Speedcore Component
Library User Guide (UG065)

Speedcore eFPGA

Achronix

Data Acceleration

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Copyrights, Trademarks and Disclaimers

Copyright © 2023 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedster and VectorPath
are registered trademarks, and Speedcore and Speedchip are trademarks of Achronix Semiconductor
Corporation. All other trademarks are the property of their prospective owners. All specifications subject to
change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Table of Contents

Chapter - 1 Introduction o 10
A K L P IX et 10
Chapter - 2: Fabric Architecture e 1
I ErOdUCTION .. e 11
RLB6 for Gend Speedcore eFPGAS ... o e 12
Routing Between RLBBS i i e e 13
RLBB Detail . .vvet ettt e 16
RLB6 for Genb Speedcore eFPGAS ... 18
Routing BetWeen RLBBS e 20
Lookup Table (LUT) FUNCHIONS ...ttt e e e e e e 23
Six-Input Lookup Table (ACX _LUTB)ttt et e e 23

Dual Five-Input Lookup Table (ACX_LUTBX2) ... utnti et 26
SpEEdCOre ReZISIErS .ottt 29
Naming CoNVENTION e e e e e e e e e 29
RISt PrimitiVeS oo e 29
Y=Y = 1S =Y gl 1Y/ = o] o 1 60
Boundary Pin Cells ... 72
IPIN (INPUt Data Pin) ...ttt et e e e e e e e e e e e 72
ACX_OPIN (Output Data Pin)ttt e e e e e e 76
ACX_CLK_IPIN (INput CloCK PiN) . ..ttt e e e e e e e 80
ACX_CLK_OPIN (Output CIoCK Pin) . ..ottt et e e e e e e e e e 82
Chapter - 3: LogIC FUNCHIONS ... 84
ACX_SYNCHRONIZER, ACX_SYNCHRONIZER _N e 84
Using ACX_SYNCHRONIZER to Synchronize Resetc.cooiiiiiiiiiiiiii e 85
Instantiation TemMPIateS ... o e e e e 86
ACX SHIFTREG . oo e e e e e e e e e e e 87
Instantiation TemMPlatesS ... o e e e 89
Chapter - 4: Clock FUNCLIONS .. .o e e 90
ACX_CLKDIV (CloCK DIVIAEI) . . oottt e e e e e e e e 90
CONS AN ..t e 92
Instantiation Templates e e 92

Achronix Proprietary and Confidential 3

Speedcore Component Library User Guide (UG065)

ACX_CLKGATE (CIOCK Gate) ... ovtt ettt et et 93
CONS AN L oot e 94
Instantiation TemMPlatesot e e e e 94

ACX_CLKSWITCH (CIoCK SWItCN) ..ttt e e e e 95
CONS I aAINES . ..t 98
Instantiation TemMPlateso e 98

Chapter - 5: Arithmeticand DSP Functions 99

A X AL o e 99
DS I P I ON e 99
Par A Ol S e 99
P OIS 100
FUNCHIONS o e e e 101
Instantiation Template e e 101

AKX DS _GEN . 102
ACX D SP L GEN PiNS .o e 105
ParAM T S oo 110
Add/Subtract/Round/Saturate BIOCKSo 121
ACX_DSP_GEN ROUNINGottt e e e e e e 121
ACX_DSP_GEN Verilog Instantiation Template ... i 136
ACX_DSP_GEN Verilog Inference Templateo 138
Implementing Finite Impulse Response (FIR) Filtersooiiiiiiiiiiiiiiiiiiaanannn. 138

ACX_DSP _MACC _GEN .. e e e e 151
1T 011 = PP 152

ACX_DSP_ACCUMULATOR _GEN ... ettt 153
11001 L0 154

ACX_DSP _COUNTER _GEN ... et eeans 155
11001 L = 156

ACX_DSP_SUM_SQUARES _GEN ...ttt ettt 157
110010 = 158

A K ML P72 . e 159
NUMeEriCal FOrmats ... e e et e e 162
Parallel MUIpHCatioNS e e e e 162
=T g T TSP 163
NSt ANt At ON .o e 163
(07 g a 10T TS €= = T 164
INEEBEr MOTES . . oottt e e e e e 173

Achronix Proprietary and Confidential 4

Speedcore Component Library User Guide (UG065)

Integrated LRAM L e 186
Block Floating-Point Modes e e 193
Floating-Point MOdeSttt e e e e e e 200
Instantiation TempPlateo e 211
P 72 L IN T e e 214
ParAMI BT OrS . e 216
P OIS e 217
INPUL Data Mapping ..ottt e e e e e e e e e 218
Output Formatting and Error Conditions ... e et 220
ASYNChronous ReSet RUIES ... e et e 220
) =T (=1 o 7= PP 220
Instantiation Template e 221
MLP72 _INT B _MULT X oo ettt ettt ettt 222
ParAMIE Ol S e 223
P OIS o e 225
BT LY== =] = 1 T 226
) =T =1 o Vo7 227
Instantiation Templateo e 229
MLP 72 _INT 16 _MULT 2K oot ettt e e ettt iiiean 231
ParAMI B Ol S e 232
PO e e 234
B a1 = =T =] = o = 235
11 =T =T o= 236
Instantiation TemPlate i e et e 238
Nt BT LiDrary . o e 239
ML P RO IS OIS ..ttt ettt e e e 239
ACCUMUIATION .« .o e 240
A X INT MU e et e ettt e et e et et e 241
A X INT LMULT LN e e et e et e e e 247
ACK INT MULT LA D .ttt e e e e e e e e e e e e 253
Floating-Point Library e 259
INErOdUCHION .. e 259
M P RIS OIS Lottt ittt ettt e e e e e 259
ACCUMUIATION L .o e 259
Floating-Point Format e 260
OULPUL StaTUS .« oottt e e e e et e e 261
A O P L AD D .ottt e 262

Achronix Proprietary and Confidential 5

Speedcore Component Library User Guide (UG065)

A X P MU oottt e e e 267
ACX P _MULT _PLUS . e e e e e 272

A X P MU LT 2K ettt e e e ettt e e e et e e 277
ACK P MULT A DD ittt et et e et e e e 284
Chapter - B: MemMO IS . oottt ettt et e ettt e et 289
ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction) 289
Memory Organization and Data Input/Output Pin Assignmentscooiiiiiiii... 295
Read and Write Operations e e e e e 298

