Speedster22i sBus Interface
User Guide

UGO047, October 24, 2013

00000000000000000000

Copyright Info

Copyright © 2013 Achronix Semiconductor Corporation. All rights reserved. Achronix is a
trademark and Speedster is a registered trademark of Achronix Semiconductor Corporation.
All other trademarks are the property of their prospective owners. All specifications subject
to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate
and reliable. However, Achronix Semiconductor Corporation does not give any
representations or warranties as to the completeness or accuracy of such information and
shall have no liability for the use of the information contained herein. Achronix
Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks,
registered trademarks, and disclaimers are listed at http://www.achronix.com and use of this
document and the Information contained therein is subject to such terms.

2 UG047, October 24, 2013

http://www.achronix.com/

Table of Contents

COPYIIGNE INTO. L 2
IS A T U P 5
S A0 N = 1] = PP R 6

e (= = (o =P 7
ADOUL thiS GUIAE ...oeeiiiiiiiiiiieeeeeeee ettt e e e e e e e 7
Target Readership (08 AUGIENCE)coooiiiiiiiiii e 7
(Lo Lo B Lo ot U o L= oL 7
Conventions USed IN ThiS GUIAEccoiiiiiiiiiie e e e e e e e e eeeaees 8
Terminologies USed iN thiS GUIAEuuiii i e 8
Chapter 1 — SBUS OVEIVIEW ...ccueiiciiiie et e e e et e e e e e eees 9
(oo 13 o 1o o IR 9

(@ 01T = 11 0] o USSP 10
TS To LU | (T TP 10
BU S e et e e e et e et e et et e e ea e rt e e raaannas 10
oo ST E] o] = 1 10
Chapter 2 — sBus Functional DescCription.........ccceieiiiiiiiiiiis e 11
0 o S PO 11
[4=T: (o I @ =T - 1o o PO 11
32-bit Data-Width MOUEco oo 11
8-bit Data-Width MOcooeeeeeeeeeee 12
AL ST @0 1= = 1o o PR 13
32-bit Data-Width MOUEco o 13
SR o L1 =1 7= T /T |1 TN 1Y Yo [13
Chapter 3 = SBUS INTEITACESooiiieiiii e 15
1Y (= G L (= 1 = Vo] ST 15

] oY 1 (=T - o =SSR 16
Chapter 4 — sBus Master Implementationccccccovvvviiiiiiiiiieeiin e 17
Single Master for Single Slave Implementation..............ccooooiiiiii i 17
Master Specifications for PLL SBUS CONLIOIN..........oouiieieeee e 17
Master Actions for PLL SBUS CONLIOIENciiiiiiie e e e e e e 17

UG047, October 24, 2013 3

[Y=T= (0 @] oT=] = 11T o H PSSR 17

(1S @1 = 11 (o] o PP PP PP PP P PP PPPPPPPPPP 17
Single Master for Multiple Slaves Implementationcoooovvviiiiiiiiiie e 18
Master Specifications for Ethernet MAC and SerDes sBus Controller..........ccccceeviieiiiiiiiiiinnneeenn, 18
Master Actions for Ethernet MAC and SerDes sBus Controllercoovveeiiiiiiieeeicciiiieee e 18
REAU OPBIALION. ...ttt 18

A AT A1 LI @0 =T =1 1o o SR 18
DESIGN CONSIAETALIONS ...ttt 18
Multiple Masters for a Single/Multiple Slave(s) Implementation.............ccccooeeeviiviiiiiiiinneeenn. 19
DTS o] g Lo T F]To [=T = 11T] o ISR 19
Chapter 5 —sBus Design EXamplesS......ccooviiiiiiiiiiii e 20
] =T8RSR\ F= TS (=T g 1Y [o OSSP 20
DTS (o I e Ty] o= PSS 20

Y oS (= ST o (N 1Y =Tl T 21
SBUS MaSter OPEIAtIONeeiiiiiiiii e e e e e e et e e e e e e e e e et e e e e e e e e e eeaaba e eeeeeeeaennes 22
ClOCKING CONSIAEIATIONS ...ttt 22
Appendix A — sBus Master Verilog Code........ccooveiiiiiiiiiiiiiiiii e 23
Appendix B — ReVISION HISTOIYoooiiiiiiii e 27

