
www.achronix.com

Speedcore Gen4 eFPGA
Datasheet (DS012)

Speedcore eFPGA IP

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 2

Copyrights, Trademarks and Disclaimers
Copyright © 2019 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster,
and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other
trademarks are the property of their respective owners. All specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 3

Table of Contents

Chapter - 1: Overview . 6
Introducing Speedcore Gen4 eFPGA . 6

Feature Summary . 6

Functionality . 7

Process Technology . 8

Programming . 8

Security . 8

IP Nomenclature . 8

Chapter - 2: Speedcore Gen4 Architecture . 9
Fabric Architecture . 9

Block Floorplan . 9

Speedcore Gen4 Clock Network . 10

Speedcore Gen4 Interface Cluster . 12
Interface Timing Closure . 14

Speedcore Gen4 Logic Fabric - Reconfigurable Logic Block . 14
MLUT Mode . 16

Routing Between RLB6s . 16

Speedcore Gen4 Block RAM . 19
Block RAM 20k . 19

Block RAM 72k . 21

Speedcore Gen4 Logic RAM . 24
Logic RAM 2k . 24

Logic RAM 4k . 26

Speedcore Gen4 DSP64 Block . 27

Speedcore Gen4 MLP Block . 29
MLP Combined with Memory Blocks . 30

Bus Routing . 33

Chapter - 3: Speedcore Gen4 IP Interface . 35
Interfaces . 35

Data Signals . 35

Clock Inputs . 35

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 4

Clock Inputs . 35

Programming Interface . 35

Pins . 36

High-Speed AXI . 37

Chapter - 4: Speedcore Gen4 In-System Debug . 38
Features . 38

Chapter - 5: Speedcore Gen4 Integration Flow . 40
Physical Integration with Customer ASICs . 40

Simulation and Validation . 41

Chapter - 6: Speedcore eFPGA Device Specifications . 42
Device Resource Counts . 42

Key Metrics and Supported Operation . 42

Revision History . 43

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 5

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 6

Chapter - 1: Overview

Introducing Speedcore Gen4 eFPGA
Achronix's Speedcore™ Gen4 embedded FPGA (eFPGA) IP, which includes look-up-table, memory, DSP, and
machine learning processor (MLP) building blocks. Each of these blocks are designed to be modular to allow
customers to define any mix of resources required for their end system.

Achronix delivers the Speedcore Gen4 IP in GDSII format along with all files and documentation required for the
customer to integrate their Speedcore eFPGA instance into their ASIC. Achronix also delivers the supporting
ACE design tools that are used to compile designs targeting their Speedcore eFPGA.

Feature Summary
Because Speedcore Gen4 eFPGA is an embeddable IP, it is designed to be completely surrounded by the end
user ASIC (see the figure below). A Speedcore eFPGA includes the following features.

Programmable core fabric, with customer defined functionality

Core I/O ring

FPGA configuration unit (FCU)

Configuration memory (CMEM)

Interfaces for debug and programming

Interface for test (DFT)

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 7

Figure 1: Embedded Speedcore

Functionality
Customers define the functionality of their Speedcore Gen4 eFPGA by choosing the quantity of each of the
resources listed below:

Logic – 6-input look-up-tables (LUTs) plus integrated fast adders, and multiplier LUT (MLUT) mode for
efficient multiplies

Logic RAM – up to 2 kb per memory block for LRAM2k, and up to 4kb per memory block for LRAM4k

Block RAM – up to 72 kb per memory block for BRAM72k, and up to 20kb per memory block for
BRAM20k

DSP64 – each block has a 18 × 27 multiplier, 64-bit accumulator and 27-bit pre-adder

MLP – optimized for machine learning, each block has up to 16 multipliers, deep adder trees and
accumulators

Note

The number and mix of resource blocks for each Speedcore eFPGA instance is based on customer
requirements.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 8

Process Technology
Speedcore Gen4 eFPGA IP is currently available on the TSMC N7 process node and the TSMC 16FF+ GL
process node.

Programming
Customers can select the programming interface to be one or a combination of the following available options:

JTAG

Parallel CPU (×1, ×8, ×16, ×32, ×128 data width modes)

Serial flash (1 or 4 flash devices)

AXI 128-bit

Security
Speedcore eFPGAs support AES-encrypted bitstreams.

