals generated by the FCU are used to
determine how to proceed. Refer to and for additional details.Configuration Modes FCU Command List

FCU AXI Lite Master and Slave
FCU configures all the hard IP Configuration Space Registers during bitstream programming. This includes, PLL
and hard IPs like PCIe, DDR4, GDDR6 and Ethernet. FCU interfaces to an AXI Lite master which can be used to
program the configuration registers of all hard IP and drive all AXI endpoints on the chip. It also interfaces to an
AXI slave which interfaces to the NoC. A bitstream can be sent to the FCU via PCIe/Ethernet through the NoC
interface.

AXI Lite Master
During bitstream programming, the FCU receives 128 bit segment of the bitstream every four clocks. The
segment comprises of a 4-bit AXI write command, 43-bit address, 32-bits data payload and padding. Writes to
the configuration space registers of the hard IP is done by the FCU AXI master which forms AXI write
transactions by sending the address, write data and command to the NoC AXI slave.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 37

The NoC AXI slave converts these AXI transactions to APB transactions and configures the hard IP configuration
space registers. AXI writes are non-blocking i.e. the FCU does not accept any back-pressure from the NoC AXI
Slave and response is not checked. The NoC AXI Slave is responsible for maintaining throughput requirements.

During reads, FCU receives AXI Read command and address. FCU forms AXI read transactions by sending
address and command to the NoC AXI slave. FCU waits for the responses from the NoC AXI slave, latches the
data and then accepts new commands.

AXI Slave
FCU AXI bridge communicates with PCIe or user logic via NoC AXI master interface. The NoC AXI master sends
a transaction to the FCU according to the AXI slave address map. The FCU AXI slave receives the data from
NoC AXI master and converts it to FCU specific packet format. The FCU bridge handles data transfer between
AXI slave and FCU.

PCIe mode is enabled by writing the PCIe mode-enable register in the FCU address space [OFFSET
ADDRESS=0x0]. PCIe sends the FCU address and writes the PCIe mode-enable register and the same register
is read back. Once acknowledged, the bitstream can be sent from the PCIe interface via the FCU AXI Slave.

PCIe mode enable bit overrides all other external settings on the pins. The first FCU_CONFIG_MODESEL[3:0]
two CMEM reads are dummy and the FCU AXI slave responds to the master with zero data.

CRC
If CRC is enabled completely, an accumulative CRC is computed for each 128-bit data packet that comes
through the datamux. The final CRC must match a hard-coded value in order to allow a startup or shutdown
sequence to begin. The CRC register is set to 32’hFFFFFFFF on reset and whenever the CRC register is written
to. The current CRC computation can be read back at any time through an FCU register. CRC can also be
completely bypassed.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 38

Chapter - 6: Configuration Sequence and Power-Up
The FCU has a startup sequencing block responsible for the initial power-up sequence out of reset. During
power-on and bitstream programming, the startup state machine remains in its default IDLE state. After
programming is finished and the chip is ready to be put into user mode, the state machine progresses through a
number of startup states, de-asserting resets to the rest of the chip in a certain sequence. The final state of the
startup process is user mode where it remains until it receives a request to initiate the shutdown process. The
shutdown process is much like the startup process, but done in reverse (asserting resets along the way) and
ending in the IDLE state.

The FCU startup sequencing block has three stages, the first two to support two-stage programming of the fabric
and the third for partial reconfiguration.

After receiving a trigger, the state machines progresses through 32 start-up (or shut-down) states. There is an
option of having each state wait for one or more PLLs to lock before continuing to the next state. The final startup
state waits for assertion of signal before asserting .FCU_CONFIG_DONE FCU_USER_MODE

The FCU startup state machine generates 32 resets where 16 resets are connected to fabric and the other 16
resets are connected to the hard IPs. The fabric resets are staggered to avoid inrush currents.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 39

Chapter - 7: Partial Reconfiguration
Partial reconfiguration enables the user to reprogram a part of the fabric with a smaller bitstream. Each region
that can be reconfigured independently is called a fabric cluster or just cluster. The Speedster7t FPGA has 80
clusters which can be reconfigured independently. Partial reconfiguration can only be initiated after the device
has entered user-mode.

