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Chapter 1 – SerDes Architecture 

Overview 

Achronix Speedster22i FPGAs provide very high core fabric and I/O performance which 
exceeds the system bandwidth requirements of various high end applications.  The 
Speedster22i device family supports up to 64 full-duplex SerDes lanes, each supporting up to 
11.3 Gbps data rate.  

The Physical Coding Sublayer (PCS) and Physical Media Attachment (PMA) sub-blocks 
together comprise a single SerDes block. The SerDes PCS has explicit support for PCIe, 
10GBASE-R, 1G Ethernet and XAUI. It also has some support for various other interconnect 
protocols through PCS such as Interlaken, SPI4.2, Infiniband, Fiber-Channel, SAS/SATA, 
SONET, OC, OBSAI and CPRI. The SerDes can be connected either to the embedded Hard-
IPs (PCIe, Interlaken, and 10/40/100G MAC) or to the FPGA Fabric for soft implementation of 
any other protocol supported. 

Physical Media Attachment (PMA) 

 Data rates supported 

o 1.0625 – 11.3 Gbps 

o 531.25 – 1062.5 Mbps using 2X over-sampling 

o 265.625 – 531.25 Mbps using 4X over-sampling 

 Independent lane architecture with dedicated synthesizer for each lane with no off-
chip components required 

 Low power architecture (<100mW at 10Gbps) 

 Support both AC and DC coupling 

 Input driver with Continuous Time Linear Equalizer (CTLE) and Decision Feedback 
Equalizer (DFE) 

o Input voltage:  50 – 2000 mVp-p differential 

o Auto-calibrating CTLE and DFE 

o CTLE with up to 20dB gain tuned for key data rates 

o Pulse-shaped 5-tap DFE 

 Output driver with 4-tap Finite Input Response (FIR) filter with Feed Forward 
Equalizer (FFE) 

o Output voltage: 400 – 1500 mVp-p differential 

o Slew rate:  31 – 170 ps 

 Highly digital PLL architecture for the Synthesizer and CDR 

o Accuracy & low jitter of an analog PLL 

o Tuning range of a digital PLL  



8  UG028, November 24, 2015 

o Programmable spread spectrum generation 

o Support for 16-bit fractional multiplication factors  

o Programmable spread spectrum clocking 

o Support for fast lock mode for EPON/GPON 

 On-chip scope in the receiver for measuring eye width, eye height and BER for the 
incoming signal 

 On-chip calibrated 100 ohm termination 

 Transparent calibration engine to compensate for PVT variation 

 

Clocking 

 Support for external reference clock from 50 MHz – 300 MHz 

 Support for recovered reference clock for loop timing and re-timer type applications 
that eliminates the need for a cleanup PLL 

 

Physical Coding Sublayer (PCS) 

 Bypassable and Modular PCS architecture 

 Support for 8b/10b and 128b/130b encoding 

 Symbol alignment 

 Clock and phase compensation FIFO 

 Lane to lane de-skew 

 Polarity inversion 

 Bit reversal 

 Lane bonding 

 Low/Deterministic latency modes for protocols such as CPRI and OBSAI 

 

Debug and Test 

 Up to seven different near-end and far-end loopback modes in PMA and PCS 

 Built-in self test (BIST) 

o PRBS 7, 15, 23, 31 and 40-bit user defined pattern generators and checkers  in 
the PCS 

o PRBS 7, 23, 31 and 40-bit user defined pattern generators and checkers  in the 
PMA 
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Major standards supported 

 

Table 1: SerDes Standards 

 

Standards Variation Data Rate(s) 

PCI Express 

Gen1 2.5 Gbps 

Gen 2 5.0 Gbps 

Gen 3 8.0 Gbps 

Gigabit Ethernet  
1000BASE-CX 1.25 Gbps 

SGMII 1.25 Gbps 

10 Gigabit Ethernet 

XAUI (802.3ae) 3.125 Gbps 

XFI 10.3125 Gbps 

SFI over SFP+ (SFF-8431) 10.3125 Gbps 

10GBASE-R (802.3ae) 10.3125 Gbps 

10GBase-KR 

(802.3ae) 
10.3125 Gbps 

XLAUI/CAUI 

(802.3ae) 
10.3125 Gbps 

Interlaken -- 3.125 – 10.3125 Gbps 

OIF 

SPI5 3.125 Gbps 

SFI-4.2 3.125 Gbps 

SFI-5.1 3.125 Gbps 

SFI-5.2 9.1 – 10.3125 Gbps 

SFI-S 11.1 Gbps 

CEI 6G 4.976 – 6.375 Gbps 

CEI 11G 9.95 – 11.2 Gbps 

Fiber Channel 

FC-1 1.0625 Gbps 

FC-2 2.125 Gbps 

FC-4 4.25 Gbps 

FC-8 8.5 Gbps 

FC-10 10.52 Gbps 

SONET 

OC-12 622.08 Mbps 

OC-24 1244.16 Mbps 

OC-48 2488.32 Mbps 

OC-192 9953.28 Mbps 
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Standards Variation Data Rate(s) 

QPI  
4.8 Gbps 

6.4 Gbps 

SATA 

SATA-1 1.5 Gbps 

SATA-2 3.0 Gbps 

SATA-3 6.0 Gbps 

SAS 

SAS-1 3.0 Gbps 

SAS-2 6.0 Gbps 

SAS-3 12.0 Gbps 

Serial Rapid I/O 

Gen1 

Gen1 

Gen1 

Gen2 

Gen2 

1.25 Gbps 

2.5 Gbps 

3.125 Gbps 

5.0 Gbps 

6.125 Gbps 

E-PON 802.3av 

1.25 Gbps 

2.5 Gbps 

10 Gbps 

GPON -- 

1.25 Gbps 

2.5 Gbps 

10 Gbps 

InfiniBand 

SDR 

DDR 

QDR 

2.5 Gbps 

5.0 Gbps 

10.0 Gbps 

JESD204B  Up to 12.5 Gbps 

CPRI -- 614.4 – 9830.4 Mbps 

OBSAI -- 768 – 6144 Mbps 

USB 3.0 5.0 Gbps 

USB 3.1 10.0 Gbps 
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SerDes Placement 

The  Speedster22i device supports up to sixty-four (64), 11.3 Gbps SerDes lanes. Each side 
(Top and Bottom) has thirty-two (32), 11.3 Gbps SerDes.  The lanes are organized by channel 
based, and are placed as illustrated in “Figure 1: Location of SerDes Lanes” below.   

Figure 1: Location of SerDes Lanes 
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SerDes Architecture Overview 

The SerDes has an independent lane architecture. Each lane has a Physical Media Attachment 

(PMA), Synthesizer (Transmit PLL), Clock and Data Recovery (CDR) and Physical Coding 

Sublayer (PCS). The Receiver PMA and Transmitter PMA block diagrams are shown in 

“Figure 2: SerDes Architecture” below. 

 

Figure 2: SerDes Architecture 

 

The SerDes primarily consists of the following blocks: 

 PMA 

 PCS  

 PCS interface to FPGA fabric 

 Clocking 

 Debug and Test 
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Physical Media Attachment (PMA) 

The PMA architecture is shown in “Figure 3: PMA Architecture” below. 

Figure 3: PMA Architecture 

 

The PMA consists three major blocks: 

1. Common  

2. Receiver/Transmitter (RX/TX) 

3. Digital PMA (DPMA) 

 

1. Common  

The common block consists of the following circuits: 

 Reference clock: This circuit performs reference clock buffering and division before 

feeding it to the Synthesizer.  

 Synthesizer: The synthesizer (transmit PLL) generates the high speed clock for the 

serializer of the Transmitter. It also has in-built circuit for spread-spectrum clocking 

 Bias: The biasing circuit is responsible for controlling the offsets and biasing for the 

all the analog circuits in the PMA 

 Analog Test Port: This port is used by Achronix for manufacturing tests and for 

debugging purposes   
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2. Receiver (RX)/Transmitter (TX) 

The RX/TX block consists of the following circuits: 

 TX buffer: Converts single-ended signal to differential and performs equalization on 

(or pre-emphasis) the outgoing serial signal 

 RX buffer: Converts differential signal to single ended and performs equalization on 

incoming signal using Continuous Time Linear Equalizer (CTLE) and Decision 

Feedback Equalizer (DFE) 

 Clock Data Recovery (CDR): Recovers clock and data from the incoming signal for 

deserialization 

 On-Chip Scope: Used for plotting an eye of the incoming signal post equalization for 

debug 

 Serializer/Deserializer: Converts parallel data to serial data using a high speed clock 

from the synthesizer 

 

3. Digital PMA (DPMA)  

The DPMA block consists of the following circuits: 

 Calibration: Performs calibration of all the analog circuits using trim settings and 

offsets 

 PMA BIST: Includes PRBS 7, 23, 31 and 40-bit user defined pattern generators and 

checkers Power management 

 Configuration registers (Memory) 

 JTAG and Boundary Scan 

 

 
 

Figure 4: Synthesizer Architecture 
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Figure 5: Receiver Architecture 

  



16  UG028, November 24, 2015 

PCS Blocks in the Transmitter (TX)  

This section presents the transmitter (TX) data path within a PCS. The key blocks within the 

SerDes transmitter are:  

 Encoder: Encodes the data for transmission line. Primary goal is to ensure DC 

balance by eliminating long sequence of 1’s or 0’s. 

 Polarity Bit Reversal (PBR): Inverts the polarity of data and ordering of data to be 

transmitted.   

 

The building block for the SerDes IP is the 1 lane configuration. A simplified block diagram 

of the TX data path is shown in Figure 6: PCS Transmitter Block Overview . The functional 

blocks shown in the diagram represent the functionality supported by a single SerDes lane. A 

summary of the supported standards is covered in “Table 1: SerDes Standards”. 

 

 

Figure 6: PCS Transmitter Block Overview 

* SerDes configured in Generic mode supports only 8b/10b encoding.  

** Either of PBR#0 or PBR#1 can be used or both may be bypassed. 

 

Note: The PCS block will support lane-bonding across multiple SerDes lanes (max 12) 
Chapter – “Design Flow: Creating a SerDes Design” presents the ground-up steps that can be 
followed to prepare a design that supports lane-bonding.  

The PCS blocks on TX path are detailed below. 

PCS Self Test Logic 

This block generates transmit data for PCS self test, detailed in “PCS Test Pattern Generator” 
and “PCS Test Pattern Checker”.  

Polarity bit reversal (PBR) #0 and #1 

This block can invert the polarity of the incoming data. It can also reverse the bits of the 
incoming data such that effectively the most significant bit is sent first, rather than the least 
significant bit (default). For 16/20bit (2 words) bit streams, the word order can also be 
inverted such that effectively the most significant byte is sent first, rather than the least 
significant byte (default). 

There are two PBR blocks on transmission data path, as shown in “Figure 6: PCS Transmitter 
Block Overview”. PBR0 is used before the protocol encapsulation block and PBR1 is used on 
encoded data. Either PBR0 or PBR1 can be used. Alternatively, both of these two blocks can 
be bypassed. 
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Polarity and Bit Inversion – 10/20 bit Operation 

When operating in 10bit/20bit mode, the bit order within each 10-bit word can be inverted. 
This is illustrated in “Figure 7: 20 bit Order Reversal”.  Effectively the most significant bit of 
the least significant byte is transmitted first (i.e. bit 9 of byte 0 is transmitted first). 

Figure 7: 20 bit Order Reversal 

 

When the word order is reversed in 20-bit mode, the most significant byte (byte 1) is 
swapped with the least significant byte (byte 0).  This is illustrated in “Figure 8: 20-bit ”.  The 
most significant byte will be transmitted first in such a case 

 

Figure 8: 20-bit Byte Order Swap/Reversal 

 

The polarity for the entire 10bit or 20bit word can be inverted as well. Polarity inversion 
applies to the entire word (10 bits or 20 bits).  
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Polarity and Bit Inversion – 8/16 bit Operation 

When the polarity is inverted in 8bit/16bits mode, only bits [17:10] and [7:0] are inverted, bits 
[19:18] and [9:8] are not inverted. This is illustrated in “Figure 9: Polarity Inversion (16-bit 
Word)”. 

Figure 9: Polarity Inversion (16-bit Word) 

 

When the bit order is inverted in 8bit/16bit mode, bits [7:0] of byte 0 are swapped while bits 
[9:8] are not swapped. Similarly bits [17:10] of byte 1 are swapped. This is illustrated in 
“Figure 10: Bit Order Inversion (16-bit Word)”. In this mode, the most significant bit of the 
least significant byte is transmitted first.   

Figure 10: Bit Order Inversion (16-bit Word) 

 

When the word order is inverted in 16-bit mode, byte 1 is swapped with byte 0. This is 
illustrated in “Figure 11: Word Order Inversion (16-bit Word)”. 
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Figure 11: Word Order Inversion (16-bit Word) 
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Interface Encapsulation 

This block encapsulates the protocols supported by the SerDes in Achronix FPGA. The user 
may refer to Section – “PCS Interface” for details on the protocols supported. It may be noted 
again that the SerDes configured in Generic mode supports only 8b/10b encoding.  

8b/10b Encoder 

The 8b/10b encoder generates 10-bit code groups from 8-bit data and a 1-bit control input. It 
uses the code group mapping specified in IEEE 802.3 clause 36. If the fabric interface is a 16-
bit data path, then two 8b/10b encoders are cascaded to produce a 20-bit code group output 
to the PMA for serialization.  

The 8b/10b encoder essentially translates 8-bit words to 10-bit symbols. This encoding 
scheme has been proven to achieve DC-balance and running disparity while providing 
sufficient information for clock recovery. (See the later sections for more information on DC-
Balance, running disparity and clock recovery.) The 10-bit encoded output TX_dataout[9:0] 
will map to bits {jhgf iedcba}per the labeling used in IEEE 802.3-2005 clause 36.  

 

Symbols and Comma Character 

While translating 8-bit words into 10-bit symbols, the 8b/10b encoder (in SerDes PCS) form 
two groups of data. The lower 5-bits of data are encoded into a 6-bit group and the upper 3-
bits of data are encoded into a 4-bit group. Furthermore, there are 12 control symbols that are 
used by 8b/10b encoding scheme for special purposes and are called K-symbols. For instance 
three of these control symbols can be used for defining the boundary between data packets. 
These three control symbols are called comma symbols.  

The 8b/10b encoder generates 10-bit code groups from 8-bit data and a 1-bit control input. It 
uses the code group mapping specified in IEEE 802.3 clause 36. If the fabric interface is a 16-
bit data path, then two 8b/10b encoders are cascaded to produce a 20-bit code group output 
to the PMA for serialization. The 1-bit control input (datak signal) is used to identify whether 
data being transmitted is a comma symbol. Asserted value for datak signal on control-line 
indicates that the symbol on data-line is a comma symbol.  

In Section-“Design and Wrapper Files” of the Chapter – “Design Flow: Creating a SerDes 
Design”, details are provided on how to transmit 8’hBC (K.28.5) as comma symbol and 1’b1 
as control signal, for a sample design. For a 20-bit data width, that design essentially uses 
{2’h1, 8’hBC, 2’h1, 8’hBC}. In other words, while sending a comma symbol, TX_data[8:8] = 
TX_data[18:18] = 1’b1 is sent through the control-line. 

Note: On the receiver end, when the decoder finds an ‘asserted’ control-bit on control-line, it 
will consider the symbol on data-line as a comma symbol. Error conditions occur if the datak 
signal is asserted while there is no comma symbol on the data line (e.g. K21.5).   

 

Running Disparity 

A non-encoded data stream may have differences between the number of 1’s and the number 
of 0’s. The primary goal of using running disparity in the encoding scheme is to limit the 
difference between the number of 1’s and the number of 0’s that are being transmitted. This 
ensures DC balance on the transmission line. A side-benefit of using running disparity is that 
information from running disparity can be used in locating transmission errors. This ensures 
that the output data is DC balanced. The maximum run length for 8b/10b words is 5 bits. 
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The input disparity for the 6 bit block is based on the disparity of previous word’s 4 bit block 
while the disparity for the 4 bit block is the disparity of the current word’s 6 bit block. This is 
illustrated in “Figure 12: 8b/10b Encoding Process”. 

 

Figure 12: 8b/10b Encoding Process 
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PCS Blocks in the Receiver (RX) 

This chapter describes the PCS components on the receiver data path.  The functional block 
diagram of the receiver is shown in “Figure 13: PCS Receive Block Overview”. The key blocks 
in the RX-PCS include:  

 Transition Density Checker (TDC): Generates a trigger bit when the number of 
consecutive 1’s or 0’s reaches a pre-defined value. 

 Polarity Bit Reversal (PBR): Inverts data, swaps byte ordering and reverses bit-
ordering, if used on the TX data path. 

 Symbol Alignment: Uses alignment characters and sequences to define the symbol 
boundary on the incoming data-stream. 

 Decoders: Generates 8-bit code group and 1-bit control signal from the 10-bit 
encoded (received) data. 

 Deskew First-In-First-Out (FIFO): Synchronizes the data received across the lanes 
when lane-bonding is used. 

 Clock Compensation (Elastic FIFO): Synchronizes the data received on PMA at 
recovered clock domain with a system clock (typically the transmit clock). 

 Bit Slider: Takes care of bit-wise skew from the fabric, when used. 

 PCS Interface Encapsulation: Provides interface with the fabric. Supports Gigabit 
Ethernet, XAUI, Pipe and 10G Ethernet interfaces.  

 PCS Self Test Checker: Self checking module, detailed in Chapters “PCS Test Pattern 
Generator” and “PCS Test Pattern Checker” 

The main features for the supported standards in the PCS side can be found in Chapter 
“Major standards supported” 

 

Figure 13: PCS Receive Block Overview 

Transition Density Checker (TDC) 

The transition density checker monitors the parallel RX data bus from the PMA and monitors 
the number of consecutive 0s or 1s, called run length. If the number reaches a pre-configured 
value, the checker sets a trigger bit to indicate the transition density violation. This pre-
configured value is called threshold and the minimum threshold programmed is half the 
width of data path. In case scaling is used the actual threshold effective will be the one shown 
in “Equation 1” 
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Equation 1: 

                                                      

                                                                                                     

 

The assert signal from Transition Density Checker can be taken to fabric.  

Note: Any bit transition would cause the counter to clear and the count to restart. 

 

Polarity Bit Reversal (PBR) 

The polarity bit reversal block is used to invert data, swap byte ordering, and reverse bit-
ordering. There are two such PCS blocks on the receive path, corresponding to the two 
polarity bit reversal blocks on the transmit path.  

When the polarity bit reversal on transmit path is performed before protocol encapsulation 
(PBR #0 on “Figure 6: PCS Transmitter Block Overview”), the PBR block after protocol 
encapsulation is used on receive path (PBR #0 on “Figure 13: PCS Receive Block Overview”). 
In contrast, if PBR operation is performed on encoded data on the transmit path (PBR #1 on 
“Figure 6: PCS Transmitter Block Overview”), the PBR block before symbol 
alignment/decoder block is used on the receive path (PBR #1 on “Figure 13: PCS Receive 
Block Overview”). As noted earlier, both of these blocks can be disabled, both on the transmit 
and the receive paths. 

Symbol Alignment 

Symbol alignment uses alignment and sequence characters for identifying the correct symbol 
boundary in the received data-stream. Attributes for alignment and sequence detect symbols 
are specified to be 10-bit wide. But when received data-path is in 8-bit (or 16-bit) wide mode, 
only the lower 8-bits of attribute will be considered.  

The symbol alignment block can be configured to support a variety of standards. Some of 
these standards are listed below:  

• PCIe  

• XAUI 

• GigE 

• Infiniband 

• Serial Rapid IO 

• SPI-5 (lock to training pattern) 

• CPRI 

• OBSAI 

• Fiber Channel 

 

Symbol alignment can be programmed to function in the following modes: 

• Manual Mode 

• Bit slip Mode 

• Automatic Mode  
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Modes of Operation 

Manual Mode:  

In manual alignment mode, the symbol alignment will attempt to identify a pre-configured 
pattern and lock to the incoming de-serialized data-stream from the output of the PMA or 
phase picking block. The alignment operation is triggered by the user logic in the FPGA on 
the rising edge of RX_com_det_en. The symbol alignment block then searches for the pre-
configured alignment pattern with or without trailing sequence pattern. Fabric will wait for 
the lock status. Once lock to the incoming stream is achieved, the fabric can monitor error 
status from the 8b/10b decoder or employ any other mechanism in fabric to identify loss of 
lock. The Fabric asserts another rising edge to trigger a new alignment cycle.  

 

Bit Slip Mode:  

In bit slip mode, the user logic controls the symbol alignment using the RX_bit_slip_en 
signal.  Each rising edge of RX_bit_slip_en causes the symbol alignment logic to shift the 
word boundary by 1-bit, and symbol alignment will attempt to match the alignment pattern 
within the new word boundary. If the word boundary is not matched, the user logic can 
again assert RX_bit_slip_en, possibly after waiting for a timeout causing the word boundary 
to shift by another bit position.  This loop continues until lock is achieved. Once lock to the 
incoming stream is achieved, logic in the fabric can monitor error status from 8b/10b decoder 
or employ some other mechanism in fabric to identify loss of lock. The bit slip mode supports 
all attributes used for manual alignment mode. The maximum number of slips that will cause 
a true change in alignment is limited to the data path width.  

 

Automatic Mode:  

In automatic alignment mode, the symbol alignment block will automatically determine the 
location of the word boundary based on the pre-configured alignment characters. It will also 
establish a lock acquired condition based on receiving a pre-con d count of alignment 
characters (hysteresis). A loss of lock condition also can be detected by this block based on a 
pre-configured count of bad code words (or alignment characters at a different word 
boundary). Instead of counting every bad code word, the user can decide to count every ‘n’ 
bad code word for an incrementing unlock count. Also, the user can use decode/disparity 
errors as per clause 36 of IEEE 802.3 to increment and decrement the unlock counter. Support 
for Fiber Channel protocol involves synchronization with the 4-symbol wide transmission 
word (a special code word K28.5 followed by 3 data code words). In case of Fiber Channel, 
any malformed transmission word causes the symbol alignment to go out of lock based on 
the un-lock count programmed. 