IP Nomenclature
For ease of identification, each Speedcore configuration carries a unique part number, based on the following
nomenclature:

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 9

Chapter - 2: Speedcore Gen4 Architecture

Fabric Architecture
The Speedcore eFPGA fabric is built from a library of tiles. Each tile consists of a routing switch box plus a logic
block which can consist of LUTs, memory, DSPs, etc. Each type of block is designed to snap together in a grid,
where abutting routing networks connect. Various tile flavors are assembled to deliver the desired fabric size and
resource mix. All connections between tiles are accomplished via abutment and guaranteed to be DRC/LVS
clean for any combination of tile flavors.

Block Floorplan
The Speedcore floorplan is arranged with the various block functions arranged in columns. The block functions
are connected by a uniform global interconnect, which enables the routing of signals between core elements.
Switch boxes make the connection points between vertical and horizontal routing tracks. Inputs to and outputs
from each of the functions connect to the global interconnect.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 10

Figure 2: Speedcore Gen4 eFPGA Interconnect

Speedcore Gen4 Clock Network
Speedcore eFPGAs have two types of clock networks targeted to provide both the low-skew, balanced
architecture as well as addressing the source synchronous nature of data transfers with external interfaces.

The global clock network is the hierarchical network that feeds resources in the eFPGA fabric. The global clock
trunk runs vertically up and down the center of the core (gray stripe in the following figure), sourced by global
clock muxes at the top and bottom of the global trunk. The sources driven down the trunk are then channeled out
the balanced clock mini-trunks to both the left and right halves of the core.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 11

Within Speedcore eFPGAs, there is a second clock network available at the periphery of core, the interface clock
network. As the name implies, the intent of these clocks is to facilitate the construction of interface logic within
the eFPGA core operating on the same clock domain as local logic in the surround host ASIC. The clocks
connect to the core through the surrounding interface clusters, allowing for clock signals to be driven both into
and out of the core.

These two networks are shown in the two figures below.

Figure 3: Global Core Clock Network

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 12

Figure 4: Interface Clock Network

Speedcore Gen4 Interface Cluster
The interface cluster is the portion of the Speedcore Gen4 architecture boundary ring that contains the registers,
Achronix configuration bus (ACB) logic, and the connectivity to the Speedcore Gen4 top-level pins. The figure
below shows the details of an interface cluster, illustrating the ingress and egress path for user signals to the
core (both paths can be optionally registered). The second figure depicts the clock tile, showing how clocks enter
and exit the fabric, including optional delays.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 13

Figure 5: Interface Cluster Logic Tile

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 14

Figure 6: Interface Cluster Clock Tile

Interface Timing Closure
The Speedcore Gen4 interface clusters do not have programmable I/O that connect directly to the pads on the
host ASIC. Instead the Speedcore Gen4 eFPGA IP supports a large number of interface clusters which connect
directly to logic signals within the host ASIC. The exact number of interface I/O is dependent upon the size of the
Speedcore Gen4 eFPGA instance specified.

The timing of signals from the host ASIC to any embedded eFPGA is crucial in enabling signals to close timing at
the high frequencies desired for 16nm or 7nm technology. The variation in clock skew between the host ASIC
and an embedded eFPGA's internal clock structures must be fully accounted for and carefully engineered. To
enable this timing closure, Achronix has three different timing scenarios which enable customers to configure the
optimum timing path architecture for different I/O groups.

Speedcore Gen4 Logic Fabric - Reconfigurable Logic Block
The 6-input LUT based reconfigurable logic block (RLB6) is composed of three parallel logic groups as shown in
the diagram below.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 15

Figure 7: RLB6 Block Diagram

Each logic group contains four 6-input look-up-tables (LUT), each with two optional registers and an 8-bit fast
arithmetic logic unit (ALU) to implement logic functionality. Each logic group receives a carry-in input from the
corresponding logic group in the RLB6 to the north and can propagate a carry-out output to the corresponding
logic group in the RLB6 to the south.

The table below provides information on the resource counts inside an RLB6.

Table 1: RLB6 Resource Counts

RLB6 Resource Count

Logic Groups 3

6-LUTs 12

Registers 24

8-bit ALU 3

The following features are available using the resources in the RLB6:

8-to-1 MUX with single-level delay (using the 6-LUTs rather than dedicated MUX4 or MUX8 logic)

8-bit ALU for adders, counters, and comparators

MAX function that efficiently compares two 8-bit numbers and chooses the max or min result

Dedicated connections for high-efficiency shift registers

Multiplier LUT (MLUT) mode for efficient multipliers

The figure below provides details on the circuitry inside a single logic group.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 16

Figure 8: RLB6 Logic Group Details

MLUT Mode
The RLB-6 includes an MLUT mode for an efficient LUT-based multiplication. MLUT mode results in 2 × 4
multiplier building blocks that can be stacked horizontally and vertically to generate any size signed multiplier.
For example, a 2 × 8 multiplier building block can be generated with two 6-LUTs, and one RLB6 can perform a 6
× 6 multiply.

