
UG043, April 26, 2014 1

Speedster22i Memory PHY
User Guide

UG043 – April 26, 2014

2 UG043, April 26, 2014

Copyright Info

Copyright © 2013 Achronix Semiconductor Corporation. All rights reserved. Achronix is a
trademark and Speedster is a registered trademark of Achronix Semiconductor Corporation.
All other trademarks are the property of their prospective owners. All specifications subject
to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate
and reliable. However, Achronix Semiconductor Corporation does not give any
representations or warranties as to the completeness or accuracy of such information and
shall have no liability for the use of the information contained herein. Achronix
Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks,
registered trademarks, and disclaimers are listed at http://www.achronix.com and use of this
document and the Information contained therein is subject to such terms.

http://www.achronix.com/

UG043, April 26, 2014 3

Table of Contents

Copyright Info .. 2

Table of Contents .. 3

Overview .. 4

DDR PHY .. 7

Organization and Interfaces ... 7

PHY Structure and Operation .. 10

PHY – Controller Interfacing through Widebus .. 11

Byte Lane Building Blocks.. 12

TX, RX and OE paths in Data Bits ... 14

DQS Clocking and Circuitry ... 16

DLL Specs and Operation ... 17

Revision History .. 20

4 UG043, April 26, 2014

Overview

Speedster22i HD devices have a flexible and feature rich PHY with building blocks to
implement a PHY capable of interfacing with the hard DDR3 memory controller or soft
memory controller interfaces in the FPGA fabric.

This User Guide will review these building blocks and how they are assembled to build the
PHY circuitry needed for commonly used memory interfaces.

Before diving into the details, it is worthwhile understanding how the FPGA is organized to
put the PHY into context. Figure 1 below shows a top-level view of a Speedster22iHD FPGA,
how the SerDes, IO and hard IP are organized, and how a memory interface would be built
using the hardened PHY and a soft controller.

Core Fabric

SerDes

SerDes

Protocol Hard IP

Protocol Hard IP

G
e

n
e

ra
l
P

u
rp

o
s
e

 I
O

 B
u

ff
e

r

IO
 R

e
g

is
te

r
P

H
Y

 a
n

d
 D

L
L

H
a

rd
 D

D
R

 C
o

n
tr

o
lle

rs

G
e

n
e

ra
l
P

u
rp

o
s
e

 I
O

 B
u

ff
e

r

IO
 R

e
g

is
te

r
P

H
Y

 a
n

d
 D

L
L

H
a

rd
 D

D
R

 C
o

n
tr

o
lle

rs

PLLs

PLLs PLLs

PLLs

Soft DDR3

Controller

Application

Interface

QDRII+

Controller

RLDRAM3

Controller

Figure 1: Speedster22iHD Architecture for Memory Interface Design using Soft Controller

The IO in the Speedster22iHD devices is organized into 12 IO byte-lanes. Within this 12, there
are 10 DQ, 1 DQS and 1 DQSn IOs. The PHY implementation for all bits are the same, but
there are differences in top-level connectivity between the IOs implementing these different
functions. More importantly, there are differences in connectivity even for the same
DQS/DQSn bit across byte-lanes. This means that even for soft memory controller
implementations, there are IO placement restrictions, and it is important that Achronix
guidelines be followed to ensure that the particular memory interface PHY can be legally and
successfully implemented, and optimized to be able to timing close in the fabric.

UG043, April 26, 2014 5

As stated above, there are 12 IOs in a byte-lane. A group of byte-lanes make up an IO bank
and 3 IO banks build an IO cluster (denoted using the initials EN, EC, ES, WN, WC, WS for
location). There are a total of 13 byte-lanes (or 156 IOs) per IO cluster, with the IO banks
being organized as 2 groups of 4 byte lanes and 1 group of 5 byte lanes.

Every IO cluster is powered by a separate set of power balls and so the power profile and
chacteristics of the respective rails will depend on the activity of those specific IOs.