Comma symbols are used for identifying the correct symbol boundary. Section – “Symbols 
and Comma Character” introduces comma symbols and discusses on how they are used in 
data output from 8b/10b encoder on the TX side of a SerDes. At the receiver end, the 
incoming data is scanned for comma symbols. Once the comma symbol is found, the 
deserializer resets the word boundary of the received data. The received data is continuously 
scanned for the subsequent comma symbols.  
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Deskew FIFO 

The deskew block provides support for standards which require multiple lane bonding and 
de-skewing of received data across multiple lanes. Lane bonding is required when the users 
want to transmit data faster than is possible by using one serial link (lane). In such case, the 
data is received must be aligned across the lanes. Deskew module within the SerDes takes 
care of this. 

 

Figure 14: Operating principle of deskew technique 

 

“Figure 14: Operating principle of deskew technique” shows the operating principle of 
deskew operation. In this figure, data is being sent using four lanes. On the receiver side, 
before lane-bonding, we find that the data at time t+2on lane-1 is aligned with data at time 
t+1 on lane-2 and so on. The deskew technique aims to align the data with respect to the clock 
cycles. In other words, data at time t+2on lane-2 should be aligned with data at time t+2 on 
the other lanes. The red lines for the clock at receiver end demonstrates this. 

For lane bonding, all lanes should use the same reference clock and insert de-skew characters 
at the same time on each lane. Skew between lanes is introduced by both active (CDR) and 
passive (board) elements of the link. The deskew operation can result in some loss of data 
when it aligns characters to the same clock cycle. 
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Functional Description 

The de-skew block uses a deskew FIFO on each lane. The writes to the deskew FIFO are 
performed in the recovered clock domain for each lane. The read side of the deskew FIFO is 
clocked by the clock from the initiator lane. The lanes are categorized as initiator and 
followers. Any lane can be an initiator and skew is always calculated between the initiator 
and each of follower lanes.  

Once deskew is enabled, the skew between initiator and follower lanes are calculated 
continuously by sensing deskew characters in the read side of the FIFO. The read threshold 
for the FIFO needs to be programmed appropriately based on skew tolerance to avoid FIFO 
under/over run. Once a deskew character is sensed, each lane starts a skew window equal to 
the maximum skew allowed in the system. Based on how the lanes are skewed, the follower 
lane is either lagging or leading and adjust the read clock cycles accordingly. Once the 
initiator gets indication from all lanes of the bonding group that the skew calculation is over, 
it declares that all lanes are aligned and asserts data valid for the down-stream logic. The 
same data valid is used by the follower lanes to assert respective lane data valid. When the 
initiator does not find such overlap of skew windows, it issues a reset to all FIFOs in the 
bonding group and restarts the de-skew operation.  

To summarize, the initiator lane generates various control signals for the follower lanes and 
follower lanes send various status signals back to the initiators. Status signals are AND-ed 
(e.g. for checking if the skew calculation completed in all lanes) or OR-ed (e.g. for checking if 
any follower lanes window has not started), whereas control signals are used directly. These 
signals go from one lane to another. The status and control signals are registered at time 
intervals determined based on the number of lanes bonded 

 

Lane-to-Lane Deskew Modes of Operation 

The deskew module can work in three modes: 

Manual Mode:  

The rising edge of i_dskew_start will start one round of deskew operation. Lanes are 
declared aligned either just after the deskew operation is completed or after an additional 
check of a programmed number of aligned deskew characters in all bonded lanes at the same 
time. The fabric needs to monitor received data for identifying any misalignment, and thus to 
restart deskew operation. Infiniband uses manual mode of deskew operation.  

Auto Mode:  

The deskew module is always active. Once lanes are deskewed, all lanes will continuously 
look for deskew characters in data read from the FIFO. The initiator should see deskew 
characters on all lanes of the bonding group at the same time. The initiator looks for aligned 
deskew characters on all lanes for a certain number of times based on the value programmed 
in the register, and once detected the initiator declares bonded lanes aligned. Any time the 
initiator finds deskew characters not aligned on all lanes, it starts an unlock count. If the 
unlock count hits the value programmed in the register, the initiator declares that the lanes 
are out of lock and re-starts the de-skew operation. While unlock count is incrementing, if the 
initiator finds de-skew characters are aligned on all lanes again it starts decrementing the 
unlock counter. This decrement can happen once in every ‘n’ (programmed in the register) 
times when lanes have de-skew characters aligned to make sure the link has overcome error 
conditions. If the unlock counter reaches zero, the link remains aligned. 
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Symbol slip mode:  

The deskew module does not actively remove skew across lanes. Each lane is controlled by 
the fabric. Fabric continuously monitors incoming data and employ a mechanism to find out 
the skew across lanes. Based on the calculation, it instructs each lane to adjust the read 
pointer of FIFO. The read pointer can be incremented once by 0, 1 or 2 based on the 
combination of rising edges on symbol_slip_up and symbol_slip_dn. Based on the skew 
computed, the fabric may need to provide multiple transitions on symbol_slip_up and 
symbol_slip_dn to get the required number of pointer adjustments. 

 

Table 2: Symbol Slip Paramaters 

 

symbol_slip_up symbol_slip_dn Comments 

0 0 Increment read pointer by 1 

0 1 No increment  

1 0 Increment read pointer by 2 

1 1 Increment read pointer by 1 

 

Standards Supported by Deskew Module 

The deskew module in Achronix SerDes has explicit support for XAUI and Infiniband. For 
XAUI, align(||A||) characters are sent periodically as per section 48 in IEEE 802.3. For 
Infiniband, training sequences (TS1/TS2) are used as deskew characters. Though each of 
TS1/TS2 is 16 code words long, the de-skew module forms de-skew ordered set with COM 
and four data symbols (D10.2). The distance (gap) between COM and data symbols should be 
programmed to ‘d1 for Infiniband. In case of 10-bit data path, the max skew handled is 6-
bytes and for 20-bit max skew handled 2-bytes. For training in Infiniband, initially data valid 
will be asserted to pass TS1/TS2/TS3 to fabric. Subsequently, data valid is removed when link 
training is completed and the fabric decides to de-skew lanes bonded. Once the de-skew 
operation is completed, data valid is asserted again.  

Besides these two protocols, the user can use this module for deskew functions of any 
protocols provided that the minimum spacing between de-skew characters are maintained. 

 

Elastic FIFO (Elastic Buffer) 

An elastic FIFO is used to synchronize the received data from the PMA recovered clock to a 
system clock, typically the transmit clock. The Elastic FIFO also compensates for any 
frequency offset between the recovered clock and the system clock. It compensates for the 
frequency offset by adding or deleting pre-configured skip (or pad) characters from the 
received data stream.  The elastic FIFO in Achronix SerDes provides an indication that skip 
(or pad) characters were added or deleted to the downstream logic. For PCIe, the elastic FIFO 
also includes the appropriate status encoding to indicate add/delete operation.  

The elastic FIFO can also be configured to be used as a simple phase compensation FIFO for 
synchronizing data. When used as a phase compensation FIFO, it is left to the user to 
guarantee that there is no frequency offset (jitter) between the read and write clocks.  
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EFIFO Standards and Skip Characters 

PCIe Gen3: To support PCIe Gen3, 4-bytes of skip are added at byte positions 4-7 from the 
sync header associated with the skip ordered set. Skip removal happens from bytes 0-3 from 
the sync header associated with the skip ordered set. Due to this particular rule of removal, 
sync header and receive start block indications are delayed by 4-bytes.  

PCIe Gen1/Gen2: For PCIe Gen1/Gen2, the skip ordered set is two 10-bit words – the elastic 
buffer adds or deletes only the second word.  

Fiber Channel: To support Fiber channel, 4-bytes of skip are added and deleted. The PCS 
operates in 16-bit data-path mode at the fabric interface and 20-bit encoding internally.  

XAUI: To support XAUI, the skip ordered set is one 10-bit word, which is added or deleted 
by the elastic buffer.  

GigE: For GigE, the skip ordered set is two 10-bit words – control followed by data. The 
elastic FIFO adds or removes both of these two 10-bit words.  

Other Standards: Besides these specific standards, the elastic FIFO can handle any generic 
protocols in the similar line due to the programmable nature of SKIP and inverted SKIP 
ordered set of length 2. The user has flexibility to include an alternate (mostly inverted) word 
in the ordered set. Beyond two words skip ordered sets, only 4 words skip ordered sets can 
be used, which are specific to fiber channel. The elastic FIFO generates the final data valid 
from the PCS, which is used by the fabric to register data. 
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EFIFO Operation 

“Figure 15: EFIFO SKP Addition/Removal” illustrates the process of SKP addition/removal.  

 

Figure 15: EFIFO SKP Addition/Removal 

In “Figure 15: EFIFO SKP Addition/Removal” upon reset, the difference between the read 
and write counters is equal to fifo_mid (half the size of the buffer; default 16).  

If clk_in is operating at a lower frequency than clk_out, then the read operation is faster than 
the write operation and the difference between the write and read counters will be less than 
fifo_mid. In this case, to compensate for clk_in being slower, an SKP is added to the data 
stream.  

If clk_in is operating at a higher frequency than clk_out, then the read operation is slower 
than the write operation and the difference between the write and read counters will be 
greater than fifo_mid. In this case, to compensate for clk_out being slower, an SKP is 
removed from the data stream. 
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“Figure 16: EFIFO SKP Addition/Removal: PCIE, GigE (802.3) and XAUI (802.3)” illustrates 
SKP additions and removals for PCIe, GigE (802.3), and XAUI (802.3ae). Note that in the 
figure, data_i and data_o are not actually aligned, they are merely depicted so for clarity. 

 

Figure 16: EFIFO SKP Addition/Removal: PCIE, GigE (802.3) and XAUI (802.3) 
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Overflow/Underflow 

If the difference between the write and read counters is greater than fifo_full, then the 
overflow signal is asserted. If the difference between the write and read counters is less than 
fifo_empty, then the underflow signal is asserted. 

 

8b/10b Decoder 

The 8b/10b decoder generates 8-bit code groups and 1-bit control from 10-bit  encoded 
(received) data. It uses the code group mapping specified in IEEE 802.3 clause 36. If the fabric 
interface is a 16-bit data path, then two 8b/10b decoders are cascaded to produce 16-bit data 
to the fabric. The decoder handles various error conditions. All error conditions are reported 
per each byte lane.  

The 8b/10b code allows 12 special (K) characters, but most standards generally support fewer 
K characters and need the reserved K characters to be declared as code errors. So register 
programming is possible to pre-configure 11 characters that can be declared as invalid for 
deciding code error if seen in the receive data stream, and assuming that at least one special 
character will be needed.  

Any 10-bit code word that is not present in Tables 36-1, 36-2 of the IEEE 802.3-2005 
specification shall be considered as invalid code word. In addition, 11 code words 
corresponding to the K characters can be included (programmable) to be flagged as invalid 
code words. If the 10-bit code word is present in Tables 36-1 or 36-2, but corresponds to the 
wrong column (per current running disparity calculation), the wrong column indication is 
asserted. Disparity and code errors are not mutually exclusive; however code error and 
wrong column are mutually exclusive. 

For XAUI and Gigabit Ethernet, a code error or disparity error will cause the error indication 
to be propagated downstream.  For PCIe, if a code error and disparity error are detected on 
the same byte, the pipe_RXstatus is encoded to indicate a code error. 

 

Bit Slider 

The bit slider is a barrel shifter that can be used to control bit-wise skew from the fabric. This 
feature can be used to implement any user specific algorithm for lane alignment and de-
skew. It can also be used in conjunction with the symbol slip mode of the de-skew FIFO to 
attain a wide range of de-skew. The symbol slip mode can be used for coarse alignment (with 
1 or 2 symbols shifting per request) and the bit slider can be used for finer alignment within a 
symbol. The barrel shifter width is limits are shown in “Table 3: Shift Limit” below. 

 

Table 3: Shift Limit 

 

Data Path width Shift limit 

20 83 

16 79 

10 73 

8 71 

 

The MSBs is shifted to the location of the LSBs and the LSBs are discarded. There is a 6-bit 
select control from the fabric to pick the active data to be driven to the fabric. For example, in 
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the 20-bit mode of operation, the most significant 20-bits of data are placed on bits 19:0 of the 
barrel shifter and the least significant 20-bits are discarded. The 6-bit select control can select 
a range of active bits, from [19:0] (for a select value of 0x00) to [82:63] (for a select value of 
0x3F).  

“Table 4: List of Important Interface Signals for bit slider”, provides a list of important 
interface signals used for bit slider. 

 

Table 4: List of Important Interface Signals for bit slider 

 

Port Description 

bit_range_sel[5:0] 
Primary input from SerDes.  Used to select data window for 

removing bit skew 

bit_slider_enable Register bit[1] @’h092 to enable bit-slider 

word_mode Register bit[3] @’h000 to select data path width – 1 word or 2 word 

8bit_mode Register bit[2] @’h000 to select type of encoding - 8(16) or 10(20) 

 
 

Interface Encapsulation 

This block encapsulates the protocols before passing data to the fabric. Details on the 
standards supported by Achronix FPGA can be found in Section –“PCS Interface”. 

 

PCS Self Test Checker 

When PCS self-testing feature is used, this block checks for the correctness of the receive data. 
Details on this block are available in “PCS Test Pattern Generator” and “PCS Test Pattern 
Checker”. 
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PCS Interface 

The PCS interface provides the general interface between the PCS and the core fabric. The 
PCS supports the following interfaces: 

• Gigabit Ethernet Interface 

• XAUI 

• PIPE Interface 

• 10G Ethernet Interface 

Gigabit Ethernet Interface 

The PCS in Achronix SerDes supports 10G Ethernet, compliant with section 36, 37 of IEEE 
802.3. Functionalities implemented are PCS transmit, carrier sense, synchronization, receive, 
and auto-negotiation.  

The PCS transmit process is facilitated at both the GMII and PMA interfaces to the PCS.  At 
the GMII interface (fabric side), the PCS uses 8-bit synchronous data-path with packet de-
limiting, done by separate transmit control (TX_en, TX_err) and receive control signals 
(RX_dv, RX_err).  At the PMA interface, the PCS uses 10-bit data path, which uses 10-bit code 
groups. Besides generating 10-bit code groups continuously based on GMII signals (TXd[7:0], 
TX_dv, TX_err), transmit process also generates GMII signal col if reception is concurrent 
with transmit.  The transmit process also monitors auto-negotiation to determine whether it 
needs to send data or reconfigure the link.  As part of transmit process, the state machines 
shown in Figures 36-15 and 36-16 of IEEE 802.3 are implemented. To enable carrier sense the 
PCS generates an internal flag.  

The PCS Synchronization process determines whether the PMA is functioning reliably. The 
PCS Synchronization process continuously accepts code-groups and conveys received code-
groups to the PCS Receive process. For synchronization, a symbol alignment module is used. 
For synchronization, the state machines shown in Figures 36-9 of IEEE 802.3 are 
implemented.  

The PCS Receive process continuously accepts code-groups. The PCS Receive process 
monitors these code-groups and generates RXD <7:0>, RX_DV, and RX_ER on the GMII, and 
the internal flag used by the Carrier Sense and Transmit processes. For synchronization, the 
state machines shown in Figures 36-7 of IEEE 802.3 are implemented.  

The PCS Auto-Negotiation process sets the xmit flag to inform the PCS Transmit process to 
either transmit idles interspersed with packets as requested by the GMII or to reconfigure the 
link. The PCS auto-negotiation process is specified in the state machine shown in Figure 37-6 
of IEEE 802.3. As part of auto-negotiation, the PCS will advertise only as a 1G link full-duplex 
partner. The following management registers are currently implemented:  

a. Control register (Register 0) 

b. Status register (Register 1) 

c. AN advertisement register (Register 4) 

d. AN link partner ability base page register (Register 5) 

 

These management registers are accessible through SBUS i/f (P1). A MDIO-to-SBUS bridge 
can be implemented in the fabric.  The reset duration of these controllers is programmable 
via register, and the max duration is defined as 0.5sec as per IEEE 802.3. 
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XAUI 

The PCS supports XAUI compliant with section 48 of IEEE 802.3. The Protocol block 
implements the Transmit and Receive state machines as per Figures 48-6 and 48-9 of IEEE 
802.3. For synchronization, de-skew and clock compensation operations, symbol alignment, 
de-skew and elastic buffers in PCS are used. 8b/10b encoders and decoders are used for 
handling 10-bit code groups. 

When communicating with the XGMII (fabric side), the PCS uses in each direction 32 data 
signals and 4 control signals. When communicating with the PMA, the PCS uses a 40-bit 
code-group in the transmit direction and in the receive direction. Each set of 40-bit data 
signals conveys four lanes of 10-bit code-groups. The 40-bit code-group signals are organized 
into four lanes: the first PCS code-group is aligned to lane 0, the second to lane 1, the third to 
lane 2, and the fourth to lane 3. Code-group alignment, lane-to-lane de-skew, and provision 
for clock rate compensation are made possible by embedding special non-data code-groups 
in the idle stream.  

The PCS Transmit process continuously generates code-groups based upon the TXd [31:0] 
and TXc [3:0] signals on the XGMII, sending them to the PMA service interface. 

The PCS Synchronization process indicates whether the PMA is functioning dependably, 
which can be determined without exhaustive error-rate analysis.  The PCS Synchronization 
process continuously accepts unaligned and unsynchronized code-groups from the PMA, 
obtains 10-bit code-group synchronization, and conveys synchronized 10-bit code-groups to 
the PCS de-skew process as per Figure 48-7 in IEEE 802.3.  

The PCS de-skew process continuously accepts synchronized code-groups, aligns the code-
groups to remove skew between the lanes introduced by the link, and conveys aligned and 
synchronized code-groups to the PCS Receive process. At the end of the de-skew process, the 
PCS will have successfully de-skewed and aligned code-groups on all PCS lanes. The de-
skew process always looks for non-aligned code-groups across 4-lanes and initiates de-skew 
operations as per Figure 48-6 in IEEE 802.3.  

Clock rate compensation is required when the received clock from the PMA and the clock on 
which data is sent to fabric are different in terms of jitter. The PCS compensates by inserting 
or deleting SKIP (||R||) characters in the encoded idle stream. Insertion and deletion is only 
done after SKIP (||R||) is detected – not arbitrarily on any positions.  

The Receive process operates in two modes as per Figure 48-9 in IEEE 802.3:  date and idle 
mode. In data mode, valid code-groups received are mapped to corresponding XGMII data 
or control characters regardless of whether the control characters are valid XGMII control 
characters. Invalid or error code-groups are mapped directly to XGMII Error control 
characters. In idle mode, an idle code-group is translated to XGMII Idle control characters. 
All code-groups are mapped on a lane by lane basis. 

 

PIPE Interface 

The PCS supports the PIPE interface compliant to the Intel PIPE 3.0 specification. It supports 
a 10/20-bit data path for gen1/gen2 and 16-bit for gen3. Similarly, it supports 2.5G, 5.0G and 
8.0G throughput on the PMA. For gen1/gen2, 8b/10b endec and gen3 128b/130b endec are 
used. This interface allows the embedded PCIe MAC to configure the PMA and decide upon 
the next course of action based on the status sent out by the PMA. Besides the functions 
described in the PIPE interface specifications, it facilitates the MAC in setting up the receive 
equalizer in the PMA. When the PCS is supporting PCIe/PIPE, lane de-skew is done by the 
MAC and clock compensation is done by the elastic buffer in the PCS.  

The PCS also supports a 128b/130b encoder, specifically targeted for PCIe gen3 (based on 
draft 0.5 of the PCIe 3.0 specification).  The interface is compliant to the PIPE 3.0 specification. 
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The 128b/130b encoder is disabled on power up, and enabled when the rate bits coming from 
the MAC are configured to 2’b10. The PCS layer support for PCIe gen3 also includes glue 
logic to switch the PMA data width to 16-bit mode and programming final rate bits for PCIe 
gen3 operation. “Table 5: PIPE Interface Paramaters” shows various supported combinations 
of clocking speeds and data-widths. 

 

Table 5: PIPE Interface Paramaters 

 

PCIe Mode                                PCLK PMA Data Width 

2.5 Gbps Gen1  250 Mhz 10 bits 

2.5 Gbps Gen1 125 Mhz 20 bits 

5.0 Gbps Gen2 500 Mhz 10 bits 

5.0 Gbps Gen2 250 Mhz 20 bits 

8.0 Gbps Gen3 500 Mhz 16 bits 
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Clocking  

 

“Figure 17: SerDes RX and TX clocks” gives an overview of the clocks inside the SerDes. The 
PMA of a SerDes lane generates two clocks, a TX word clock synthesized from the reference 
clock, and an RX word clock recovered from the incoming serial data stream. The frequency 
of these clocks is the data rate divided by the word width. For instance, a 10Gbps data rate 
with 20 bit data width results in a 500MHz clock. Since the TX and RX clocks are generated 
separately, they must be designated as unrelated in the timing constraints. In the most basic 
mode, these TX and RX clocks are used to clock the data in their respective directions, and 
are brought into the FPGA fabric for use by the user design. 

Because each SerDes lane has its own PMA to generate a TX clock and an RX clock, the clocks 
of different lanes are unrelated to each other, and consequently there is no synchronization 
between the data of different lanes. Some protocols distribute data over a group of SerDes 
lanes to increase bandwidth; typically, the lanes in such a group must then be synchronized 
to give the appearance of a single high-bandwidth data stream. To synchronize multiple 
SerDes lanes, Lane Bonding is used. As the Figure illustrates, when Lane Bonding is enabled, 
a single lane is designated as master, and its TX and RX clocks are used to clock all the lanes 
in the group. The deskew FIFO is used to convert data from the recovered clock domain to 
the master RX domain; see Section “Deskew FIFO” for more details. 

 

 

Figure 17: SerDes RX and TX clocks 
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Although each lane has its own clock output pins to the fabric, with lane bonding these are 
all just route-throughs of the master clock: regardless of which clock output pins are used, 
only one clock net is routed inside the fabric. This is an important feature of Lane Bonding, 
because the FPGA fabric can only accommodate a limited number of distinct clocks. Lane 
Bonding divides the number of distinct clocks inside the core by the size of the group. Note 
that Lane Bonding is only possible when all lanes share the same reference clock, both at the 
near end and at the far end. 