Note

MLUT mode is supported by the MLUT generator to help customers build the multiplier desired.

Routing Between RLB6s
There are special considerations when routing ALU carry chains and shift registers. The Speedcore Gen4 fabric
has hard-wired connections on the signals of each ALU. As mentioned above, each carry_in/carry_out
logic group routes to the corresponding logic group in the RLB6 above or below. In other words, the ALU

 does not route to the next ALU within the same RLB, but rather the same logic group of carry_in/carry_out
the next RLB6. The figure below shows the routing of an ALU.carry_in/carry_out

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 17

Figure 9: ALU Carry Chain Routing

The same is true for the signals in the registers of a logic group. When creating a shift shift_in/shift_out
register, the registers within a logic group route to each other, but the of each logic shift_in/shift_out
group routes to the same logic group in the next RLB6. The figure below shows details of the routing in the
Speedcore Gen4 fabric.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 18

Figure 10: Shift Register Routing

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 19

Speedcore Gen4 Block RAM
Block RAM 20k
The BRAM20k implements a dual-ported memory block where each port can be independently configured with
respect to size and function. The BRAM20k can be configured as a single-port (one read/write port), dual-port
(two read/write ports with independent clocks), or ROM memory. The key features of the BRAM20k are
summarized in the table below.

Table 2: BRAM20k Key Features

Feature Value

Block RAM Size 20 kb

Organization 512 × 40 , 1k × 20, 1k × 18, 1k × 16, 2k × 10, 2k × 9, 2k × 8, 4k × 5, 4k × 4, 8k × 2, 16k × 1(†)

Physical
Implementation Columns throughout device

Number of Ports Dual port (independent read and write)

Port Access Synchronous

Note

† 512 × 40 only available as simple dual-port function.

The BRAM20k ports are illustrated in the following figure:

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 20

Figure 11: BRAM20k Ports

Organization
The organization of each BRAM20k port can be independently configured.

Note

Access from opposite ports is not required to have the same organization; however, the number of total
memory bits on each port must be the same.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 21

Operation
The read and write operations are both synchronous. For higher performance operation, an additional output
register can be enabled, which will add an additional cycle of read latency. The initial value of the memory
contents may be specified by the user from either parameters or a memory initialization file. The initial/reset
values of the output registers may also be specified by the user. The reset values are independent of the initial
(powerup) values. The parameters define the behavior of the output porta_write_mode/portb_write_mode
data port during a write operation. When is set to , porta_write_mode/portb_write_mode write_first
the is set to the value being written on the port during a write operation. Setting douta/doutb dina/dinb

 to keeps the port unchanged during porta_write_mode/ portb_write_mode no_change douta/ doutb
a write operation to . Conflict arises when the same memory cell is accessed by both ports within porta/portb
a narrow window and one or both ports are writing to memory. If this condition occurs, the contents of the
memory and the output data for the colliding address may be undefined, but no damage will occur to the core.

Built in FIFO Controller
The BRAM20kFIFO implements a 20 kb FIFO memory block utilizing the embedded BRAM20k blocks with
dedicated pointer and flag circuitry. The BRAM20kFIFO can be configured to support a variety of widths and
depths, ranging from 512-bit depth with 40-bit data down to 16k depth with 1-bit data. The read and write clocks
may be either synchronous or asynchronous with respect to each other. If the user read and write clocks are the
same clock, the user may set the sync_mode to 1ʹb1 to enable faster and synchronous generation of the status
flags and FIFO pointer outputs.

Error Correction
Error correction is available only in 40-bit (simple dual-port) mode. The built-in error correction logic provides
single-bit error correction and dual-bit error detection on a 32-bit data bus, using eight internal overhead bits. If
the internal ECC logic is not used, all 40 bits can be used for other purposes such as tagging and various control
functions.

Initialization and Reset
Initial content of the BRAM20k can be optionally loaded during device configuration if specified by the user.
Otherwise, the BRAM20k initial content is undefined. On reset, the RAM contents are unchanged, but the output
register, if used, assumes the specified reset value.

The initial state of the RAM read outputs can also be optionally loaded during device configuration.