B T ¥ = =T =] = 1 0 1= 300
Memory INtIaliZation e e e 304
ECC Modes of Operation e e et 307
Using ACX_BRAMSDP as a Read-Only Memory (ROM)ottt 307
Create AN INSTANCE ..ttt ettt e e e e 308
ACX_BRAMTDP (20-kb True Dual-Port Memory)ouiniiei e 319
Memory Organization and Data I/0 Pin Assignments 325
Read and Write Operationsiiii i e e e e 328

QI L= = =] =Y o 1= 332
Memory INHialization e e 336
Create an INStaNCE e 338
ACX_BRAMFIFO (20-kb FIFO Memory with Optional Error Correction) 350
Memory Organization and Data Pin Assignments e 357
1O I oT=T =1 o o 360

o O I L] 380
Error Detection and CorreCtion ...ttt e e e e e 383
Instantiation Template i e e 385
ACX_BRAM72K_SDP (72-kb Simple Dual-Port Memory with Error Correction) 387
o = 0 1= =T 389

P OIS o 391
Memory Organization and Data Input/Output Pin Assignments ..., 393
Read and Write Operations ...t i e e ettt e 396

LI L= =T =] =T = 398
Memory INtialization 399
ECC Modes of Operationttt ettt ettt et e 401
Using ACX_BRAM72K_SDP as a Read-Only Memory (ROM)ciiiiriniiiiiiann.n. 405

7AYo Y=Y ToT=To 1Y/ T To 1= 405

) =Y =T o= P 407
Instantiation Template e 411

Achronix Proprietary and Confidential 6

Speedcore Component Library User Guide (UG065)

ACX_BRAM72K_FIFO (72-kb FIFO Memory with Optional Error Correction) 414
ParaME S o 415
0] 417
Read and Write Operationsuiiiiii i ettt e e 418
) =Y =T o 421
Instantiation TempPlate e a1

ACX_LRAM (4096-bit (128x32) Simple-Dual-Port Memory)cccoviriniiiananan... 424
Simultaneous Memory Operationsouii ittt 427
TN DIagram ..o e e 427
ACX_LRAM Memory Initializationcoiiiiii et 428
Using ACX_LRAM as a Read-Only Memory (ROM)ot 428
Create AN INStANCE ..ottt i e e 428

ACX_LRAMFIFO (LRAM-Based 128-Word FIFO Memory)c.ouuieineiniiiannnn... 431
P Al A S . e e e 433
Instantiation Template e e e 447

ACX _LRAM K _FIF O o e 449
=T = 0 1= =T P 450
P OIS oo e 451
Read and Write Operations ...t e e e 452
0172 1= o o = 454
Instantiation TemMPIates i e e e 455

Chapter - 7: JTAG TAP Controller Functions it 457

ACX _JT AP _INTERFACE . ..o o et e e e e 459
P OIS L ittt e e 460
ConnectioN tothe JTAP BUS ... e 461

ACK _JT AP _REG _UNIT L e e e e e e 462
ParamM S .. o e 462
PO S L 463

AKX T AP _UNIT o e e e e e e e 465
=T = 0 1= =T 466
PO S oot e 467

ACK _JTAP _SHIFT _REG .. ettt eaens 469
=T = 0 0 1= =T 469
P OIS L e e e e 470

COMIMIUNICAtION L ittt e e 471
SeleCting a T AP UNit .. e e e e e 471

Achronix Proprietary and Confidential 7

Speedcore Component Library User Guide (UG065)

T AG ROt ..ttt e e 472
AdAreSS AC I ON oottt 472
Data AC ION .ottt 473
REVISION HiS Oy ..t e et e e 474

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Chapter - 1: Introduction

The Achronix Speedcore component library lists the programmable fabric silicon elements which may be
instantiated into a user design. These components provide access to low-level fabric primitives or, in some
cases, macros which configure complex elements into advanced functions. Each entry describes the operation of
the component as well as any parameters that must be initialized. Verilog and VHDL templates are also provided
to aide in the implementation of user designs.

The Speedcore family includes multiple devices which not only have a different quantity of logic for each device
but also different components, primarily, but not limited to, memory and arithmetic. To better understand which
components a particular Speedcore device has, consult with the Speedcore Device Catalog which lists all
available devices and contains tables of available resources for each core.

This guide contains the following sections:
® Speedcore Fabric Architecture (see page 11)
® Speedcore Logic Functions (see page 84)
® Speedcore Clock Functions (see page 90)
® Arithmetic and DSP Functions (see page 99)
® Memories (see page 289)
® JTAG TAP Controller Functions (see page 457)
® Speedcore Component Library User Guide Revision History (see page 474)

ACX_ Prefix

All Achronix silicon components start with ACX_ as their formal name. Therefore, when directly instantiating any
component, the ACX_xxx name must be used. This prefix provides protection against inadvertently instantiating
one of the Synplify Pro built-in primitives (primarily DFF and LUT), and distinguishes Achronix silicon
components from any other library components. In addition the ACX_xxx wrapper exposes only the parameters
and ports needed/available for a user configuration. It allows for silicon only, or test only, ports and parameters to
be masked off, reducing the scope for error when directly instantiating.

When viewing Synplify Pro resource utilization reports, Synplify Pro may list multiple forms of the same
component; e.g., ACX_BRAM/ 2K and BRAM? 2K. The former indicates a directly instantiated component using the
required ACX_ prefix. The latter indicates an inferred component created by Synplify Pro. Both forms of the
component are identical in function; the differences are only in the instantiation level. The total number of silicon
components required will be the sum of these instances.

Achronix Proprietary and Confidential 10

Speedcore Component Library User Guide (UG065)

Chapter - 2: Fabric Architecture

Introduction

The Speedcore fabric architecture floorplan consists of 6-input LUTs, each with two flops, arranged as logic

groups within a reconfigurable logic block (RLB6). The RLB6s are arranged in a grid, interleaved with columns of

memory and arithmetic blocks. The block functions are connected by a uniform global interconnect, which

enables the routing of signals between core elements. Switch boxes make the connection points between vertical
and horizontal routing tracks. Inputs to and outputs from each of the functions connect to the global interconnect.

This floorplan of functional blocks and global interconnects is shown in the following figure.

Logic Group

Logic Group

Logic Group

)

Local Routing

Switch

Box

Logic Group

Logic Group

Logic Group

X

Local Routing

Logic Group

Logic Group

Logic Group

X
(os)

Local Routing

Switch

Box

Logic Group

Logic Group

Logic Group

The fabric logic capabilities and functions are defined by the structure of the RLB6.

