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Overview 

Speedster22i HD devices have a flexible and feature rich PHY with building blocks to 
implement a PHY capable of interfacing with the hard DDR3 memory controller or soft 
memory controller interfaces in the FPGA fabric. 

This User Guide will review these building blocks and how they are assembled to build the 
PHY circuitry needed for commonly used memory interfaces. 

Before diving into the details, it is worthwhile understanding how the FPGA is organized to 
put the PHY into context. Figure 1 below shows a top-level view of a Speedster22iHD FPGA, 
how the SerDes, IO and hard IP are organized, and how a memory interface would be built 
using the hardened PHY and a soft controller. 
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Figure 1: Speedster22iHD Architecture for Memory Interface Design using Soft Controller 

 

The IO in the Speedster22iHD devices is organized into 12 IO byte-lanes. Within this 12, there 
are 10 DQ, 1 DQS and 1 DQSn IOs. The PHY implementation for all bits are the same, but 
there are differences in top-level connectivity between the IOs implementing these different 
functions. More importantly, there are differences in connectivity even for the same 
DQS/DQSn bit across byte-lanes. This means that even for soft memory controller 
implementations, there are IO placement restrictions, and it is important that Achronix 
guidelines be followed to ensure that the particular memory interface PHY can be legally and 
successfully implemented, and optimized to be able to timing close in the fabric. 
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As stated above, there are 12 IOs in a byte-lane. A group of byte-lanes make up an IO bank 
and 3 IO banks build an IO cluster (denoted using the initials EN, EC, ES, WN, WC, WS for 
location). There are a total of 13 byte-lanes (or 156 IOs) per IO cluster, with the IO banks 
being organized as 2 groups of 4 byte lanes and 1 group of 5 byte lanes. 

Every IO cluster is powered by a separate set of power balls and so the power profile and 
chacteristics of the respective rails will depend on the activity of those specific IOs.  

An IO cluster is able to provide no more than 2 clocks (a half-rate and a quarter-rate) to the 
corresponding triplet of clock regions. For source-synchronous operations where the clock 
needs to be transmitted from the PHY to the FPGA fabric, the amount of logic that can be 
clocked using this source-synchronous implementation will be limited by this architecture 
(unless additional FIFOs/sync logic is used to transfer to a global clock domain in the 
memory interface PHY). This concept is illustrated in Figure 2 below. Figure 3 shows a blovk 
level diagram of the IO layout across the FPGA. 
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Figure 2: Speedster22iHD IO Bank and Clock Region Organization for West North Cluster 
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Figure 3: Speedster22iHD IO Cluster Organization 

 

The next sections will discuss the actual PHY implementation for the different memory 
interfaces in more detail. 
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DDR PHY 

Organization and Interfaces 

Figure 4 provides a block diagram view of how the DDR PHY is organized, and how it 
interfaces with other components of the memory interface sub-system. As shown, a PLL 
input clock and an external reset are supplied to the DDR PHY, which can communicate with 
3 separate interfaces: an external DDR memory, and based on the user’s implementation, 
either the hard DDR controller in the IO ring or a soft DDR controller in the FPGA fabric. The 
PHY needs to select between using the DDR controller vs communicating with a controller in 
the FPGA fabric. This is done through a user-specified parameter. There are other parameters 
as well to help select features and functionality in the DDR PHY. 

Table 1 provides the port list for the FPGA internal interface, while Table 2 provides the port 
list for the external DDR memory interface. Table 3 provides a parameter list to highlight the 
available modes and options. 
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Figure 4: DDR PHY Organization and Interfaces 

 

 

 



8  UG043, April 26, 2014 

Table 1: DDR PHY – Hard/Soft Controller Interface Port List 

Signal Name 
Bus 

Width 
Direction Description 

clk 1 Input User reference clock (full-rate), generally coming in from a PLL 

reset_n 1 Input Active-low user reset 

phy_ddr_clk_en 1 Input Clk enable signal for CAC byte lane to enable clocking 

byte_{3,2,1,0}_from_ctrl_{a,b} 10 Input Input to the CAC byte lanes 

clk_div2 1 Output Half-rate clock output from PHY, synchronous to clk 

clk_div4 1 Output Quarter-rate clock output from PHY, synchronous to clk 

phy_ci_dq{a,b,c,d} N Input 
Four sets of dq data signals for TX interface: all used in half-rate, 