Block RAM 72k
The BRAM72k primitive implements a 72-kb simple-dual-port (SDP) memory block with one write port and one
read port. Each port can be independently configured with respect to size and function, and can use independent
read and write clocks. The BRAM72k can be configured as a simple dual port or ROM memory. The key features
(per block RAM) are summarized in the table below.

Table 3: BRAM72k Key Features

Feature Value

Block RAM size 72 kb

Organization 1024 × 72, 2048 × 36, 4096 × 18, 8192 × 9, 16384 × 4

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 22

Feature Value

Physical Implementation Columns throughout device

Number of Ports Simple Dual Port (independent read and write)

Port Access Synchronous writes, synchronous reads, write and read clock can be
asynchronous to each other

FIFO Built-in FIFO controller with dedicated pointer and flag circuitry

The BRAM72k ports are Illustrated in the following figure:

Figure 12: BRAM72k Block Diagram

Organization

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 23

Organization
The organization (see table above) of each BRAM72k port can be independently configured.

Operation
The read and write operations are both synchronous. For higher performance operation, an additional output
register can be enabled, which will add an additional cycle of read latency. The initial value of the memory
contents may be specified by the user from either parameters or a memory initialization file. The initial/reset
values of the output registers are set to zero. Byte enables are supported for the 72-bit width configuration of the
BRAM72k. For other width configurations the full word is written when is asserted.wren

Note

Error correction is not available when using byte enables.

Memory operations may be performed simultaneously from both sides of the memory; however, there are
restrictions. A memory collision is defined as the condition where both of the ports access the same memory
location(s) within the same clock cycle (both ports connected to the same clock), or within a fixed time window (if
each port is connected to a different clock). If one of the ports is writing an address while the other port is reading
the same address, the write operation takes precedence, but the read data is invalid. The user may reliably read
the data the next cycle if there is no longer a write collision.

Built in FIFO Controller
The ACE macro cell BRAM72kFIFO implements a 72 kb FIFO memory block utilizing the embedded BRAM72k
blocks with dedicated pointer and flag circuitry. The BRAM72kFIFO can be configured to support a variety of
widths and depths, ranging from 1024-entry depth with 72-bit data down to 16k depth with 4-bit data. The read
and write clocks may be either synchronous or asynchronous with respect to each other. The BRAM72kFIFO
controller supports both standard and First-Word-Fall-Through (FWFT) models. It includes , , rd_err wr_err

 and flags, along with programmable and flags. If the user read and full empty almost_full almost_empty
write clocks are the same clock, the user may set the sync_mode to 1ʹb1 to enable faster and synchronous
generation of the status flags and FIFO pointer outputs.

Error Correction
Error correction is available only when the BRAM72k is configured as 72-bit for both read and write. The built-in
error correction logic provides single-bit error correction and dual-bit error detection on a user's 64-bit data bus. If
the internal ECC logic is not used, all 72 bits can be used for other purposes such as tagging and various control
functions. There are four modes of error correction:

Normal ECC encode/decode mode – User reads/writes 64-bit data, automatic single-bit error correction
and dual-bit error detection.

ECC encoder and decoder disabled – ECC logic is disabled, no error correction/detection.

ECC decode-only mode – User writes 72-bit data directly (64-bit data plus 8-bit error correction syndrome
in bits [71:64]); user reads 64-bit data with automatic single-bit error correction and dual-bit error
detection.

ECC encode-only mode – User writes 64-bit data, automatically adds 8-bit error correction syndrome in
bits [71:64]; user reads 72-bit data directly with no data correction/detection.

Initialization and Reset
Initial content of the BRAM72k can be optionally loaded during device configuration if specified by the user.
Otherwise, the BRAM72k initial content is undefined. On reset, the RAM contents are unchanged, but the output
register, if used, is set to zero when is asserted.rstreg

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 24

The initial state of the RAM read output is also set to zero on reset (asserting).rstlatch

Note

Access from opposite ports is not required to have the same organization; however, the number of total
memory bits on each port must be the same.

Speedcore Gen4 Logic RAM
Logic RAM 2k
The LRAM2k implements a 2,304-bit memory block configured as a 32 × 72 simple dual-port (one write port, one
read port) RAM. The LRAM2k has a synchronous write port. The read port is configured for asynchronous read
operations with an optional output register. This memory block is distributed in the eFPGA fabric. A summary of
LRAM2k features is shown in the table below.