4 UG047, October 24, 2013

List of Figures

Figure 1: The HD1000 FPGA With SBUS INTEITACESc.ooviiiiiiiiiiiieieieesese e 9
Figure 2: The SBUS INtErface SIGNAIS..........ccveiieiieiieie et 10
Figure 3: 32-bit Data Width SBus Read OPEratioN.............ccoviiiiriiieieie et 12
Figure 4: 8-bit Data Width SBus Read OPEratioNcciveieiieiieriesieseese s e sie e ste e e sae e 12
Figure 5: 32-bit Data Width SBUS WIite OPEIatioNccceiiriiiiiiiieieie et 13
Figure 6: 8-bit Data Width SBUS WIite OPErationcciveiueiieiieii e seese e se e 14
Figure 7: Single Master for a single SBUS SIAVE ... 15
Figure 8: Single Master fOr tWo SBUS SIAQVES...........cccveiiiiiieee et 16
Figure 9: SBUS SIAVE INTEITACEcviieieiiieee e e 16
Figure 10: sBus Master BIOCK DIagram..........c.cceiiieiieiieiie ettt e e sne e 20
Figure 11: sBus Master State MACNINEcoiiiiiiiei e 21

UG047, October 24, 2013 5

List of Tables

Table 1: HD1000 SBUS POrt DEFINITION.ccuiiiiiiieieiie ettt 11
Table 2: HD1000 sBus Master Signal DefinitioNnsccccovieiieiiiie i 20

6 UG047, October 24, 2013

Preface

About this Guide

The Achronix sBus is a serial bus implemented on the AC22IHD1000-F53C3 FPGA device to
allow users to access configuration registers for several of the Hard IPs available on the
device, through the FPGA fabric. This guide provides details on the implementation and uses
of the sBus. You will learn about the IP control registers that can be configured, status
registers, and how to access them for reads and writes, using the sBus, as appropriate.
Examples are provided to help you with the implementation of your own system designs.

This guide consists of the following chapters:

Chapter 1 — sBus Overview provides an overview of the sBus implemented on the
AC22IHD1000-F53C3 FPGA device.

Chapter 2 — sBus Functional Description covers more details of the sBus functionality.

Chapter 3 — sBus Interfaces describes the master and slave interfaces for the sBus.

Chapter 4 — sBus Master Implementation provides information about designing with the
sBus functional block.

Chapter 5 — sBus Design Examples provides detailed design examples for a single and
multiple IP access.

Appendix A — sBus Master Verilog Code provides a code example for a sample sBus
master design.

Appendix B — Revision History highlights the revisions to this document.

Target Readership (or Audience)

This guide is intended for embedded systems and sub-systems designers working with the
Achronix HD1000, 22-nm FPGA. You should have knowledge of FPGAs, Controllers,
Development environments and other relevant technologies.

This guide does not include board design and layout information. If you want assistance with
board design and layout, please contact Achronix.

Reference Documents

Speedster22i FPGA Family Datasheet (DS004)
Speedster22i Development Kit User Guide (UG034)
ACE User Guide (UG001)

Achronix Software & License User Guide (UG002)
Bitporter User Guide (UG004)

UG047, October 24, 2013 7

Conventions used in this Guide

This document uses the conventions shown in the following table.

Iltem Format Examples
Command-line entries Courier bold font face $ Open top level name.log
File Names Courier font face filename.ext
GUI buttons, menus and . Click OK to continue.
. Helvetica bold font face .
radio buttons File — Open
Variables Italic emphasis design dirloutput.log
Window and dialog box Heading in quotation “ o
headings and sub-headings marks Under "Output Files,” select ...
Wlndowr?;g]géalog box Initial caps From the Add Files dialog box, ...

Terminologies used in this Guide

This document uses the terminologies and synonyms shown in the following table.

Terminology Synonyms Examples
Speedster22i HD1000 Refers to the Ac_:hromx FPGA
family
. Refers to the serial bus on the
sBus Serial bus, SBUS HD1000

8 UG047, October 24, 2013

Chapter 1 — sBus Overview

In this chapter, you will learn the following about the sBus serial bus:

Introduction

Operation

Features

Introduction

The sBus is a serial bus on the Achronix AC22IHD1000-F53C3 (“HD1000”) FPGA to enable
designers to communicate with registers on the Ethernet, SerDes, PCle, Interlaken, and DDR
hard IPs. You can write to the IP registers to configure properties and read from the registers
to verify current configuration. The sBus provides communications between the FPGA fabric
and the interfaces of the hard IPs to the FPGA fabric. The control logic for the sBus is
implemented in the FPGA fabric.