There are many advantages of partial-reconfiguration:

Enable dynamic functionality for certain blocks in the design

Smaller FPGA logic, functionality can be programmed on the FPGA when needed

Faster programming times

Design considerations
Partial-reconfiguration introduces additional complexity in the design. Defining correct functional hierarchy is very
important for designs that use partially reconfigurable modules. It is important to ensure that there would be no
functional issues when the target module is being partially reconfigured and no outputs driven from that module
are being actively used during partial-bitstream programming since the rest of the FPGA fabric is alive and
performing regular tasks during partial reconfiguration.

Timing paths into and out of the module may change after partial reconfiguration and it is important to ensure that
there are no timing violations after partial-reconfiguration for a design that met timing earlier. A good practice is to
use the most challenging module for initial timing closure and ideally all inputs and outputs are registered.

Also, port definitions for the the new module and the module being swapped out must be the same. Reset
scheme for the target module should be correctly defined and understood.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 40

It is also important to define the correct placement constraints so that the target module is completely contained
within the cluster marked for partial-reconfiguration and the resources for the module do not exceed the available
resources for a cluster and optimizations across the cluster are disabled.
PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 41

1.

Chapter - 8: Remote Update

Introduction
Remote Update feature in Speedster7t FPGAs implements device reconfiguration using dedicated remote
system upgrade circuitry in the FCU. The ability to upgrade an image remotely on an FPGA deployed in the field
helps the user deliver feature enhancements and bug fixes without recalling the product, reduces time-to-market
and extends product life.

The Remote Update logic within the FCU commands the configuration module to start a reconfiguration cycle.
Error detection is enabled during and after the configuration process. If any errors are detected, the logic
facilitates system recovery by reverting back to a safe, default factory configuration image and then provides
error status information.

Implementation

The flash device holds two bitstreams:

Known good working image, "Golden bitstream".

New bitstream with enhanced features and/or bug fixes, "New Bitstream".

2. Initially the device boots from the golden bitstream and enters user mode.PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 42

3. System software initializes the "Current Bitstream Address" register, which is the start address of the New
bitstream programmed by the user.

4. System software initializes the "Golden Bitstream Address" register, which is the start address of the Golden
bitstream programmed by the user.

5. Based on configuration modes, software writes the command and start address into the flash configuration
header

6. System initiates a reset, the FPGA re-configures from the Current Bitstream Address and reads the first 512
bits of bit stream data from flash device and enters in to wait state.

7. If encryption is not enabled, read the complete bit stream and re-configure the FPGA.

8. If encryption is enabled and efuse key is ready:

Read the header segment0 data and send to secure boot core.

Flash read state machine enters in to wait state of 2.6 ms.

Flash interface read the complete bitstream and configure the FPGA.

Fallback on Error
After bitstream load, failure can happen in two scenarios:

No IDCODE match after timeout expires

CRC error after timeout expires

If any of these checks fail, retry N times, the number of retries is described in the flash configuration header.

If the failures persist and the system is unable to boot from the New Bitstream and fallback is in the fpga
configuration header, then issue fast read to header fallback address.

The user should then update the New Bitstream or point the default boot address to the Golden Bitstream.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 43

Chapter - 9: Design Security for Speedster 7t FPGA
Achronix recognizes the importance of protecting the sensitive IP a customer downloads onto their FPGA. To
provide a high level of protection, Speedster7t FPGAs have a number of features to support bitstream encryption
as well as authentication. These features ensure that no one can access the design configuration on the FPGA
and also ensures that the design is the intended design. Speedster7t FPGAs provide this high level of security
through the following features:

Support for RSA authenticated and AES-GCM encrypted bitstream

Dynamic power analysis (DPA) protection to prevent side-channel attacks

Physically unclonable function (PUF) for tamper-proof protection

Securely stores both public and encrypted private keys

With this security solution deployed, a customer's design is secure. Even with possession of the device, no one
can extract the underlying design, the design cannot be reverse engineered, nor can the design be altered in any
way.