An IO cluster is able to provide no more than 2 clocks (a half-rate and a quarter-rate) to the
corresponding triplet of clock regions. For source-synchronous operations where the clock
needs to be transmitted from the PHY to the FPGA fabric, the amount of logic that can be
clocked using this source-synchronous implementation will be limited by this architecture
(unless additional FIFOs/sync logic is used to transfer to a global clock domain in the
memory interface PHY). This concept is illustrated in Figure 2 below. Figure 3 shows a blovk
level diagram of the IO layout across the FPGA.

B
y
te

-L
a

n
e

s

0
-3

(4
8

 I
O

s
)

B
y
te

 L
a

n
e

s

4
-7

(4
8

 I
O

s
)

B
y
te

 L
a

n
e

s

8
-1

2

(6
0

 I
O

s
)

Core Fabric

W
e

s
t-

N
o

rt
h

 (
W

N
)

IO
 C

lu
s
te

r

Clock Region West 1

Clock Region West 2

Clock Region West 3

Figure 2: Speedster22iHD IO Bank and Clock Region Organization for West North Cluster

6 UG043, April 26, 2014

Core Fabric

W
N

 I
O

C
lu

s
te

r

W
N

 H
a

rd
 D

D
R

3

C
o

n
tr

o
lle

r

W
C

 I
O

C
lu

s
te

r

W
C

 H
a

rd
 D

D
R

3

C
o

n
tr

o
lle

r

W
S

 I
O

C
lu

s
te

r

W
S

 H
a

rd
 D

D
R

3

C
o

n
tr

o
lle

r

E
N

 H
a

rd
 D

D
R

3

C
o

n
tr

o
lle

r

E
C

 H
a

rd
 D

D
R

3

C
o

n
tr

o
lle

r

E
S

 H
a

rd
 D

D
R

3

C
o

n
tr

o
lle

r

E
N

 I
O

C
lu

s
te

r

E
C

 I
O

C
lu

s
te

r

E
S

 I
O

C
lu

s
te

r

Figure 3: Speedster22iHD IO Cluster Organization

The next sections will discuss the actual PHY implementation for the different memory
interfaces in more detail.

UG043, April 26, 2014 7

DDR PHY

Organization and Interfaces

Figure 4 provides a block diagram view of how the DDR PHY is organized, and how it
interfaces with other components of the memory interface sub-system. As shown, a PLL
input clock and an external reset are supplied to the DDR PHY, which can communicate with
3 separate interfaces: an external DDR memory, and based on the user’s implementation,
either the hard DDR controller in the IO ring or a soft DDR controller in the FPGA fabric. The
PHY needs to select between using the DDR controller vs communicating with a controller in
the FPGA fabric. This is done through a user-specified parameter. There are other parameters
as well to help select features and functionality in the DDR PHY.

Table 1 provides the port list for the FPGA internal interface, while Table 2 provides the port
list for the external DDR memory interface. Table 3 provides a parameter list to highlight the
available modes and options.

Speedster22i

ACX_PLL
clk

DDRxN

PHY

External

DDR Memory

DDRxN

Hard

Controller

DDRxN

Soft

Controller

Communication

with Application

Interface in Fabric

Communication

with Application

Interface in Fabric

IO Ring

Fabric

DDR PHY – Soft

Controller Interface

DDR PHY – Hard

Controller Interface

DDR PHY –

External DDR

Memory Interface

reset_n

Figure 4: DDR PHY Organization and Interfaces

8 UG043, April 26, 2014

Table 1: DDR PHY – Hard/Soft Controller Interface Port List

Signal Name
Bus

Width
Direction Description

clk 1 Input User reference clock (full-rate), generally coming in from a PLL

reset_n 1 Input Active-low user reset

phy_ddr_clk_en 1 Input Clk enable signal for CAC byte lane to enable clocking

byte_{3,2,1,0}_from_ctrl_{a,b} 10 Input Input to the CAC byte lanes

clk_div2 1 Output Half-rate clock output from PHY, synchronous to clk

clk_div4 1 Output Quarter-rate clock output from PHY, synchronous to clk

phy_ci_dq{a,b,c,d} N Input
Four sets of dq data signals for TX interface: all used in half-rate,