Figure 1 shows the HD1000 FPGA with the sBus highlighted.

HD1000

sBus
Port

Control
Logic

Hard IP
Area

Figure 1: The HD1000 FPGA with sBus interfaces
Note: PLL registers are 8-bit but the interface is 32-bit. Upper 24-bits are ignored.

UGO047, October 24, 2013 9

Operation

Features

The sBus takes serial data from the FPGA fabric sBus control logic (“Fabric”) and transmits it
over a 2-bit data bus to the hard IP sBus interface for writes. For reads, the sBus takes 2-bit
serial data from the hard IP to the Fabric. During a write operation, the Fabric converts the
parallel data, 8-, 16-, or 32-bit wide and serializes it. The Fabric presents the address of the
register to be written to and the data to the IP interface over the 2-bit serial bus. For read
operations, the Fabric presents the address for the read operation to the IP interface and the
the hard IP responds by placing the 2-bit serialized data on the sBus.

The sBus can operate such that a single IP is accessed or in a master-slave mode such that
multiple IPs can be accessed.

Figure 2 shows the signals used for communications between the Fabric and the hard IP,
which includes the logic to receive and convert the write address and data to the correct
format for updating the registers. For reads, the register data is converted from parallel to
serial for presentation to the sBus by the hard IP block.

————y, \

1
1
1
o
0_sbus_data[1:0] % :
sBus Port i_sbus_data[1:0] > :
o_sbus_ack o I
SO 1
Con_trOI i_sbus_req o :
LOg|C sbus_clk 1
o
reset_sbus_clk
Hard IP

Figure 2: The sBus interface signals

Bus

e 2-bit serial data width
e 8-, 16-, or 32-bit parallel data
¢ Single clock

Accessible IPs

e Ethernet

e SerDes

e PCle

e Interlaken
e DDR

e PLL

10

UG047, October 24, 2013

Chapter 2 — sBus Functional Description

In this chapter, you will learn the following about the sBus serial bus:
Port List

Read Operation
Write Operation

Port List

The sBus interface or port uses eight signals for operation. Table 1 lists these signals and their
functions. These signals can be driven directly by a state machine in the FPGA fabric. You can
find more information about designs based on these topologies in Chapter 3 detailing the
Master and Slave interface sections.

Table 1: HD1000 sBus Port Definition

Port Direction Description
reset_sbus_clk Input Asynchronous reset
sbus_clk Input Reference clock for the serial
and parallel interfaces —
pl ctl clk
i_sbus_req Input Request signal for starting a
read or write transaction on
sBus.
i_sbus_data[1:0] Input Input serial data of sBus
interface.
0_sbus_data[1:0] Output Output serial data of sBus
interface.
0_sbus_ack Output Acknowledgement signal for
read and write operation
complete on sBus interface.

Read Operation

32-bit Data-width Mode

For a 32-bit data-width mode read operation, you must do the following.

1. Assert the i_sbus_req signal for 9 cycles.

2. De-assert i_sbus_data[0] during the first cycle.

3. Send the LSB of the 17-bit long read address on i_sbus_data[1] during the first cycle.
4

Send the remaining 16 bits of the read address on i_sbus_data[1:0] in the following order
[A2:A1]...[A16:A15] over the next 8 cycles.

5. De-assert i_sbus_req signal.

The sBus slave will decode the read operation and respond as follows.

UG047, October 24, 2013 11

Assert the o_sbus_ack signal, when data is ready.

Transmit the serial data on the o_sbus_data[1:0] signals using the ordering [D1:D0]...
[D31:D30] in 16 cycles.

8. De-assert the o_sbus_ack signal after 16 cycles, when the transmission is complete.

Figure 3 shows the timing diagram for a 32-bit data width, sBus read operation.

SD‘US_Cl 4 | '|_,'I A A Y A R L S A S A .'I L A T A T I T A T A TR A N |

i_sbus req | [

i_sbus_data[1:0] _ Neorwo) seas L= * * Jaemal | | | | | | | | |
o sbus ack

o_sbus_data[1:0] _J I 1 1 Yoo [osm2 [+« + [ozsoad{osio]

Figure 3: 32-bit Data Width sBus Read Operation
8-bit Data-width Mode

For an 8-bit data-width mode read operation, you must do the following.