a and b only used in full-rate 

phy_ci_dq{a,b,c,d}8 N/8 Input 
Four sets of dq mask signals for Tx interface: all used in half-rate, 

a and b only used in full-rate 

phy_co_dq{a,b,c,d} N Output 
Four sets of dq data signals from RX interface: all used in half-

rate, a and b only used in full-rate 

phy_ctrli_dq{a,b}9 1 Input Data bits for the preamble 

phy_ctrli_dqsa 1 Input DQS input into the byte 

phy_co_l_busy_align 9 Output Busy alignment output signal for byte 

phy_co_l_d_req 9 Output Data request output for byte 

phy_co_l_d_req_align 9 Output Data request output for byte when widebus is enabled 

phy_co_l_d_req_early_align 9 Output Data request early output for byte when widebus is enabled 

phy_co_l_r_valid 9 Output Read valid output for byte 

phy_co_l_r_valid_align 9 Output Read valid output for byte when widebus is enabled 

phy_co_l_r_valid_early_align 9 Output Read valid early output for byte when widebus is enabled 

phy_ctrli_write_level_en N/8 Input Enable signal for write leveling 

phy_ctrli_doing_wr_level 1 Input Indicator of write leveling 

phy_ctrli_l_busy 9 Input Busy signal input 

phy_ctrli_dreq_early 9 Input Early data request input 

phy_ctrli_rvalid_early 9 Input Early read valid signal input 

phy_ci_{rd,wr}req 1 Input Read/Write request input 

phy_ctrlo_{rd,wr}req 1 Output Read/Write request output 

dbg_dqs_{a,b} 9 Output Debug signal for dqs output from IO registers 

dbg_dq9_bit_{a,b} 9 Output Debug signal for dq9 output from IO registers 

phy_ctrli_l_io_recal 1 Input DDR update after recalibration for io comp block 

Soft Controller (Fabric) Interface    

phy_ci_dq/dqs_add_dly N/4 Input 2-bit value per byte to add delay to dq/dqs path 

phy_ci_dreq 9 Input Data request input 

phy_ci_l_r_valid 9 Input Read valid signal input 

phy_ci_rd_en N/8 Input Read enable input 

phy_ci_rd_rstn N/8 Input Active low read reset 

phy_ci_sd_dq_ptr_rstn N/8 Input Active low reset for pointer in deserializer logic 

phy_ci_slave_adj 8 Input Slave DLL delay adjustment 

phy_ci_slave_dqsn_en N/8 Input Active low dqs enable in the slave DLL 

phy_ci_dq/dqs_cdoe{a,b} N/8 Input Data a and b output enable signal for dq/dqs 

phy_ci_dq/dqs_croe{a,b} N/8 Input Data a and b termination resistance enable signal for dq/dqs 

phy_co_write_level_out N/8 Output Write leveling output for byte 

Hard Controller Interface    

phy_ctrli_dq/dqs_add_dly N/4 Input 2-bit value per byte to add delay to dq/dqs path 

phy_ctrli_dreq 9 Input Data request input 

phy_ctrli_l_r_valid 9 Input Read valid signal input 

phy_ctrli_rd_en N/8 Input Read enable input 

phy_ctrli_rd_rstn N/8 Input Active low read reset 

phy_ctrli_slave_adj 8 Input Slave DLL delay adjustment 

phy_ctrli_slave_en 12 Input Enable signal for the slave DLL 

phy_ctrli_dq/dqs_cdoe{a,b} N/8 Input Data a and b output enable signal for dq/dqs 
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Signal Name 
Bus 

Width 
Direction Description 

phy_ctrli_dq/dqs_croe{a,b} N/8 Input Data a and b termination resistance enable signal for dq/dqs 

phy_ctrlo_write_level_out N/8 Output Write leveling output for byte 

 