X

o0
c
)
=}
o
o
@©
o
(=]
-

Logic Group

Logic Group

Logic Group

P
o)

Local Routing

Switch
Box

Figure 1: Speedcore Fabric Floorplan

Logic Group

Logic Group

Logic Group

X
(vs)

Local Routing

Switch
Box

ds003-003.2022.11.17

Achronix Proprietary and Confidential

11

Speedcore Component Library User Guide (UG065)

RLB6 for Gen4 Speedcore eFPGAS

The 6-input LUT-based reconfigurable logic block (RLB6) is composed of three parallel logic groups as shown in
the following diagram.

Each logic group in a Gen4 RLB6 contains four 6-input look-up-tables (LUT6), each with two optional registers

RLB6

—
o

b
o
(D)
5.
o
c

°

dnoug 21807

=
o

e
o
G
s,
o
c

o°

34015316-01.2023.03.16

Figure 2: RLB6 Block Diagram

and an 8-bit fast arithmetic logic unit (ALU8) to implement logic functionality. Each logic group receives a carry-in

input from the corresponding logic group in the RLB6 to the north and can propagate a carry-out output to the

corresponding logic group in the RLB6 to the south.

The following table provides information on the resource counts inside an RLB6 for Gen4.

Table 1: RLB6 Gen4 Resource Counts

RLB6 Resource | Count
Logic Groups 3
LUTE 12
Registers 24
8-bit ALU8 3

The following features are available using the resources in the RLB:

® 8-bit ALU for adders, counters, and comparators

® 8-to-1 MUX with single-level delay (can be inferred)

® Support for LUT chaining within the same RLB and between RLBs

¢ Dedicated connections for high-efficiency shift registers

® Multiplier LUT (MLUT) mode for efficient multipliers (for Speedster7t devices only)
® Ability to fan-out a clock enable or reset signal to multiple tiles without using general routing resources

Achronix Proprietary and Confidential

12

Speedcore Component Library User Guide (UG065)

® 6-input LUT configurable to function as two 5-input LUTs using shared inputs and two outputs

® Support for combining two 6-input LUTs with a dynamic select to provide 7-input LUT functionality

The following figure provides a simplified view of the circuitry inside a single logic group.

carry out shift out
(to next RLB) (to next RLB)
7 1
—_——
I
I
1 constant v mux(7]
reg_out[7
] LUT6_3 | olk g-outl7]
— sumn(7) | Ly Nu
rst
! reg 3
\ usr_rstn[1]
LUT6_3]
|
| constant v mux(6]
] reg_out[6;
! LUT6_3 | clk B-outle]
[sumn(e]] ALU NIZE)
} reg. rgt 163] —| lut_out[3]
} usr_rstn(1] (chain_lut_out_to next RLB)
_______________ J‘_______________________________________ e
! :
| constant am mux[5]
1 ! reg_out(5
! | LUT6_2 C‘kq a-outls]
! —— sumn(5]) ALU d rodl5]
| ! rst
1 | reg 0
1] usr_rstn[1]
1
|
| :
1
! | constant V) mux[4]
: } LuT6.2 clk reg_out[4]
H +— sumnl4] ! ALY L
! ! : 5
ey
! 3] u— 16[2] — lut_out[2]
1 |
I <
1 x I
I = 1
| ©] constant Y mux(3] reg_out(3)
i al 1 LUT6_1 R
! sumn] ALU regl3]
1 | o st
]
H 1 ust_rstn[0]
1
]
| :
1
\ | constant V) mux(2] reg_out[2
! | LUT6 1 clk B-outlZ]
! L sumnl2] 1 AU 4 e
i 1 st
1 reg
! 1 usr_rstn[0] 18[1] — lut_out[1]
L |
i i
1
1 | constant V) mux[1] reg_out[1]
! " 1 LUT6_0 p clk . g-outll]
H — sumn[i] i
! ! ALU ot | 8l
1 | reg)
H]
1 | usr_rstn[0]
H i
]
| :
| constant v mux[0]
| reg_out[0.
i ! LUT6_0 p clk . g-ouo]
! — sumnl0]] ALU regl0]
! | reg 3
1 pu—
! ! wsTrEnio] 16[0] — lut_out[0]
1
H i
1
i
i
o et oo
carry in shiftin
(from prev RLE) (from prev RLB)

34015316-02.2022.17.11

Figure 3: Logic Group Details

Routing Between RLB6Gs

There are special considerations when routing ALU carry chains and shift registers. The Achronix Gen4 fabric
has hard-wired connections on the signals carry_i n/ carry_out of each ALU. As previously mentioned, each
logic group routes to the corresponding logic group in the RLB6 above or below. In other words, the ALU
carry_in/carry_out does not route to the next ALU within the same RLB, but rather the same logic group of
the next RLB6. The following figure shows the carry_i n/ carry_out routing of an ALU.

Achronix Proprietary and Confidential 13

Speedcore Component Library User Guide (UG065)

RLB6

Logic Group Logic Group Logic Group

cin cin cin

RLB6

cout cout cout

ALU[0] ALU[1] ALU[2]

Logic Group Logic Group Logic Group

34016001-02.2022.11.17

Figure 4: ALU Carry Chain Routing

As true for carry_i n/ carry_out, the same is true for the signals shi ft _i n/ shi ft _out in the registers of a
logic group. When creating a shift register, the registers within a logic group route to each other, but the
shift_in/shift_out of each logic group routes to the same logic group in the next RLB6.

Achronix Proprietary and Confidential 14

Speedcore Component Library User Guide (UG065)

The following figure shows details of the routing in the Gen4 fabric.

RLB6
Logic Group O Logic Group 1 Logic Group 2
reg7 reg7 reg7
regb regb regb
: : :
regl regl regl
reg0 reg0 reg0
A A A
shift_in shift_in shift_in
RLB6
shift_out shift_out shift_out
reg7 reg7 reg7
regb regb regb
3 3 3
regl regl regl
reg0 reg0 reg0
Logic Group O Logic Group 1 Logic Group 2

Figure 5: Shift Register Routing

34016001-01.2023.04.27

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

RLBG Detail

Within each RLB6 are the three logic groups, each containing four 6-input LUTs (LUT6s), one ALU8, and eight
registers. The logic group has ALU and flip-flop cascade paths between its associated RLB6 logic groups. The
following figure shows the routing detail of one fourth of a logic group (one LUT6 and two registers).

ALU carry out
A

cascade out

|
I

1

I

I

!