An additional method of reducing the number of distinct clocks is to use the Elastic FIFO. 
That FIFO can be used to convert data from the RX domain to the TX domain, thus reducing 
the number of distinct clocks by half. In Elastic FIFO mode, the RX clock output to the fabric 
is just a route-through of the TX clock: either clock pin can be used, and only a single net will 
be routed inside the fabric. See Section “Elastic FIFO” for details of Elastic Buffer operation. 

Elastic FIFO mode and Lane Bonding mode can be combined, reducing the number of clocks 
to one for the entire bonded group. 

As mentioned above, a 10Gbps data rate results in a 500MHz clock output to the user design 
(or 625MHz for 16 bit words). For most designs, timing closure at such high clock speeds is 
unrealistic. Because of that, the SerDes macro includes a “Wide Bus” feature, which divides 
the clock frequency by two and doubles the data width. When the Wide Bus feature is 
enabled, the TX and RX clock outputs from the macro to the user design are the divided 
clocks, and the user design does not need to deal with the faster clock at all. However, 
because the Wide Bus is implemented in the fabric, both the fast and divided clocks do occur 
in the fabric, counting towards the maximum number of distinct clocks. The Wide Bus 
feature can be combined with Lane Bonding and Elastic FIFO modes. See the Section “Design 
Guidelines” for specifics on the number of distinct clocks that the fabric can support, and for 
details of the Wide Bus feature. 
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Debug and Test  

The SerDes comes integrated with a wide range of debug and test features for excellent 
coverage. The following features are provided: 

 Seven different loopback modes 

 Pseudo-Random Binary Sequence (PRBS) pattern generators and checkers on PMA 
and PCS. 

 User-defined pattern generator and checker in PMA and PCS.  

Loopback Modes 

The SerDes supports up to seven different loopback modes. The loopback modes can be 
divided as PMA loopback and PCS loopback. Each of the PMA and PCS loopbacks has Near 
end and Far-end loopback. Near End loopback loops back the data from transmit side to the 
receive side while Far end loopback, loops back data from receive side to the transmit side. 

1. PMA loopback mode 

A. Near End 

(i) TX to RX PMA Serial internal loopback – This loopback is serial transmit 
to receive buffered loopback. Loops back the TX serializer output into the CDR 
bypassing the IO drivers. 

B. Far End 

(ii) RX to TX PMA serial loopback - Transmits the untimed, partial equalized 
RX serial data on the transmit IO pins. 

(iii) RX to TX PMA parallel loopback – Loops back 20 bit receive data port to 
20 bit transmit data port. This uses synthesized bit clock for transmit.   

(iv) RX to TX PMA parallel loopback using recovered clock (Loop timing 
mode) - Loops back 20 bit receive data port to 20 bit transmit data port. This uses 
recovered clock (CDR) for transmit.   

2. PCS loopback mode  

A. Near End 

(i) TX to RX PCS parallel loopback – Transmit data is looped back on the 
receive path at the PMA interface. 

B. Far End 

(ii) RX to TX PCS parallel loopback – Receive data is looped back on the 
transmit side at the fabric interface. This uses synthesized bit clock for transmit.   

(iii) RX to TX PCS parallel loopback using recovered clock - Receive data is 
looped back on the transmit side at the fabric interface. This uses recovered clock 
(CDR) for transmit.   
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PMA loopback modes: 

 

Figure 18: PMA Loopback Modes 

 

 

 

PCS loopback modes: 

 

 

Figure 19: PCS Loopback Modes 

 

Please refer to the “Dynamic Read/Write of SerDes Registers via SBUS” section to set 
different loopback modes in the user design using ACE macro ACX_SERDES_REG_CTRL 

 
 

PMA Test Pattern Generator 

The PMA supports a built in transmit data pattern generator that can be used for transmit 
characterization. The test pattern generator can transmit PRBS patterns and user defined 
patterns. The PRBS patterns supported are shown in “Table 6: PRBS Patterns in PMA” below: 
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Table 6: PRBS Patterns in PMA 

 

Bus Width PRBS Pattern Available 

PRBS-7 1+x6+x7 

PRBS-23 1+x18+x23 

PRBS-31 1+x28+x31 

The transmit pattern generator can generate user defined pattern by configuring control 
registers. The user defined pattern can be a 40 bit memory pattern. 

 

PMA Test Pattern Checker 

The PMA Test pattern checker on the receive data path can be used to check all the standard 
data patterns and user defined patterns by enabling the self test checker. The standard data 
patterns include the PRBS patterns as described in Table above.  The user defined pattern is a 
40-bit memory pattern checker. The PRBS transmitter and receiver are enabled by selecting 
the loopback modes described in section “Dynamic Read/Write of SerDes Registers via 
SBUS”.   

  

PCS Test Pattern Generator 

The PCS can be programmed to transmit test pattern data instead of user provided transmit 
data coming from fabric interface.  The test pattern generator is used to check the quality of 
the serial link and supports various standard patterns. The test pattern generator can 
transmit PRBS patterns and user defined patterns. The PRBS patterns currently supported are 
shown in “Table 7: PRBS Patterns in the PCS”. 

PRBS Generator 

Various PRBS patterns can be generated by the transmit block which are summarized in 
“Table 7: PRBS Patterns in the PCS”. 

Table 7: PRBS Patterns in the PCS 

 

Bus Width PRBS Pattern Available 

PRBS-7 1+x6+x7 

PRBS-15 1+x14+x15. 

PRBS-20 1+x3+x20 

PRBS-23 1+x18+x23 

PRBS-31 1+x28+x31 

 

 

The transmit pattern generator can optionally transmit user defined patterns instead of PRBS 
patterns, configured through the control registers.  Two sets of user defined patterns (up to 
40-bits each) can be configured. The user can decide to send a single 40-bit pattern or two 
alternate 40-bit patterns.  

The transmit test pattern generation supports two modes of operation -  

 Non-framed transmit mode 

 Framed transmit mode 
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In both modes, the shift registers used for PRBS generation should be initialized to a non-zero 
value. 

In the non-framed transmit mode, the user has the option of selecting one of the supported 
PRBS patterns or the user defined pattern. When reset is released, the pattern generator 
continuously transmits the selected pattern.  

In the framed transmit mode, the user can select to transmit one or both user defined patterns 
initially, followed by one of the PRBS patterns. The switch over from user defined pattern to 
PRBS pattern is controlled by programming register. The PRBS patterns can also be 
interspersed with the user defined patterns.  

 

PCS Test Pattern Checker 

The test pattern checker on the receive data-path supports checking all PRBS patterns that 
can be generated from the transmit side. The receive pattern checked also has two operating 
modes:  

 Non-framed mode 

 Framed mode 

In the non-framed mode of operation, the test pattern checker implements self-synchronizing 
PRBS checkers. If a user defined pattern (UDP) is being transmitted in non-framed mode, the 
symbol alignment block needs to be setup to achieve byte lock (to the first byte of the 
repetitive UDP). The test pattern checker should start checking for errors after symbol 
alignment block has indicated that byte lock has been achieved.  

If a PRBS pattern is being transmitted, then the test pattern checker is self-synchronized to 
the incoming data. Once the checker locks to the incoming data, it can track any errors with 
respect to incoming data.  

In the framed mode of operation, the receive pattern checker will use the same seed as the 
transmit pattern generator for checking the PRBS patterns.  The symbol alignment block 
needs to be setup to lock for the initial UDP. The test pattern checker monitors the locked 
data and detects the switch over from the initial pattern to the PRBS pattern and triggers the 
receive side PRBS checking.  

In non-framed PRBS mode, the test pattern checker increments an error counter for every 
received data that did not match the expected pattern after a window of wait period has 
expired. 
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Latency 

This section presents the worst case latency for PMA and PCS blocks. 

 

PMA Latency 

The following equation calculates the worst-case latency for the Tx-datapth assuming the 
case of first word in and last bit out: 

              _                                                        , 

where analog latency is explained below and 500 ps accounts for internal analog delay and 
digital clock newtowrk latency. 

The worst-case latency for the Rx-datapath can be calculated by the following equation 
considering the case of first bit in and first word out: 

                                                                , 

where 500 ps accounts for internal analog delay and digital clock newtowrk latency.  

The analog latency is a function of the databus-width as well and can be estimated using 
“Table 8: Analog latency as a function of databus width” below. 

 

Table 8: Analog latency as a function of databus width 

 

# Databus Width Analog Latency 

1. 8-bit 28 UI 

2. 10-bit 33 UI 

3. 16-bit 36 UI 

4. 20-bit 43 UI 

 

As an example, for 20-bit databus width, the worst case latency for Tx and Rx datapath can 
be estimated as follows: 

                                         , and 

                                             

Worst case values are presented in “Figure 20: Worst-case latency across PMA and PCS (in 
terms of clock-cycles)”. 

 

PCS Latency 

There are two modes of using PCS in Achronix SerDes: 

1. PCS Enabled: All or selected PCS blocks can be enabled. Each block will introduce it’s 
own latency in datapath. Even when selected blocks are disabled in this mode, data 
(transmit and receive) will travel through the PCS components while bypassing them, as 
shown in “Figure 6: PCS Transmitter Block Overview”. 

2. PCS Disabled: In this case, all PCS blocks are disabled. This mode introduces a latency of 
2 clock-cycles. 



UG028, November 24, 2015 43 

“Table 9: Latency across the PCS blocks” presents the latency experienced by datapath in 
these two modes. The worst case latency is presented in in “Figure 20: Worst-case latency 
across PMA and PCS” 

 

Table 9: Latency across the PCS blocks 

 

# PCS Module Data Path 
Latency experienced by datapath 

PCS Enabled PCS Bypassed 

1. 
Polarity bit reversal 

symbol swap 0 
Transmit 0 Not applicable 

2. 8b/10b Encoder Transmit 2 Not applicable 

3. 
Polarity bit reversal 

symbol swap 1 
Receive 0 Not applicable 

4. 8b/10b Decoder Receive 2 Not applicable 

5. 
Symbol Alignment 

Module 
Receive 2 Not applicable 

6. Deskew Module Receive FIFO_Threshold + 5 Not applicable 

7. EFIFO Module Receive 
FIFO threshold + 7 + 

no_of_lanes_bonded/4* 
Not applicable 

8. Other   2 

Total Latency 13 (max) 2 

* For special case of lane-bonding   
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Figure 20: Worst-case latency across PMA and PCS (in terms of clock-cycles) 
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Configurations Supported  

Table 10: Supported Transmitter (TX) Features 

 

 

Standard 

 

 

Variation 

Data 

Rates 

(Gbps) 

Numbe

r of 

Lanes 

Suggested 

Reference 

Clock 

(MHz) 

Parallel Data 

Width (Bits) 
Encoder PBR 

Out-of-

Band 

PCI 

Express 

Gen1 2.5 1/4/8 100 8/16 8b/10b Yes Beacon 

Gen2 5.0 1/4/8 100 8/16 8b/10b Yes Beacon 

Gen3 8.0 1/4/8 100 16 
128b/130

b 
Yes Beacon 

Gigabit 

Ethernet 

GigE 

(1000BASE-

CX) 

1.25 1 125 8 8b/10b Yes No 

SGMII 1.25 1 125 8 8b/10b Yes No 

10 Gigabit 

Ethernet 

XAUI 3.125 4 156.25 8 8b/10b Yes No 

XFI  10.3125 1 
156.25, 

161.1328 
20 No Yes No 

SFI over SFP+ 

(SFF-8431) 
10.3125 1 

156.25, 

161.1328 
20 No Yes No 

10GBASE-R 

(802.3ae) 
10.3125 1 

156.25, 

161.1328 
20 No Yes No 

10GBASE-KR 

(802.3ae) 
10.3125 1 

156.25, 

161.1328 
20 No Yes No 

CAUI/XLAUI 

(802.3ae) 
10.3125 10/4 

156.25, 

161.1328 
20 No Yes No 

Interlaken Interlaken 
3.125 - 

10.3125 
4-12 Variable 20 No Yes No 

OIF 

 

SPI5 3.125 1:N 156.25 8/10/16/20 No No No 

SFI-5.1 
2.488-

3.125 
1:N Variable 8/10/16/20 No No No 

SFI-5.2 
9.1-

10.3125 
1:N Variable 20 No No No 

SFI-S 11.1 1:N Variable 20 No No No 

CEI 6G 
4.976– 

6.375 
1:N Variable 16/20 No Yes No 

CEI 11G 
9.95– 

11.2 
1:N Variable 20 No Yes No 

Fiber 

Channel 

1GFC 1.0625 1 106.25 8 8b/10b Yes No 

2GFC 2.125 1 106.25 8 8b/10b Yes No 

4GFC 4.25 1 106.25 16 8b/10b Yes No 

8GFC 8.5 1 106.25 16 8b/10b Yes No 

10GFC 10.52 1 106.25 16 8b/10b Yes No 
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Standard 

 

 

Variation 

Data 

Rates 

(Gbps) 

Numbe

r of 

Lanes 

Suggested 

Reference 

Clock 

(MHz) 

Parallel Data 

Width (Bits) 
Encoder PBR 

Out-of-

Band 

SONET 

OC-12 0.622 1 
622.08, 

155.52 
8/10 No Yes No 

OC-24 1.244 1 
622.08, 

155.52 
8/10 No Yes No 

OC-48 2.48832 1 
622.08, 

155.52 
8/10 No Yes No 

OC-192 9.95 1 
622.08, 

155.52 
20 No Yes No 

SATA 

SATA-1 1.5 1 Variable 8/10 8b/10b No Yes 

SATA-2 3.0 1 Variable 8/10/16/20 8b/10b No Yes 

SATA-3 6.0 1 Variable 16/20 8b/10b No Yes 

SAS 

SAS-1 1.5/3.0 1 Variable 8/10/16/20 8b/10b No Yes 

SAS-2 6.0 1 Variable 16/20 8b/10b No Yes 

SAS-3 12.0 1 Variable 20 8b/10b No  Yes 

Serial 

Rapid I/O  

 

Serial Rapid 

I/O – Gen1 

1.25/2.5/

3.125 
1 Variable 8/10/16/20 8b/10b No No 

Serial Rapid 

I/O – Gen2 

5.0/6.12

5 
1 Variable 16/20 8b/10b No No 

E-PON  

(802.3av) 

E-PON  

(802.3av) 

1.25/2.5/

10 
1 Variable 8/10/16/20 No No No 

InfiniBand InfiniBand 
2.5 / 5.0 

/ 10.0 
1 100 8/16 8b/10b Yes No 

CPRI v5.0 
614.4 – 

9830.4 
1 122.88 8/16 8b/10b Yes No 

CPRI v6.0 10.317 1 122.88 20 No Yes No 

OBSAI OBSAI 
1.536 / 

3.072 
1 153.6 8/16 8b/10b Yes No 
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Table 11: Supported Receiver (RX) Features 

 

 

Standard 

 

Variations 
Data 

Rates 

(Gbps) 

Symbol 
Align 

PBR 
Transition 

Density 
Checker 

Clock 
Compen

sation 
(EFIFO) 

Lane 
De-

skew 
Decoder 

Bit 
Slide

r 

PCI Express Gen1 2.5 Yes Yes Yes Yes No 8b/10b No 

Gen2 5.0 Yes Yes Yes Yes No 8b/10b No 

Gen3 8.0 Yes Yes 
Yes 

Yes No 
128b/13

0b 
No 

Gigabit 
Ethernet 

GigE 

(1000Base-
CX) 

1.25 Yes Yes Yes Yes No 8b/10b No 

SGMII 1.25 Yes Yes Yes Yes No 8b/10b No 

10 Gigabit 
Ethernet 

XAUI 3.125 Yes Yes Yes Yes Yes 8b/10b No 

XFI 10.3125 No Yes Yes No No No No 

SFI over SFP+ 

(SFF-8431) 
10.3125 No Yes Yes No No No No 

10GBASE-R 

(802.3ae) 
10.3125 Yes Yes Yes Yes No No 

 

No 

10GBASE-KR 

(802.3ae) 
10.3125 Yes Yes Yes Yes No No No 

CAUI/XLAUI 
(802.3ae) 10.3125 Yes Yes Yes Yes No No No 

Interlaken Interlaken 
3.125 - 

10.3125 

 

No 

 

Yes Yes No No No No 

OIF 

 

SPI5 3.125 No No No No No No Yes 

SFI-5.1 
2.488-

3.125 
No No No No No No Yes 

SFI-5.2 
9.1-

10.3125 
No No No No No No Yes 

SFI-S 11.1 No No No No No No Yes 

CEI 6G 
4.976– 

6.375 
No Yes Yes Yes Yes 8b/10b No 

CEI 11G 
9.95– 

11.2 
No Yes Yes Yes Yes 8b/10b No 

Fiber 
1GFC 1.0625 Yes Yes Yes Yes Yes 8b/10b No 

2GFC 2.125 Yes Yes Yes Yes Yes 8b/10b No 
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Standard 

 

Variations 
Data 

Rates 

(Gbps) 

Symbol 
Align 

PBR 
Transition 

Density 
Checker 

Clock 
Compen

sation 
(EFIFO) 

Lane 
De-

skew 
Decoder 

Bit 
Slide

r 

Channel 4GFC 4.25 Yes Yes Yes Yes Yes 8b/10b No 

8GFC 8.5        

10GFC 10.52 Yes Yes Yes Yes Yes 8b/10b No 

SONET 

OC-12 0.622 Yes Yes Yes No No No No 

OC-24 1.244 Yes Yes Yes No No No No 

OC-48 2.48832 Yes Yes Yes No No No No 

OC-192 9.95 Yes Yes Yes No No No No 

SATA 

SATA-1 1.5 Yes No No No No 8b/10b No 

SATA-2 3.0 Yes No No No No 8b/10b No 

SATA-3 6.0 Yes No No No No 8b/10b No 

SAS 

SAS-1 1.5/3.0 Yes No No No No 8b/10b No 

SAS-2 6.0 Yes No No No No 8b/10b No 

SAS-3 12.0 Yes No No No No 8b/10b No 

Serial Rapid 

I/O  

 

Gen1 
1.25/2.5

/3.125 
Yes No No No Yes 8b/10b Yes 

Gen2 
5.0/6.12

5 
Yes No No No Yes 8b/10b Yes 

E-PON  

(802.3av) 

E-PON 

(802.3av) 

1.25/2.5

/10 
No No No No No No Yes 

Infiniband Infiniband 
2.5 / 5.0 

/ 10.0 
Yes Yes Yes Yes Yes 8b/10b No 

CPRI v5.0 
614.4 – 

9830.4 
Yes Yes Yes Yes No 8b/10b No 

CPRI v6.0 10.317        

OBSAI OBSAI 
1.536 / 

3.072 
Yes Yes Yes Yes No 8b/10b No 
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Design Flow: Creating a SerDes Design 

 

In this chapter, step-by-step instructions for creating a SerDes design are presented: 

1. Generation of SerDes wrapper using ACE GUI 

2. Design of top-level RTL to instantiate the SerDes wrapper created in step 1. 

3. Definition of placement and timing for the SerDes.  

4. Design guidelines 

This chapter starts with a simple design and presents step-by-step instructions for creating 
this design. Later section presents the additional/reduced steps required to prepare the 
designs with special features.  

The Achronix SerDes reference design Speedster22i_SerDes_1lane_10gbps_PCS_bypass_ 
RD002 is a variant of the designs presented in this chapter and contains the code base used 
for using Achronix SerDes IP.  

The first simple design presented in this chapter is named as simple_serdes_design. This is a 
single-lane SerDes design with the properties listed below. 

Design name        : simple_serdes_design 
Objective              : Send data from fabric to SerDes and read-back data using internal loopback. 
Data rate                : 10.3125 Gbps 
Standard                : Generic 
Number of lanes   : 1 
Placement              : South lane# 8 
Ref. clock                : 156.25 Mhz 
Data width             : 40  
PCS blocks             : Enabled 
8b/10b encoder 
8b/10b decoder 
Symbol alignment: Automatic mode 
Note: clock compensation (EFIFO) not used. 

The directory structure is not a hard requirement and the user may change it. The directory 
structure for the baseline sample design is shown below; the reference design 
Speedster22i_SerDes_1lane_10gbps_PCS_bypass_RD002 uses a similar directory structure. 

simple_serdes_design (root for this design) 
     |- src      
     |----- ace    (will contain the project file for generation of wrapper as well as the ace-
generated wrapper, placement and timing constraint files) 
     |----- constraints  (will contain the user-defined placement and timing constraint files) 
     |----- tb  (will contain the user-defined testbench and other related files) 
     |----- rtl                 (will contain the user-defined top-level rtl for the design) 

 

Generating SerDes Wrapper using ACE GUI 

This section will focus on creating SerDes wrapper using ACE GUI. The generated files will 
be stored in simple_serdes_design/ace folder. ACE will generate the RTL for SerDes wrapper 
as well as placement and timing constraint files. The SerDes wrapper module is instantiated 
in top-level module; the ace-generated placement and timing constraint files are used to 
prepare design-specific constraint files.  
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The user is assumed to have basic understanding of using ACE GUI. The user may refer to 
the online demo as well as the ACE documentation for different aspects of using the ACE 
GUI.  

 

Single-Lane Serdes Wrapper 

To generate a SerDes wrapper from ACE, the user needs to invoke ace following the 
instructions detailed in the ACE documentation. SerDes wrapper is created from the IP 
Configuration perspective. To access this perspective, from the menu-bar of ACE GUI, the 
user needs to select Windows, then Open Perspective and finally IP Configuration. 
Alternatively, the IP configuration perspective can be opened by clicking the toolbar button, 
shown in Figure 21: Opening IP Configuration Perspective. 

 

 

Figure 21: Opening IP Configuration Perspective 

 

Sub-Windows: The IP configuration perspective contains the following sub-windows, the 
arrangement of which may depend on the last saved setting for ACE GUI: 

 Main Window: The middle-top window. This will contain the entry boxes that are 
used for defining the SerDes configurations. 

 IP Libraries: Displays a list of the available IP libraries. 

 TCL Console: Displays the console messages, including warnings and errors. 