a and b only used in full-rate

phy_ci_dq{a,b,c,d}8 N/8 Input
Four sets of dq mask signals for Tx interface: all used in half-rate,

a and b only used in full-rate

phy_co_dq{a,b,c,d} N Output
Four sets of dq data signals from RX interface: all used in half-

rate, a and b only used in full-rate

phy_ctrli_dq{a,b}9 1 Input Data bits for the preamble

phy_ctrli_dqsa 1 Input DQS input into the byte

phy_co_l_busy_align 9 Output Busy alignment output signal for byte

phy_co_l_d_req 9 Output Data request output for byte

phy_co_l_d_req_align 9 Output Data request output for byte when widebus is enabled

phy_co_l_d_req_early_align 9 Output Data request early output for byte when widebus is enabled

phy_co_l_r_valid 9 Output Read valid output for byte

phy_co_l_r_valid_align 9 Output Read valid output for byte when widebus is enabled

phy_co_l_r_valid_early_align 9 Output Read valid early output for byte when widebus is enabled

phy_ctrli_write_level_en N/8 Input Enable signal for write leveling

phy_ctrli_doing_wr_level 1 Input Indicator of write leveling

phy_ctrli_l_busy 9 Input Busy signal input

phy_ctrli_dreq_early 9 Input Early data request input

phy_ctrli_rvalid_early 9 Input Early read valid signal input

phy_ci_{rd,wr}req 1 Input Read/Write request input

phy_ctrlo_{rd,wr}req 1 Output Read/Write request output

dbg_dqs_{a,b} 9 Output Debug signal for dqs output from IO registers

dbg_dq9_bit_{a,b} 9 Output Debug signal for dq9 output from IO registers

phy_ctrli_l_io_recal 1 Input DDR update after recalibration for io comp block

Soft Controller (Fabric) Interface

phy_ci_dq/dqs_add_dly N/4 Input 2-bit value per byte to add delay to dq/dqs path

phy_ci_dreq 9 Input Data request input

phy_ci_l_r_valid 9 Input Read valid signal input

phy_ci_rd_en N/8 Input Read enable input

phy_ci_rd_rstn N/8 Input Active low read reset

phy_ci_sd_dq_ptr_rstn N/8 Input Active low reset for pointer in deserializer logic

phy_ci_slave_adj 8 Input Slave DLL delay adjustment

phy_ci_slave_dqsn_en N/8 Input Active low dqs enable in the slave DLL

phy_ci_dq/dqs_cdoe{a,b} N/8 Input Data a and b output enable signal for dq/dqs

phy_ci_dq/dqs_croe{a,b} N/8 Input Data a and b termination resistance enable signal for dq/dqs

phy_co_write_level_out N/8 Output Write leveling output for byte

Hard Controller Interface

phy_ctrli_dq/dqs_add_dly N/4 Input 2-bit value per byte to add delay to dq/dqs path

phy_ctrli_dreq 9 Input Data request input

phy_ctrli_l_r_valid 9 Input Read valid signal input

phy_ctrli_rd_en N/8 Input Read enable input

phy_ctrli_rd_rstn N/8 Input Active low read reset

phy_ctrli_slave_adj 8 Input Slave DLL delay adjustment

phy_ctrli_slave_en 12 Input Enable signal for the slave DLL

phy_ctrli_dq/dqs_cdoe{a,b} N/8 Input Data a and b output enable signal for dq/dqs