' Shift register
i

1 A
i

[}

1

I

! Next :
| LUT above |
| |
LUT6 I~
<
0
I | _
| f L »
I |
— // -
_/T —
F7 {
(s
L
I |
I >
I |
— -
L/T
F > —
—»1‘ \\l = —¢ -
| | »
I | 1
— -
I /T
F7
ALU carry in Shift register cascade in

52003566-02.2022.11.17
Figure 6: One-Fourth of a Logic Group (Connection Detail)
The diagram shows the following:

® (Certain LUT6 inputs are shared with ALU8 inputs
® The LUTG6 can be operated as dual 5-input LUTs (LUT5s)

Achronix Proprietary and Confidential 16

Speedcore Component Library User Guide (UG065)

® The input to each register can be selected from the following:
® | ocal LUT6 output, or the LUT6 above
® | UT5 output
® ALUS8 output (sum output)
® |LUT6 input (load input)
® Register output (feedback path)
® Register cascade from register below (shift register cascade)

® Some of the above inputs are statically configured by the bitstream, and other inputs can be dynamically
selected. The dynamic selection is performed by the F7 signal which is an input to the logic group. The F7
allows for dynamic selection of the following:

® Lower register — first mux: ALU sum output, or register load input (shared with LUT6 input)
® Lower register — second mux: local LUT6 output or LUT6 above output

® Upper register — ALU sum output, or register load input (shared with LUT6 input)

Mutually Exclusive Operations

The shared connections result in a number of mutually exclusive operations that can be achieved by a single
logic group. When using all the LUT6s, the ALU8 is not available, nor is register load.

When using the ALUS:
® When ALUS is used for A[7:0]+B[7:0]+Cin, one independent LUTG6 is available.
®* When ALUS is used for A[7:0]+B[7:0], one independent LUT6 and one independent LUTZ2 is available.
®* \When ALUS is used for A[7:0]+'Const’, two independent LUT6 and one independent LUT4 are available.
® When ALUS is used for A[3:0]+B[3:0]+Cin, two independent LUT4 are available.
When using dynamic register load, or the ALU8 sum, no LUT6s are available. When using static register load,
four independent LUT4 are available.
When using F7 mux function, forming an 8:1 multiplexer (MUX8), no LUT6 or ALU8 are available.

Control Signals

Within a logic group there are eight registers, numbered reg[7:0]. These registers share control signals with each
logic group having two clock, clock enable and reset inputs. The control signals are subsequently divided
between the registers, with one set for registers[3:0], and the other set for registers[7:4].

Note

@ For designs with high utilization, ensure that as many registers as possible have common control signal
sets to allow for optimum packing of the registers into logic groups.

Achronix Proprietary and Confidential 17

Speedcore Component Library User Guide (UG065)

RLB6 for Genb Speedcore eFPGAS

The 6-input LUT-based reconfigurable logic block (RLB6) is composed of three parallel logic groups as shown in
the following diagram.

RLB6

—
(=}

s
o
()
=
(=]
c

©

niv
dnouig 21807
dnoug 01807

126113286-01.2023.03.16

Figure 7: RLB6 Block Diagram

Each logic group in a Gen5 RLB6 contains four 6-input lookup tables (LUT6), each with two optional registers to
implement logic functionality. Additionally, each Gen5 RLB6 includes a single 8-bit fast arithmetic logic unit
(ALUS8). Each ALUS receives a carry-in input from the corresponding ALUS8 in the RLB6 to the north and can
propagate a carry-out output to the corresponding ALU8 in the RLB6 to the south.

The following table provides details on the resource counts inside an RLB6 for Genb.

Table 2: RLB6 Gen5 Resource Counts

RLB6 Resource | Count
Logic Groups 3
LUT6 12
Registers 24
8-bit ALU8 1

The following features are available using the resources in the RLB:
® 8-bit ALU for adders, counters, and comparators
® 8-to-1 MUX with single-level delay (can be inferred)
® Support for LUT chaining within the same RLB and between RLBs
® Dedicated connections for high-efficiency shift registers
® Ability to fan-out a clock enable or reset signal to multiple tiles without using general routing resources
® 6-input LUT configurable to function as two 5-input LUTs using shared inputs and two outputs
® Support for combining two 6-input LUTs with a dynamic select to provide 7-input LUT functionality

Achronix Proprietary and Confidential

18

Speedcore Component Library User Guide (UG065)

The following figure provides a simplified view of the circuitry inside a single logic group.

shift out
(to next RLB)
]

1
! :
: al18] in[0] constant mux[7]
! LUT6_3
1 i -
: a(19] in[1] ALU P
! a[20] in[2] reg (—
! usr_rstn[1]
! al21] inf3l_.H LUT6_3
1
! miut(3] in[3]_L constant mux(6]
| LUT6_3
: a[22] in[4] ALU
1
! al23] in[5] reg 16[3] —
1
:.. __ Y
! a[12] constant mux[5]
I LUTE_2
| a[13] o q
: ALU et reg[5]
| af14] reg 0}
: usr_rstn[1]
| a[15]
1
: mlut[2] constant mux[4]
: LUT6_2
! a[16] ALU st | reel4l
1
| a[17] o8 usr,rst?\[ﬂ 16[2) —
1
i
: als] constant mux(3]
1 LUT6_1

7.
| al7] ALU d r:t regl3]
1

8] o
| alel] e ust_rstn[0]
| al9]
1
: miut[1] constant
: LUT6_1
! al10] ALU
1
i ali1] b I6l1] —
[
i
| a[0] in[0] constant
! LUT6_0
1 i -
: all] in[1] ALU
! al2] in[2] reg
1
! al3) in8_H LUT6_0
1
! miut[0] in[3]_L constant
| LUT6_0
! al4) inf4] ALU
1
! als] inls) e 16[0] —
1
1
1
1
1
1

shiftin
(from prev RLB)

Figure 8: Logic Group Details

reg_out[7]

reg_out[6]

lut_out[3]
(chain_Iut_out_to next RLB)

reg_out[5]

reg_out[4]

lut_out[2]

reg_out(3]

reg_out[2]

lut_out[1]

reg_out[1]

reg_out[0]

lut_out[0]

126113286-02.2023.03.16

Achronix Proprietary and Confidential

19

Speedcore Component Library User Guide (UG065)

The following figure provides a simplified view of the logic groups with circuitry for the ALU inside the RLB6.

carry out
(to next RLB)
RLB6
vl — sumn(7]
x[7]
yl6] — sumn[6]
R O |
viel — sumnl[5]
x[5]
y14] o 1IN sumn([4] — — —
® ® ®
LOBE © 5 5 S
. 2 2 @
vi3] — sumnl[3] 8 8 8
h] o h=]
x[3]
yl2] — sumn[2]
x[2]
vl — sumn[1]
x[1]
ylol — sumn([0]
x[0]
carry in
(from prev RLB)

126113286-03.2023.03.16

Figure 9: Logic Groups With ALU Details

Routing Between RLBGs

There are special considerations when routing ALU carry chains and shift registers. The Achronix Gen5 fabric
has hard-wired connections on the signals carry_i n/ carry_out of each ALU. As previously mentioned, each
logic group routes to the corresponding logic group in the RLB6 above or below, and the same is true for the
ALUs. In other words, the ALU carry_in/ carry_out does not route to the next ALU to the east/west of the
RLB6, but rather the ALU of the next RLB6 to the north.