Table 4: LRAM2k Key Features

Feature Value

Logic RAM size 2,304 bits

Organization 32 × 72, 64 × 36, 16 × 144 (depth × width)(†)

Physical Implementation Columns throughout device

Number of Ports Simple dual port (one read, one write)

Port access Synchronous writes, combinatorial reads

FIFO Built-in FIFO controller with dedicated pointer and flag circuitry

Note

† 16 × 144 only available as internal path when tightly coupled with MLP.

The LRAM2k ports are shown in the following figure:

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 25

Figure 13: LRAM2k Block Diagram

Organization
The LRAM2k is configured as a 32 × 72 simple dual-port (one write port, one read port) RAM.

Operation
The LRAM2k has a synchronous write port. The read port is configured for asynchronous read operations,
making read data available the same cycle is asserted. There is an optional output register, that if enabled, rden
adds a cycle of latency to the read. There are no per-byte write enables, the entire word is written on each cycle
that is asserted.wren

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 26

Memory operations may be performed simultaneously from both sides of the memory; however, there are
restrictions. A memory collision is defined as the condition where both of the ports access the same memory
location(s) within the same clock cycle (both ports connected to the same clock), or within a fixed time window (if
each port is connected to a different clock). If one of the ports is writing an address while the other port is reading
the same address, the write operation will take effect, and the read data is invalid. The user may reliably read the
data the next cycle if there is no longer a write collision.

Built in FIFO Controller
Implements a 2 kb FIFO memory block utilizing the embedded LRAM2k blocks with dedicated pointer and flag
circuitry. The read and write clocks may be either synchronous or asynchronous with respect to each other. A
single clock for read and write provides for lower latency. The LRAM2k block also supports shift register mode
where the FIFO implements a fixed delay of 72-bit words from 1 to the depth of the memory block.

Initialization
By default, the contents of the LRAM2k memory are undefined. Optionally, the user may initialize memory
contents from either parameters or a memory initialization file. If the output register is enabled, it will be set to
zero on reset.

Logic RAM 4k
The LRAM4k implements a 4,096-bit memory block configured as a 128 × 32 simple dual-port (one write port,
one read port) RAM. The LRAM4k has a synchronous write port. The read port is configured for asynchronous
read operations with an optional output register. This memory block is distributed in the eFPGA fabric. A
summary of LRAM4k features is shown in the table below.

Table 5: LRAM4k Key Features

Feature Value

Logic RAM size 4,096 bits

Organization 128 × 32

Physical implementation Dedicated columns

Number of ports Simple dual port (one read, one write)

Port access Synchronous writes, asynchronous reads

The LRAM4k ports are shown in the following figure:

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 27

Figure 14: LRAM4k Ports

Organization
The LRAM4k is configured as a 128 × 32 simple dual-port (one write port, one read port) RAM.

Operation
The LRAM4k has a synchronous write port. The read port is configured for asynchronous read operations with an
optional output register. The memory is organized as little-endian order with bit 0 mapped to bit 0 of parameter

 and bit 4095 mapped to bit 255 of parameter .mem_init_00 mem_init_15

Initialization and Reset
By default, the contents of the LRAM4k memory are undefined. If the user wants the initial contents to be
defined, he may assign them from either a file pointed to by the parameter or assign them from mem_init_file
the value of the parameter.mem_init

Speedcore Gen4 DSP64 Block
The DSP64 blocks include multiple/accumulate and associated logic to efficiently implement math functions such
as finite impulse response (FIR) filters, fast Fourier transforms (FFT), and infinite impulse response (IIR) filters.
The DSP64 blocks are optimized to operate with the logic fabric and LRAM blocks to implement math functions.
Refer to the for more details.Speedcore IP Component Library User Guide

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 28

The DSP64 blocks have the following functions:

27-bit preadder

18 × 27 multiplication/accumulation with programmable load value

Add/subtract

Saturating add/subtract support

(A ± B) and (A ± B) + constant2 2

Output rounding

Figure 15: DSP64 Block

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 29

Speedcore Gen4 MLP Block
The machine learning processing block (MLP) consists of an array of up to 12 multipliers, followed by an adder
tree, an accumulator, and a rounding/saturation/normalize block. The number of multipliers available varies with
the bit width of the operands. The MLP offers a range of features including integer multiply with optional
accumulate, bfloat16 operations, floating point 16, block floating point, and floating point 24. Additionally, when
the MLP is placed next to a BRAM or LRAM tile, the number of data inputs to the MLP block doubles. This
configuration allows twice the number of multipliers to be used within the MLP block. Below is a list of features
available with the MLP block.