Table 2: DDR PHY External Memory Interface Port List 

Signal Name 
Bus 

Width 
Direction Description 

sd_clk_p 3 Output SDRAM differential clock signal (positive polarity) 

sd_clk_n 3 Output SDRAM differential clock signal (negative polarity) 

sd_cke 4 Output SDRAM clock enable control signal 

sd_odt 4 Output SDRAM on die termination control signal 

sd_ras_n 1 Output SDRAM RAS control signal 

sd_cas_n 1 Output SDRAM CAS control signal 

sd_we_n 1 Output SDRAM write enable control signal 

sd_reset_n 1 Output SDRAM reset signal 

sd_a 16 Output SDRAM address bus 

sd_ba 3 Output SDRAM bank select 

sd_cs_n 4 Output SDRAM chip select 

sd_dm N/8 Inout SDRAM data mask 

sd_dummy N/8 Inout Internal use only. Leave unconnected. 

sd_dq N Inout SDRAM data bus 

sd_dqsn N/8 Inout SDRAM DQS bus, which is used to clock DQ bus 

sd_dqsp N/8 Inout SDRAM DQS bus, which is used to clock DQ bus 

 

Table 3: DDR PHY Parameter List 

Parameter Default (hex) Valid Values Description 

DSIZE 16 Multiples of 8 up to 72 Local side data width 

USE_CONTROLLER D̀EF_USE_CONTROLLER 
D̀EF_USE_CONTROLLER, 

D̀EF_NOT_USE_CONTROLLER 
Specifies whether the hard controller 

should be used in the design 

NUM_CLK_OUTS 4 1 to 4 Number of clock outputs 

NUM_RANKS 1 1 to 4 Number of memory ranks in system 

BYPASS_TXRX_SD D̀EF_IO_RXSD_BYPASS_MUX 
D̀EF_IO_RXSD_BYPASS_MUX 

D̀EF_IO_RXSD_NO_BYPASS_MUX 
Specifies data at full-rate vs half-rate 

(Bypass=Full-rate, No_bypass=Half-rate) 

EXTRA_PIPELINE_N 1'b1 1'b0, 1'b1 

0 -> One extra clock cycle to load data 

1 -> No extra cycle 

Applies to both read and write paths 

EXTRA_1CLK_DLY 0 0, 1 1 -> extra one clock delay in 2X mode. 

WIDE_BUS 0 0, 1 

1 -> Wide-bus used in fabric to convert 

incoming data to quarter-rate. PHY 

provides quarter-rate clock on clk_div4. 

BYTE_LANE[N/8-1:0]_DLL_ADJ_DQ 6'h04 6’h00 to 6’hFF DQ Slave adjust for BYTE_LANE 

BYTE_LANE[N/8-1:0]_DLL_ADJ_DQS 6'h16 6’h00 to 6’hFF DQS Slave adjust for BYTE_LANE 

BYTE_LANE[N/8-1:0]_DLL_ADJ_DP 6'h04 6’h00 to 6’hFF DP Slave adjust for BYTE_LANE 

BYTE_LANE[N/8-

1:0]_WR_LVL_DQ_SELECT 
`WLVL_SELECT_DQ0 

`WLVL_SELECT_DQ0 up to 

`WLVL_SELECT_DQ7 
DQ bit used for write leveling 

BYTE_LANE_DLL_DQSX9_CLK_ADJ 6'h10 6’h00 to 6’hFF DLL adjust for wpb_tx_dqsx9_clk(0.25T) 

BYTE_LANE_DLL_DQX9_CLK_ADJ 6'h30 6’h00 to 6’hFF DLL adjust for wpb_tx_dqx9_clk(0.75T) 

BYTE_LANE_CAC_DLL_ADJ_DQSN 6'h17 6’h00 to 6’hFF DP Slave adj for CAC byte lanes (0.35T) 
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PHY Structure and Operation 

Figure 5 below illustrates a high level overview of the DDR PHY structure. It consists of up to 
9 data byte lanes, each implementing a x8 interface to give a max width of x72. There are also 
4 byte lanes to implement Control, Address, Command (CAC) functions. Three of the CAC 
byte lanes operate at full rate mode and one of them operates in half-rate mode (denoted by 
the extension SD). 