1. Assert the i_sbus_req signal for 9 cycles.

2. De-assert i_sbus_data[0] during the first cycle.

3. Send the LSB of the 17-bit long read address on i_sbus_data[1] during the first cycle.
4

Send the remaining 16 bits of the read address on i_sbus_data[1:0] in the following order
[A2:A1]...[A16:A15] over the next 8 cycles.

5. De-assert i_sbus_req signal.
The sBus slave will decode the read operation and respond as follows.

6. Assert the o_sbus_ack signal, when data is ready.

7. Transmit the serial data on the o_sbus_data[1:0] signals using the ordering [D1:D0]...
[D7:D6] in 4 cycles.

8. De-assert the o_sbus_ack signal after 4 cycles, when the transmission is complete.

Figure 4 shows the timing diagram for an 8-bit data width, sBus read operation.

sbus_ck T\ L L
i_sbus req | |
i_sbus_data[1:0] _ lasioa) azai | > * Jawarsl | I [
0_sbus_ack /
osbus dataf1:0] | T T T ¥ I [Youoo fesoz [oseefores | [

Figure 4: 8-bit Data Width sBus Read Operation

UG047, October 24, 2013

Write Operation

32-bit Data-width Mode

For a 32-bit data-width mode write operation, you must do the following.

1. Assert the i_sbus_req signal for 25 cycles.

2. Asserti_sbus_data[0] during the first cycle.

3. Send the LSB of the 17-bit long write address on i_sbus_data[1] during the first cycle.
4

Send the remaining 16 bits of the read address on i_sbus_data[1:0] in the following order
[A2:Al]...[A16:A15] over the next 8 cycles.

5. Send the 32-bit data on i_sbus_data[1:0] in the following order [D1:D0]...[D31:D30].

6. De-asserti_sbus_req signal.
The sBus slave will decode and complete the write operation and respond as follows.
7. Assert the o_sbus_ack signal to indicate the end of the write operation.

Figure 5 shows the timing diagram for a 32-bit data width, sBus write operation.

sbus ok L e
i sbus req__ | [
i_sbus_data[1:0] :: ADTO | A2A1 |+ » Jateats| D100 | Dao2) « + + jo3toag | |) | I |
o_sbus_ack 'R

Figure 5: 32-bit Data Width sBus Write Operation
8-bit Data-width Mode

For an 8-bit data-width mode write operation, you must do the following.

1. Assert the i_sbus_req signal for 13 cycles.

2. Assert i_sbus_data[0] during the first cycle.

3. Send the LSB of the 17-bit long write address on i_sbus_data[1] during the first cycle.
4

Send the remaining 16 bits of the read address on i_sbus_data[1:0] in the following order
[A2:Al]...[A16:A15] over the next 8 cycles.

5. Send the 8-bit data on i_sbus_data[1:0] in the following order [D1:D0]...[D7:D6].

6. De-assert i_sbus_req signal.
The sBus slave will decode and complete the write operation and respond as follows.
7. Assert the o_sbus_ack signal to indicate the end of the write operation.

Figure 6 shows the timing diagram for an 8-bit data width, sBus write operation.

UG047, October 24, 2013 13

SDUS_Cl K —II'_'I‘_‘II'_|I‘_|I'_|I|_|I'_|I|_|I'_|I| _lll_|ll _‘I'_|II L I—Il _‘II_'I||_‘|I—I|l_"l'_lll_‘|l'_lll_‘|l III_.II II_.' Il_ll [
i sbus req__ (i
i_sbus_data[1:0] :l ALIDT | AZAT | « « « Jalgats) D100 | 0302 | 0504 | D06 :(: :|: | | | { | |
o_shus_ack '

Figure 6: 8-bit Data Width sBus Write Operation

UG047, October 24, 2013

14

Chapter 3 — sBus Interfaces

In this chapter, you will learn the following about the sBus serial bus:

Master Interface

Slave Interface

Master Interface

You have the flexibility to design the sBus master depending on your needs. You could, for
example, do the following.