UG043, April 26, 2014 9

Signal Name
Bus

Width
Direction Description

phy_ctrli_dq/dqs_croe{a,b} N/8 Input Data a and b termination resistance enable signal for dq/dqs

phy_ctrlo_write_level_out N/8 Output Write leveling output for byte

Table 2: DDR PHY External Memory Interface Port List

Signal Name
Bus

Width
Direction Description

sd_clk_p 3 Output SDRAM differential clock signal (positive polarity)

sd_clk_n 3 Output SDRAM differential clock signal (negative polarity)

sd_cke 4 Output SDRAM clock enable control signal

sd_odt 4 Output SDRAM on die termination control signal

sd_ras_n 1 Output SDRAM RAS control signal

sd_cas_n 1 Output SDRAM CAS control signal

sd_we_n 1 Output SDRAM write enable control signal

sd_reset_n 1 Output SDRAM reset signal

sd_a 16 Output SDRAM address bus

sd_ba 3 Output SDRAM bank select

sd_cs_n 4 Output SDRAM chip select

sd_dm N/8 Inout SDRAM data mask

sd_dummy N/8 Inout Internal use only. Leave unconnected.

sd_dq N Inout SDRAM data bus

sd_dqsn N/8 Inout SDRAM DQS bus, which is used to clock DQ bus

sd_dqsp N/8 Inout SDRAM DQS bus, which is used to clock DQ bus

Table 3: DDR PHY Parameter List

Parameter Default (hex) Valid Values Description

DSIZE 16 Multiples of 8 up to 72 Local side data width

USE_CONTROLLER D̀EF_USE_CONTROLLER
D̀EF_USE_CONTROLLER,

D̀EF_NOT_USE_CONTROLLER
Specifies whether the hard controller

should be used in the design

NUM_CLK_OUTS 4 1 to 4 Number of clock outputs

NUM_RANKS 1 1 to 4 Number of memory ranks in system

BYPASS_TXRX_SD D̀EF_IO_RXSD_BYPASS_MUX
D̀EF_IO_RXSD_BYPASS_MUX

D̀EF_IO_RXSD_NO_BYPASS_MUX
Specifies data at full-rate vs half-rate

(Bypass=Full-rate, No_bypass=Half-rate)

EXTRA_PIPELINE_N 1'b1 1'b0, 1'b1

0 -> One extra clock cycle to load data

1 -> No extra cycle

Applies to both read and write paths

EXTRA_1CLK_DLY 0 0, 1 1 -> extra one clock delay in 2X mode.

WIDE_BUS 0 0, 1

1 -> Wide-bus used in fabric to convert

incoming data to quarter-rate. PHY

provides quarter-rate clock on clk_div4.

BYTE_LANE[N/8-1:0]_DLL_ADJ_DQ 6'h04 6’h00 to 6’hFF DQ Slave adjust for BYTE_LANE

BYTE_LANE[N/8-1:0]_DLL_ADJ_DQS 6'h16 6’h00 to 6’hFF DQS Slave adjust for BYTE_LANE

BYTE_LANE[N/8-1:0]_DLL_ADJ_DP 6'h04 6’h00 to 6’hFF DP Slave adjust for BYTE_LANE

BYTE_LANE[N/8-

1:0]_WR_LVL_DQ_SELECT
`WLVL_SELECT_DQ0

`WLVL_SELECT_DQ0 up to

`WLVL_SELECT_DQ7
DQ bit used for write leveling

BYTE_LANE_DLL_DQSX9_CLK_ADJ 6'h10 6’h00 to 6’hFF DLL adjust for wpb_tx_dqsx9_clk(0.25T)

BYTE_LANE_DLL_DQX9_CLK_ADJ 6'h30 6’h00 to 6’hFF DLL adjust for wpb_tx_dqx9_clk(0.75T)

BYTE_LANE_CAC_DLL_ADJ_DQSN 6'h17 6’h00 to 6’hFF DP Slave adj for CAC byte lanes (0.35T)

10 UG043, April 26, 2014

PHY Structure and Operation

Figure 5 below illustrates a high level overview of the DDR PHY structure. It consists of up to
9 data byte lanes, each implementing a x8 interface to give a max width of x72. There are also
4 byte lanes to implement Control, Address, Command (CAC) functions. Three of the CAC
byte lanes operate at full rate mode and one of them operates in half-rate mode (denoted by
the extension SD).