 IP Problems: Displays any invalid setting that you may have used while generating 
the wrapper. 

 Outline: Outline of the IP that are being generated. Wrapper for any IP will have 
multiple pages for user-entries. Clicking on a topic listed in Outline window, the user 
can go to the corresponding page. 

 IP Diagram: Connection diagram for the IP block. For SerDes design, it will show the 
connection diagram for the SerDes. 
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To generate a SerDes wrapper, the user will need to double click on the link 12G SerDes in IP 
Libraries window. This will bring up the window for creating new IP (SerDes) configuration 
as shown in Figure 22: New IP Configuration Window.  

Tip: The windows listed above can be resized and moved around like any other GUI based 
applications. The windows can also be docked into ACE-GUI or undocked from ACE GUI. 

 

Figure 22: New IP Configuration Window 

 

For the current example design, a new project simple_serdes_design.acxip is created in 
simple_serdes_design/src/ace folder. The user can click on the button Browse to select a 
destination folder and type the name of the project (.acxip file) in the File name box. Clicking 
on Finish on this window will create the project and the main window will be populated, as 
shown in Figure 23: New IP Configuration Window- Overview Page. 
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Figure 23: New IP Configuration Window- Overview Page 

 

The user will now have the Overview page in the main window with the options for entering 
design parameters. The Outline and IP Diagram windows are also populated at this point, as 
shown in “         Figure 24: Outline Window” and “Figure 25: IP Diagran Window”. 

         Figure 24: Outline Window 

   

Figure 25: IP Diagran Window 
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Overview Section: 

Initially, the main window in the middle will contain the Overview page as shown in Figure 
26: New IP Configuration Window – Populating Overview Page. 

 

 

Figure 26: New IP Configuration Window – Populating Overview Page 

 

The entry fields and the available options are listed in Table 12: Entry fields for Overview 
page. This table also presents the choices that are made in Overview page (based on design 
properties listed in “Table 12: Entry fields for Overview page”). 

 

Table 12: Entry fields for Overview page 

 

Entry field  Purpose Available Options Choice made 

Target Device 

Defines the Achronix 

device that 

simple_design targets 

 AC22iHD1000-F53 

 AC22iHD1000-F45 
AC22iHD1000-F53 

Standard 
Standard used by the 

design 

 XAUI  

 SpeedLinx 

 Generic 

 Interlaken 

 LaneLinx 

Generic 
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Entry field  Purpose Available Options Choice made 

Number of Lanes 
Number of lanes used 

by the design 
1 to 12.  1 

TX Data Rate (Gbps) 
TX data rate for the 

design 

12 options ranging 

from 1.0265 to 11.31*1 
10.3125 

RX Data Rate (Gbps) 

RX data rate for the 

design is currently 

disabled. ACE GUI 

makes it equal to the 

TX Data Rate. *1 *3   

  

Ref. Clock (MHz) 
Reference clock for 

SerDes PLL’s. 

18 options ranging 

from 60MHz to 350 

MHz, including the 

reference frequency for 

typical protocols. *1 

156.25 MHz 

RX Termination  
Termination resistance 

used for Receive Path 

 Disconnect 

 85 

 100 

 120 

100 

TX Termination  

Termination resistance 

used for Transmitter 

Path 

 Disconnect 

 85 

 100 

 120 

100 

Data Width 

Defines the number of 

data bits used by the 

SerDes interface 

 16 

 20 

20  

Operating Mode 

Whether the SerDes 

will be used for RX or 

TX or both. 

 RX only 

  TX only 

  TX and RX 

TX and RX 

Enable Channel 

Bonding 

Whether the design 

uses bonded lanes 

 True 

 False 

The check-box is 

enabled only when the 

design uses multiple 

lanes. The user must 

use lane-bonding if 

number of lanes is 

more than 4. 

Not applicable for 

single-lane 

simple_serdes_design 

Placement:    

Chip Edge 
Defines the location of 

the SerDes lane used. 

 North 

 South 

Implies the North and 

South sides of Achronix 

FPGA*2 

North 
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Entry field  Purpose Available Options Choice made 

SerDes Lanes The specific lane used. 

Achronix FPGA has 64 

SerDes lanes, 32 each 

on North and South 

sides. When 

North/South selected 

from Chip Edge combo-

box, option is given for 

each of the 32 lanes on 

corresponding side. *2 

8 

 

*1  The users may not use any combination of (a) TX (RX) data rate and (b) reference clock frequency. 
This is due to the constraint that the Voltage Controlled Oscillator (VCO) clock rate derived from the 
TX and RX data rates must integer multiple of the ref clock frequency. If the user’s choices do not 
comply with this constraint, the error will be reported in IP problems window, as shown in Figure 27: 
Issues with Setting TX/RX data rate and reference clock frequency 

*2  Refer to the Chapter-“Overview” of this document for further details on the locations of SerDes 
lanes in an Achronix FPGA. 

*3   The user also needs to use identical values for reference clock frequency for both TX and RX.  

 

Note: As the user goes through the ACE GUI, some entry fields may become disabled based 
on the earlier choices. Furthermore, some parameters become fixed (and unavailable for 
change) based on the earlier choices. For instance, the Enable Channel Bonding check-box is 
disabled for the simple_serdes_design that uses a single lane. “Figure 27: Issues with Setting 
TX/RX data rate and reference clock frequency” further emphasizes this. In this Figure, when 
the user chooses XAUI as the SerDes standard, all the fields except for termination and 
operating mode are set at pre-defined values and become unavailable for changes. 
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Figure 27: Issues with Setting TX/RX data rate and reference clock frequency 
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Figure 28: Unavailable Fields 

As “Figure 28: Unavailable Fields” shows Some fields become unavailable based on earlier 
choices made by the user. In this case, the user chooses ‘XAUI’ as the standard (not related to 
simple_serdes_design) 

Note: For the data-rate above 5.0 GBPS (including 10.3125 GBPS), the ACE GUI eventually 
uses the wide-bus architecture and generates a wrapper that transmit/receive 40-bit data 
from/to fabric. A later section of this chapter further details the wide-bus architecture. 

  

Section on PMA Settings:  

Clicking Next button on Overview page will bring up the section on PMA Settings. The first 
page for PMA Settings is shown in “Figure 29: PMA Settings Window – First page”. 
Alternatively, the user can click on PMA Settings on the Outline window of “         Figure 24: 
Outline Window”. 
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Figure 29: PMA Settings Window – First page 

 

The first page of the PMA Settings section gives the options to enter lane-specific PMA 
settings. This is not relevant to the current design since it uses a single SerDes lane. However, 
for completion, “Figure 30: Outline Window, When Lane-Specific PMA Settings are Enabled”  
shows the Outline sub-window when the user enables lane-specific RX PMA Equalization 
and lane-specific RX PMA PLL.  

For the single-lane simple_serdes_design, the PMA Settings section consists of the following 
four sub-sections and the corresponding list is displayed in Outline window (top-right sub-
window in “Figure 30: Outline Window, When Lane-Specific PMA Settings are Enabled”): 

1. RX PMA Equalization 

2. RX PMA PLL 

3. TX PMA Driver and 

4. TX PMA PLL 

The user can browse through these sub-sections by clicking Next buttons or by selecting a 
page from the Outline window. 
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Figure 30: Outline Window, When Lane-Specific PMA Settings are Enabled 

 

 

RX PMA Equalization 

This page allows the user to change the PMA equalization settings on the receive path. The 
entry fields and the available options are listed in “Table 13: RX PMA Equalization”. This 
table also presents the choices that are made for the current design: simple_serdes_design.  

Note: All analog settings in “Table 13: RX PMA Equalization” and the tables to follow are 
provided for reference only. For challenging physical links, the equalization settings need to 
be tuned by the user. 

 

Table 13: RX PMA Equalization 

 

Entry field  Purpose Available Options* Choice made 

Low Freq AGC 

Gain 

Automatic Gain Control (AGC) 

to make the SerDes suitable 

over a range of signal levels 

 Disconnected 

 -18.1 dB 

 -12.2 dB 

 -8.7 dB 

 -6.2 dB 

 -4.3 dB 

 -2.7 dB 

 -1.3 dB 

-18.1 dB 

(default) 

High Freq AGC 

DC Gain 

Control DC Gain of High 

Frequency RX AGC 

 -2.94 dB 

 -1.3 dB 

 0.332 dB 

 1.97 dB 

 3.6 dB 

 5.21 dB 

-2.94 dB 

(default) 
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Entry field  Purpose Available Options* Choice made 

High Freq AGC 

AC Boost 

Control AC boost of High 

frequency AGC 

32 options ranging from 

0.4 dB to 18.3 dB 

Min 0: Boost 0.7dB 

Max 31: Boost 22.6dB 

7.8 db (default) 

DFE Pulse-

shaping Tap 3dB 

Freq 

3dB Frequency of Pulse-Shaped 

Analog 

Decision Feedback Equalizer 

used to 

deal with channel loss 

 105 MHz 

 179 MHz 

 281 MHz 

 391 MHz 

 494 MHz 

 567 MHz 

 663 MHz 

 808 MHz 

105 MHz 

(default) 

DFE Pulse-

shaping Tap 

Gain 

Tap gain of Pulse-Shaped 

Analog 

Decision Feedback Equalizer 

used to 

deal with channel loss 

 No pulse shaping tap 

 -0.38 dB 

 -0.78 dB 

 -1.20 dB 

 -1.63 dB 

 -2.09 dB 

 -2.58 dB 

 -3.10 dB 

No pulse 

shaping tap 

(default) 

DFE N-1 Tap 

Gain Control 

(mV) 

Additional DFE taps to 

equalize channel discontinuities 

-59.99 mV to +59.99 mV at 

8.57 mV interval 
0 (default) 

DFE N-2 Tap 

Gain Control 

(mV) 

Additional DFE taps to 

equalize channel discontinuities 

-49.98 mV to +49.98 mV at 

7.14 mV interval 
0 (default) 

DFE N-3 Tap 

Gain Control 

(mV) 

Additional DFE taps to 

equalize channel discontinuities 

-39.97 mV to +39.97 mV at 

5.71 mV interval 
0 (default) 

DFE N-4 Tap 

Gain Control 

(mV) 

Additional DFE taps to 

equalize channel discontinuities 

-29.96 mV to +29.96 mV at 

4.28 mV interval 
0 (default) 

RX User Control 

From Fabric 
 

 True*1 

 False 
False (default) 

*1  If True is selected, the ACE GUI will add two input ports to the wrapper RTL. This change is 
reflected in IP Diagram sub-window by the two additional ports: ch0_i_pma_RXeqlut[32:0] and 
ch0_i_pma_RXeqlut_str.  

* Available options listed here are the current ones based on characterization data. These values are 
subject to change. 

 

RX PMA PLL 

This page allows the user to configure the PMA PLL settings on the receive path. The entry 
fields and the available options are listed in “Table 14: RX PMA PLL Settings”. This table also 
presents the choices that are made for the current design: simple_serdes_design. 
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Table 14: RX PMA PLL Settings 

 

Entry field  Purpose Available Options Choice made 

RX PPM 

Controls the frequency accuracy 

threshold (ppm) for lock 

detection in the CDR 

Text-box entry. The user 

may enter any value. 
2000 (Default)  

User-controlled 

CDR switch 

Whether the user wants to use a 

switch for clock data recovery 

 True 

 False 

 

False (Default)  
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TX PMA Driver 

This page allows the user to configure the transmit driver settings on PMA.. The entry fields 
and the available options are listed in “Table 15: TX PMA Driver Settings”. This table also 
presents the choices that are made for the current design: simple_serdes_design. 

 

Table 15: TX PMA Driver Settings 

 

Entry field  Purpose Available Options Choice made 

Transmit Amplitude 

(mVdiff-pkpk) 

Transmit Amplitude control 

signal. Used to define the 

full-scale maximum swing of 

the driver. 

 952 

 1024 

 1094 

 1163 

 1227 

 1283 

 1331 

1331 (Default) 

Cursor Level N 

 Defines the total number of 

driver units allocated in the 

driver 

Text field to enter any 

value 
21 (Default)  

Per-Cursor Level N+1 

Defines the total number of 

driver units allocated to the 

first pre-cursor (C-1) tap. 

Text field to enter any 

value 
0 (Default) 

Post-Cursor Level N-1 

Defines the total number of 

driver units allocated to the 

first pre-cursor (C+1) tap. 

Text field to enter any 

value 
4 (Default) 

Post-Cursor Level N-2 

Defines the total number of 

driver units allocated to the 

second post-cursor (C+2) tap. 

Text field to enter any 

value 
0 (Default) 

Slew Rate TX driver Slew Rate control 

 31 ps 

 33 ps 

 68 ps 

 170 ps 

31 ps (Default) 

TX User Control from 

Fabric 
 

 True 

 False 
False (Default) 

 

This page also lists additional TX PMA driver related information (to facilitate user-choices): 

• Maximum Bit Amplitude (mVpp):  1173 

• Back-Porch Bit Amplitude (mVpp): 861 

• Preshoot Level (dB):   0.00 

• De-emphasis Level (dB):  -2.69 

 

TX PMA PLL 

This page allows the user to configure the PMA PLL settings on the transmit path. There is 
one entry field in this page for simple_serdes_design, as listed in “Table 16: TX PMA PLL 
Settings”: 
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Table 16: TX PMA PLL Settings 

 

Entry field  Purpose Available Options Choice made 

TX PPM 

Configure the PPM difference 

between reference clock and 

divided down PLL clock to 

assert PLL lock status signal 

Text-box entry. The user 

may enter any value. 
1000 (Default)  

Section on PCS Settings:  

The user can reach the PCS Settings section by browsing through the pages related to the 
PMA Settings section. Alternatively, the user may reach this section by clicking the PCS 
Settings link on the Overview window. The pages belonging to the PCS Settings section 
allow the user to define the PCS-specific settings. Different components of the SerDes PCS 
block are explained in Chapter – “PCS Blocks in Transmitter (TX) Data path”.  

The first page of PCS Settings section is shown in “Figure 31: PCS Settings Window – First 
page”. This page allows the users to choos lane specific PCS properties for a multi-lane 
design. For the current single-lane design, these options are not relevant. 

 

Figure 31: PCS Settings Window – First page 

Clicking Next button on the first page will bring up the page for RX PCS Settings. This page 
with default settings are shown in “               Figure 32: PCS Settings for Receiver – Default 
Settings”. It is observed in “               Figure 32: PCS Settings for Receiver – Default Settings” 
that some entry fields are disabled based on user-choices. For instance, the fields related to 
Elastic FIFO (EFIFO) and Transition Density Checker (TDC) are not available for user-
entry/user-choices since EFIFO and TDC are disabled by default. 
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               Figure 32: PCS Settings for Receiver – Default Settings 

RX PCS Settings 

This page allows the user to configure the RX PCS settings. The entry fields and the available 
options are listed in “Table 17: RX PCS Settings”. This table also presents the choices that are 
made for the current design: simple_serdes_design. 

 

Table 17: RX PCS Settings 

 

Entry field  Purpose Available Options Choice made 

Decoder*3 

Decoder to be used by 

the design on the 

receive side 

 Disabled 

 8b/10b 

 128/130b 

8B10B (8b/10b) 

decoder 

Polarity Bit Reversal (PBR) Functions 

PBR Block*3 

If the user chooses to 

use PBR. It should 

match with the PBR 

technique used on TX-

side. On TX-side, PBR0 

is used on pre-encoded 

data and PBR1 is used 

on post-encoded data 

to PMA. 

 PBR0 

 PBR1 
PBR0 (Default) 

Receive Symbol Swap*3 Related to PBR block. 
 True 

 False 
False 

Receive Bit Order 

Reverse*3 
Related to PBR block. 

 True 

 False 
False 

Receive Polarity 

Reverse*3 
Related to PBR block. 

 True 

 False 
False 
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Entry field  Purpose Available Options Choice made 

Elastic FIFO*3 

Use Elastic FIFO*3 

Whether clock 

compensation block on 

PCS (i.e., EFIFO) will 

be used. 

 True *2 

 False 
False (Default) 

8B Mode*3 
Whether 8B mode will 

be used 

 True 

 False 

N/A since EFIFO is 

disabled  

SKIP Mode*3 
Skip mode used for 

EFIFO 

 Disabled 

 802.3ae (one word) 

 802.3 (two words) 

 PCIe 

N/A since EFIFO is 

disabled 

SKIP Word 0*3 
Skip Word used for 

EFIFO 

Text field to select 

user-defined value 

N/A since EFIFO is 

disabled 

Eanble ALT 0*3 
Whether Alternate 

word will be used 

 True 

 False 

N/A since EFIFO is 

disabled 

ALT SKIP Word 0*3 
Alternate SKIP Word 

used for EFIFO 

Text field to select 

user-defined value 

(available only when 

Enable ALT 1 is selected 

N/A since EFIFO is 

disabled 

SKIP Word 1*3 

Similar to the 

parameters related to 

Skip Word 0. *3 

Text field to select 

user-defined value 

N/A since EFIFO is 

disabled 

Eanble ALT 1*3 
 True 

 False 

N/A since EFIFO is 

disabled 

ALT SKIP Word 1*3 

Text field to select 

user-defined value 

(available only when 

Enable ALT 0 is selected 

N/A since EFIFO is 

disabled 

SKIP Word 2*3 
Text field to select 

user-defined value 

N/A since EFIFO is 

disabled 

Eanble ALT 2*3 
 True 

 False 

N/A since EFIFO is 

disabled 

ALT SKIP Word 2*3 

Text field to select 

user-defined value 

(available only when 

Enable ALT 2 is selected 

N/A since EFIFO is 

disabled 

Transition Density Checker (TDC) 

Enable Transition 

Density Checker*3 

Whether TDC will be 

used 

 True *1 

 False 
False 

Max Count*3 
The threshold value for 

TDC 

Text field for user-

defined value 

(available only when 

TDC is enabled) 

N/A (TDC not 

enabled) 

Max Count Scaling 

Factor*3 

The maximum scaling 

factor. 

 x1 

 x2  

 x4  

 x8  

 x16 

N/A (TDC not 

enabled) 

*3 Further description on these parameters can be found in Section”PCS Blocks in the Receiver 
(RX)” 
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RX PCS Symbol Alignment 

“   Figure 33: PCS Settings for Receiver – Symbol Alignment” presents the RX PCS Symbol 
Alignment window with the choices pertaining to the current design: simple_serdes_design. 

 

   Figure 33: PCS Settings for Receiver – Symbol Alignment 

 

The entry fields and the available options are listed in “Table 18: Symbol Alignment Settings 
(PCS)”. This table also presents the choices that are made for the current design: 
simple_serdes_design. 

 

Table 18: Symbol Alignment Settings (PCS) 

 

Entry field  Purpose Available Options Choice made 

Symbol Alignment 

Mode*1 
Mode used 

 Disabled 

 Automatic 

 Manual  

 Bit Slip 

Automatic 

Automatic Symbol 

Alignment 
   

Align on Even Symbol 

Whether alignment 

operation will be on 

even symbols only. 

 True 

 False 
False 

Enable Double-Word 

Alignment Mode 

Whether double word 

alignment will be used 

 True 

 False 
False 

Enable Word 0 
Symbol alignment 

word# 0 enabled 

 True 

 False 
True 
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Entry field  Purpose Available Options Choice made 

Word 0 
Value of Word# 0, 

when enabled. 

Text field to enter user-

defined value 

(available when Word 

0 is enabled) 

283* (Refer to) 

Mask 0 
Value of mask for 

word0 

Text field to enter user-

defined value 

(available when Word 

0 is enabled) 

000 

Enable Word 0 or 

Inverse of Word 0 

Whether word 0 or the 

inverse of it will be 

used 

 True 

 False 
False 

Enable Seq 0 
Whether Seq0 will be 

used. 

 True 

 False 
False 

Seq 0 Value of Seq 0 

Text field to enter user-

defined value 

(available when Seq 0 

is enabled) 

N/A since Seq0 is not 

enabled 

Gap Count Gap Count for Seq0 

Text field to enter user-

defined value 

(available when Word 

0 is enabled) 

N/A since Seq 0 is not 

enabled 

Enable Alt Seq 0 
Whether Alternate of 

Seq0 will be used 

 True 

 False 
False 

Alt Seq 0 
Value of Alternate of 

Seq 0 

Text field to enter user-

defined value 

(available when Alt 

Seq 0 is enabled) 

N/A since Alt Seq 0 is 

not enabled 

Enable Word 1 

Similar to Word 0, Seq 

0 etc. 

 True 

 False 
False 

Word 1 

Text field to enter user-

defined value 

(available when Word 

0 is enabled) 

N/A since Word 1  

Mask 1 

Text field to enter user-

defined value 

(available when Word 

0 is enabled) 

000 

Enable Word 1 or 

Inverse of Word 1 

 True 

 False 
False 

Enable Seq 1 
 True 

 False 
False 

Seq 1 

Text field to enter user-

defined value 

(available when Seq 0 

is enabled) 

N/A since Seq0 is not 

enabled 

Gap Count 

Text field to enter user-

defined value 

(available when Word 

0 is enabled) 

N/A since Seq 0 is not 

enabled 

Enable Alt Seq 1 
 True 

 False 
False 
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Entry field  Purpose Available Options Choice made 

Alt Seq 1 

Text field to enter user-

defined value 

(available when Alt 

Seq 0 is enabled) 

N/A since Alt Seq 0 is 

not enabled 

Unlock Mode 
When the unlock will 

be reported 

 Misaligned 

 Decode Error 

 Decode or 

Disparity 

Misaligned  

Unlock Count 

The number of unlocks 

before misalignment 

reported 

Text field to enter user-

defined value 
3 

Lock Count 

The number of locks 

before alignment is 

reported 

Text field to enter user-

defined value 
3 

Unlock Decrement 

Count 

Decrement count for 

unlock 

Text field to enter user-

defined value 
1 

*1 Based on user-selection, relevant ports are added to the GUI wrapper, which is reflected on the IP 
Diagram sub-window. 

 

The other available symbol alignment options are Manual and Bit Slip, as detailed in Section 
– “Symbol Alignment”. 

 

TX PCS Settings 

“Figure 34: PCS Settings for Receiver – TX PCS Settings” presents the RX PCS Symbol 
Alignment window with the choices pertaining to the current design: simple_serdes_design. 