¢ Design one master to address only one slave
e Design one master to address multiple slaves
¢ Design one master to accept data from multiple sources and direct it to one slave

¢ Or design such combinations of each or any of the above

Figure 7 shows a single master generating and accepting the required signals for writes and
reads to the slave interface.

o T

’ N
/ \
[
|
|
|
: 0_sbus_data[1:0]
i sBus Port i_sbus_data[1:0] S
I 0_sbus_ack
: Con_trOI i_sbus_req
- Logic sbus_clk
: reset_sbus_clk
|
|

|

| . :
I Fabric !
\ ;

N /,

[e ——

Figure 7: Single Master for a single sBus Slave

Figure 8 shows a single master generating and accepting the required signals for writes and
reads to two slave interfaces.

UGO047, October 24, 2013 15

‘—-----------~

S

\
0_sbus_data [1:0]

i sbus data[1:0] _/

0 sbus ack
i sbus reqg N Slave 1
sBus Port sbus_clk A

reset_sbus_clk \

o,
=

Control

-| Slave 2

Y

’—-----------~
Q
O
=4
O

U
4

4

f e ——————

Figure 8: Single Master for two sBus Slaves

Note: Achronix provides design examples for some of these implementations. Contact Achronix for
more information and help with your specific needs.

Slave Interface

The sBus slave interface typically has an 8-pin port as shown in Figure 9. For IPs that use
multiple lanes, for example, PCle, the slave interface has the appropriate number of such
signal sets, and you must design the master accordingly. Refer to the Speedster22i PCle User
Guide (UG030) for more details on the PCle implementation.

=

—— -y,

0_sbus_data[1:0]
i_sbus_data[1:0]
0_sbus_ack

N

Registers

i_sbus_req

=== ——

shus_clk

|
|
|
|
\

reset_sbus_clk

Hard IP

J

Figure 9: sBus Slave Interface

16 UG047, October 24, 2013

Chapter 4 — sBus Master Implementation

In this chapter, you will learn the following about the sBus serial bus:

Single Master for Single Slave Implementation

Single Master for Multiple Slaves Implementation

Multiple Masters for a Single/Multiple Slave(s) Implementation

The sBus design consists primarily of defining and implementing the master control block in
the HD1000 FPGA fabric. As discussed in the Master Interface section, you have a lot of
flexibility to implement the master, based on your needs, and the slave interface of the IP for
which you need the master. Discussing all the options is beyond the scope of this guide. The
following sections highlight a few typical examples. For your specific needs, contact
Achronix.

Single Master for Single Slave Implementation

You can use a single sBus master to communicate with a single sBus slave on a hardened IP
such as a PLL on the HD1000, which has several independent PLLs on board. You can get
more information about the slave interface for the specific IP from the relevant User Guide. In
this case, the master must have the following specifications.

Master Specifications for PLL sBus Controller

e 32-bit data width (the slave will only use the lower 8-bits so there is room for design
simplification)

e 8 pins to drive the PLL sBus slave interface

¢ Pins to receive the register programming information from the user on the fabric side

¢ Pins to provide register/status information to the user on the fabric side

Master Actions for PLL sBus Controller

Read Operation

1. Receive information from the user for the read request on the fabric side.

2. Drive the read actions on the sBus as explained for 32-bit reads in 32-bit Data-width
Mode.

3. Monitor the o_sbus_ack signal to accept the serial data from the PLL sBus slave.
Note: You can simplify your design to accept only the lower 8-bits of data.

4. Latch the serial data and provide it to the user on the fabric side.

Write Operation

1. Receive information from the user for the write request on the fabric side.

2. Drive the write actions on the sBus as explained for 32-bit writes in 32-bit Data-width
Mode.

UG047, October 24, 2013 17

3. Monitor the o_sbus_ack signal from the PLL sBus slave signaling the end of the write
request.

Note: You can simplify your design to send a fixed data pattern for the upper 24-bits.

4. Inform the user on the fabric side of the completion of the write request.

Single Master for Multiple Slaves Implementation

You can use a single sBus master to communicate with multiple sBus slaves on a hardened IP
such as the Ethernet MAC and SerDes on the HD1000. You can get more information about
the slave interfaces for the specific IP from the relevant User Guide. In the case of the
Ethernet MAC and the associated SerDes, the master must have the following specifications.