Bitstream Authentication
Authentication of a bitstream ensures that the design on the device is the intended design. Achronix provides a
two-step authentication process that first authenticates an encrypted bitstream before decrypting it, and then
performs authentication a second time on the decrypted bitstream before configuring the device. First, a
bitstream is encrypted using AES-GCM, which provides authenticated encryption. Next, the user provides an
asymmetric private key to sign the encrypted bitstream using RSA-2048. Then, when an encrypted and signed
bitstream is loaded into the FPGA, the device uses the public key stored in an electronic fuse (eFuse) on the
device to authenticate the bitstream using the public key. Once authenticated, the bitstream decryption is
enabled, and the bitstream is authenticated a second time while decrypting with AES-GCM. After the second
authentication, the bitstream is used to configure the FPGA.

Bitstream Encryption
Bitstreams consist of sensitive intellectual property of the designer. Achronix provides tools to generate
bitstreams that are encrypted and signed using very strong encryption with hardware designed to be resilient to
side-channel attacks, such as dynamic power analysis (DPA). Additionally, the key derivation function (KDF)
inside the secure boot portion of the FPGA, along with the physically unclonable function (PUF) ensure
protection of the secret keys to decode and authenticate the bitstreams. Together these systems provide a
solution that is safe from attacks such that even with possession of the device, an adversary cannot extract the
underlying design, cannot change the system to perform another task other than the intended task, and cannot
reverse engineer the core intellectual property.

The figure below shows an overview of the security system and how everything works together to protect the
bitstream. The portions shown in yellow represent the blocks used for encryption/decryption, the blocks in blue
are for authentication, and the green portions are areas handling authenticated and encrypted bitstreams.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 44

Figure 19: Bitstream Encryption/Authentication Block Diagram

Generating Encrypted Bitstreams
To generate an encrypted bitstream, the user provides a 256-bit secret key to ACE. In order to provide better
protection against side-channel attacks, ACE does not simply use this secret key to encrypt the entire bitstream.
Instead, the secret key is used as an initial key. ACE then generates new derived keys based on the initial secret
key to encrypt smaller segments of the bitstream, each with a different derived key and new nonce. Here the
nonce, also known as an initialization vector (IV), is a random number only used once per segment, such that the
same pattern is not generated while replaying or encrypting the same bitstream. Bitstream encryption is
performed using the highly secure 256-bit AES-GCM encryption standard. Galois/counter mode (GCM) is an
advanced form of symmetric-key block encryption which enhances 256-bit advanced encryption standard (AES)
by using a nonce (one-time use random value) and a counter mode so that each segment of data is uniquely
encrypted. ACE also uses a Galois message authentication code (GMAC) to simultaneously sign and
authenticate the data, including the unencrypted preamble section of the bitstream to guarantee the bitstream
has not been altered. To further protect the bitstream, ACE also signs each segment of the encrypted bitstream
using RSA-2048. See the section on above for more details on the RSA-Bitstream Authentication (see page 43)
2048 authentication.

Hardware Security
There are several security features available in the hardware to support decryption of encrypted bitstreams, safe
storage of secret keys, and strict rule enforcement such that the device will be locked if security rules are
violated. The main features for decryption and safe storage of keys use the physically unclonable function (PUF)
which provides a unique secret value per individual chip, and the key derivation function (KDF) which uses the
PUF as the key to encrypt/decrypt the real secret keys from the encrypted keys that are stored in an electronic
fuse (eFuse).

Physically Unclonable Function

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 45

1.

2.

3.

Physically Unclonable Function
The PUF generates a unique secret identifier for each individual chip. It is created from random physical
variations that occur during the semiconductor manufacturing process, such that the same circuit on a device
creates completely different and unique values on each chip, even chips on the same wafer. The value of the
PUF is random per individual chip, but remains constant over the lifetime of that chip. The PUF value is not
known to Achronix or the manufacturer, and the value cannot be observed without destroying or altering the
value of the PUF. This PUF value can be used to encrypt the user's secret key and store an encrypted version of
the secret key in an eFuse. Then when an encrypted bitstream is loaded into the FPGA, the PUF value is used to
temporarily decrypt the stored encrypted secret key. This secret key is then used to generate the multiple rotating
keys to decrypt the bitstream blocks that configure the FPGA.