Configurable multiply precision and multiplier count

Multiple number formats (fixed and floating point)

Multiple rounding and saturation features

Below is a table detailing the number of multiplies based on data type.

Table 6: MLP Multiply By Data Type

Data Type No. of Multiplies with Data
Inputs from Fabric Only

No. of Multiplies with Data Inputs
from Fabric and BRAM/LRAM

3-bit integer 12 24

4-bit integer 8 16

6-bit integer 6 12

8-bit integer 4 8

16-bit integer 1 –

Bfloat16 1 1

Floating point 16 1 1

3-bit Block floating point (mantissa) 12 24

4-bit Block floating point (mantissa) 8 16

6-bit Block floating point (mantissa) 6 12

8-bit Block floating point (mantissa) 4 8

16-bit Block floating point (mantissa) 1 –

Floating point 24 (8-bit exponent)
Rounding on mantissa LSB only –

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 30

Along with the above multiply configurations, the MLP block includes optional input registers and optional
pipelining registers at various locations to improve high frequency designs. There is a deep adder tree after the
multipliers, with the option to bypass the adders and output the multiplier products directly. There is a
normalization block for floating point and block floating point operations. In addition, a feedback path allows for
accumulation within the MLP block. A cascade path allows for the adder tree to extend across multiple MLP
blocks in a column without using extra fabric resources.

Below is a figure showing an example of eight inputs from the fabric of eight bits each, creating four multipliers in
the MLP.

Figure 16: MLP Multipliers with Fabric-only Inputs

MLP Combined with Memory Blocks
In order to maximize the connectivity to the MLP block, BRAM or LRAM columns can be placed adjacent to the
MLP column. This placement doubles the number of allowed multipliers within an MLP block and provides the
following features with the MLP block:

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 31

Cyclical register file, similar to a cache, that can double the compute performance (data is saved for
efficient reuse)

Column bonding and MLP cascade paths creates hardened paths between memory blocks and MLP
blocks which enables high-performance functionality while freeing up general-purpose routing

Below is a figure illustrating the number of multipliers with eight inputs from the fabric and eight inputs from a
BRAM, each with 8-bit inputs, delivering eight multiplies.

Figure 17: MLP Multipliers with Fabric and BRAM Inputs

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 32

Additionally, an LRAM adjacent to the MLP block can be used as a cache, with the results of the multiplies
written back to the LRAM and the results reused as inputs to the multipliers. The figure below illustrates the use
of the LRAM with the MLP block, showing eight inputs from the fabric, eight inputs from the LRAM (each with 8-
bit data inputs), and the result of the MLP being written back to the LRAM.

Figure 18: MLP Multipliers with LRAM Inputs and Write-Back

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 33

Bus Routing
New in Speedcore Gen4 architecture is dedicated bus routing. In addition to traditional per-bit FPGA routing, the
Speedcore Gen4 architecture includes separate dedicated bus-based routing for high performance datapaths.
These buses are placed into groups of up to 8 bits wide and are routed independently from standard routing in
order to significantly reduce congestion.

Figure 19: Speedcore Gen4 Bus Routing

Additionally, the Speedcore Gen4 architecture introduces a programmable switch network for bus routing. There
is a 4 × 1 bus MUX for each of the 8-bit buses inside each Speedcore switchbox. These bus MUXes are
cascadable for wider MUX requirements. This added MUXing reduces overall logic and routing resources for a
design, leading to improved performance and smaller area. The figure below shows an example of how to route
logic that selects between two 8-bit buses. This logic might look something like:

end_FF[7:0] = select ? FF0[7:0] : FF1[7:0]

The top portion shows the 8-bit buses routing on the programmable switch network. The bottom portion shows
how the same logic routes using standard fabric routing. The red sections show the active run-time logic, and the
blue sections are fixed after configuration. With the MUXing occurring inside the programmable switch network,
and the full 8-bit bus routing, the number of routes is drastically reduced. The programmable switch network
includes MUX logic inside the switchbox, whereas the standard fabric routing requires routing to extra logic for
the MUXing function.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 34

Figure 20: Bus Routing with Programmable Switch Network vs. Standard Routing

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 35

Chapter - 3: Speedcore Gen4 IP Interface

Interfaces
There are three sets of interfaces to the Speedcore™ block (see the figure below).

Data Signals
Data signals (inputs and outputs) can be on all four sides or only on two opposite sides. At the boundary, there is
an option to either register the signals or send the signals directly to the programmable logic core.

Clock Inputs
Clock inputs follow the same pattern as data. These can be on all four sides or on two opposite sides. There are
16 interface clocks per cluster, per side.