Master Specifications for Ethernet MAC and SerDes sBus
Controller

e 32-bit data width for the MAC

o 8-bit data width for the 12 SerDes

e 104 (8 x 13) pins to drive each of the 13 Ethernet sBus slave interfaces

e Pins to receive the register programming information from the user on the fabric side

¢ Pins to provide register/status information to the user on the fabric side

Master Actions for Ethernet MAC and SerDes sBus Controller

Read Operation
1. Receive information from the user for the read request on the fabric side.
2. Drive the read actions on the sBus.

a. 32-bit Data-width Mode for the MAC registers

b. 8-bit Data-width Mode for the SerDes registers

3. Monitor the o_sbus_ack signal from the appropriate IP block to accept the serial data from
the sBus slave.

4. Latch the serial data and provide it to the user on the fabric side.

Write Operation

1. Receive information from the user for the write request on the fabric side.

2. Drive the write actions on the sBus.
a. 32-bit Data-width Mode for the MAC registers
b. 8-bit Data-width Mode for the SerDes registers

3. Monitor the o_sbus_ack signal from the appropriate IP sBus slave signaling the end of the
write request.

4. Inform the user on the fabric side of the completion of the write request.

Design Considerations

Depending on your application and the register(s) accessed, you may have to take additional
actions to ensure predictable behavior of the IP core and your application. For example, you
may have to ensure that all the SerDes registers are updated before transmissions based on
the new configuration are started. If multiple registers in different IP blocks require updates

18

UG047, October 24, 2013

before a specific action, you must also consider latencies in the design to ensure that the
delay from the slowest sBus link is acceptable for the application.

Multiple Masters for a Single/Multiple Slave(s) Implementation

You can treat the multiple masters for a single/multiple slave implementation as an extension
of the Single Master for Single Slave Implementation and/or a Single Master for Multiple
Slaves Implementation because the multiple masters can be implemented as a single master
controller with multiple user sources.

Design Considerations

You must include additional inputs to accept, and outputs to provide the user information
from and to the fabric side respectively. You must include logic in the controller to select the
appropriate inputs for writes and present it to the sBus interface for which the write request
is intended. When you have multiple slaves in the design, the controller should have the
logic to select the correct slave interface for the sBus channel from the supported set of such
interfaces. Similar actions must be taken by the master controller to read the requested slave
register and provide the information to the requester.

You must include some arbitration logic in the controller to ensure that each requesting
source is serviced within the acceptable constraints of the required application. Discussions
of such constraints are beyond the scope of this guide. Please contact Achronix for support as
needed.

UG047, October 24, 2013 19

Chapter 5 — sBus Design Examples

In this chapter, you will learn the following about the sBus serial bus:

sBus Master Design

sBus Master Operation

Clocking Considerations

sBus Master Design

You will design and implement the sBus master in the HD1000 fabric. Figure 10 shows a
typical block diagram of a master implementation showing the interface to the parallel data
side (requester) and the sBus port (slave or hard IP) side.

/

0_reg_rdwr_valid Latched Parallel Data

I
1
1
1
o_reg_rd_data [Pbus_Data_Width - 1:0] §

1
i_reg_wr_data [Pbus_Data_Width - 1:0] |

1

i_sbus_data[1:0] (from slave)
0_sbus_data[1:0] (to slave)

\\~ & ’,/
o o e o e e e

i_reg_write i_sbus_ack
] A o_sbus_req
i_reg_rw_req 1
1 sbus_clk
i_reg_address [16:0] : Serializer / reset_sbus_clk
: 1 o
I_sw_rst N Deserializer
1
1
i_clk 1
\
% Master

4
\

i_rst_n

Figure 10: sBus Master Block Diagram

Design Example

You will find the Verilog code for a sample master module implementation in Appendix A.
Table 2 describes the signals and their functions for this implementation.

Table 2: HD1000 sBus Master Signal Definitions

Signal Direction Description
i_rst n Input Asynchronous reset
i_clk Input Reference clock for the serial
and parallel interfaces —
sbus clk
0_sbus_req Output Request signal for starting a
read or write transaction on
sBus
i_sbus_data[1:0] Input Input serial data of sBus

20 UG047, October 24, 2013

Signal Direction Description
interface (from slave)

0_sbus_data[1:0] Output Output serial data of sBus
interface (to slave)
i_sbus_ack Input Acknowledgement signal for

read and write operation
complete on sBus interface
0_reg_rdwr_valid Output Read write operation
complete indication for
parallel interface

0 reg_rd data[Pbus_Data Width-1:0] Output Parallel Read data
i_reg_wr_data[Pbus Data Width-1:0] Input Parallel Write data
i_sw_rst Input Software reset when ack not
received
i_reg_address[16:0] Input Reg rd/wr address
i_reg_write Input Write operation on parallel
interface
i_reg_rw_req Input Read operation on parallel
interface

Master State Machine

Figure 11 shows the state machine for the sBus master implementation for the above
example.