Achronix Proprietary and Confidential 20

Speedcore Component Library User Guide (UG065)

The following figure shows the carry_i n/ carry_out routing of an ALU.

RLB6
ALU
Acin
RLB6 =
ALU

126113546-01.2023.03.16

Figure 10: ALU Carry Chain Routing

As forcarry_in/carry_out,the same is true for the signals shi ft _i n/ shi ft _out in the registers of a logic
group. When creating a shift register, the registers within a logic group route to each other, but the shi ft _in
/ shi ft_out of each logic group routes to the same logic group in the next RLB6.

Achronix Proprietary and Confidential 21

Speedcore Component Library User Guide (UG065)

The following figure shows details of the routing in the Gen5 fabric.

Logic Group O

Logic Group 1

RLB6
Logic Group O Logic Group 1 Logic Group 2

reg7 reg7 reg7
regb reg6 regb

o o o

o o o

o o o
regl regl regl
reg0 reg0 reg0

| A A

shift_in shift_in shift_in
RLB6
shift_out shift_out shift_out

reg7 reg7 reg7
regb reg6 regb

o o o

o o o

o o o
regl regl regl
reg0 reg0 reg0

Logic Group 2

Figure 11: Shift Register Routing

126113546-02.2023.03.16

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Lookup Table (LUT) Functions
Six-Input Lookup Table (ACX_LUTS)

ACX_LUT®6 implements a six-input lookup table with data inputs (di nO—di n5) and data output (dout), whose
function is defined by the 64-bit parameter | ut _functi on.

din0
dinl
din2
dout
din3
dind
din5
34020842-01.2022.11.17
Figure 12: Logic Symbol
Parameters
Table 3: Parameters
Parameter Defined Values LOEUY Description
Value
The | ut _functi on parameter defines the value on
| ut _function 64-bit hexadecimal value | 64’ hO the dout output of the LUT6 as detailed in the function

table (see page 24).

Ports

Table 4: Pin Descriptions

Name Type

Description

di n0—di n5 | Input Data inputs.

dout Output

Data output. The value on dout is the part of the | ut _f uncti on parameter indexed by the
inputs { di n5, din4, din3, din2, dinl, din0}.

Achronix Proprietary and Confidential

23

Speedcore Component Library User Guide (UG065)

Function

Table 5: Function Table

din5 | din4 | din3 | din2 | din1 | din0 dout

0 0 0 0 0 0 | ut _function[0]
0 0 0 0 0 1 [ut _function[1]
0 0 0 0 1 0 [ut _function[2]
0 0 0 0 1 1 [ut _function[3]
0 0 0 1 0 0 [ut _function[4]
1 1 1 1 0 1 [ut _function[61]
1 1 1 1 1 0 [ut _function[62]
1 1 1 1 1 1 [ut _function[63]

Instantiation Templates

Verilog

ACX_

#(

LUT6

.lut_function
) instance_nanme (

. dout
.din0
.dinl
.din2
.din3
.dind
.din5

(64' h012345678abcdef)

(user _out),
(user _i n0)
(user_inl),
(user_in2),
(user_in3),
(user_in4)
(user _i nb)

Achronix Proprietary and Confidential

24

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate
conponent ACX_LUT6 is
generic (
lut_function
)
port (
di n0
dinl
di n2
di n3
di n4
di n5
dout
)
end component ACX_LUT6

-- VHDL Instantiation tenpl
i nstance_name : ACX_LUT6
generic map (

lut_function =
)
port map (
di n0 =>
dinl =>
di n2 =>
di n3 =
di n4 =>
di n5 =>
dout =>
)

for ACX_LUT6

std_|l ogi c_vector(63 downto 0) := X"0000000000000000"

std_| ogic;
std_| ogic;
std_l ogic;
std_l ogic;
std_| ogic;
n std_logic;
out std_logic

5 53 5 5 S

ate for ACX_LUT6
lut _function

user _di nO,
user _di nl,
user _di n2,
user _di n3,
user _di n4,
user _di n5,
user _dout

Achronix Proprietary and Confidential

25

Speedcore Component Library User Guide (UG065)

Dual Five-Input Lookup Table (ACX_LUT5x2)

ACX_LUT5x2 implements dual LUT5 lookup tables with data inputs (di nO—di n5) and data output (I ut 5| dout
and | ut 5hdout). Each of the outputs is determined by a function which is defined by the 64-bit parameter
[ut_function.

dind
din3 lut5hdout
din2 lut5ldout
dinl
din0
34020842-02.2022.11.17
Figure 13: Dual LUT5 Lookup Tables
Parameters
Table 6: Parameters
Parameter Defined Values Bl Description
Value

The | ut _functi on parameter defines the value on
lut _function 64-bit hexadecimal value | 64’ hO both the | ut 51 dout and | ut 5hdout outputs of the
LUT5x2 as detailed in function table (see page 27).

Ports

Table 7: Pin Descriptions

Name Type Description

di nO-di n4 | Input Data inputs.

Data output. The value on | ut 5hdout is the part of the | ut _f unct i on parameter indexed

I ut Shdout | Output | inputs {1 b1, din4, din3, din2, dinl, din0}.

Data output. The value on | ut 5| dout is the part of the | ut _f uncti on parameter indexed

PutShdout | Output 1 inputs {1' b0, din4, din3, din2, dinl, din0}.