 

Figure 34: PCS Settings for Receiver – TX PCS Settings 

 

The entry fields and the available options are listed in “Table 19: TX PCS Settings”. This table 
also presents the choices that are made for the current design: simple_serdes_design. 
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Table 19: TX PCS Settings 

 

Entry field  Purpose Available Options Choice made 

Encoder  

 Disabled 

 8b/ 10b 

 128/130b 

8B10B 

PBR Functions    

PBR Block 

Whether PBR block is 

used. PBR0 is used on 

data before encoder (or 

when encoder is 

disabled). PBR1 is used 

on encoded data to 

PMA. 

 PBR0 

 PBR1 
PBR0 

Transmit Symbol Swap 
Setting for PBR block 

on TX path. 

 True 

 False 
False 

Transmit Bit Order 

Reverse 

Setting for PBR block 

on TX path. 

 True 

 False 
False 

User-Controlled 

Disparity and Error 

Forcing 

Option to force 

disparity and error 

forcing (from fabric?) 

 True 

 False 
False 

Clicking Next on the window titled “TX PCS Settings” will bring the windows for BIST test 
settings. We will ignore those windows for this design. 

 

Section on Manually Overriding PMA/PCS Register Values:  

Based on the user choices made in the earlier sections, ACE has assigned the values for PMA 
and PCS registers at this point. The advanced user however may want to change the pre-
defined value for one or more registers. This section of ACE GUI provides this option for 
advanced users.  

Please refer to the Section - Bypassing PCS by Manually Overriding Corresponding Register 
for further details on this. 
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Generation of Wrapper Files:  

The user can now generate wrapper files (src/ace folder) by clicking the Generate button. 

Note: The user can generate the wrapper files without going through all the pages. In other 
words, the user can use Generate button from any page to generate the wrapper files. If the 
user does not set values for one or more multiple pages, ACE will use the default values for 
the corresponding configurations.   

When the user clicks the Generate button, a pop-up window, as shown in “Figure 35: 
Generating the Wrapper Files” will be displayed. 

 

 
 

Figure 35: Generating the Wrapper Files 

The wrapper file locations and the names are based on the directory structure that have been 
used to create this design.  

The option Register Dump File is disabled here. If the option is chosen with the file name, the 
corresponding file will provide the values of the PMA/PCS registers, based on the choices 
made by the user while generating the wrapper.  

The option VHDL Model can be used to generate a wrapper in VHDL. The resulting VHDL 
file is essentially a wrapper that instantiates the Verilog model for the SerDes wrapper. 
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If the files are successfully generated, the user will find the corresponding message on the 
TCL sub-window, as shown in “Figure 36: TCL console message upon successful generation 
of wrapper files”. 

 

 

Figure 36: TCL console message upon successful generation of wrapper files 

 

Files Generated by ACE-GUI 

Based on the directory structure and the file names that have been chosen (“Figure 35: 
Generating the Wrapper Files”), there will be up to five files in simple_serdes_design/src/ace 
folder: 

 

• simple_serdes_design_wrapper.v: This file contains the RTL generated by ACE GUI. The 
top level module for this wrapper is simple_serdes_design_wrapper. This module will be 
instantiated in top level design module: simple_serdes_design.v file. 

• simple_serdes_design_wrapper.vhd: If the VHDL file generation has been chosen. 

• simple_serdes_design_wrapper.sdc: This file will provide the timing constraints for the 
SerDes PLL clocks. This file further identifies the related and unrelated clocks.  

• simple_serdes_design_wrapper.pdc: This file will provide the placement of the SerDes 
lanes, based on the lane-positioning chosen in the Overview page (“Figure 26: New IP 
Configuration Window – Populating Overview Page”).  

• simple_serdes_design_registers.txt: This file will provide the values for all PCS and PMA 
registers, based on the choices made in ACE GUI. 
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Integration of SerDes Wrapper in a Design 

This section details how to use the files generated by ACE GUI into a user-design. For ready-
reference, the design properties from “Design Flow: Creating a SerDes Design” are presented 
again: 

Design name        : simple_serdes_design 
Objective              : Send data from fabric to SerDes and read-back data using internal loopback. 
Data rate                : 10.3125 Gbps 
Standard                : Generic 
Number of lanes   : 1 
Placement              : South lane# 8 
Ref. clock                : 156.25 Mhz 
Data width             : 40  
PCS blocks used    : 
8b/10b encoder 
8b/10b decoder 
Symbol alignment: Automatic mode 
Note: clock compensation (EFIFO) not used. 

The simple_serdes_design will contain the following files: 

 simple_serdes_design_top.v: Top-level RTL that will instantiate the SerDes wrapper 
generated by ACE. As per the directory structure as shown above, this file will be 
under src/rtl sub-directory. 

 simple_user_design_wrapper.v: The SerDes wrapper RTL that has been generated by 
ACE. (Under src/ace directory.) 

 data_generation.v: This will include the code used to generate data for transmission, 
including comma characters. (Under src/rtl sub-directory.) 

 simple_user_design.pdc: ACE Placement file. (Under src/constraints sub-directory.) 

 simple_user_design.sdc: ACE constraint file for timing. This will contain the timing 
constraints from the ACE-generated simple_serdes_design_wrapper.sdc file as well 
as constraints related to the additional clocks used in simple_user_design_top.v. 
(Under src/constraints sub-directory.) 

 tb_user_guide.v: This is the testbench used for design; we will use this for simulation 
purposes. (Under src/tb sub-directory.) 

The Achronix SerDes reference design Speedster22i_SerDes_1lane_10gbps_PCS_bypass_ 
RD002 can be referred for further understanding on how the ACE GUI generated files can be 
used in a design. 

Design and Wrapper Files 

simple_serdes_design_top.v: This is the top-level module for the current design. This module 
will instantiate the SerDes wrapper (from simple_design_wrapper.v file) and will use the 
SerDes ports to: (a) send data to SerDes and (b) read-back data from SerDes. Some SerDes 
ports are also brought to the  FPGA I/O pads as reset and debug signals. 

The ports that are available from the SerDes wrapper are displayed in “Figure 25: IP Diagran 
Window”. To instantiate the wrapper module simple_serdes_design_wrapper, the following 
construct is used: 

 simple_serdes_design_wrapper  iSerDes 

where, iSerDes is the name of the instance. The instance name iSerDes is used in other files as 
well, such as the ace_placement.pdc and the ace_constraint.sdc files. If the instance name 
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iSerDes is chosen as the Hierarchical Instance Path, the generated .sdc and .pdc files need not 
be modified. 

“Table 20: Signals passed between the SerDes Instance and the Top-Level module” gives a 
list of the ports in the SerDes wrapper that are accessed from the top-level module of the 
current design. The corresponding signal names used in the top-level module are also listed 
in this Table.  

 

Table 20: Signals passed between the SerDes Instance and the Top-Level module 

 
SerDes Port Name Top-level Signal-name Comments 

ch0_i_ba_RX_m ln0_RX_m 

These input signals to SerDes 

are also inputs to the top-level 

RTL. Note: These signals are 

connected directly from SerDes 

to the package balls without 

any logic in between. In other 

words, the users don’t need to 

insert any I/O pads. 

ch0_i_ba_RX_p ln0_RX_p  

ch0_i_bck_ref_m ln0_refclk_m  

ch0_i_bck_ref_p ln0_refclk_p  

ch0_i_RX_rst_n
1
 ln0_rst_n_RX 

Reset inputs to the SerDes from 

user logic.  

Note: Same input can be used 

for RX and TX reset signals. 

These signals should preferably 

be delayed from the hard-reset 

signal.  Hard reset goes to the 

PMA and RX and TX resets go 

to the PCS. 

ch0_i_TX_rst_n
1
 ln0_rst_n_TX  

ch0_i_rst_hard_n
1
 ln0_rst_hard  

ch0_i_TX_datain ln0_TX_data 

Transmit data input to SerDes 

from user logic. (Refer to 

data_generation.v presented 

later.) 

ch0_o_RX_data_clk          ln0_RX_clk 

Output from SerDes to user 

logic. RX-clock generated from 

SerDes and used for RX-path in 

top-level, such as the checker 

for the received data. 

ch0_o_TX_data_clk          ln0_TX_clk 

Output from SerDes to user 

logic. TX-clock generated from 

SerDes and used for TX-path in 

top-level, such as generator for 

the transmitted data. 

ch0_o_RX_dataoutA ln0_RX_data 
Receive side RX data output 

from SerDes to the user logic. 

ch0_o_pma_RX_cdr_lck2dat ln0_pma_RX_cdr_lck2dat 

Outputs from SerDes.  

These are status signals from 

SerDes. These signals indicate 
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SerDes Port Name Top-level Signal-name Comments 

whether the SerDes is ready. 

For instance, ln0_TX_ready 

indicates that the SerDes is 

ready for data receipt.  

These signals can be used for 

debugging and other purposes. 

For instance, ln0_TX_ready can 

be used to start data 

transmission.  

 

ch0_o_pma_TXready ln0_pma_TXready  

ch0_o_pma_synthready ln0_pma_synthready  

ch0_o_pma_RXready ln0_pma_RXready  

ch0_o_pma_RXstat ln0_pma_RXstat  

ch0_o_pma_sig_detect ln0_pma_sig_detect  

ch0_o_pma_synthstat ln0_pma_synthstat  

ch0_o_pma_TXstat ln0_pma_TXstat  

ch0_i_pipe_pd 2’b0  

ch0_i_RX_iddq_n
1
 ln0_i_RX_iddq_n 

Power on reset signals for PMA. 

Signals can be sent to assert 

these inputs certain time after 

the SerDes is powered up. 

ch0_i_synth_iddq_n
1
 Ln0_i_synth_iddq_n  

ch0_i_TX_iddq_n Ln0_i_TX_iddq_n  

ch0_o_RX_syma_locked ln0_RX_syma_locked 

Output from SerDes to user 

logic. Indicates symbol 

alignment, when the module is 

used.  

ch0_i_sbus_clk i_sclk 

Input clock-signal to the SerDes 

for use with the Serial Bus 

(SBUS). In this design, it is 

coming from a top-level IO 

clock pad.  The external SBUS 

clock must be running when 

you program this design into 

the device since the SBUS is 

access in the startup sequence 

to enable loopback. 

ch0_i_sbus_data[1:0] ln0_sbus_wrdata sbus-related signals. 

ch0_i_sbus_req ln0_sbus_req  

ch0_i_sbus_sw_rst ln0_sbus_sw_rst  

ch0_o_sbus_ack ln0_sbus_ack  

ch0_o_sbus_data[1:0] ln0_sbus_rddata  

1 These signals are part of the reset sequence and are further detailed in the section: Error! 
eference source not found.. 

Based on the table above, the user can now instantiate the SerDes module into top-level RTL.  
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Dynamically Changing the SerDes Register Values 

Typically the PMA/PCS registers need not be changed during runtime.  However, 
simple_serdes_design uses internal SerDes loopback. Internal loopback may be the starting 
point for the users to verify the functionality of any user-design. To enable the internal 
loopback, the user needs to dynamically ( at run-time) set a PCS register via the SBUS 
interface.  This is done using the ACX_SERDES_LOOPBACK_CTRL module explained in 
Chapter – “Dynamic Read/Write of SerDes Registers via SBUS”. Internal loopback cannot be 
programmed statically (in the ACE-generated bitstream).   Section Loopback Modes presents 
the loopback modes available with Achronix SerDes. The code below shows an example of 
using ACX_SERDES_LOOPBACK_CTRL (reproduced from Chapter – “Dynamic Read/Write 
of SerDes Registers via SBUS” for ready reference). 

 

Using sBus module to enable internal loopback 

The code below shows how to enable internal loopback using the sBus 

 
  wire sbus_ln0_done; 
  wire inv_sbus_disable_loopback_ln0; 
  assign inv_sbus_disable_loopback_ln0 = ~i_sbus_disable_loopback; 
  wire unused_ln0_i_reg_write; 
  wire unused_ln0_i_reg_rw_req; 
  wire unused_ln0_i_reg_pma; 
  wire unused_ln0_i_reg_address; 
  wire unused_ln0_i_reg_wr_data; 
  wire unused_ln0_o_reg_rd_data; 
  wire unused_ln0_o_reg_rdwr_valid; 
  ACX_SERDES_LOOPBACK_CTRL #( 
      .LOOPBACK_MODE (`LPBK_TX_RX_PMA_INTERNAL), 
      .ENABLE_PASS_THROUGH(0) 
    ) 
    i_loopback_ctl_ln0 
    ( 
      .sbus_clk             (i_sclk), 
      .rstn                 (1'b1),          // ok to tie high 
      .disable_loopback     (inv_sbus_disable_loopback_ln6), // rising edge disables loopback 
      .done                 (sbus_ln0_done),          // program is finished 
 
      // serdes connections 
      .from_sbus_data       (ln0_sbus_rddata[1:0]), 
      .from_sbus_ack        (ln0_sbus_ack), 
      .to_sbus_data         (ln0_sbus_wrdata[1:0]), 
      .to_sbus_req          (ln0_sbus_req), 
      .i_pma_synthready     (ln0_synthready), 
      .i_pma_TXready        (ln0_TX_ready), 
      .i_pma_RXready        (ln0_RX_ready), 
      .to_sbus_sw_rst       (ln0_sbus_sw_rst), 
 
      // pass-through connections, can be used when 'done' is high 
      // (ignored if ENABLE_PASS_THROUGH = 0) 
 .i_reg_write   (unused_ln0_i_reg_write),   // request is ‘write' 
 .i_reg_rw_req  (unused_ln0_i_reg_rw_req),        // rising edge starts action 
      .i_reg_pma            (unused_ln0_i_reg_pma),           // address is pma address 
      .i_reg_address        (unused_ln0_i_reg_address),       // 16-bit pcs or pma address 
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      .i_reg_wr_data        (unused_ln0_i_reg_wr_data),       // data for write 
      .o_reg_rd_data        (unused_ln0_o_reg_rd_data),       // data from read (latch when 
o_reg_rdwr_valid) 
      .o_reg_rdwr_valid     (unused_ln0_o_reg_rdwr_valid)     // action finished (high for one cycle) 
 ); 

 

Note: Not all registers can be modified dynamically. For a list of the dynamic registers, please 
contact Achronix Customer Support. 

Note: To use external loopback (cables), the ACX_SERDES_LOOPBACK_CTRL instance 
needs to be removed from the design logic, or simply change the LOOPBACK_MODE 
parameter to disable internal loopback.   

simple_serdes_design_wrapper.v: This is the wrapper file generated by ACE GUI. No change 
is required in this file for the current design. 

data_generation.v: This file generates TX data for SerDes. The data generated are 40-bits. 
Comma characters are also generated in this file. The port-definitions for the module 
data_generation is shown below.  

module  data_generation (  
      input clk, 
      input rst_n, 
      input data_gen_en, 
      output [39:0] data_out 
); 

 

This module requires clock signal, reset signal and enable signal as inputs. For TX data, the 
transmit-side clock-signal and the transmit-side reset-signal are used as inputs. In the current 
design, the data generation is enabled only when PMA is ready for it’s operation. User may 
use any one or more of the following signals to enable the data-generation. However, we 
prefer using TXready or synthready as enable signal to decouple the TX path from the RX 
path:  

 ln0_pma_RXready,  

 ln0_pma_TXready, 

 ln0_pma_synthready and  

 In0_pma_RX_cdr_lck2dat 

 

The instantiation of data_generation in the top-level module is shown in the code below. 

  data_generation idata_generation (  
     .clk         (ln0_TXclk),    // TX-clock from SerDes 
     .rst_n       (ln0_rst_n_TX), // TX-reset used for SerDes 
     .data_gen_en (ln0_pma_TXready), // TX-ready signal from SerDes 
     .data_out    (ln0_TX_data)   // TX-data to SerDes 
  ); 

 

Data generated by the data_generation module needs to include comma characters. For 
simple_serdes_design, 10’h1BC is used as comma character. This complies with the values 
10’h283 and 10’h17C that has been set as symbol alignment characters earlier in the ACE 
GUI. The user may refer to section “Symbols and Comma Character” for details on these 
characters. 
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Note: When 10’h1BC is transmitted from the fabric, the output of the 8b/10b decoder on the 
PCS receiver path will be 10’h283 (alternate: 10’h17C).  

The code for data_generation module that includes comma-characters is shown below 

module  data_generation (  
      input clk,     
      input rst_n,   
      input data_gen_en, 
      output [39:0] data_out 
); 

 
always @ (posedge clk) 
 begin 
  if (rst_n == 1'b0) 
    // comma-characters when SerDes in reset-state (active-low reset) 
    data_out  <= {10'h000,10'h1BC,10'h000,10'h1BC}; 
  else if (data_gen_en == 1’b1) 
    // when data-generation enabled, i.e. TX_ready from SerDes is up 
    // *** Logic for data-generation goes here, such as PRBS-7 *** 
    // *** Should also contain comma characters ***   
  else 
    // comma-characters when data generation is ‘not’ enabled 
    ln0_TXdata  <= {10'h000,10'h1BC,10'h000,10'h1BC}; 
 end 
endmodule 

Using the clocks from SerDes: This sample design has the EFIFO disabled. Hence, two clocks 
are provided by the SerDes for the fabric: TX-clock and RX-clock. These two clocks may not 
be aligned with each other. To avoid the false paths, the user needs to use the TX-clk on the 
transmitter datapath (such as data generation for SerDes) and the RX-clk on the receive data 
path (such as checking the received data from SerDes for correctness). 

Placement of SerDes 

The placement file used for the simple_serdes_design is: src/constraints/ace_placement.pdc. 
This file contains the placement information for the followings: 

• Placement information for the SerDes instance 

• Clock/reset inputs to the SerDes  

• Debug signals that the user may want to bring outside the FPGA. 

The placement of SerDes depends on the lane that the user wants to use. While generating 
the wrapper from ACE GUI, lane# 8 has been chosen for placement (“Figure 23: New IP 
Configuration Window- Overview Page”). The consequent placement in 
simple_serdes_design_wrapper.pdc file will be:s 

set_placement -batch -fixed { i:x_ch0.u_serdes_wrap.u_serdes } { 
s:te_serdes_12lane_top_i1.u_serdes_lane_top_wrap_i0.u_serdes_lane_top } 

Since, the SerDes instance as iSerDes in the top-level module, the placement needs to be 
modified as: 

set_placement -batch -fixed { i:iSerDes.x_ch0.u_serdes_wrap.u_serdes } { 
s:te_serdes_12lane_top_i1.u_serdes_lane_top_wrap_i0.u_serdes_lane_top } 

For information about how to place the clock signals, reset signals (such as rst_hard in the 
listing  above) and other debug signals (such as ln0_synthready), please refer to the UG001 – 
ACE Users Guide. For the Speedster22i HD1000 Development Kit,  the following three show 
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the placement of SerDes-Reset signal (ln0_rst_hard);  TX-ready status signal (ln0_TX_ready) 
and the placement of the sbus-clock that is required to set internal-loopback through sbus 
interface 

 

# Manually entered  Design-specific: For providing sbus-clock for sbus-interface 
# The pin (pad0_clk_bank_se) refers to the clock-supply used in Achronix Validation Board. 
set_placement -fixed -batch {p:i_sclk}        {d:pad0_clk_bank_se} 
#SerDes reset 
set_placement -batch -fixed {p:ln0_rst_hard} { d:pad0_clk_bank_nw } 
# TX_ready signal is brought to a LED (active-low) 
set_placement -batch -fixed {p:ln0_pma_TXready} { d:pad_ws_byteio9_dq3 } 

 

Timing Constraints 

Using the directory structure defined earlier, the timing constraints will be in the file 

src/constraints/ace_constraint.sdc. The ACE GUI generates template for timing constraints 

used for the respective SerDes design. For instance, for simple_serdes_design, timing 

constraint has been generated as src/ace/simple_serdes_design_wrapper.sdc file (“ 

Figure 35: Generating the Wrapper Files”). This ACE-generated file can be used as a template 
for defining the timing constraints of a SerDes design. However, the user must manually 
enter the design related constraints, which are not generated by ACE for obvious reasons.  

The simple_serdes_design that is being described here requires such clocks that the user 
needs to provide. In the following code-snippet, the SerDes reference clocks from “Table 20: 
Signals passed between the SerDes Instance and the Top-Level module” as well as snapshot 
clocks have been added to the ACE-generated constraints. (Please refer to the ACE User 
Document for further details on using snapshot debugging tool into a design.) 