~start_sbus_transfer addr_cnt!= 3'd7

start_sbus_transfer

ST SBUS_IDLE ST SBUS_ADDR

is_write && (addr_cnt == 3'd7)

&rdwr_data_cnt

~i_sbus_ack

~&rdwr_data_cnt

T_S BUS_RD_DATA ST_SBUS_WR_DATA

~&rdwr_data_cnt

&rdwr_data_cnt

i_sbus_ack

Figure 11: sBus Master State Machine

UGO047, October 24, 2013 21

sBus Master Operation

The sBus master will move from the ST_SBUS_IDLE to the ST_SBUS_ADDR state when you
assert the i sbus req signal. Depending on whether the request is for a write or a read, as
determined by the state of the i sbus_data[0] signal, the state machine will transition to
the ST_BUS_WR_DATA or ST_BUS_RD_DATA and after the completion of the cycle
transition back to the ST_BUS_IDLE state.

Clocking Considerations

Most sBus channels must be operated at under 50 MHz clock speeds. The following code
fragment shows a typical example, where the clock has been set to 16 MHz for the Ethernet
IP interface.

S - CLOCK INFORMATION -------- idddi
create clock -period 10.0 pll ref clk

create clock -period 62.5
{iSBUS CLK PLL.NE APLL 0 gui ne pll APLL.iACX PLL/ogg gm clk[0]} -name
sbus clk

e O B

22

UG047, October 24, 2013

Appendix A — sBus Master Verilog Code

//

// Module Name : sbus master if

//

// Description : SBUS master module to transfer parallel register data in
// serial mode to reduce the number of status ports.

//

module sbus_master if #(parameter PBUS DATA WIDTH = 8) (
// SBUS Interface
input [1:0] i sbus d,

input i sbus_ack,

output [1:0] o_sbus d,

output o _sbus req,

// Generic Register Interface

input i reg write,
input i reg rw req,
input [16:0] i reg address,

input [PBUS DATA WIDTH-1:0] 1 reg wr data,
output [PBUS DATA WIDTH-1:0] o reg rd data,
output reg o reg rdwr valid,
// Generic signals

// Reset the StateMachine if ack is not received

input i sw_rst,
input i clk,
input i rst n

)

//Function to calculate the size from the PBUS WIDTH
// Start of Function
function integer c log b;
input integer depth;
integer 1i;
begin
c log b = 1;
for (i=0; 2**i < depth; i=i+1)
c log b = i+1;
end
endfunction
// End of Function

[1/777077777770777777777777777777777777777777777777
localparam CNTR SIZE = c log b (PBUS_DATA_WIDTH/Z);
reg [2:0] address _cnt;

reg [1:0] data in dly;

reg [(CNTR SIZE-1):0] rdwr data cnt;

reg [4:0] sbus_cs;

reg [16:0] rw_address;

reg [PBUS DATA WIDTH-1:0] rd data shift in,write data;
reg [PBUS DATA WIDTH+17:0] addr data shift in;

wire [17:0] addr req;

reg is write,req dly,req dly2,sbus req dly;

wire start sbus transfer, sbus req;

L1777 7077777770777 777 7077777777777 7777777777777777777777777777777777

parameter ST SBUS IDLE = 5'b00001;

UG047, October 24, 2013

23

parameter ST SBUS ADDR = 5'b00010;
parameter ST SBUS WR DATA = 5'b00100;
parameter ST SBUS WR = 5'b01000;
parameter ST SBUS RD DATA = 5'b10000;

L1177 7700777770777 7777777777 77777777777777777777

always @ (posedge i clk or negedge i rst n)

begin
if (!i rst n)
begin
req dly <= 1'b0;
req dly2 <= 1'b0;
write data <= {PBUS_DATA WIDTH{1'bO0}};
rw_address <= 'b0;
is write <= 1'b0;
sbus req dly <= 1'b0;
end
else
begin
req dly <= 1 reg rw req;
req dly2 <= req_dly;
sbus req dly <= sbus req;
if (i _reg rw req && ~req dly)
begin
is write <= 1 reg write;
write data <= 1 reg wr data;
rw_address <= 1 reg address;
end
end
end

assign start sbus transfer = req dly && ~req dly2;
assign addr req = {rw_address,is _write};