Programming Interface
There is a dedicated set of signals for programming of eFPGA block. The number of these signals depends on
the programming options selected.

The table following the figure lists the interface signals of the eFPGA block.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 36

Figure 21: Speedcore eFPGA Interfaces

Pins
The following table describes the input/output pins of the Speedcore eFPGA core:

Table 7: Speedcore eFPGA Pins

Pin Name Direction Description

i_data_w/e/n
/s[n:0] Input Data inputs to the programmable core. The bit width depends on size and customer

requirements.

o_data_w/e
/n/s[m:0] Output Data outputs from the programmable core. The bit width depends on size and customer

requirements.

i_clock[c:0] Input Clock inputs to the programmable core.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 37

Pin Name Direction Description

o_clock[d:0] Output Clock outputs from the programmable core.

i_config[x:0] Input Bitstream data, control and configuration setting selection pins for Speedcore. The width
of these signals depends on the selected programming option.

o_config[y:
0] Output Status output and signaling pins for Speedcore.

High-Speed AXI
Although a Speedcore Gen4 eFPGA instance can support a large number of individual I/O, many applications
require standard interfaces in order to help construct an ASIC using existing IP, buses and host protocols. To
support these requirements, Achronix offers a high-speed, advanced extensible interface (AXI) which can
connect to a customer's internal AXI structure, running at the frequencies of the host ASIC system. This AXI then
de-multiplexes to multiple AXIs within the Speedcore eFPGA instance, each AXI running at the frequencies of
the application or accelerator which is created within the Speedcore eFPGA instance.

Note

In addition to AXI, other industry-standard bus protocols can also be supported, please contact the
factory for details.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 38

Chapter - 4: Speedcore Gen4 In-System Debug
Snapshot is the real-time design debugging tool for Achronix FPGAs and cores. The Snapshot debugger, which
is embedded in the ACE software, delivers a practical platform to observe the signals of a user's design in real-
time. To use the Snapshot debugger, the Snapshot macro needs to be instantiated inside the user's RTL. After
instantiating the macro and programming the device, the user will be able to debug the design through the
Snapshot Debugger GUI within ACE, or via the TCL command API.run_snapshot

The Snapshot macro can be connected to any logic signal mapped to the Achronix core, to monitor and
potentially trigger on that signal. Monitored signal data is collected in real time in regular BRAMs, prior to being
transferred to the ACE Snapshot GUI. The Snapshot macro has configurable monitor width and depth, as well as
other configuration parameters, to allow user control over resource usage. The ACE Snapshot GUI interacts with
the hardware via the JTAG interface: interactively specified trigger conditions are transferred to the design, and
collected monitor data is transferred back to the GUI, which displays the data using a builtin waveform viewer.

The figure below shows the components involved in a Snapshot debug session.

Figure 22: Snapshot Overview

Features
The Snapshot macro samples user signals in real time, storing the captured data in one or more BRAMs. The
captured data is then communicated through the JTAG interface to the ACE Snapshot GUI.

The implementation supports the following features:

Monitor channel capture width of 1 to 4064 bits of data.

Monitor channel capture depth of 512 to 16384 samples of data at the user clock frequency.

Trigger channel width of 1 to 40 bits.

Supports up to three separate sequential trigger conditions. Each trigger condition allows for the selection
of a subset of the trigger channel, with AND or OR functionality.

Bit-wise support for edge- (rise/fall) or level-sensitive triggers.

The ACE Snapshot GUI allows specification of trigger conditions and circuit stimuli at runtime.

An optional initial trigger condition, specified in RTL parameters, to allow capture of data immediately after
startup, before interaction with the ACE Snapshot GUI.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 39

A stimuli interface, 0 to 512 bits wide, that allows the user to drive values into the Achronix core logic from
Snapshot. Stimuli values are specified with the ACE Snapshot GUI and made available before data
capture.

Optionally, the data capture can include values before the trigger occurred. This "pre-store" amount can
be specified in increments of 25% of the depth.

Captured data is saved in a standard VCD waveform file. The ACE Snapshot GUI includes a waveform
viewer for immediate feedback.

The VCD waveform file includes a timestamp for when the Snapshot was taken.

ACE automatically extracts the names of the monitored signals from the netlist, for easy interpretation of
the waveform.

A repetitive trigger mode, in which repeated Snapshots are taken and collected in the same VCD file.

The JTAG interface can be shared with the user design.