#Reference clocks 
# Manually entered  Design-specific: For providing 156.25 reference clocks to SerDes 
create_clock -period 6.4 refclkp 
create_clock -period 6.4 refclkn 
 
# Manually entered Design-specific: For providing 50MHz clock to sbus-clock.  
create_clock -period 20 i_sclk 
 
# Manually entered Design – specific: SNAPSHOT clocks 
# Clock for snapshot and for jtap 
create_clock -period 100 tck 
# Uset-entered 
set_clock_groups –asynchronous –group {tck } 
 
 
# From ACE – generated constraint file: 
# Lane RX Clocks 
# Period (ns) = 1/(RX data rate / RX 8b10b-encoded data width) 
# 1.9393939393939394 = 1/(10.3125 / 20.0) 
# Unrelated Clock Mode: All lane-to-lane clocks are unrelated EXCEPT between the TX clocks - 
Elastic buffer is disabled 
create_clock -period 1.93939393939394 iSERDES.x_ch0.u_serdes_wrap.u_serdes/o_RX_data_clk 
create_clock -period 1.93939393939394 iSERDES.x_ch0.u_serdes_wrap.u_serdes/o_TX_data_clk 
 
# Lane Clock Divider Generated Clocks 
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# Unrelated Clock Mode: All lane-to-lane clocks are unrelated - Elastic buffer is disabled 
create_generated_clock iSERDES.x_ch0.iffdmux.GEN_CLKDIV.TX.iTXclkdiv/clk_out –source 
 
iSERDES.x_ch0.u_serdes_wrap.u_serdes/o_TX_data_clk -divide_by 2 
create_generated_clock iSERDES.x_ch0.iffdmux.GEN_CLKDIV.RX.RX.iRXclkdiv/clk_out -
source iSERDES.x_ch0.u_serdes_wrap.u_serdes/o_RX_data_clk -divide_by 2 
# Complete: ACE  - generated constraints 
# Clock-grouping : For Both ACE-generated and design-specific clocks 
# The user may refer to the ACE documentation for further details on clock-grouping (???) 
# Grouping all clocks: helps decision making during the place-and-route 
set_clock_groups -asynchronous -group 
{iSERDES.x_ch0.u_serdes_wrap.u_serdes/o_RX_data_clk}\             
     -group {iSERDES.x_ch0.u_serdes_wrap.u_serdes/o_TX_data_clk} \ 
     -group {iSERDES.x_ch0.iffdmux.GEN_CLKDIV.TX.iTXclkdiv/clk_out} \ 
     -group {iSERDES.x_ch0.iffdmux.GEN_CLKDIV.TX.iRXclkdiv/clk_out} \ 
     -group {tck core_tck} 
     -group {i_sclk} 

 

Test bench Setup for Simulation 

Based on the primary inputs and primary outputs listed in “Table 20: Signals passed between 
the SerDes Instance and the Top-Level module”, testbench may now be created as shown 
below: 

module tb_fab_pcs_pma_no_ebuf_1ln_10p3125gbps_156p25mhz(); 
  reg  ch0_ref_clk_p; 
  reg  ch0_reset_signal; 
  reg  ch0_RX_output; 
 
  initial 
    begin 
      ch0_ref_clk_p    = 1'b0 ; 
      ch0_reset_signal = 1'b0 ; 
   
      #4000; 
      ch0_reset_signal = 1'b1 ; 
    end 
 
  // Generating 156.25 MHz reference clock 
  always #3200 ch0_ref_clk_p = ~ch0_ref_clk_p; 
 
  fab_pcs_pma_no_ebuf_1ln_10p3125gbps_156p25mhz DUT( 
     // Okay to tied to 1'b1 
     .ln0_RX_m      (1'b1), 
     .ln0_RX_p      (1'b1), 
     // 156.25 MHz differential reference clocks 
     .ln0_refclk_m  (~ch0_ref_clk_p), 
     .ln0_refclk_p  (ch0_ref_clk_p), 
     // Same reset input for hard-reset, RX-reset & TX-reset 
     .ln0_rst_n_RX  (ch0_rst_hard_n), 
     .ln0_rst_n_TX  (ch0_rst_hard_n), 
     .ln0_rst_hard  (ch0_rst_hard_n), 
     .ln0_RX_data   (ch0_RX_output) 
 ); 
Endmodule  
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Design Guidelines 

This section will first present the coding practice that the user is recommended to use. 

Reset Sequence  

The following sequence is presented as a guidance to define the reset signals (Table 20: 

Signals passed between the SerDes Instance and the Top-Level module”) to be used with a 

typical SerDes application. The minimum timing requirements are with reference to the 

keep-alive clock which runs at 27 MHz (for non wide bus interface) and at 13.7 MHz (for 

wide bus interface) 

1. De-assert hard-reset (ch0_i_rst_hard_n ) after at least 600µs . 

2. After hard reset de-assertion, wait for at least 600µs and then de-assert the iddq reset 

signals( ch0_i_tx_iddq_n, ch0_i_rx_iddq_n and ch0_i_synth_iddq_n) 

3. After iddq signals are de-asserted, wait for at least 600µs. Then de-assert both 

ch0_i_tx_rst_n on PCS-TX data-path and ch0_i_rx_rst_n on PCS-RX data-path. 

4. Once the system is out of reset the tx/rx clk (ch0_o_tx_data_clk and ch0_o_rx_data 
clk) switches from keep-alive clock (27 MHz for non wide bus interface and 13.7 
MHz for wide bus interface) to user-mode clock (for example, 257.8 MHz for 
10.3Gbps data rate) 

Notes:  

1. The reference clocks on all instantiated Serdes lanes MUST be running during 

programming the bitstream on the HD1000 device to properly configure the SerDes. 

2. Dynamic functions like Loopback mode, BIST and SSC generation must be disabled 

when programming the bitstream. These functions have to be enabled through SBUS 

after bitstream programming. 

 
 

Figure 37: Timing Requirements for Reset Signals 
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The following code provides the register values that control the wait times for the reset 

signals. 

 

module pma_reset_seq(input tx_clk,   

                     input rx_clk,   

                     input tx_rstn,   

                      output reg hard_rstn,   

                     output reg txiddq_rstn,   

                     output reg rxiddq_rstn,   

                     output reg lane_txrstn,   

                     output reg lane_rxrstn                        

                     );   

 

`ifdef SIMULATION   

// Lower threshold values are used to speed-up simulation  

`define REG_THRESHOLD   16'h20    

`define IDDQ_THRESHOLD  16'h20    

`define LNRST_THRESHOLD 16'h20    

 

`else   

// threshold values correspond to actual wait time of 600 µs  

`define REG_THRESHOLD   16'h2000  // 16'b0010_0000_0000_0000 //16'd8192   

`define IDDQ_THRESHOLD  16'h2000  // 16'b0010_0000_0000_0000 //16'd8192   

`define LNRST_THRESHOLD 16'h2000 //16'b0010_0000_0000_0000//16'd8192   

`endif   

 

reg [15:0] tx_counter_reg = 16'b0;   

reg [15:0] rx_counter_reg = 16'b0;   

reg [15:0] tx_lnrst_count = 16'b0;   

reg [15:0] rx_lnrst_count = 16'b0;   

reg [15:0] txiddq_count = 16'b0;   

reg [15:0] rxiddq_count = 16'b0;   

 

//A. Hard resetn de-assertion  

//hard_rstn correspond to ch0_i_rst_hard_n  

always @ (posedge tx_clk) begin //ln0_txclk   

  if (tx_rstn == 1'b0)   

     tx_counter_reg <= {16{1'b0}};   

  else if (tx_counter_reg == `REG_THRESHOLD)   

     tx_counter_reg <= tx_counter_reg ;   

  else   

     tx_counter_reg <= tx_counter_reg + 1 ;   

 end   

 

 always @ (posedge tx_clk) begin //ln0_txclk   

  hard_rstn <= (tx_counter_reg == `REG_THRESHOLD) ? 1'b1 : 1'b0;   

 end   
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//B. IDDQ - Power down reset de-assertion   

   always @(posedge tx_clk) begin //ln0_txclk   

   if(hard_rstn == 1'b0)   

     txiddq_count <= {16{1'b0}};   

   else if (txiddq_count == `IDDQ_THRESHOLD)   

     txiddq_count <= txiddq_count;   

   else   

     txiddq_count <= txiddq_count + 1;      

 end   

    

 always @(posedge tx_clk) begin //ln0_txclk   

  txiddq_rstn <= (txiddq_count == `IDDQ_THRESHOLD) ? 1'b1 : 1'b0;   

 end   

    

 always @(posedge rx_clk) begin //ln0_rxclk   

   if(hard_rstn == 1'b0)   

     rxiddq_count <= {16{1'b0}};   

   else if (rxiddq_count == `IDDQ_THRESHOLD)   

     rxiddq_count <= rxiddq_count;   

   else   

     rxiddq_count <= rxiddq_count + 1;      

 end   

    

 always @(posedge rx_clk) begin //ln0_rxclk   

  rxiddq_rstn <= (rxiddq_count == `IDDQ_THRESHOLD) ? 1'b1 : 1'b0;   

 end   

    

 //C. Lane Resets tx/rx resetn de-assertion- iddq-lde-aasertion to lane reset de-assertion  

 always @(posedge tx_clk) begin //ln0_txclk   

  if(txiddq_rstn == 1'b0)   

    tx_lnrst_count <= {16{1'b0}};   

  else if(tx_lnrst_count == `LNRST_THRESHOLD)   

    tx_lnrst_count <= tx_lnrst_count;   

  else   

    tx_lnrst_count <= tx_lnrst_count + 1 ;   

  end   

 

 always @(posedge tx_clk) begin //ln0_txclk   

  lane_txrstn <= (tx_lnrst_count == `LNRST_THRESHOLD) ? 1'b1 : 1'b0;   

 end   

    

 always @(posedge rx_clk) begin //ln0_rxclk   

  if(rxiddq_rstn == 1'b0)   

    rx_lnrst_count <= {16{1'b0}};   

  else if(rx_lnrst_count == `LNRST_THRESHOLD)   

   rx_lnrst_count <= rx_lnrst_count;   

  else   
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   rx_lnrst_count <= rx_lnrst_count + 1 ;   

 end   

 

 always @(posedge rx_clk) begin //ln0_tx_clk   

  lane_rxrstn <= (rx_lnrst_count == `LNRST_THRESHOLD) ? 1'b1 : 1'b0;   

 end   

 endmodule   

 

SerDes Placement and Clocking Limitations 

Although there are 64 independent raw SerDes lanes available on the device, there are 
restrictions on how many lanes can effectively be used in a given design, depending on 
placement and configuration of SerDes clocks entering the Core.  All 64 SerDes lanes may be 
used in a design, as long as the clock and placement criteria are met.  Below is a list of rules 
you can use to determine if your design’s SerDes configuration will be supported on the 
device. 

Note: There are workarounds for some corner cases that violate the SerDes placement and 
clocking limitations. Please contact support to discuss if your corner case design has a 
workaround or not 

Clock resource limitations in the Core: 

 The Core is divided into clock regions as seen in the figure below.  The clock regions 
are split by the clock trunk (vertically) and the clock branches (horizontally), forming 
a set of clock regions on the West and another set on the East.    

 Each clock region is capable of handling 16 clock resources 

 All clocks from SerDes lanes 0 to 14 on the North Side of the Chip enter the far 
NorthWest clock region. 

 All clocks from SerDes lanes 20 to 31 on the North Side of the Chip enter the far 
NorthEast clock region. 

 All clocks from SerDes lanes 15 to 19 on the North Side of the Chip enter BOTH the 
far NorthWest and far NorthEast clock regions. Avoid using these lanes if possible. 

 All clocks from SerDes lanes 0 to 14 on the South Side of the Chip enter the far 
SouthWest clock region. 

 All clocks from SerDes lanes 20 to 31 on the South Side of the Chip enter the far 
SouthEast clock region. 

 All clocks from SerDes lanes 15 to 19 on the South Side of the Chip enter BOTH the 
far SouthWest and far SouthEast clock regions.  Avoid using these lanes if possible. 

 As a rule of thumb, you will always need at least 1 system clock and 1 SBUS clock in 
each clock region.  So the total number of SerDes clocks is effectively limited to 14 
clocks. 
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Figure 38: Clock Region View 
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The following factors determine how many clocks enter the Core for each SerDes lane or 
bonded group of lanes: 

 Use of Hard IP Controllers: If you are using a hard IP controller, such as Interlaken, 
Ethernet, or PCIe, then the number of clock resources entering the Core is 
determined by the number of clocks on the hard IP controller.  All raw SerDes clocks 
connect to the hard IP controllers and do not enter the Core.  Using the hard IP 
controllers significantly reduces the number clock resources needed in the Core, 
compared to using raw SerDes.  

 By default, each raw SerDes lane consumes 2 clock resources in the Core: 1 Tx Data 
Clock and 1 Rx Data Clock 

 If you are using a data rate greater than or equal to 6 Gbps, then the Wide Bus 
interface must be used.  Using Wide Bus causes the number of clocks per raw SerDes 
lane to double.  Each SerDes clock entering the Core is divided by 2, resulting in a 
second clock resource for each original clock. 

 If you enable the EFIFO Elastic Buffer in the PCS, each pair of Rx and Tx clocks 
become combined into 1 clock, resulting in ½ the clock resources entering the Core. 

 If you enable channel bonding in the PCS, you can bond a group of SerDes lanes 
together, resulting in 1 set of master SerDes clocks per the entire bonded group of 
SerDes lanes (as opposed to 1 set of clocks per lane).  Channel bonding is limited to a 
maximum of 12 lanes per bonded group.  This can dramatically reduce the number 
of clocks entering the Core.  For example, if you have 12 non-bonded raw 10 Gbps 
SerDes lanes placed on the North side of the chip on lanes 0-11, it will result in 48 
clocks coming into the Core (2 per lane x 2 for Wide Bus).  That is too many clocks.  
Now, if you bond the 12 raw serdes lanes together with channel bonding, you will 
only need 4 clocks (for the master lane) entering the Core, resulting in  1/12th the 
clock resources being consumed.  This now easily fits within the 16 clock limit per 
Core clock region. 

 

Tips to reduce clock resources: 

 Use hard IP controllers 

 Use channel bonding 

 Use the EFIFO in the PCS 

 Use a data rate of less than 6 Gbps (to eliminate Wide Bus) 

 

The following placement limitations determine where you can place a group of bonded or 
non-bonded SerDes lanes: 

 A single raw SerDes lane may be placed on any SerDes site in the device 



86  UG028, November 24, 2015 

SerDes lanes on the chip are divided into physical groups of 8 lanes (0-7), 12 lanes (8-

19) and 12 lanes (20-31) on the North and South sides of the chip, as seen in  

 Figure 39: Physical assignment of SerDes Lanes below. 

 

Figure 39: Physical assignment of SerDes Lanes 

 

 Channel bonding of multiple lanes is limited to fit within the boundaries of each 
group.  For example, a bonded group of 10 SerDes lanes cannot be placed on lanes 0-
9, since that overlaps the boundary of the physical group of lanes 0-7. 

 On both the North and South sides of the chip, there are additional restrictions on 
lanes 20-31 if you instantiate multiple non-bonded serdes lanes.  You cannot place 
the non-bonded SerDes lanes adjacent to each other.  Due to clock muxing 
limitations, you must place each non-bonded lane on every other (even numbered) 
lane.   Figure 40: SerDes Placement Guidelines below shows available lanes in white, 
and illegal/unavailable lanes in gray for a multi-lane non-bonded interface.  Note that 
if you use channel bonding, you may place your multi-lane bonded interface on any 
of the lanes 20-31.  
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 Figure 40: SerDes Placement Guidelines 

 

 Avoid lanes 15-19 (on North and South) when not using channel bonding, since these 
lanes consume clock resources in both East and West clock regions.  This is not a 
hard rule, but is something to be aware of when calculating clock resources. 

 

Example of managing clock resources: 

Let’s say we want to use all 32 SerDes lanes on the North side of the chip.  We will not be 
using the hard IP controllers.  We need to have 8 independent non-bonded raw SerDes lanes 
running at 5 Gbps, and the other 24 lanes can optionally use channel bonding and run at 10 
Gbps.   

To start with, remember that there are 16 clock resources available in the NorthWest clock 
region and another 16 clock resources available in the NorthEast clock region. 

If we simply instantiate 8 raw SerDes at 5 Gbps, we will get 16 clock resources entering the  
Core: 1 Rx Data Clock and 1 Tx Data Clock for each lane.  We can reduce this to 8 clocks by 
enabling the PCS EFIFO Elastic Buffer to combine Tx and Rx clocks.   

Next, if we were to instantiate the 24 10 Gbps lanes independently, we would get a total of 96 
clocks entering the Core: (1 Rx Data Clock and 1 Tx Data Clock for each lane) x 2 for Wide 
Bus.  This is far too many clocks.  We can reduce this with channel bonding.  Since channel 
bonding is limited to a maximum of 12 lanes per group, let’s create 2 bonded groups of 12 
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lanes.  Now we have a total of 4 clocks per bonded group of 12 lanes, or 8 total clocks for the 
24 10 Gbps lanes. 

At this point, we have a total of 16 clock resources needed for the SerDes (8 for the 5 Gbps 
lanes and 8 for the 10 Gbps lanes).  Now we need to place the SerDes lanes. 

Since the chip allows bonded groups of lanes to be placed on lanes 0-7, 8-19, and 20-31, we 
can easily see that our groups of 12 bonded lanes will not fit on lanes 0-7.  We must place our 
2 groups of 12 bonded lanes on lanes 8-19 and 20-31.  This leaves lanes 0-7 open to place the 8 
independent 5 Gbps lanes on. 

Now let’s see where we stand with the clock resources.  The 8 independent 5 Gbps lanes 
(using EFIFO) placed on lanes 0-7 bring 8 clocks into the NorthWest clock region.  The 
bonded group of 12 10 Gbps lanes placed on lanes 8-19 bring an additional 4 clocks into the 
NorthWest region.  Let’s say the master clock lane is assigned to lane 15 on the chip.  Since 
lanes 15-19 distribute clocks to both East and West, that would mean we now also have 4 
clocks entering the NorthEst region. The bonded group of 12 10 Gbps lanes placed on lanes 
20-31 bring an additional 4 clocks into the NorthEast region. 

So, for all 32 lanes, we have a total of 12 SerDes clocks in the NorthWest region and 8 SerDes 
clocks in the NorthEast region.  This leaves 4 clock resources available in the NorthWest 
region and 8 clock resources available in the NorthEast region (for system clocks, SBUS clock, 
etc). 

Now, if we wanted to add more SerDes lanes on the South side of the chip, we would go 
through the same type of exercise.  Note that using the SerDes lanes on the North side of the 
chip does not consume clock resources on the South clock regions (which are available to the 
South SerDes lanes).   

 

Wide Bus 

At the interface between the SerDes and the FPGA fabric, incoming RX data is parallelized 
onto a user-selected width bus before being provided to the FPGA fabric. Similarly, parallel 
data of a user-selected width from the FPGA fabric is serialized in the SerDes before being 
transmitted on outgoing TX lanes. 

This interface allows for parallelization of 8, 10, 16 or 20, as defined by the user. For example, 
a full duplex link operating at 2.5Gbps with a data width of 10, would require the FPGA 
fabric to be operating at 2.5*1000/10 = 250MHz. 

As you can imagine, even at the widest data width of 20, high link data rate operation would 
result in FPGA fabric timing requirements that would be difficult to achieve. 

To accommodate for this, and to ensure that timing can be closed for the FPGA fabric in a 
reasonable manner, the “Generic” and “Lanelinx” Standards in the SerDes macro 
automatically introduce a ‘Wide Bus’ interface. This interface is enabled for all data rates 
beyond 6.25 Gbps and essentially doubles the parallel transmit/receive data bus (and 
supporting buses) widths at the SerDes-FPGA fabric interface, whilst accommodating FPGA 
fabric operation at half of the previously defined frequency. There is also some additional 
latency introduced. 

For example, a full duplex link operating at 8.0Gbps with a data width of 20, would require 
the FPGA fabric to be operating at 8.0*1000/40 = 200MHz. The datain and datout buses would 
both be of size 40. 

“10G Ethernet”, “Interlaken” and “PCI-Express” also provide support for wide bus 
interfaces. Please refer to the respective user guides on support details and other relevant 
information. 
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Design Tips 

Timing report of a routed design: When a design passes through the place-and-route tool, 
please make sure that there is no setup- and/or hold-time violation for the routed design. 
Section-4 of the ACE User Document provides a detailed description of checking the timing 
reports generated by ACE.  

Bringing up debug/status signals from the top-level RTL: To facilitate debugging of a design, 
we can bring up the SerDes status signals to on-board LED’s and/or SMA/SMP connectors. 
“Table 20: Signals passed between the SerDes Instance and the Top-Level module” provides 
a list of debugging signals that we use as primary outputs from the top-level RTL: 
simple_serdes_design_top.v.  

Note: These signals can be used for other purposes as well. For example, ln0_pma_TX_ready 
signal can be used to enable the data-generation and transmission to SerDes. 

Observing the clocks from SerDes: It is a good idea to observe the RX and TX clock signals 
that are generated by SerDes. The user may not directly connect these signals (ln0_RX_clk 
and ln0_TX_clk) to SMA connectors. An alternative way of observing these signals is to 
generate a signal (in the fabric) based on these clocks and connect them to SMA connectors. 
The following code snippet from simple_serdes_design_top.v shows two clock signals that 
are generated in the fabric. The frequency of these generated signals are half of that for the 
TX and the RX clock frequencies. 

// ln0_TX_clk_div2 and ln0_RX_clk_div2 have been defined as primary outputs. 
// 
// Generation of divide-by-2 clock, based on TX-clk generated by SerDes 
always @ (posedge ln0_TX_clk or negedge ln0_rst_n_TX) 
 begin 
   if (ln0_rst_n_TX == 1'b0) 
     ln0_TXclk_div2 <= 1'b0; 
   else 
     ln0_TXclk_div2 <= ~ln0_TXclk_div2; 
 end 
 
// Generation of divide-by-2 clock, based on RX-clk generated by SerDes 
always @ (posedge ln0_RXclk or negedge ln0_rst_n_RX) 
 begin 
   if (ln0_rst_n_RX == 1'b0) 
     ln0_RXclk_div2 <= 1'b0; 
   else 
     ln0_RXclk_div2 <= ~ln0_RXclk_div2; 
 end 

For observation, we need to connect these signals to SMA connectors, which require the 
addition of the following two lines in src/constraints/ace_placement.pdc file: 

 

#div2 version of SerDes RX and TX clocks 
set_placement -batch -fixed {p:ln0_TXclk_div2}  {SMA Pin in Development Board} 
set_placement -batch -fixed {p:ln0_RXclk_div2}  {SMA Pin in Development Board} 

The frequency of RX and TX clock does not depend on the reference clock that we are using, 
which is 156.25 MHz in our sample design. Rather, the frequency of the clocks generated by 
SerDes depends on the data-rate and data-width. This frequency is determined by ACE GUI 
while generating the wrapper file.  
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For our sample design, we have defined data-rate=10.3125gbps and data-width=20. For this 
higher-rate, the wide-bus architecture will be used. In other words, 40-bits data will be 
transmitted to and received from SerDes. The frequency for both TX and RX clock will then 
be 257.81 MHz: 

 
 

Equation 2 

           
         

                       
 

       

  
           

 

We should have clocks toggling at ~129 MHz for both ln0_TXclk_div2 and ln0_RXclk_div2. 

 

1) It’s mandatory for all SerDes lanes instantiated in the design to have a reference clock 
going to them.  If two SerDes lanes are instantiated in a design, BOTH lanes will need a 
reference clock even if only one of them is being used.  

2) ALL reference clocks should be running on ALL the serdes lanes before programming 
the bitstream (and they should be running after programming as well). 