Key Derivation Function
The KDF uses 256-bit AES encryption in conjunction with the PUF to create an encrypted version of the user's
secret key that can be stored in an eFuse. While it is theoretically possible to observe the contents of the eFuse if
an adversary is in possession of the device and has access to advanced reverse engineering equipment, the
stored key is an encrypted version of the secret key that uses the PUF value as the master key for encryption.
Again, the PUF value cannot be known and is unique to each individual device, thus making the stored key safe.
Additionally, when the KDF needs to decrypt an encrypted bitstream, it loads the encrypted key from the eFuse
along with the PUF value and temporarily decrypts the secret key. The secret key is then used as the initial key
for the module that generates the multiple derived keys for AES-GCM decryption of the bitstream before loading
it to configuration memory in the FPGA.

The two figures below showing how the PUF and KDF are used to generate a secure encrypted key to store in
an eFuse, as well as how they are used to recreate the secret key to decrypt the bitstream.

Figure 20: Safe Secret Key Storage

Rules for Encryption
When using encrypted bitstreams, the FPGA device enforces a set of rules. If the security rules are violated, the
FPGA locks up and cannot be used in any way without powering down the device. First, there is an ordering rule
to how bitstreams can be loaded. There are three phases for bitstreams for Speedster7t devices, and they must
follow these ordering rules.

Zero, one, or multiple pre-configuration bitstreams.

One, and only one, full configuration bitstream.

Zero, one, or multiple partial reconfiguration bitstreams.PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 46

1.

2.

3.

4.

Additionally, there are rules about which keys can be used for the encryption. The eFuses can store up to four
secret keys — bitstreams can be encrypted using up to four different initial keys. The following rules must be
followed to prevent locking the device.

If the eFuse bit has been set for the FPGA, the device will only accept encrypted_bitstreams_only
encrypted bitstreams.

If any pre-configuration bitstream is encrypted, all pre-configuration bitstreams must be encrypted using
the same key.

If either the pre-configuration bitstream or the full bitstream are encrypted, they both must be encrypted
and both must use the same key.

Any partial reconfiguration bitstreams may use a different key if and only if the previous bitstream sets the
 bit to 0 in the preamble, and the partial reconfiguration bitstream also sets that same bit to 0 in same_key

its preamble.

Note

It is acceptable to load an unencrypted bitstream after a previous encrypted bitstream. It is not
acceptable to load an encrypted bitstream after a previous unencrypted bitstream.

Security Fuses
There are several eFuses that are related to the security features in Speedster7t devices. Some of these are set
during manufacturing and cannot be changed by the customer, and others are available for customer use.

Fuses Set at Manufacturing
There are two fuses that can be set at manufacturing time to limit the features of the FPGA. The part number of
the device indicates if these limitations exist in a part.

Bitstream decrypt disable – If set, the FPGA cannot accept encrypted bitstreams.

DPA disable for bitstream decrypt – If set, the FPGA still supports encrypted bitstreams, but there is
limited hardware protection for differential power analysis (DPA) side-channel attacks that can potentially
expose secret keys.

Fuses Set By Customer
There are several eFuses that can be set by the customer if using encrypted bitstreams:

Bitstream authentication key – This fuse contains a 768-bit hash of the public key used for first-level
authentication of encrypted bitstreams. This fuse is not readable.

Bitstream decryption key – These fuses contain the four 256-bit secret keys that can be used for
decryption and authentication of encrypted bitstreams. This fuse can contain the actual secret keys or the
encrypted version of the secret keys (using PUF and KDF). This fuse is not readable.

Bitstream user register – This fuse contains the 32-bit value set by the user to identify the key version
used. The secret key itself cannot be read back, but the user register value can be read. The user keeps a
mapping of key versions to keys.