The full-rate clock typically (but not necessarily) comes from the PLL and then goes through
two clock dividers, one implementating a divide-by-2 and the other implementing a divide-
by-4. The full-rate clock goes to all byte lanes; the divide-by-2 clock is fed into the byte-lanes
that have half-rate operation; and the divide-by-4 clock is actually only transmitted to the
fabric since the half-rate to quarter-rate conversion is not done in the PHY, but rather has to
be done in the fabric (refer to the PHY – Controller Interfacing through Widebus section of
the document for details on this).

Data Byte Lane

Data Byte Lane

CAC Byte Lane

CAC Byte Lane

CAC Byte Lane

CAC Byte Lane SD

Clk Divider

(/2)

Clk Divider

(/4)

Clk from PLL

Clocks to fabric

Clk_div2

Clk_div4

Clk_div2

DDR PHY

Up to x9

Clk Clk

Clk_div2

Clk

Figure 5: DDR PHY Structure

UG043, April 26, 2014 11

PHY – Controller Interfacing through Widebus

The DDR PHY in Speedster22i HD devices provides a half-rate interface to the
programmable logic fabric. Clearly, at high DDR3 data rates, running a soft controller and
the application interface at half-rate speeds is impractical and often infeasible, as far as being
able to close timing on the design.

Typically, with design complexities and fabric limitations, the target core fmax should be no
higher than 250MHz-300MHz. This means that even with a modest data rate of 1066Mbps
(half-rate clock of 266MHz), timing closure may end up being a challenge. In practice, data
rates of 1333Mbps, 1600Mbps and beyond will require a quarter-rate implementation
interface to the user logic.

Since the DDR PHY inherently does not output signals at a quarter-rate speed, a wrapper is
needed in the fabric to act as a translator between the PHY and the soft controller. This
“Widebus wrapper” takes in the half-rate clocks and signals from the PHY and outputs them
at the quarter-rate clock to the soft controller at the expense of additional latency. As a result,
quarter-rate clocks of 166.67MHz amd 200MHz would be needed at 1333Mbps and 1600Mbps
respectively.

Figure 6 below provides a block diagram view of the Widebus wrapper interface, with the
full-rate, half-rate and quarter-rate clock domains delineated within the dotted red lines.

Speedster22i

DDRxN

PHY

IO Ring

Fabric

DDR PHY

– Widebus

Interface

W
id

e
b

u
s
 W

ra
p

p
e

r

Widebus –

Controller

Interface

clk_div4 clk_div2 clk_div2 clk

Quarter-rate Half-rate Full-rate

To DDRxN

Soft Controller

Figure 6: Widebus Wrapper Interface

12 UG043, April 26, 2014

Byte Lane Building Blocks

As shown in Figure 5, the DDR PHY is made up of up to 9 data byte lanes (for a x72 mode
interface) and 4 CAC (Control, Address and Command) byte lanes, 1 one of them operating
at half rate, as denoted by the SD postfix. The building blocks inside these byte lanes are very
similar. This section will detail the building blocks in a data byte lane and then explain the
differences that can be seen in a CAC byte lane.

Figure 7 below provides a block level diagram of the building blocks inside a data byte lane.
Each of these blocks are described in more detail below.

ddr3_dq_bit

ddr3_dq_bit

x8

ddr3_dm_bit

ddr3_dq9_bit postamble ddr3_dqs_bit

Clk_mux

byte_lane_rxsy

write-leveling circuitry

b
y
te

_
la

n
e

_
s
d
_

lo
g

ic

DLL

(0.75T)

DLL

(0.25T)

b
y
te

_
la

n
e

_
lo

g
ic

DDR3 Data Byte Lane

Figure 7: DDR3 Data Byte Lane Building Blocks

Clk_mux: As the name implies, the clock mux takes in clocks coming in from the PLL, selects
and distributes them to the rest of the PHY logic.

ddr3_dq_bit: There are 8 of these dq data modules which feed the bidirectional buffers used
in data transmission and reception. The chapter on TX, RX and OE paths in Data Bits
provides a much closer look at the data paths through these dq data modules.

ddr3_dm_bit: This is the data mask bit controlling the masking operation at a byte level into
the PHY.