3) For certain modes (Deskew), all the reference clocks should be coming from the same 
clock source. 

 

Variants of the Simple Design 

In the earlier section, a sample design has been presented, the description of which is given in 
the listing below. This section details the preparation of the designs that use different sets of 
components from PCS block. This section will detail only the derivatives, as compared to the 
steps followed in creating the simple design in the earlier section: simple_serdes_design. 
Understanding the steps detailed in this section therefore requires the understanding of the 
steps listed for creating simple_serdes_design. 

Design using Clock Compensation (EFIFO): 

In simple_serdes_design, we disable the PCS block that takes care of clock compensation: 
EFIFO. The preparation of a design with clock compensation is presented here.  

The design with clock compensation enabled is called simple_serdes_design_efifo. The 
specifications for this design are listed below 

Design name        : simple_serdes_design_efifo 
Objective              : Send data from fabric to SerDes and read-back data using external loopback. 
Data rate                : 10.3125 Gbps 
Standard                : Generic 
Number of lanes   : 1 
Placement              : South lane# 8 
Ref. clock                : 156.25 Mhz 
Data width             : 40  
PCS blocks used    : 

8b/10b encoder 
8b/10b decoder 
Symbol alignment: Automatic mode 
Clock compensation (EFIFO) is enabled 
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Overview of the modification: With respect to the steps followed in creating 
simple_serdes_design, the following modifications are made in preparing 
simple_serdes_design_efifo: 

1. Changes in using ACE GUI during wrapper generation. 

2. Changes in RTL code related to using clock signals generated by SerDes. 

3. Changes in ace_placement.pdc and ace_constraint.sdc related to using clock signals from 
SerDes. 

These modifications are detailed below.  

Modification – 1 (ACE GUI): In the design discussed above (simple_serdes_design), clock 
compensation (EFIFO) was disabled. For the current derivative of the design 
simple_serdes_design_efifo, EFIFO is enabled.  

We will start by creating a new ACXIP file in the ACE GUI for the modified design, 
simple_serdes_design_efifo. All fields in the GUI can be set to the same values as was done for 
simple_serdes_design, wit hthe exception of the RX PCS Setings as shown below.  The entry 
fields and the available options are listed in “Table 21: Modifications for 
simple_serdes_design_efifo (RX PCS Settings)” This table also presents the choices that are 
made for the current design: simple_serdes_design_efifo. 

 

Table 21: Modifications for simple_serdes_design_efifo (RX PCS Settings) 

 

Entry field  Available Options Choice made 

Decoder*3 

 Disabled 

 8b/10v 

 128/130b 

8B10B (8b/10b) decoder 

Polarity Bit Reversal (PBR) 

Functions 
  

PBR Block*3 
 PBR0 

 PBR1 
PBR0 (Default) 

Receive Symbol Swap*3 
 True 

 False 
False 

Receive Bit Order Reverse*3 
 True 

 False 
False 

Receive Polarity Reverse*3 
 True 

 False 
False 

Elastic FIFO*3   

Use Elastic FIFO*3 
 True *2 

 False 
True 

8b Mode*3 
 True 

 False 
False 

SKIP Mode*3 

 Disabled 

 802.3ae (one word) 

 802.3 (two words) 

 PCIe 

802.3ae (one word) 

SKIP Word 0*3 
Text field to select user-defined 

value 
10’h283 
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Entry field  Available Options Choice made 

Eanble ALT 0*3 
 True 

 False 
True 

ALT SKIP Word 0*3 

Text field to select user-defined 

value (available only when 

Enable ALT 1 is selected 

10’h17C 

SKIP Word 1*3 
Text field to select user-defined 

value 

N/A since 802.3ae is chosen as 

SKIP Mode 

Eanble ALT 1*3 
 True 

 False 

N/A since 802.3ae is chosen as 

SKIP Mode 

ALT SKIP Word 1*3 

Text field to select user-defined 

value (available only when 

Enable ALT 0 is selected 

N/A since 802.3ae is chosen as 

SKIP Mode 

SKIP Word 2*3 
Text field to select user-defined 

value 

N/A since 802.3ae is chosen as 

SKIP Mode 

Eanble ALT 2*3 
 True 

 False 

N/A since 802.3ae is chosen as 

SKIP Mode 

ALT SKIP Word 2*3 

Text field to select user-defined 

value (available only when 

Enable ALT 2 is selected 

N/A since 802.3ae is chosen as 

SKIP Mode 

Transition Density Checker 

(TDC) 
  

Enable Transition Density 

Checker*3 

 True *1 

 False 
False 

Max Count*3 

Text field for user-defined value 

(available only when TDC is 

enabled) 

N/A (TDC not enabled) 

Max Count Scaling Factor*3 

 x1 

 x2  

 x4  

 x8  

 x16 

N/A (TDC not enabled) 

*1 If True is selected, the ACE GUI will add one input port (ch0_i_RX_tdc_clr) and one output port 
(ch0_o_tdc_det) to the wrapper RTL. This change is reflected in IP Diagram sub-window. 

*2 When EFIFO enabled, four additional EFIFO related ports are added to wrapper 
(ch0_o_efifo_ovr_flw, ch0_o_efifo_skp_add, ch0_o_efifo_skp_del and ch0_o_efifo_und_run).  

*3 Further descriptions on these functions are presented in Chapter-“PCS Blocks in the Receiver 
(RX)” 

A snapshot of RX PCS Settings for the current derivative of the design is shown in “ 

Figure 41: PCS Settings for Receiver – Configurations for Decoder and Elastic FIFO”. 
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Figure 41: PCS Settings for Receiver – Configurations for Decoder and Elastic FIFO 

 

Now, just as we did for the design without clock-compensation (simple_serdes_design), we 
can generate the design files from the ACE GUI for our design with clock compensation 
(simple_serdes_design_efifo). 

Modification – 2 (RTL Code): The comma character that has previously been used for symbol 
alignment is used as EFIFO SKIP word in this derivative of the design. Therefore, no change 
is required for the data generation module (data_gen.v).  

However, with clock compensation enabled, the aligned TX and RX clocks are available from 
the SerDes instance, as a single clock. Top-level design needs to be modified to reflect this. 
More specifically, in the baseline design simple_serdes_design, two clocks were generated by 
SerDes: ln0_TX_clk and ln0_RX_clk. These two clocks had respectively been used on the 
transmitter side (such as data generation) and on the receiver side (such as data check). In 
contrast, for the current derivative of the baseline design (simple_serdes_design_efifo), one 
clock .ch0_o_TX_data_clk is used as the clock from SerDes.  

 

 

 

 

 

 



94  UG028, November 24, 2015 

 

Related modifications are listed below: 

Simple_serdes_design_efifo_wrapper iSerDes 
( 
 // ============================= 
 // Lane 0 
 // ********************** 
 // Inputs to SerDes 
 // ********************** 
    .. .. .. 
    .. .. .. 
// ********************** 
 // Outputs from SerDes 
 // ********************** 
    // Data received from SerDes 
    .. .. .. 
    .. .. .. 
    // Clocks from SerDes 
    .ch0_o_TX_data_clk         (ln0_TX_clk), 
    .ch0_o_RX_data_clk         (ln0_RX_clk_unused),  
                      // okay to keep floating as well. 
);    

 

• Modification to the code related to the generation of divide_by_2 clock signals that are 
used for debug purpose: 

// ln0_TX_clk_div2 and ln0_RX_clk_div2 have been defined as primary outputs. 
// 
// Generation of divide-by-2 clock, based on TX-clk generated by SerDes 
always @ (posedge ln0_TX_clk or negedge ln0_rst_n_TX) 
 begin 
   if (ln0_rst_n_TX == 1'b0) 
     ln0_TXclk_div2 <= 1'b0; 
   else 
     ln0_TXclk_div2 <= ~ln0_TXclk_div2; 
 end 
// ************************************************************************ 
// ******* We comment out the divide_by_2 clock for ln0_RX_clk 
// Generation of divide-by-2 clock, based on RX-clk generated by SerDes 
// always @ (posedge ln0_RXclk or negedge ln0_rst_n_RX) 
// begin 
//   if (ln0_rst_n_RX == 1'b0) 
//     ln0_RXclk_div2 <= 1'b0; 
//   else 
//     ln0_RXclk_div2 <= ~ln0_RXclk_div2; 
// end 
// **** Commented out 
// ************************************************************************ 
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Modification – 3 (placement and timing constraints): Since there is only one divide-by-two 
clock in this derivative of the design, we can remove the placement for ln0_RXclk_div2 from 
ace_placement.pdc. 

Contents of the ace_constraints.sdc file can be copied from the ACE generated .sdc file except 
for the constraints related to the user-defined clocks (such as, reference clocks and snapshot 
clocks). 

Design Bypassing PCS: 

There are two modes for bypassing a PCS: 

1. PCS Enabled mode: In this mode, PCS is not disabled, but all of the PCS modules are 
disabled. In other words, data (transmit and receive) will travel through the PCS components 
while bypassing them, as shown in “Figure 6: PCS Transmitter Block Overview”. 

2. PCS Bypassed mode: In this mode, the PCS block is bypassed on both transmit and 
receive datapaths. This is shown in “Figure 6: PCS Transmitter Block Overview”. 

Note: While creating the baseline design (simple_serdes_design), the PCS has been kept 
enabled while bypassing some PCS modules, such as EFIFO and deskew modules.  

“Table 9: Latency across the PCS blocks” presents the latency that the data-path experiences 
for each of the above two modes: 

With respect to the simple baseline design (simple_serdes_design) where some of the PCS 
modules are used, this derivative of the design will bypass PCS module individually (Mode-
1 above) or will completely bypass the PCS block (Mode-2 above). This derivative of the 
baseline design is called simple_serdes_design_pcs_bypass. For this derivative, this section 
presents the derivatives with respect to the design flow used for creating the baseline design.  

 

Specifications for this derivative are shown below. 

Design name       : simple_serdes_design_pcs_bypass 
Objective             : Send data to SerDes and read-back using loopback. 
Data rate               : 10.3125 Gbps 
Standard               : Generic 
Number of lane   : 1 
Placement (lane to be used): Bottom-lane# 8 
Ref. clock             : 161.138125 Mhz 
Data width          : 20 (Wrapper will use wide-bus to make data 40-bit wide) 
PCS blocks used : None 

Mode – a: PCS modules are disabled 
Mode – b: PCS is disabled as a block. 

No comma character required for transmit data since we are not using symbol alignment or 
deskew blocks.  

 

Overview of the changes: Compared to the design flow used for the baseline design, the 
following changes are made for simple_serdes_design_pcs_bypass:  

1. Change in using ACE GUI during wrapper generation. 

2. Change in RTL code. 

Note: There will be no change required for placement-constraint (ace_placement.pdc) and 
timing-constraint (ace_constraint.sdc) when compared to the files used for the baseline 
design. 
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Note: Although the PCS modules are disabled, the SerDes will still generate two clocks for 
transmit and receive ends (from PMA). Unlike the design with EFIFO enabled 
(simple_serdes_design_efifo), these two clocks are not aligned.  

The changes for this derivative of the design are presented below. 

 

Modification – 1 (ACE GUI):  

Mode – a (Bypassing PCS Modules without Disabling PCS): While generating GUI wrapper for 
this derivative, we need to disable the followings: 

1. 8b/10b encoder module in RX PCS Settings window, 

2. Symbol alignment module in RX PCS Symbol Alignment window, and  

3. 8b/10b decoder in TX PCS Settings window. 

Details on these windows have been presented while explaining the design flow for the 
baseline design.  

Mode – b (Disabling PCS that essentially disables all PCS blocks): In this mode, the PCS block is 
completely disabled.  

This can be done by disabling the PCS from ACE GUI as shown in  

Figure 42: Disabling PCS from ACE GUI. Please note that for the baseline design 
simple_serdes_design, the box was left unchecked (Figure 31: PCS Settings Window – First 
page). 

Modification – 2 (Design RTL): With respect to the sample design (simple_serdes_design), this 
variant with PCS bypassed will require only one change in top-level design due to the fact 
that comma character is not longer required. Corresponding changes in the module 
data_generation is presented below: 

module  data_generation (  
      input clk,     
      input rst_n,   
      input data_gen_en, 
      output [39:0] data_out 
); 
 
always @ (posedge clk) 
 begin 
  if (rst_n == 1'b0) 
    data_out     <= 40’b0; 
    // *** Comment out the comma-character generation 
    // *** data_out  <= {10'h000,10'h1BC,10'h000,10'h1BC}; 
  else if (data_gen_en == 1’b1) 
    // when data-generation enabled, i.e. TX_ready from SerDes is up 
    // *** Logic for data-generation goes here, such as PRBS-7 *** 
  else 
    data_out  <= 40’b0; 
    // *** Comment out the comma-character generation 
    // ***data_out  <= {10'h000,10'h1BC,10'h000,10'h1BC}; 
 end 
endmodule 
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Note: When compared with the sample design (simple_serdes_design), no change is required in 
ace_placement.pdc or in ace_constraint.sdc files for this derivative 
(simple_serdes_design_pcs_bypassed). The instantiation of the SerDes wrapper will remain 
same. 

 

 

 

Figure 42: Disabling PCS from ACE GUI 

 

Bypassing PCS by Manually Overriding Corresponding Register 

This section presents use an alternative approach for bypassing PCS through the Advanced 
section in ACE GUI. This is presented for demonstration purpose only.  

The PCS blocks can be bypassed by modifying the value stored in the PCS register 17A. More 
specifically, the bit-4 of the PCS register 17A needs to be set at 1’b1 to bypass the PCS block.  

The values of the PCS/PMA registers can be overridden by using the Advanced section of the 
ACE GUI. The user can reach Advanced section by selecting the link in the Outline window 
(“         Figure 24: Outline Window”).  

Clicking Next button will bring the page titled Register Settings – Lane 0 as shown in “Figure 
43: Modifying Register Settings from ACE GUI”. This page has several fields: 

1. Start Address, End Address and Function. These fields are used to search for a 
specific PCS register. The hexadecimal address is used for both PCS and PMA 
registers.  

2. A table displaying the list of AHB addresses (1st column: AHB Address) and the 
corresponding values set by ACE (3rd column: Value). The 2nd column (Override 
Value) will display the values that are entered as overriding value, such as bit-4 of 
Reg17A. 

3. Two text boxes for AHB Address and Override Value. To enter the value that will 
override the default value of a register. Both of these entries need to be in 
hexadecimal format. 

4. A table that shows the details on each bit for the register that corresponds to the 
address typed in AHB Address text-field. 
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Figure 43: Modifying Register Settings from ACE GUI 

 

To bypass the PCS block, the bit-4 of Reg[17A] needs to be set to 1’b1, i.e., 17A needs to be set 
at 8’h10. To do that, the user needs to follow the steps listed below: 

 Type 17A in start address and hit tab on keyboard to have the address 17A.  

 Select 17A on the table in the middle so that ‘17A’ is displayed in the text-field titled 
AHB address.  

 type ‘10’ (8’h10) in the text-field for Override Value (“Figure 44: Changing Value of 
Register 17A to bypass PCS block”).  

 Click Generate button to generate the GUI wrapper. 
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Figure 44: Changing Value of Register 17A to bypass PCS block 

 

Note: Setting Reg[17A] at 8’h10 will automatically disable all PCS modules even if they are 
not disabled individually in ACE GUI.  
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Dynamic Read/Write of SerDes Registers via SBUS 

This chapter broadly categorizes the PMA and PCS registers into: 

1. Static registers 

2. Dynamic registers 

While the static registers are hardcoded into ACE generated GUI, the dynamic registers can 
be modified runtime. This chapter details the macros that can be used to modify the dynamic 
PCS/PMA registers. 

Typically, SerDes registers are programmed during FPGA configuration, and there is no need 
to program them dynamically. One common case where registers need to be programmed 
dynamically is to set loopback mode. 

In this chapter, we first present the overview of the SerDes register access through SBUS. We 
then present a micro-controller that executes one or more sequences of SBUS register 
accesses. Finally, we present an example of existing ACE macros for using SBUS interface; the 
example presents the case where the user wants to set the SerDes loopback mode. 

Overview 

The Serdes has a serial interface, called SBUS, through which the user design can read and 
write internal registers. The ACX_SERDES_SBUS_IF module provides parallel-to-serial 
conversion for this interface. (Other I/O ring components have an SBUS interface as well.) 

To enable SerDes register access through SBUS, the user needs to use the following in the 
code. 

`include "speedster22i/macros/ACX_SERDES_SBUS_IF.v" 

 

Alternatives for using SBUS interface for SerDes register access: 

There are several ways of using SBUS interface for SerDes register access: 

 The user can use the ACX_SERDES_SBUS_IF module that is a relatively low-level 
interface.  

 Rather than using ACX_SERDES_SBUS_IF module, wrappers for common 
configurations can be created using ACX_SERDES_REG_CTRL. 

 For some purposes, ACE library provides wrapper macros. For instance, for the 
common case of setting loopback mode using SBUS interface, the user can use the 
macro ACX_SERDES_LOOPBACK_CTRL; this macro automatically configures 
loopback mode once the SerDes is ready.  

 Each of the above requires using SBUS interface to access PMA/PCS registers. The 
BitPorter perspective in the Ace GUI has a JTAG Browser tab, which allows reading 
and writing the SerDes register values interactively through the JTAG interface. This 
gives access to the same registers as the SBUS interface. 

Note: Both ACX_SERDES_REG_CTRL and ACX_SERDES_LOOPBACK_CTRL calls the low-
level ACX_SERDES_SBUS_IF under the hood. 
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ACX_SERDES_SBUS_IF Module 

The connection diagram for ACX_SERDES_SBUS_IF is shown in “                                                         
Figure 45: Disabling PCS Decoder (default ACE Setting)”. 

                                                         Figure 45: Disabling PCS Decoder (default ACE Setting) 

The code below presents the port definitions in ACX_SERDES_SBUS_IF module 

module ACX_SERDES_SBUS_IF ( 
    input        sbus_clk, 
    input        rstn, 
    input        sbus_sw_rst, // active-high; may be tied low 
 
    // serdes connections 
    input [1:0]  from_sbus_data, 
    input        from_sbus_ack, 
    output [1:0] to_sbus_data, 
    output       to_sbus_req, 
    output       to_sbus_sw_rst, 
 
    // parallel interface 
    input         i_reg_rw_req,        // rising edge starts action 
    input         i_reg_write,         // request is 'write' 
    input         i_reg_pma,           // address is pma address 
    input  [15:0] i_reg_address,       // 16-bit pcs or pma address 
    input  [7:0]  i_reg_wr_data,       // data for write 
    output [7:0]  o_reg_rd_data,       // data from read (latch when o_reg_rdwr_valid) 
    output reg    o_reg_rdwr_valid     // action finished (high for one cycle) 
); 
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The Ports of ACX_SERDES_SBUS_IF Module: 

The signals (ports) shown in “Figure 44: Changing Value of Register 17A to bypass PCS 
block” and “The Ports of ACX_SERDES_SBUS_IF Module:” are detailed now.  

 

General signals: 

Port sbus_clk: There should be one ACX_SERDES_SBUS_IF instance per SerDes lane. For 
each lane, a clock signal is required to drive both the SerDes (input ports ch0_i_sbus_clk etc.)  
and ACX_SERDES_SBUS_IF (input port sbus_clk). The sbus_clk may be shared with multiple 
Serdes lanes. The sbus_clk is normally generated by a PLL, and, for practical reasons, should 
be 50MHz or less. You cannot use the RX or TX clock for this. 

Port rstn: The active-low rstn signal must be asserted briefly at start-up to initialize the 
interface. Deassertion should be synchronous to sbus_clk. 

Port sbus_sw_rst: The synchronous sbus_sw_rst signal is optional. It can be used with a 
timeout counter: when a timeout occurs, sbus_sw_rst is asserted (active-high) to reset the 
internal state machine to its start state. However, unless there is some internal failure, no 
timeout should occur. If this mechanism is not needed, the sbus_sw_rst pin can be tied to 
GND. (If you want to add a timeout, allow at least 64 cycles per read or write.) 

SerDes signals: 

SerDes interface ports –  from_sbus and to_sbus: As shown in “Figure 46: Connections for 
ACX_SERDES_LOOPBACK_CTRL”, the from_sbus inputs must be driven by the matching 
SerDes outputs, and the to_sbus output must drive the matching SerDes inputs. The user will 
also find an example of this constraint when we will present the example of setting loopback 
mode using SBUS interface.  

Parallel Interface signals: 

Ports i_reg_rw_req and o_reg_rdwr_valid: A register read or write is triggered by a rising 
edge on i_reg_rw_req, and completion is signaled by o_reg_rdwr_valid. 

Port i_reg_write and i_reg_wr_data: The i_reg_write input indicates whether the requested 
action is a read or a write. For a write, the 8-bit register value is passed via i_reg_wr_data. All 
inputs (data and address) are registered internally by the interface. 

Ports i_reg_pma and i_reg_address: The SerDes has two sets of registers, PCS registers and 
PMA registers. Both have their own 16-bit address space (not all addresses are used). If 
i_reg_pma is high, i_reg_address is a PMA address; otherwise it is a PCS address. 

Port o_reg_rdwr_valid and o_reg_rd_data: Completion of a read or write is signaled by 
o_reg_rdwr_valid high. This signal is high for only one cycle. For a read, the register value is 
available on o_reg_rd_data, but only for the cycle where o_reg_rdwr_valid is high. You can 
latch this signal as: 

if (!i_reg_write && o_reg_rdwr_valid) 
      my_reg <= o_reg_rd_data; 

 

Note: A write operation writes all 8 bits of the register. To modify only selected bits, you 
need to perform a read-modify-write: read the register value, modify the value locally, then 
write the result back. 
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Example of SerDes Register Access through SBUS: Setting Loopback Mode 

The SerDes must be in the “ready” state before it enters loopback mode. Therefore, the 
loopback mode cannot be configured with the bitstream, and must instead be configured in 
user mode. The ACE library provides the macro ACX_SERDES_LOOPBACK_CTRL to make 
that straightforward. 