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Functions

Table 8: | ut 5/ dout Function Table

1'b0 | din4 | din3 | din2 | din1 | din0 dout

0 0 0 0 0 0 [ut _function[O0]
0 0 0 0 0 1 [ut _function[1]
0 0 0 0 1 0 [ut _function[2]
0 0 0 0 1 1 [ut _function[3]
0 0 0 1 0 0 [ut _function[4]
0 1 1 1 0 1 [ut _function[29]
0 1 1 1 1 0 | ut _function[30]
0 1 1 1 1 1 [ut _function[31]

Table 9: | ut 5hdout Function Table

1'b1 | din4 | din3 | din2 | din1 | din0 dout

1 0 0 0 0 0 [ut _function[32]
1 0 0 0 0 1 [ut _function[33]
1 0 0 0 1 0 [ut _function[34]
1 0 0 0 1 1 | ut _function[35]
1 0 0 1 0 0 [ut _function[36]
1 1 1 1 0 1 | ut _function[61]
1 1 1 1 1 0 [ut _function[62]

| ut _function[63]

Achronix Proprietary and Confidential

27

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog

/1 Verilog tenplate for ACX_LUT5x2

ACX_LUT5x2 #(

.lut_function (1
) instance_nane (
.din0 (u
.dinl (u
.din2 (u
.din3 (u
.din4 (u
.1 ut 51 dout (u
. 1 ut 5hdout (u
)
VHDL

-- VHDL Conponent tenpl ate
conponent ACX_LUT5x2 is
generic (
lut _function
)
port (
di n0
dinl
di n2
di n3
din4
| ut 51 dout
| ut 5hdout
)i
end conponent ACX_LUT5x2

-- VHDL Instantiation tenpl
i nstance_nane : ACX_LUT5x2
generic map (

lut _function =>
)
port map (
di n0 =>
dinl =>
di n2 =>
di n3 =>
di n4 =>
| ut 51 dout =>
| ut 5hdout =>
)

ut _function)

ser _di n0),
ser_dinl),
ser _di n2),
ser _di n3),
ser_di n4),
ser _| ut 5l dout),
ser _| ut 5hdout)

for ACX_LUT5x2

std_l ogi c_vector (63 downto 0) := X"'0000000000000000"

in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
out std_Il ogic;
out std_logic

ate for ACX_LUT5x2

lut _function

user _di nO,
user _dinl,
user _di n2,
user _di n3,
user _di n4,
user _| ut 5l dout ,
user _| ut 5hdout

Achronix Proprietary and Confidential

28

Speedcore Component Library User Guide (UG065)

Speedcore Registers

Naming Convention

These macros are named based upon their characteristics and behavior. In each case, the name begins with
DFF for D-type flip-flop. In addition to DFF, each has one or more modifiers which indicate its unique properties.

DFFNER
L Reset
Blank — No reset input
R — Reset (has priority over enable)
S - Set (has priority over enable)
C - Clear (enable has priority)
P — Preset (enable has priority)

Enable
Blank — No enable input
E - Enable input

Clock Edge
Blank — Positive-edge register
N — Negative-edge register

Cell Type
DFF - D-type register

4227813-01.2022.17.11

Figure 14: Register Naming Convention

Register Primitives

ACX_DFF (Positive Clock Edge D-Type Register)

ck

§374051-01.2022.11.17
Figure 15: Positive Clock Edge D-Type Register

ACX_DFF is a single D-type register with data input (d) and clock (ck) inputs and data (q) output. The data
output is set to the value on the data input upon the next rising edge of the clock.

Achronix Proprietary and Confidential

29

Speedcore Component Library User Guide (UG065)

Table 10: Parameters

Defined Default

Parameter Values Value Description
The i ni t parameter defines the initial value of the output of the DFF
init 1'b0,1'bl |[1'bO register. This is the value the register takes upon the initial application of

power to the FPGA.

Table 11: Pin Descriptions

Name | Type Description

d Input Data input.

ck Input Positive-edge clock input.

q Output cli))fatt:eo;:t)pcllj(t.. The value present on the data input is transferred to the q output upon the rising edge

Table 12: Function Table

Inputs | Output
d | ck q

0o |1 0

1 |1 1

Instantiation Templates

Verilog

ACX_DFF #(
.init

) instance_na
-q
.d
.ck

(1' bo)

me (
(user_out),
(user_din),
(user _cl ock)

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nanme : ACX_DFF
generic map (

init =>"'0
)
port map (
q => user_out,
d => user _din,
ck => user_cl ock
)i

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

ACX_DFFE (Positive Clock Edge D-Type Register With Clock Enable)

ce

ck

5374051-02.2022.11.17
Figure 16: Positive Clock Edge D-Type Register With Clock Enable

ACX_DFFE is a single D-type register with data input (d), clock enable (ce), and clock (ck) inputs and data (q)
output. The data output is set to the value on the data input upon the next rising edge of the clock if the active-
high clock enable input is asserted.

Table 13: Parameters

Defined Default

Values Value Description

Parameter

The i ni t parameter defines the initial value of the output of the DFFE
init 1'b0,1'bl |[1'bO register. This is the value the register takes upon the initial application of
power to the FPGA.

Table 14: Pin Descriptions

Name | Type Description
d Input Data input.
ce Input Active-high clock enable input.
ck Input Positive-edge clock input.
Data output. The value present on the data input is transferred to the q output upon the rising edge
g Output of the clock if the clock enable input is high.

Achronix Proprietary and Confidential 32

Speedcore Component Library User Guide (UG065)

Table 15: Function Table

Inputs Output

ce | d | ck q

0 X | X Hold

Instantiation Templates

Verilog
ACX_DFFE #(
Linit (1' bo)
) instance_nane (
.q (user_out),
.d (user _din),
.ce (user _cl ock_enabl e),
. ck (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY ------------
l'ibrary speedster7t;

use speedster7t.core.all;

——————————— DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nane : ACX_DFFE
generic map (

init =>"'0
)
port map (
q => user_out,
d => user _din,
ce => user_cl ock_enabl e,
ck => user_cl ock

)

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

ACX_DFFER (Positive Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Reset)

ce

ck

rn

5374051-05.2022.11.17

Figure 17: Positive Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Reset

ACX_DFFER is a single D-type register with data input (d), clock enable (ce), clock (ck), and active-low reset (r n
) inputs and data (q) output. The active-low reset input overrides all other inputs when it is asserted low and sets
the data output low. The response of the q output in response to the asserted reset depends on the value of the
sr_asserti on parameter and is detailed in See ACX_DFFER Function Table with sr_assertion = "unclocked"
(see page 35) and See ACX_DFFER Function Table with sr_assertion = "clocked" (see page 35). If the reset
input is not asserted, the data output is set to the value on the data input upon the next rising edge of the clock if
the active-high clock enable input is asserted.

Table 16: Parameters

Parameter Bellies LS Description
Values Value P

The i ni t parameter defines the initial value of the output of the
init 1'b0,1' b1l |1'DbO DFFER register. This is the value the register takes upon the initial
application of power to the FPGA.