The full-rate clock typically (but not necessarily) comes from the PLL and then goes through 
two clock dividers, one implementating a divide-by-2 and the other implementing a divide-
by-4. The full-rate clock goes to all byte lanes; the divide-by-2 clock is fed into the byte-lanes 
that have half-rate operation; and the divide-by-4 clock is actually only transmitted to the 
fabric since the half-rate to quarter-rate conversion is not done in the PHY, but rather has to 
be done in the fabric (refer to the PHY – Controller Interfacing through Widebus section of 
the document for details on this). 
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Figure 5: DDR PHY Structure 
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PHY – Controller Interfacing through Widebus 

The DDR PHY in Speedster22i HD devices provides a half-rate interface to the 
programmable logic fabric. Clearly, at high DDR3 data rates, running a soft controller and 
the application interface at half-rate speeds is impractical and often infeasible, as far as being 
able to close timing on the design. 

Typically, with design complexities and fabric limitations, the target core fmax should be no 
higher than 250MHz-300MHz. This means that even with a modest data rate of 1066Mbps 
(half-rate clock of 266MHz), timing closure may end up being a challenge. In practice, data 
rates of 1333Mbps, 1600Mbps and beyond will require a quarter-rate implementation 
interface to the user logic. 

Since the DDR PHY inherently does not output signals at a quarter-rate speed, a wrapper is 
needed in the fabric to act as a translator between the PHY and the soft controller. This 
“Widebus wrapper” takes in the half-rate clocks and signals from the PHY and outputs them 
at the quarter-rate clock to the soft controller at the expense of additional latency. As a result, 
quarter-rate clocks of 166.67MHz amd 200MHz would be needed at 1333Mbps and 1600Mbps 
respectively. 

Figure 6 below provides a block diagram view of the Widebus wrapper interface, with the 
full-rate, half-rate and quarter-rate clock domains delineated within the dotted red lines. 
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Figure 6: Widebus Wrapper Interface 
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Byte Lane Building Blocks 

As shown in Figure 5, the DDR PHY is made up of up to 9 data byte lanes (for a x72 mode 
interface) and 4 CAC (Control, Address and Command) byte lanes, 1 one of them operating 
at half rate, as denoted by the SD postfix. The building blocks inside these byte lanes are very 
similar. This section will detail the building blocks in a data byte lane and then explain the 
differences that can be seen in a CAC byte lane. 

Figure 7 below provides a block level diagram of the building blocks inside a data byte lane. 
Each of these blocks are described in more detail below. 
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Figure 7: DDR3 Data Byte Lane Building Blocks 

 

Clk_mux: As the name implies, the clock mux takes in clocks coming in from the PLL, selects 
and distributes them to the rest of the PHY logic. 

ddr3_dq_bit: There are 8 of these dq data modules which feed the bidirectional buffers used 
in data transmission and reception. The chapter on TX, RX and OE paths in Data Bits 
provides a much closer look at the data paths through these dq data modules. 

ddr3_dm_bit: This is the data mask bit controlling the masking operation at a byte level into 
the PHY. 
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ddr3_dq9_bit/postamble/ddr3_dqs_bit: These are the modules used to transmit and receive 
dqs pulses to sample the data at dq. The chapter on DQS Clocking and Circuitry provides 
more detail about the functionality of each of these blocks and how the dqs is adjusted to 
ensure that the dq data is sampled optimally. The dqs output is provided to all of the dq and 
dm bits as a clock. It can also be routed as an output to the FPGA fabric. 

write leveling circuitry: There are 2 slave DLLs (sdlls), denoted as 0.25T and 0.75T to help 
provide mechanisms to enable write leveling. These two DLLs take the reference clock as 
input and produce shifted versions of this clock as inputs to the first stage of registering in 
the dqs TX path. 

byte_lane_rxsy: This module takes clocks and enables from the fabric as inputs and uses 
them to time and generate the write and read pointers that are used when doing clock 
domain transferring between the dqs clock domain and the core clock domain in the hard 
FIFO on the data receive path. 

byte_lane_logic/byte_lane_sd_logic: These modules provide control interfaces for muxing 
signals between the hard DDR controller and a soft DDR controller (from the fabric). 

 

A CAC byte lane is much simpler in its structure. There is a single bit module for every pad 
that needs to be placed. A slave dll is used to provide for leveling capability and there is an 
option to use a pad to have source synchronous clock be routed into the fabric. No additional 
masking, pre/postambles or muxing is implemented or needed. 

Table 4 below provides the mapping between the bits within each of these 4 CAC byte lanes 
and the external DDR functions that they map to. 