To use this macro, use the following in your code: 

`include "speedster22i/macros/ACX_SERDES_LOOPBACK_CTRL.v" 

Also, connect an instance of ACX_SERDES_LOOPBACK_CTRL to each SerDes lane, and set 
the LOOPBACK_MODE parameter. At startup, the ACX_SERDES_LOOPBACK_CTRL 
instance will configure the appropriate loopback mode. 

Signals for ACX_SERDES_LOOPBACK_CTRL 

As shown in “Figure 46: Connections for ACX_SERDES_LOOPBACK_CTRL”, 
ACX_SERDES_LOOPBACK_CTRL has three groups of signals, SerDes signals, control 
signals, and pass-through signals. 

 

 

Figure 46: Connections for ACX_SERDES_LOOPBACK_CTRL 
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SerDes signals 

Sbus_clk and ready signals: The sbus_clk and ready signals must be connected between 
SerDes lane and ACX_SERDES_LOOPBACK_CTRL. The sbus_clk must be connected to both 
SerDes lane and ACX_SERDES_LOOPBACK_CTRL. The sbus_clk may be shared with 
multiple SerDes lanes. The sbus_clk is normally generated by a PLL, and, for practical 
reasons, should be 50MHz or less. You cannot use the RX or TX clock for this. 

 

Control signals 

Signal done: When ACX_SERDES_LOOPBACK_CTRL has finished configuring the Serdes, it 
raises done. 

Signal disable_loopback: The disable_loopback input can be used to dynamically disable 
loopback mode. Asserting and de-asserting rstn will enable loopback mode again, as will a 
reset of the SerDes. 

Note: If for some reason you want to re-apply the Serdes hard reset (i_rst_hard_n) after the 
design has been running for a while, then you must first disable loopback, using 
disable_loopback. When the Serdes comes out of hard reset, the loopback mode will 
automatically be re-enabled. 

 

Pass-through signals: 

Most designs don't need the pass-through signals.  

 

Loopback Modes 

Please refer to Section - Loopback Modes for the valid loopback modes available with 
Achronix FPGA. 

Example Code 
wire loopback_done; 
wire [1:0] from_sbus_data, to_sbus_data; 
wire from_sbus_ack, to_sbus_req, to_sbus_sw_rst; 
wire pma_synthready, pma_TXready, pma_RXready; 
 
ACX_SERDES_LOOPBACK_CTRL #( 
    .LOOPBACK_MODE(`LPBK_TX_RX_PMA_INTERNAL), 
    .ENABLE_PASS_THROUGH(0) 
) loopback_ch0 ( 
    .sbus_clk(sbus_clk), 
    .rstn(1'b1), 
    .disable_loopback(1'b0), 
    .done(loopback_done), 
 
    // serdes connections 
    .from_sbus_data(from_sbus_data), 
    .from_sbus_ack(from_sbus_ack), 
    .to_sbus_data(to_sbus_data), 
    .to_sbus_req(to_sbus_req), 
    .to_sbus_sw_rst(to_sbus_sw_rst), 
    .i_pma_synthready(pma_synthready), 
    .i_pma_TXready(pma_TXready), 
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    .i_pma_RXready(pma_RXready), 
); 
 
// Use the IP Configuration Perspective in Ace to generate a Serdes wrapper 
gui_generated_serdes_wrapper iSERDES ( 
           .ch0_i_sbus_clk              (sbus_clk), 
           .ch0_i_sbus_data             (to_sbus_data), 
           .ch0_i_sbus_req              (to_sbus_req), 
           .ch0_i_sbus_sw_rst           (to_sbus_sw_rst), 
           .ch0_o_sbus_ack              (from_sbus_ack), 
           .ch0_o_sbus_data             (from_sbus_data), 
           .ch0_o_pma_RXready           (pma_RXready), 
           .ch0_o_pma_TXready           (pma_TXready), 
           .ch0_o_pma_synthready        (pma_synthready) 
           .... 
); 

 

SerDes Registers 

Please contact customer support for PMA and PCS register description  
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Electrical Specifications 

Operating Conditions 

Table 22: Operating Conditions 

Parameter Notes Min Typical Max Unit 

DC Power-Supply Pin Requirements 

VDD1DC-BUMP 
0.95V DC analog core supply voltage 

(specified at bump pins) 
0.90 0.95 1.05 V 

VDD2DC-BUMP 
1.8V nominal DC analog IO voltage 

(specified at bump pins) 
1.71 1.80 1.98 V 

VDD1DC-IC 
0.95V DC analog core supply voltage 

(specified at transistor terminals) 
0.90 0.95 1.05 V 

VDD2DC-IC 
1.8V nominal DC analog IO voltage 

(specified at transistor terminals) 
1.71 1.80 1.98 V 

AC Power-Supply Pin Requirements 

VDD1AC-LOFREQ 

0.95V analog core supply voltage 

maximum AC power supply noise  

Total Integrated Peak-Peak noise for 

frequencies from 1KHz to 10MHz 

  0.03 Vpkpk 

VDD2AC-LOFREQ 

1.8V analog core supply voltage 

maximum AC power supply noise  

Total Integrated Peak-Peak noise for 

frequencies from 1KHz to 10MHz 

  0.03 Vpkpk 

VDD1AC-HIFREQ 

0.95V analog core supply voltage 

maximum AC power supply noise  

Total Integrated Peak-Peak noise for 

frequencies from 10MHz and higher 

  0.05 Vpkpk 

VDD2AC-HIFREQ 

1.8V analog core supply voltage 

maximum AC power supply noise  

Total Integrated Peak-Peak noise for 

frequencies from 10MHz and higher 

  0.05 Vpkpk 

Temperature Requirements 

TA Ambient operating temperature  -40 25 85 C 

TJUNCTION Junction operating temperature -40 85 125 C 

ESD Requirements 

ESDHBM 
Human-Body Model (HBM) ESD 

requirements 
2000 V   

ESDCDM 
Charged-Device Model (CDM) ESD 

requirements 
500 V   

ESDMM 
Machine Model (MM) ESD 

requirements 
200 V   

 

 



UG028, November 24, 2015 107 

Transmitter 

Table 23: DC and AC Switching Characteristics 

 

Parameter Description Min Typical Max Unit 

Output Eye Specification 

VTX-DIFF-PKPK Backporch Transmit Amplitude 400  1500 
mVdiff-

pkpk 

VTX-EYE-PKPK Transmit Eye Voltage Opening 400  1200 
mVdiff-

pkpk 

DTX-N+1-DEEMP N+1 precursor Tap De-Emphasis 0  2.5 dB 

DTX-N-1-DEEMP N-1 postcursor Tap De-Emphasis 0  8.5 dB 

DTX-N-2-DEEMP N-2 postcursor Tap De-Emphasis 0  2.5 dB 

TTX-SLEW Rise/Fall Time 30  120 ps 

TTX-DDJ 

Transmit Dependant Jitter (Inter-

Symbol Interference) at 8Gbps. 

Includes package model 

  0.05 UIpkpk 

TTX-PJ 

Transmit Periodic Jitter. Assumes a 

1st order high pass jitter 

measurement filter with a cutoff of 

FBAUD/ FGPLL = NGPLL  

  0.05 UIpkpk 

TTX-RJ 

Transmit Total Peak-Peak Random 

Jitter (assumes 14TXRJ-RMS). Assumes 

a 1st order high pass jitter 

measurement filter with a cutoff of 

FBAUD/ FGPLL = NGPLL 

  0.15 UIpkpk 

TTX-TJ 

Transmit Total Peak-Peak Jitter 

(Assumes TTX-TJ = TTX-DDJ + TTX-PJ + TTX-

RJ). Assumes a 1st order high pass 

jitter measurement filter with a cutoff 

of FBAUD/ FGPLL = NGPLL 

  0.25 UIpkpk 

NGPLL 

F3dB cutoff frequency for the 1st 

Order High-Pass Jitter Measurement 

Filter. 

Defined as the ratio of the F3DB cutoff 

frequency, to the data rate 

 1667  
FBAUD/ 

FGPLL 

VTX-CM-PKPK-AC 
Pk-PK AC Common Mode Voltage 

Variation 
  100 mV 

VTX-CM-RMS-AC 
RMS AC Common Mode Voltage 

Variation 
  20 mV 

Transmitter DC Impedance 

ZTX-DIFF-DC 
Transmitter Output Differential DC 

Impedance  
80 100 120  

ZTX-CM-DC 
Transmitter Output Common-Mode 

DC Impedance 
20 25 30  
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Parameter Description Min Typical Max Unit 

ZTX-DIFF-HIZ 
Transmitter Output Differential DC 

Impedance in Squelch Mode 
  >2k  

ZTX-CM-HIZ 
Transmitter Output Common-Mode 

DC Impedance in Squelch Mode 
  >500  

Transmitter Return Loss 

ZRL-DIFF-DC 
Transmitter Differential DC Return 

Loss 
  -14 dB 

ZRL-DIFF-NYQ 
Transmitter Differential Return Loss 

at Nyquist Frequency (FBAUD/2) 
  -6 dB 

ZRL-CM-DC 
Transmitter Common-Mode DC 

Return Loss 
  -6 dB 

ZRL-CM-NYQ 
Transmitter Common-Mode Return 

Loss at Nyquist Frequency (FBAUD) 
  -4 dB 

Electrical Idle 

VTX-IDLE Idle Output Voltage   20 mVpkpk 

VCM-DELTA-

SQUELCH 

Maximum Common-Mode Step 

Entering/Exiting Squelch Mode 
  50 mV 

TTX-IDLE-

LATENCY 
Latency Entering/Exiting Idle   8 ns 

Receiver Detect 

VTX-RCV-DETECT 
Voltage change allowed during 

receiver detection 
  600 mV 

 

 

Table 24: Jitter 

 

Standard Total Jitter (TJ) 
Deterministic 

Jitter (DJ) 
Units Compliant? 

PCI Express 
Gen1/Gen2/Gen3 

0.25 0.15 
       
UIp-p 

Yes 

GigE – SGMII 0.375 0.125 UIp-p Yes 

10G Ethernet – XAUI 0.35 0.17 UIp-p Yes 

CEI 6G – SR/LR 0.3 0.15 UIp-p Yes 

CEI 11G – SR/MR/LR 0.3 0.15 UIp-p Yes 

Fibre Channel (FC-1, FC-
2,  FC-4, FC-8) 

0.24 0.12 UIp-p Yes 

SATA (Gen1, Gen2) 0.37 0.15 UIp-p Yes 

 



UG028, November 24, 2015 109 

 

 

 

Table 25: Return Loss 

 

Standard 
Differential 
DC return 

loss  

Differential 
return loss 
at FBAUD/2 

Common 
mode DC 

return 
loss  

Common 
mode return 

loss at 
FBAUD/2 

Units Compliant? 

PCIe Gen1 10 10 6 6     dB Yes 

PCIe Gen2  10 8 6 6     dB Yes 

PCIe Gen3          dB Yes 

XAUI 10 5.9 -- --     dB Yes 

CEI 6G – 
SR/LR 

8 8 6 6     dB Yes 

FC-1 12 12 12 11.1     dB Yes 

FC-2 12 9.5 12 7.5 dB Yes 

FC-4 12 6 12 4 dB Yes 

SATA  
(Gen1, 
Gen2) 

14 6 5 2     dB Yes 
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Receiver 

 

Table 26: DC and AC Switching Characteristics 

 

Parameter Description Min Typ Max Unit 

VRX-DIFF-PKPK  

 
Differential Input Peak to Peak  Voltage for 

AC coupnling 
- 

 
2000 

mVdiffp-

p 

VRX-CM-DC  Receiver Input DC Common Mode Voltage  0  mVdiff-

pkpk 
VRX-CM-AC  Receiver Input AC Common Mode Voltage -150  150   mVdiff-

pkpk 

VRX-SENS  Receiver Input Voltage Sensitivity 30    mVdiff-

pkpk 

FPPM-OFFSET  Frequency tolerance 
-

5350 
650 350 PPM 

VRX Common mode AC return loss (standard 

specific) 
2 

 
12 dB 

VRX Power down DC input impedance 200   k 

VRX Input common mode frequency 2  200 MHz 

JTOL (TJ) Total Jitter Tolerance 0.65  0.95 UIpp 

JTOL (RJ) Random Jitter Tolerance 0.15  0.30 UIpp 

JTOL (DJ) Deterministic Jitter Tolerance 0.30  0.68 UIpp 

TRX-DDJ Receive Input Signal Data Dependant Jitter 

(Inter-Symbol Interference). 

  1 UIpkpk 

TRX-RJ Receive Input Random Jitter   0.3 UIpkpk 

TRX-PJ Receive Input Period Jitter (at high 

frequency) 

  0.1 UIpkpk 

TRX-TJ Receive Input Total Jitter (DDJ + RJ + PJ).   1 UIpkpk 

NGPLL F3dB cutoff frequency for the 1st Order High-

Pass Jitter Measurement Filter. 

Defined as the ratio of the F3DB cutoff 

frequency, to the data rate 

 1667  FBAUD/ 

FGPLL 

VADC-RES ADC Sampling Voltage Resolution per LSB  8  mVdiff 

VADC-RANGE 

ADC Full-scale Differential Peak-Peak 

Voltage Range defined at the Input Pins of 

the SerDes 

 700  
mVdiff 

-pkpk 

VADC-DNL 
ADC Sampling Voltage Differential Non-

Linearity (DNL) 
 3  mVdiff 

TSAMPLE ADC Real Time Sampling Rate 28  2 UI 

TADC-RES ADC Effective Sub-Sampling Rate   1/32 UI 

TADC-RANGE Total Time-Domain Sampling Range 1  28 UI 

TADC-DNL 
Time Domain Sampling Differential Non-

Linearity (DNL) 
 1/32  UI 

ZRL-DIFF-DC Receiver Differential DC Return Loss   -18 dB 

ZRL-DIFF-NYQ 
Receiver Differential Return Loss at Nyquist 

Frequency (FBAUD/2) 
  -6 dB 

ZRL-CM-DC Receiver Common-Mode DC Return Loss   -12 dB 
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Parameter Description Min Typ Max Unit 

ZRL-CM-NYQ 
Receiver Common-Mode Return Loss at 

Nyquist Frequency (FBAUD/2) 
  -4 dB 

Receiver DC Impedance 

RDIFF-DC DC Differential Receive Impedance 80 100 110 Ohm 

RCM-DC DC Common-Mode Receive Impedance 20 25 27.5 Ohm 

RDIFF-HIZ-POS 
Differential Receive High Impedance for 

Input Voltage from 0V to 200mV 
200k   Ohm 

RCM-HIZ-POS 
Common-mode Receive High Impedance for 

Input Voltage from 0V to 200mV 
50k   Ohm 

RDIFF-HIZ-NEG 
Differential Receive High Impedance for 

Input Voltage from -150mV to 0mV 
4k   Ohm 

RCM-HIZ-NEG 
Common-mode Receive High Impedance for 

Input Voltage from -150mV to 0mV 
1k   Ohm 

Receiver Signal Detection 

VIDLE-THRESH 
Receiver Signal Detect Input Voltage 

Threshold 
75 120 175 

mVdiff-

pkpk 

TSIGDET-ATTACK 
Signal Detect Valid Signal Attack Time 

(Turn-on time) in SATA mode 
  15 Ns 

TSIGDET-DECAY 
Signal Detect Valid Signal Decay Time (Turn-

off time) in SATA mode 
  15 ns 

TSIGDET-ATT-

DECAY-MIS 

Signal Detect Attack / Decay Time Mismatch 

in SATA mode 
  5 ns 

Equalizer/Re-timer Mode Specifications 

TRCLK-DJ 

Recovered Clock Deterministic Jitter 

(in lock-to-data and in lock-to-reference 

modes) 

  0.075 UIpkpk 

TRCLK-RJ 

Recovered Clock Random Jitter (at 1E-12 

BER) 

(in lock-to-data and in lock-to-reference 

modes) 

  0.112 UIpkpk 

NRCLK-GPLL 

F3dB cutoff frequency for the 1st Order High-

Pass Jitter Measurement Filter. 

Defined as the ratio of the F3DB cutoff 

frequency, to the data rate 

 1667  
FBAUD/ 

FGPLL 

Repeater Receiver Input Eye Specification 

VRX-DIFF-PKPK Receiver Input Differential Peak-Peak Voltage 250  2000 
mVdiff-

pkpk 

VRX-CM-DC Receiver Input DC Common Mode Voltage  0  
mVdiff-

pkpk 

VRX-CM-AC Receiver Input AC Common Mode Voltage -150  150 
mVdiff-

pkpk 
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Parameter Description Min Typ Max Unit 

VRX-SENS 

Receiver Input Voltage Sensitivity Under the 

Following Conditions: 

 50inch of FR4  

 6.25Gbps  

 PRBS7 data pattern 

40 50  
mVdiff-

pkpk 

TRX-DDJ 
Receive Input Signal Data Dependant Jitter 

(Inter-Symbol Interference). 
  1 UIpkpk 

TRX-TJ 
Receive Input Signal Total Jitter (Inter-Symbol 

Interference). 
  1 UIpkpk 

NGPLL 

F3dB cutoff frequency for the 1st Order High-

Pass Jitter Measurement Filter. 

Defined as the ratio of the F3DB cutoff 

frequency, to the data rate 

 1667  
FBAUD/ 

FGPLL 

 

 
 

Eye Diagram 

This section describes the RX eye diagram specifications of the SerDes. The specifications 
include required input voltage swing and receiver jitter tolerance requirements. The eye 
template used is shown in “Figure 47: Receiver (RX) Eye Diagram Specification”. 

 

 

 

 

 

 

 

 

 

Figure 47: Receiver (RX) Eye Diagram Specification 

 

Table 27: Receiver (RX) Eye Diagram Specification 

Standard X1 (UI) X2 (UI) 
2xVp-min 

(mV) 
2xVp-max 

(mV) 

PCIe 1.0 0.3 0.5 175 1200 

PCIe 2.0 0.3 0.5 120 1200 

sGMII 0.25 0.5 675 1725 

GigE 0.355 0.5 200 2000 

XAUI 0.325 0.4 200 1600 

OIF CEI 6G – SR 0.3 0.5 125 750 

OIF CEI 6G – LR 0.475 0.5 N/A 1200 



UG028, November 24, 2015 113 

Standard X1 (UI) X2 (UI) 
2xVp-min 

(mV) 
2xVp-max 

(mV) 

FC-1 0.33 0.5 275 2000 

FC-2  0.35 0.5 275 2000 

FC-4 0.33 0.5 275 2000 

SATA Gen1 0.325 0.5 275 1600 

SATA Gen2 0.325 0.5 275 1600 

SAS Rev5 0.325 0.5 275 1600 

 

Table 28: Return Loss 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference Clock 

The electrical specifications for the reference clock are summarized in the following tables 

Table 29: Reference Clock Electrical Speficiations 

 

Parameter Description Min Typical Max Unit 

FREF 
Reference clock operating frequency 

range 
50  250 MHz 

TREF 
Reference clock operating frequency 

range 
4  20 ns 

TREF-DUTY Duty Cycle 40 50 60 % 

TREF-RISE/FALL Rise and falling edge rate   0.2 TREF 

TREF-SINGLEEND- Skew between REFCLKP and REFCLKM   10 ps 

Standard 
Differential 
DC return 

loss  

Differential 
return loss 
at FBAUD/2 

Common 
mode DC 
return loss  

Common 
mode return 

loss at FBAUD/2 
Units 

PCIe Gen1 10 10 6 6 dB 

PCIe Gen2  10 8 6 6 dB 

XAUI 10 10 6 6 dB 

CEI 6G – SR 8 8 6 6 dB 

CEI 6G-LR 8 8 6 6 dB 

FC-1 12 12 12 12 dB 

FC-2 12 9.5 12 10.5 dB 

FC-4 12 6 12 7 dB 

SATA  
(Gen1, Gen2) 

18 8 5 2 dB 
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Parameter Description Min Typical Max Unit 

SKEW 

TREF-PPM-ERROR Reference Clock Frequency Error -5350  +350 ppm 

ZREF-SINGLEEND-DC 
Reference Clock Input Impedance – 

Terminated Mode 
40 50 60  

ZREF-DIFF-DC 
Reference Clock Input Impedance – High 

Impedance Mode 
  >200k  

VREF-DIFF 

Input Differential Voltage - PCIe 0.15   V 

Input Differential Voltage - LVDS 0.25  0.4 V 

Input Differential Voltage - LVPECL 0.525  0.95 V 

VREF-CM 

Input Common Mode Voltage - PCIe 0.25  0.55 V 

Input Common Mode Voltage - LVDS 1  1.4 V 

Input Common Mode Voltage - LVPECL 1.84  2.1 V 

TREF-RMS-MAX 

Total Integrated RMS Phase Noise for the 

band of frequency ranging from 12kHz to 

20MHz 

  0.7 psRMS 

 

 

Jitter Specification 

 

Table 30: Reference Clock Jitter Specification 

Reference Clock Parameter Typ Max Unit 

Suggested RMS phase jitter at 333.3 MHz (12KHz to 20 

MHz) 
0.8 400 ps rms 

Suggested cycle to cycle jitter at 333.3 MHz 51  ps p-p 

SATA/SAS: cycle to cycle jitter  112 
  ps p-

p 

SATA/SAS: deterministic jitter  40 ps p-p 

FC: cycle-to-cycle jitter RMS  6 ps p-p 

FC: deterministic jitter  5 ps p-p 

PCI-Express Gen1: cycle to cycle jitter  150 ps p-p 

PCI-Express Gen2: 10KHz – 1.5 MHz bandwidth  7.5 ps rms 

PCI-Express Gen2: 1.5MHz – 2.5GHz bandwidth  4.0 ps rms 

XFI: RMS random jitter (up to 100MHz)  10 ps rms 
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Revision History 

The following table shows the revision history for ths document. 

Date Version Revisions 

3/29/2013 1.0 First customer release 

4/22/2013 1.1 Updated ref clk frequencies 

5/21/2013 1.2 Corrected some formatting issues 

  4/30/2014 1.3 Complete overhaul of the document  

6/3/2014 2.0 Reformatted. Updated images, major updates 

7/1/2014 2.1 Further input from Engineering 

11/24/2015 2.2 Added in SFF-8431 support for SFI 

   

   

 