The sr _asserti on parameter defines the behavior of the output
when the r n reset input is asserted. Assigning the sr_asserti on
to "unclocked" results in an asynchronous assertion of the reset
"unclocked" | signal, where the q output is set to zero upon assertion of the active-
low reset signal. Assigning the sr _asserti on to "clocked" results
in a synchronous assertion of the reset signal, where the g output is
set to zero at the next rising edge of the clock.

"unclocked",

sr_assertion|, "
- clocked

Achronix Proprietary and Confidential 34

Speedcore Component Library User Guide (UG065)

Table 17: Pin Descriptions

Name | Type Description
d Input Data input.
Active-low asynchronous/synchronous reset input. A low on r n sets the q output low independent
rn Input of the other inputs if the sr _asserti on parameter is set to "unclocked". If the sr _asserti on
parameter is set to "clocked", a low on r n sets the q output low at the next rising edge of the clock.
ce Input Active-high clock enable input.
ck Input Positive-edge clock input.
Outout Data output. The value present on the data input is transferred to the q output upon the rising edge
q P of the clock if the clock enable input is high and the reset input is high.

Table 18: ACX_DFFER Function Table With sr_assertion = "unclocked"

Inputs Output
rn | ce | d | ck q
0 X X X 0
1 0 X X Hold
1 1 0 |1 0
1 1 1 |1 1

Table 19: ACX_DFFER Function Table With sr_assertion = "clocked"

Inputs Output
rn | ce | d | ck q
0 X X |1 0
1 0 X X Hold
1 1 0 |1 0
1 1 1 |1 1

Achronix Proprietary and Confidential 35

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog
ACX_DFFER #(
.init (1' bo),
.Sr_assertion ("uncl ocked")
) instance_nane (
.q (user _out),
.d (user_din),
.rn (user_reset),
.ce (user _cl ock_enabl e),
. ck (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nanme : ACX_DFFER
generic map (

init = "'0",
Ssr_assertion => "uncl ocked")
port map (
q => user_out,
d => user _din,
rn => user_reset,
ce => user _cl ock_enabl e,
ck => user_cl ock

Achronix Proprietary and Confidential

36

Speedcore Component Library User Guide (UG065)

ACX_DFFES (Positive Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Set)

sn

ce

ck

5374051-06.2022.11.17

Figure 18: Positive Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Set

ACX_DFFES is a single D-type register with data input (d), clock enable (ce), clock (ck), and active-low set (sn)
inputs and data (q) output. The active-low set input overrides all other inputs when it is asserted low and sets the
data output high. The response of the g output in response to the asserted set depends on the value of the
sr_asserti on parameter and is detailed in Table: ACX_DFFES Function Table with sr_assertion = "unclocked"
(see page 35) and Table: ACX_DFFES Function Table with sr_assertion = "clocked" (see page 35). If the set
input is not asserted, the data output is set to the value on the data input upon the next rising edge of the clock if
the active-high clock enable input is asserted.

Table 20: Parameters

Defined Default

Values Value Description

Parameter

The i ni t parameter defines the initial value of the output of the
init 1'b0,1'b1l |1'Db1 DFFES register. This is the value the register takes upon the initial
application of power to the FPGA.

The sr _asserti on parameter defines the behavior of the output
when the sn set input is asserted. Assigning the sr_asserti on to
"unclocked" results in an asychronous assertion of the reset signal,
"unclocked" | where the g output is set to one upon assertion of the active-low
reset signal. Assigning the sr_asserti on to "clocked" results in a
synchronous assertion of the reset signal, where the q output is set
to one at the next rising edge of the clock.

"unclocked",

sr_assertion|, "
- clocked

Achronix Proprietary and Confidential 37

Speedcore Component Library User Guide (UG065)

Table 21: Pin Descriptions

Name | Type Description
d Input Data input.

Active-low asynchronous/synchronous set input. A low on sn sets the g output high independent
sn Inout of the other inputs if the sr _asserti on parameter is set to "unclocked". If the sr _asserti on

P parameter is set to "clocked", a low on r n sets the q output high at the next rising edge of the

clock.
ce Input Active-high clock enable input.
ck Input Positive-edge clock input.

Outout Data output. The value present on the data input is transferred to the q output upon the rising edge

q P of the clock if the clock enable input is high and the reset input is high.

Table 22: ACX_DFFES Function Table With sr_assertion = "unclocked"

Inputs Output
sn | ce [d | ck q
0 X X X 1
1 0 X X Hold
1 1 0 |1 0
1 1 1 |1 1

Table 23: ACX_DFFES Function Table With sr_assertion = "clocked"

Inputs Output
sn | ce | d | ck q
0 X X |1 1
1 0 X X Hold
1 1 0 |1 0
1 1 1 |1 1

Achronix Proprietary and Confidential

38

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog
ACX_DFFES #(
.init (1'b1),
.Sr_assertion ("uncl ocked")
) instance_nane (
.q (user _out),
.d (user_din),
.sn (user_set),
.ce (user _cl ock_enabl e),
. ck (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nanme : ACX_DFFES
generic map (

init = '1",
Ssr_assertion => "uncl ocked"
)
port map (
q => user_out,
d => user _din,
sn => user_set,
ce => user_cl ock_enabl e,
ck => user_cl ock

Achronix Proprietary and Confidential

39

Speedcore Component Library User Guide (UG065)

ACX_DFFN (Negative Clock Edge D-Type Register)

ckn

5374051-07.2022.11.17

Figure 19: Negative Clock Edge D-Type Register

ACX_DFFN is a single D-type register with data input (d) and clock (ckn) inputs and data (q) output. The data
output is set to the value on the data input upon the next falling edge of the clock.

Table 24: Parameters

Defined Default s
Parameter Description
Values Value
The init parameter defines the initial value of the output of the DFFN
init 1'b0,1'b1l |[1'bO register. This is the value the register takes upon the initial application of
power to the FPGA.

Table 25: Pin Descriptions

Name | Type Description
d Input Data input.
ckn Input Negative-edge clock input.

q Output

Data output. The value present on the data input is transferred to the q output upon the falling
edge of the clock.