Table 4: CAC Byte Lane Mapping 

DDR Function/Port CAC Byte Lane Mapping  

sd_cs_n[NUM_RANKS-1:0] {cac_byte_0[1:0], cac_byte_1[1:0]} 

sd_cke[NUM_RANKS-1:0] {cac_byte_0[3:2], cac_byte_1[3:2]} 

sd_odt[NUM_RANKS-1:0] {cac_byte_0[5:4], cac_byte_1[5:4]} 

sd_reset_n {cac_byte_1[6]} 

sd_a[15:0] {cac_byte_1[9:8], cac_byte_2[3:0], cac_byte_sd[9:0]} 

sd_ba[2:0] {cac_byte_2[6:4]} 

sd_we_n {cac_byte_2[7]} 

sd_cas_n {cac_byte_2[8]} 

sd_ras_n {cac_byte_2[9]} 
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TX, RX and OE paths in Data Bits 

This section highlights the pieces of the TX, RX and OE circuitry that make up each of the 
data bits. These same pieces are also used in building clock, dqs and dm bits also, and the 
flexibility provided enables more custom IO configurations to be created as well. Figure 8 
shows a block level diagram of the TX, RX and OE paths. The paths and the modules used 
are described in more detail below. 
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Figure 8: TX, RX and OE paths in a DDR DQ bit 

Receive path: Data coming from the DQ pad goes through the receive buffer and is then 
provided as an input to the rx_any module. This data then goes through a slave dll (sdll) 
which is essentially used to implement read-leveling. The output of the sdll is then fed into 
the rx_fifo module which contains a fifo of depth four (at full-rate). At this point, the receive 
data is sampled at the positive and negative edges for full-rate conversion, and a clock 
domain transfer take place in the fifo between the dqs clock domain and the full-rate clock 
domain coming from the FPGA PLL. The output of the rx_fifo is then optionally fed into a 
rx_sd module which implements a full-rate to half-rate conversion prior to transferring the 
four-wide data into the fabric. 
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Transmit path: If half-rate (or quarter-rate with the widebus wrapper) is used in the fabric, 
four-wide data is provided from the fabric to a tx_sd module. The tx_sd module converts the 
incoming data from half-rate to full-rate and provides a two-wide data into the tx_any 
module (tx_sd module should be bypassed if a full-rate interface is used in the fabric). The 
data passes from the tx_any module into the tx_flop module, which samples the transmit 
data at both the positive and negative edges of the full-rate clock and aligns the data to the 
dqs clock domain. This data is then passed to the transmit buffer before being sent out on the 
pad. 

 

Output Enable path: Full-rate output enables are passed from the fabric to the oeren_ny 
module which passes the data to the oeren_flop. Similar to the tx_flop implementation, 
oeren_flop samples the oe data at both the positive and negative edges of the full-rate clock 
and aligns the data to the dqs clock domain. This is then fed as an output enable signal to the 
transmit buffer. In addition, there is a termination resistance enable signal, opbit_rtt, that 
goes through essentially the same path as the oe data, to turn on/off the input buffer 
impedance when reading vs writing data. 
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DQS Clocking and Circuitry 

The circuitry in Figure 9 below shows how the DQS signal coming from or going to 
dqsn/dqsp is treated to ensure that both reads and writes can be successfully done for high 
data rate DDR3 implementations. 
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Figure 9: DQS Circuitry for Read and Write 

For the read path, the dqs signal goes through a gate that acts to control the preamble enable 
and the postamble shutoff. This control logic is provided through input signals 
phy_ctrli_dqa/b9 that first traverse some logic in the ddr3_dq9_bit module. This is done to 
ensure that gating logic coming in has a delay that matches the dq signal delay through a 
ddr3_dq{1-8}_bit. The DLL delayed dqs_clkout signal and the preamble signal from the 
ddr3_dq9_bit are used to generate the final postamble_out signal that is then fed into the gate 
controlling the dqs signal coming in, ultimately creating a feedback path through a DLL 
which ensures that PVT compensation is done appropriately. The section below on DLL 
Specs and Operation provides more details on the specifics of the DLL. The dqs_clkout signal 
from the DLL feeds a clk mux which is then distributed to the rx_fifo modules of all of the dq 
bits that this dqs signal needs to sample. The dqs signal is used as a clock for the first fifo 
stage, and the second register stage in the fifo is clocked by a full-rate clock provided by a 
PLL in the FPGA to ensure that data beyond this fifo is synchronized to a core clock for all 
relevant byte lanes. 