UG043, April 26, 2014 13

ddr3_dq9_bit/postamble/ddr3_dqs_bit: These are the modules used to transmit and receive
dqs pulses to sample the data at dq. The chapter on DQS Clocking and Circuitry provides
more detail about the functionality of each of these blocks and how the dqs is adjusted to
ensure that the dq data is sampled optimally. The dqs output is provided to all of the dq and
dm bits as a clock. It can also be routed as an output to the FPGA fabric.

write leveling circuitry: There are 2 slave DLLs (sdlls), denoted as 0.25T and 0.75T to help
provide mechanisms to enable write leveling. These two DLLs take the reference clock as
input and produce shifted versions of this clock as inputs to the first stage of registering in
the dqs TX path.

byte_lane_rxsy: This module takes clocks and enables from the fabric as inputs and uses
them to time and generate the write and read pointers that are used when doing clock
domain transferring between the dqs clock domain and the core clock domain in the hard
FIFO on the data receive path.

byte_lane_logic/byte_lane_sd_logic: These modules provide control interfaces for muxing
signals between the hard DDR controller and a soft DDR controller (from the fabric).

A CAC byte lane is much simpler in its structure. There is a single bit module for every pad
that needs to be placed. A slave dll is used to provide for leveling capability and there is an
option to use a pad to have source synchronous clock be routed into the fabric. No additional
masking, pre/postambles or muxing is implemented or needed.

Table 4 below provides the mapping between the bits within each of these 4 CAC byte lanes
and the external DDR functions that they map to.

Table 4: CAC Byte Lane Mapping

DDR Function/Port CAC Byte Lane Mapping

sd_cs_n[NUM_RANKS-1:0] {cac_byte_0[1:0], cac_byte_1[1:0]}

sd_cke[NUM_RANKS-1:0] {cac_byte_0[3:2], cac_byte_1[3:2]}

sd_odt[NUM_RANKS-1:0] {cac_byte_0[5:4], cac_byte_1[5:4]}

sd_reset_n {cac_byte_1[6]}

sd_a[15:0] {cac_byte_1[9:8], cac_byte_2[3:0], cac_byte_sd[9:0]}

sd_ba[2:0] {cac_byte_2[6:4]}

sd_we_n {cac_byte_2[7]}

sd_cas_n {cac_byte_2[8]}

sd_ras_n {cac_byte_2[9]}

14 UG043, April 26, 2014

TX, RX and OE paths in Data Bits

This section highlights the pieces of the TX, RX and OE circuitry that make up each of the
data bits. These same pieces are also used in building clock, dqs and dm bits also, and the
flexibility provided enables more custom IO configurations to be created as well. Figure 8
shows a block level diagram of the TX, RX and OE paths. The paths and the modules used
are described in more detail below.

DQ PAD

rx_anyipbit_y

sdll

rx_fifo

rx_sd

tx_anyopbit_data_out

tx_flop

tx_sd

oeren_any

opbit_oe

oeren_flop

opbit_rtt

Figure 8: TX, RX and OE paths in a DDR DQ bit

Receive path: Data coming from the DQ pad goes through the receive buffer and is then
provided as an input to the rx_any module. This data then goes through a slave dll (sdll)
which is essentially used to implement read-leveling. The output of the sdll is then fed into
the rx_fifo module which contains a fifo of depth four (at full-rate). At this point, the receive
data is sampled at the positive and negative edges for full-rate conversion, and a clock
domain transfer take place in the fifo between the dqs clock domain and the full-rate clock
domain coming from the FPGA PLL. The output of the rx_fifo is then optionally fed into a
rx_sd module which implements a full-rate to half-rate conversion prior to transferring the
four-wide data into the fabric.