A TCL batch/script mode interface is provided via the TCL commandrun_snapshot

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 40

Chapter - 5: Speedcore Gen4 Integration Flow

Physical Integration with Customer ASICs
The Speedcore™ eFPGA is provided as a fixed-transistor-layout building block that integrates with industry-
standard ASIC flows such as Synopsys Design Compiler and IC Compiler. The following collateral will be
provided:

Verilog definition of logical connectivity at boundary

Liberty timing library for timing closure at the boundary

LEF defining the physical floorplan, pins, and metal blockages

GDS/Oasis physical database

Figure 23: Sample eFGPA Instantiation

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 41

The data inputs/outputs and clock inputs can come from the ASIC logic or can come directly from the package
pins (balls) of the ASIC. The programming interface must have access to the package pins of the ASIC to enable
Speedcore programming. In addition, a certain number of Simulation and Validation data inputs/outputs must be
accessible through the package pins for eFPGA IP standalone testing. Details on the number of pins and
connectivity will be provided in the .Design and Integration Manual

Simulation and Validation
The Speedcore eFPGA will be supplied with ACE (Achronix CAD Environment) software that provides a
complete solution for simulating, synthesizing, mapping, and timing any user logic in the eFPGA fabric. The
behavioral models or gate-level netlists representing the logic mapped inside the FPGA can then be directly
integrated into the userʹs simulation/verification flow. In addition, SDF-annotated simulation models and standard
Liberty timing models of the user logic can be emitted and integrated into the userʹs system-level timing validation
flow.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 42

Chapter - 6: Speedcore eFPGA Device Specifications

Device Resource Counts
The table below lists the resource counts for Speedcore .AC16tSC04HI03A

Table 8: Resource Counts for AC16tSC04HI03A

Resource Details Count Amount

Port_connections 9,000 –

LUTs 6LUT 198,720 –

BRAMs 20k TDP 1,080 21.09 Mb

LRAMs 4k SDP 0 0.00 Mb

Math DSP64 180 –

Key Metrics and Supported Operation
The table below provides information on the performance, power supply requirements and supported operating
temperatures for Speedcore .AC16tSC04HI03A

Table 9: Key Metrics and Supported Operation for AC16tSC04HI03A

Metric Description

Operating Frequency Up to 500MHz.

Power Supplies
This device has two power supplies, and , which are both set to either 0.7V V DDL VDD
or 0.8V. These supplies are shared on-die and need to be powered from a single
regulator.

Temperature Industrial temperature range of -40˚C to +125˚C.

http://www.achronix.com

Speedcore Gen4 eFPGA Datasheet (DS012)

www.achronix.com 43

Revision History
The following table lists the revision history of this document.

Version Date Description

1.0 07 Feb 2019 Initial release.

1.1 29 Jul 2019
First public release: removed confidential markings.
Speedcore Gen4 Architecture (see page 9): updated the key feature
table for the LRAM2k.

http://www.achronix.com

	Overview
	Introducing Speedcore Gen4 eFPGA
	Feature Summary
	Functionality
	Process Technology
	Programming
	Security
	IP Nomenclature

	Speedcore Gen4 Architecture
	Fabric Architecture
	Block Floorplan
	Speedcore Gen4 Clock Network
	Speedcore Gen4 Interface Cluster
	Interface Timing Closure

	Speedcore Gen4 Logic Fabric - Reconfigurable Logic Block
	MLUT Mode
	Routing Between RLB6s

	Speedcore Gen4 Block RAM
	Block RAM 20k
	Organization
	Operation
	Built in FIFO Controller
	Error Correction
	Initialization and Reset

	Block RAM 72k
	Organization
	Operation
	Built in FIFO Controller
	Error Correction
	Initialization and Reset

	Speedcore Gen4 Logic RAM
	Logic RAM 2k
	Organization
	Operation
	Built in FIFO Controller
	Initialization

	Logic RAM 4k
	Organization
	Operation
	Initialization and Reset

	Speedcore Gen4 DSP64 Block
	Speedcore Gen4 MLP Block
	MLP Combined with Memory Blocks

	Bus Routing

	Speedcore Gen4 IP Interface
	Interfaces
	Data Signals
	Clock Inputs
	Programming Interface

	Pins
	High-Speed AXI

	Speedcore Gen4 In-System Debug
	Features

	Speedcore Gen4 Integration Flow
	Physical Integration with Customer ASICs
	Simulation and Validation

	Speedcore eFPGA Device Specifications
	Device Resource Counts
	Key Metrics and Supported Operation

	 Revision History