For the write path, the phy_ctrli_dqsa signal coming from the controller passes through a 3-
stage register in the TX_Flop module. The first stage is clocked by the full-rate fabric clock. 
The second and third stages are clocked by DLL shifted and compensated versions of this 
fabric clock to help provide for write-leveling functionality. The delay attributes required 
here are set during calibration. 
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DLL Specs and Operation 

The DLL IP block in the Speedster22i HD1000 is wide range DLL with 1 Master DLL (MDLL) 
and 12 Slave DLLs (SDLLs). Table 5 provides the DLL IP Specs and Figure 10 provides a 
high-level block diagram of the DLL architecture. 

Table 5: DLL IP Specs 

Performance Parameters Data 

Frequency Range 311MHz– 1066 MHz 

Max P2P period jitter @ 2133MHz with noise 
freq = 200Mhz and +/-15mV sinusoidal noise 

<2% of cycle time 

Minimum high low slave pulse width 25% reference cycle 

DLL Lock time < 500 reference clock cycles 

SDLL Step size  360/64 degrees nominal 

Output phase accuracy +/- 4% reference clock cycle 

Output phase resolution 6 bits 

Slave delay adjustment 0% to 100% of reference cycle 

Number of outputs per lane 1 

Number of lanes per master 12 

Reference Input Duty Cycle 40% - 60% 
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Figure 10: DLL Architecture High-Level Block Diagram 

 



18  UG043, April 26, 2014 

The MDLL uses a regulated supply generated by a high performance on-board regulator to 
achieve the best possible performance in terms of jitter. It gets a clock as its reference to 
generate desired delay in its delay cells. The delay cells used in its VCDL is based on a 
current starved technique to provide the delay to generate the feedback signal. The phase of 
the feedback signal is compared with the reference signal. This phase difference is translated 
to voltage (PBIAS and NBIAS) by the phase detector and charge pump, which is given back 
to the VCDL block to generate the required delay by either pushing out or pulling in the 
feedback clock to reduce the phase error between the reference clock and the feedback clock. 
The VCDL has 16 delay elements, and each delay cell provides 22.5 deg phase difference in 
locked condition. As there are 16 delay cells in series, the out signal of the 16th delay cell will 
have a 360 degrees phase offset with respect to the reference clock. Figure 11 below shows a 
block diagram of the MDLL. 
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Figure 11: MDLL Block Diagram 

The SDLL and the phase interpolator are used to adjust the delay of the strobe signal and 
data signals in the data module so that they will be aligned. The phase interpolator gets 17 
clocks with a phase separation of 22.5 degrees from the SDLL, and then performs fine tuning 
by mixing various phases as determined by the programmable config bit settings. The phase 
interpolator  has two stages of mixing the clock. In the first stage it performs coarse tuning 
through a mux by selecting the ph0 and ph1 option list as shown in Table 6. 

Table 6: Phase Interpolator Mux Output List 

Mux Output Option Ph0 Ph1 

1 0 22.5 

2 22.5 45 

3 45 67.5 

4 67.5 90 

5 90 112.5 

6 112.5 135 

7 135 157.5 

8 157.5 180 
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Mux Output Option Ph0 Ph1 

9 180 202.5 

10 202.5 225 

11 225 247.5 

12 247.5 270 

13 270 292.5 

14 292.5 315 

15 315 337.5 

16 337.5 360 

In the second stage the phase interpolator mixes the two phases (ph0 and ph1) mentioned 
above to meet the required delay/phase difference. For example, to push out the incoming 
signal by a 100 degree phase, the first stage selects phase 90 and phase 112.5, and then the 
second stage uses this pair and fine tunes it to meet the required 100 degree push out. Figure 
12 below provides a block diagram of the SDLL and Phase Interpolator. 
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Figure 12: SDLL and Phase Interpolator Block Diagram 
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Revision History 

The following table shows the revision history for this document. 

Date Version Revisions 

04/26/2014 1.0 Initial Achronix release. 

   

   

   

  