UG043, April 26, 2014 15

Transmit path: If half-rate (or quarter-rate with the widebus wrapper) is used in the fabric,
four-wide data is provided from the fabric to a tx_sd module. The tx_sd module converts the
incoming data from half-rate to full-rate and provides a two-wide data into the tx_any
module (tx_sd module should be bypassed if a full-rate interface is used in the fabric). The
data passes from the tx_any module into the tx_flop module, which samples the transmit
data at both the positive and negative edges of the full-rate clock and aligns the data to the
dqs clock domain. This data is then passed to the transmit buffer before being sent out on the
pad.

Output Enable path: Full-rate output enables are passed from the fabric to the oeren_ny
module which passes the data to the oeren_flop. Similar to the tx_flop implementation,
oeren_flop samples the oe data at both the positive and negative edges of the full-rate clock
and aligns the data to the dqs clock domain. This is then fed as an output enable signal to the
transmit buffer. In addition, there is a termination resistance enable signal, opbit_rtt, that
goes through essentially the same path as the oe data, to turn on/off the input buffer
impedance when reading vs writing data.

16 UG043, April 26, 2014

DQS Clocking and Circuitry

The circuitry in Figure 9 below shows how the DQS signal coming from or going to
dqsn/dqsp is treated to ensure that both reads and writes can be successfully done for high
data rate DDR3 implementations.

DQSP PAD

DQSN PAD

OE

DLL
Clock

Mux

Rx_FIFO in dq_bits
dataa

datab
dqs_rx_fifo_clk

Full-rate fabric

clock from PLL

Postamble

dqs_clkout

postamble_out
ddr3_dq9_bit

wpb_preamb_en

phy_ctrli_dqa/b9

TX_Flop

DLL

(0.75T)

DLL

(0.25T)

phy_ctrli_dqsa

1'b0

Full-rate fabric clock

from PLL

Write-leveling

implementation in TX Flop

Read Path

Write Path

Figure 9: DQS Circuitry for Read and Write

For the read path, the dqs signal goes through a gate that acts to control the preamble enable
and the postamble shutoff. This control logic is provided through input signals
phy_ctrli_dqa/b9 that first traverse some logic in the ddr3_dq9_bit module. This is done to
ensure that gating logic coming in has a delay that matches the dq signal delay through a
ddr3_dq{1-8}_bit. The DLL delayed dqs_clkout signal and the preamble signal from the
ddr3_dq9_bit are used to generate the final postamble_out signal that is then fed into the gate
controlling the dqs signal coming in, ultimately creating a feedback path through a DLL
which ensures that PVT compensation is done appropriately. The section below on DLL
Specs and Operation provides more details on the specifics of the DLL. The dqs_clkout signal
from the DLL feeds a clk mux which is then distributed to the rx_fifo modules of all of the dq
bits that this dqs signal needs to sample. The dqs signal is used as a clock for the first fifo
stage, and the second register stage in the fifo is clocked by a full-rate clock provided by a
PLL in the FPGA to ensure that data beyond this fifo is synchronized to a core clock for all
relevant byte lanes.

For the write path, the phy_ctrli_dqsa signal coming from the controller passes through a 3-
stage register in the TX_Flop module. The first stage is clocked by the full-rate fabric clock.
The second and third stages are clocked by DLL shifted and compensated versions of this
fabric clock to help provide for write-leveling functionality. The delay attributes required
here are set during calibration.

UG043, April 26, 2014 17

DLL Specs and Operation

The DLL IP block in the Speedster22i HD1000 is wide range DLL with 1 Master DLL (MDLL)
and 12 Slave DLLs (SDLLs). Table 5 provides the DLL IP Specs and Figure 10 provides a
high-level block diagram of the DLL architecture.