Bitstream user lock – This one-bit fuse, if set, disables further updates to authentication key, decryption
key, and user register.

Encrypted bitstreams only – This one-bit fuse, if set, forces the FPGA to only accept encrypted
bitstreams that use one of the keys in the fuses.PR

EL
IM

IN
AR

Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 47

1.

2.

1.

2.

3.

Default Keys
Achronix provides a default public key for authentication and a default secret key for encryption/decryption of the
bitstream. These keys are available to use for testing, so that a user has confidence the security system works.
The default keys should not be used to protect sensitive designs — they are only made available for testing
purposes. Additionally, once a user sets the eFuse to only accept encrypted bitstreams, the FPGA no longer
accepts the default keys.

Loading Encrypted Bitstreams
Loading an encrypted bitstream is similar to loading an unencrypted bitstream. However, the most important
difference is that once the unencrypted 512-bit preamble of the bitstream is loaded, the FPGA disables all read-
out of any data, thus securing the device containing a user's sensitive IP, protecting it from being known, reverse
engineered, or altered in any way. Below are the steps for loading encrypted bitstreams:

When the hardware detects an encrypted bitstream is being loaded, all readout and debug features are
disabled by the hardware, disabling the ability for a user to read any internal state related to the FPGA
fabric or the FCU.

Security rules for loading encrypted bitstreams are checked. If the rule checker fails, the FPGA enters a
locked state and can only be re-enabled by a power cycle.

If the user's system uses a board management controller to load in the bitstreams, there are additional
requirements the user needs to be aware of:

After the 512-bit preamble of the bitstream, the board management controller must pause and wait for
some number of FCU clock cycles before sending the next portion of the encrypted bitstream.

After the first 12,688 bytes of the encrypted bitstream the board management controller must pause and
wait at least 520,000 FCU clocks, or about 2 ms (assuming a 32-bit data path and 250 MHz FCU clock).

For encrypted bitstreams, a board management controller is limited to sending 32-bits per FCU clock. For
unencrypted bitstreams, it can send data at a rate up to 128-bits per FCU clock.

Note

When using encrypted bitstreams, it is possible to use any debug features of the FPGA. Debug not
features are available when using unencrypted bitstreams.only

PR
EL

IM
IN

AR
Y

http://www.achronix.com

Speedster7t Configuration User Guide (UG094)

www.achronix.com 48

Revision History

Version Date Description

0.1 12 Feb 2020 Initial draft release.

PR
EL

IM
IN

AR
Y

http://www.achronix.com

	Overview
	Interface Performance
	Configuration Modes for Speedster7t FPGAs
	Configuration via CPU
	Programming Data Ordering
	CPU×32
	CPU×16
	CPU×8
	CPU×1

	Data Ordering In the ACE Output File

	Configuration via Flash Memories
	Flash Device Configurations
	1D Configuration
	4D Configuration

	Addressing Modes and Memory Organization
	Address Range
	Flash Configuration Header (Page-0 Header)

	Flash Programming Protocol
	Error Fallback

	Flash Modes
	SPI Mode (×1)
	Quad Mode (×4)
	Reads

	Octa Mode (×8)

	Registers and Addressing

	Configuration via JTAG
	JTAG Instructions

	Configuration Pin Tables
	FPGA Configuration Unit (FCU)
	Features
	FCU AXI Lite Master and Slave
	AXI Lite Master
	AXI Slave

	CRC

	Configuration Sequence and Power-Up
	Partial Reconfiguration
	Design considerations

	Remote Update
	Introduction
	Implementation
	Fallback on Error

	Design Security for Speedster 7t FPGA
	Bitstream Authentication
	Bitstream Encryption
	Generating Encrypted Bitstreams
	Hardware Security
	Physically Unclonable Function
	Key Derivation Function
	Rules for Encryption

	Security Fuses
	Fuses Set at Manufacturing
	Fuses Set By Customer
	Default Keys

	Loading Encrypted Bitstreams

	 Revision History