LI 7777777777777 7777777777777 7777777777777 77
// SBUS State Machine
LI 7777777777777 7777777777777 777777777
always @ (posedge i clk or negedge i rst n)
begin
if (!i _rst n)
sbus cs <= ST SBUS IDLE;
else if (i _sw_rst)
sbus cs <= ST SBUS IDLE;

else
begin
case (sbus cs)
ST SBUS IDLE : begin
if (start sbus transfer)
sbus cs <= ST SBUS ADDR;
else
sbus cs <= ST SBUS IDLE;
end
ST SBUS ADDR : begin
if (is_write && (address_cnt == 3'd7))
sbus cs <= ST SBUS WR DATA;
else if (address _cnt == 3'h7)
sbus cs <= ST SBUS RD DATA;
else
sbus cs <= ST SBUS ADDR;
end

ST SBUS WR DATA:begin
if (&rdwr data cnt)
sbus cs <= ST SBUS WR;
else

UG047, October 24, 2013

sbus _cs <= ST SBUS_WR_DATA;
end

ST SBUS WR : begin
if (i_sbus_ ack)
sbus cs <= ST SBUS IDLE;
else
sbus cs <= ST SBUS WR;
end

ST SBUS_RD DATA :begin
if (&rdwr data cnt)
sbus cs <= ST SBUS IDLE;
else
sbus cs <= ST SBUS RD DATA;

end
default : begin
sbus cs <= ST SBUS IDLE;
end
endcase
end
end

L1171 7777 707777777777 77
// Address shift counter

L1777 7 0777777770770 7777777777777777777

always @ (posedge i clk or negedge i rst n)

begin
if (!i rst n)
address _cnt <= 'hO;
else
begin
if (sbus cs[1])
address cnt <= address cnt + 1'bl;
else
address_cnt <= 'hO;
end
end

[17777777777 7777777777777 777777777777777777777777777777777777777
// Parallel to serial address conversion
[17777777777 7777777777777 777777777777777777777777777777777777777

always @ (posedge i _clk or negedge i rst n)

begin
if (!i _rst n)
addr data shift in <= 'hO;
else

if (start sbus transfer)
addr data shift in <= {write data,addr req};
else if (sbus cs[1] || sbus cs[2])
addr data_shift in <=
{2'b00,addr data shift in[PBUS DATA WIDTH + 17:2]};
end

assign o _sbus d addr _data shift in[1:0];
assign sbus req sbus cs[1] || sbus cs[2];
assign o _sbus req = sbus _req || sbus_req dly;

always @ (posedge i clk or negedge i rst n)

begin
if (!i rst n)
o reg rdwr valid <= 1'b0;
else

UG047, October 24, 2013

25

if ((sbus _cs[3] && i sbus ack) || (sbus cs[4] &&
(¢rdwr data cnt)))
o0 _reg_rdwr_valid <= 1'bl;
else
o0 _reg_rdwr_valid <= 1'b0;
end

117777777777 77
// RD/WR DATA shift counter
1117777770777 777

always @ (posedge i clk or negedge i rst n)

begin
if (!i rst n)
rdwr data cnt <= 'b0O;
else
begin
if (sbus cs[2] || (sbus cs[4] && i sbus_ack))
rdwr data cnt <= rdwr data cnt + 1;
else
rdwr data cnt <= 'b0O;
end
end

ST 0777777777777 77777777777 7777777777777777777777777777777
// Write data Shift, Serial to parallel conversion
ST 7777777777777 777777777 77777777777777777777777777777777

always @(posedge i clk or negedge i rst n)

begin
if (!i rst n)
rd data shift in <= 'b0;
else

if (sbus cs[4] && 1 sbus_ ack)
rd data shift in <=
{i sbus d[1:0],rd data shift in[PBUS DATA WIDTH-1:2]};
else
rd data shift in <= 'b0;
end

assign o reg rd data = rd data shift in;

endmodule

26

UG047, October 24, 2013

Appendix B — Revision History

The following table lists the revision history of this document.

Date Version Revisions

10/24/2013 1.0 Initial Achronix release.

UG047, October 24, 2013