Table 5: DLL IP Specs

Performance Parameters Data

Frequency Range 311MHz– 1066 MHz

Max P2P period jitter @ 2133MHz with noise
freq = 200Mhz and +/-15mV sinusoidal noise

<2% of cycle time

Minimum high low slave pulse width 25% reference cycle

DLL Lock time < 500 reference clock cycles

SDLL Step size 360/64 degrees nominal

Output phase accuracy +/- 4% reference clock cycle

Output phase resolution 6 bits

Slave delay adjustment 0% to 100% of reference cycle

Number of outputs per lane 1

Number of lanes per master 12

Reference Input Duty Cycle 40% - 60%

Master DLL

Slave DLL

Lock Detector

Startup Timer

View

Block

Pbias Nbias

input reference

CLK

data_in<11:0>

sdll_out<11:0>

pin out

Figure 10: DLL Architecture High-Level Block Diagram

18 UG043, April 26, 2014

The MDLL uses a regulated supply generated by a high performance on-board regulator to
achieve the best possible performance in terms of jitter. It gets a clock as its reference to
generate desired delay in its delay cells. The delay cells used in its VCDL is based on a
current starved technique to provide the delay to generate the feedback signal. The phase of
the feedback signal is compared with the reference signal. This phase difference is translated
to voltage (PBIAS and NBIAS) by the phase detector and charge pump, which is given back
to the VCDL block to generate the required delay by either pushing out or pulling in the
feedback clock to reduce the phase error between the reference clock and the feedback clock.
The VCDL has 16 delay elements, and each delay cell provides 22.5 deg phase difference in
locked condition. As there are 16 delay cells in series, the out signal of the 16th delay cell will
have a 360 degrees phase offset with respect to the reference clock. Figure 11 below shows a
block diagram of the MDLL.

Delay Cell Block

ph360

Start-up Phase detector Charge Pump
Bias Generator

L
o

o
p

 F
ilt

e
r

ph0
up

dn
Openloop_sel

Master

enable

PLL CLK

Front

buffer

16th Delay

 cell

1st

Delay

 cell

Load

buffer

ph0 ph45 ph90 ph135 ph180 ph225 ph270 ph315

Pbias

Nbias

Figure 11: MDLL Block Diagram

The SDLL and the phase interpolator are used to adjust the delay of the strobe signal and
data signals in the data module so that they will be aligned. The phase interpolator gets 17
clocks with a phase separation of 22.5 degrees from the SDLL, and then performs fine tuning
by mixing various phases as determined by the programmable config bit settings. The phase
interpolator has two stages of mixing the clock. In the first stage it performs coarse tuning
through a mux by selecting the ph0 and ph1 option list as shown in Table 6.

Table 6: Phase Interpolator Mux Output List

Mux Output Option Ph0 Ph1

1 0 22.5

2 22.5 45

3 45 67.5

4 67.5 90

5 90 112.5

6 112.5 135

7 135 157.5

8 157.5 180

UG043, April 26, 2014 19

Mux Output Option Ph0 Ph1

9 180 202.5

10 202.5 225

11 225 247.5

12 247.5 270

13 270 292.5

14 292.5 315

15 315 337.5

16 337.5 360

In the second stage the phase interpolator mixes the two phases (ph0 and ph1) mentioned
above to meet the required delay/phase difference. For example, to push out the incoming
signal by a 100 degree phase, the first stage selects phase 90 and phase 112.5, and then the
second stage uses this pair and fine tunes it to meet the required 100 degree push out. Figure
12 below provides a block diagram of the SDLL and Phase Interpolator.

Slave DLL

Course selection of clocks

Through Muxs

Fine Selection through

Programmable drive

strength

Phase Interpolator Block per clock

Pbias

Nbias

Bias from MDLL

Decoder

LSB[3:0]MSB[16:0]
Phase

Interpolator

Codes<5:0>

Phase

Interpolator

Clock out

17

Figure 12: SDLL and Phase Interpolator Block Diagram

20 UG043, April 26, 2014

Revision History

The following table shows the revision history for this document.

Date Version Revisions

04/26/2014 1.0 Initial Achronix release.