Table 26: Function Table

Inputs | Output
d | ck q
0 |y 0
111 1

Achronix Proprietary and Confidential

40

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_DFFN #(
Linit (1' bO)
) instance_nane (

.q (user_out),
.d (user _din),
.ckn (user _cl ock)
)
VHDL

............. ACHRONI X LI BRARY

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY - --------

-- Conponent Instantiation

i nstance_name : ACX_DFFN
generic map (

init = '0
)
port map (
q => user_out,
d => user _din,
ckn => user_cl ock
)

Achronix Proprietary and Confidential

41

Speedcore Component Library User Guide (UG065)

ACX_DFFNER (Negative Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Reset)

ce

ckn

m

§374051-10.2022.11.17

Figure 20: Negative Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Reset

ACX_DFFNER is a single D-type register with data input (d), clock enable (ce), clock (ckn), and active-low reset
(rn) inputs and data (q) output. The active-low reset input overrides all other inputs when it is asserted low and
sets the data output low. The response of the q output in response to the asserted reset depends on the value of
the sr _asserti on parameter and is detailed in Table: ACX_DFFNER Function Table with sr_assertion =
"unclocked" (see page 38) and Table: ACX_DFFNER Function Table with sr_assertion = "clocked" (see page
38). If the reset input is not asserted, the data output is set to the value on the data input upon the next falling
edge of the clock if the active-high clock enable input is asserted.

Table 27: Parameters

Defined Default

Parameter
Values Value

Description

The i ni t parameter defines the initial value of the output of the
init 1'b0,1' b1l |1'DbO DFFNER register. This is the value the register takes upon the initial
application of power to the FPGA.

The sr _asserti on parameter defines the behavior of the output
when the r n reset input is asserted. Assigning the sr_asserti on
to "unclocked" results in an asychronous assertion of the reset
"unclocked" | signal, where the q output is set to zero upon assertion of the active-
low reset signal. Assigning the sr _asserti on to "clocked" results
in a synchronous assertion of the reset signal, where the g output is
set to zero at the next falling edge of the clock.

"unclocked",

sr_assertion|, "
- clocked

Achronix Proprietary and Confidential 42

Speedcore Component Library User Guide (UG065)

Table 28: Pin Descriptions

Name | Type

Description

d Input

Data input.

Active-low asynchronous/synchronous reset input. A low on r n sets the q output low independent
of the other inputs if the sr _asserti on parameter is set to "unclocked". If the sr _asserti on

rn Input parameter is set to "clocked", a low on r n sets the q output low at the next falling edge of the
clock.

ce Input Active-high clock enable input.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the q output upon the falling

edge of the clock if the clock enable input is high and the reset input is high.

Table 29: ACX_DFFNER Function Table With sr_assertion = "unclocked"

Inputs Output
rn | ce | d | ckn q
0 X X X 0
1 0 X X Hold
1 1 0 |y 0
1 1 1 |1 1

Table 30: ACX_DFFNER Function Table With sr_assertion = "clocked"

Inputs Output
rn | ce | d | ckn q
0 X X |l 0
1 0 X X Hold
1 1 0 || 0
1 1 1 |y 1

Achronix Proprietary and Confidential

43

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog
ACX_DFFNER #(
.init (1' bo),
.Sr_assertion ("uncl ocked")
) instance_nane (
.q (user _out),
.d (user_din),
.rn (user_reset),
.ce (user _cl ock_enabl e),
. ckn (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nanme : ACX_DFFNER
generic map (

init = "'0",
sr_assertion => "uncl ocked"
)
port map (
q => user_out,
d => user _din,
rn => user_reset,
ce => user_cl ock_enabl e,
ckn => user_cl ock

Achronix Proprietary and Confidential

44

Speedcore Component Library User Guide (UG065)

ACX_DFFNES (Negative Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Set)

sn

ce

ckn

5374051-112022.11.17

Figure 21: Negative Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Set

ACX_DFFNES is a single D-type register with data input (d), clock enable (ce), clock (ckn), and active-low set (
sn) inputs and data (q) output. The active-low set input overrides all other inputs when it is asserted low and sets
the data output high. The response of the g output in response to the asserted set depends on the value of the
sr_asserti on parameter and is detailed in Table: ACX_DFFNES Function Table with sr_assertion =
"unclocked" (see page 42) and Table: ACX_DFFNES Function Table with sr_assertion = "clocked" (see page
43). If the set input is not asserted, the data output is set to the value on the data input upon the next falling

edge of the clock if the active-high clock enable input is asserted.

Table 31: Parameters

Parameter Bellies LS Description
Values Value P

The i ni t parameter defines the initial value of the output of the
init 1'b0,1'b1l |1'Db1 DFFNES register. This is the value the register takes upon the initial
application of power to the FPGA.

The sr _asserti on parameter defines the behavior of the output
when the sn set input is asserted. Assigning the sr_asserti on to
"unclocked" results in an asychronous assertion of the set signal,
"unclocked" | where the g output is set to one upon assertion of the active-low set
signal. Assigning the sr _asserti on to "clocked" results in a
synchronous assertion of the set signal, where the q output is set to
one at the next falling edge of the clock.

"unclocked",

sr_assertion|, "
- clocked

Achronix Proprietary and Confidential 45

Speedcore Component Library User Guide (UG065)

Table 32: Pin Descriptions

Name | Type

Description

d Input

Data input.

Active-low asynchronous/synchronous set input. A low on sn sets the g output high independent
of the other inputs if the sr _asserti on parameter is set to "unclocked". If the sr _asserti on

sn Input parameter is set to "clocked", a low on sn sets the q output high at the next falling edge of the
clock.

ce Input Active-high clock enable input.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the q output upon the falling

edge of the clock if the clock enable input is high and the set input is high.

Table 33: ACX_DFFNES Function Table With sr_assertion = "unclocked"

Inputs Output
sn | ce | d | ckn q
0 X X X 1
1 0 X X Hold
1 1 0 |y 0
1 1 1 |1 1

Table 34: ACX_DFFNES Function Table With sr_assertion = "clocked"

Inputs Output
sn [ce | d | ckn q
0 X X |l 1
1 0 X | X Hold
1 1 0 || 0
1 1 1 |y 1

Achronix Proprietary and Confidential

46

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog

ACX_

) in
)k
VHDL

library speedster7t;

DFFNES #(
Linit
.Sr_assertion
stance_nane (
-q

.d

.sn

.ce

.ckn

(
(

(u

1' bl),
"uncl ocked")

(user _out)
(user_din),
(user_set),
(user _cl ock_enabl e),
ser_cl ock)

--------- ACHRONI X LI BRARY - - -=-n---

use speedster7t.core. all
------- DONE ACHRONI X LI BRARY ---------

-- Conponent

i nst

)
port

Instantiation

ance_nane : ACX_DFFNES
generic map (

init
Ssr_assertion

map (
q
d
sn
ce
ckn

> "1,
> "uncl ocked"

=> user_out,

=> user_din
=> user_set,
=> user_cl ock_enabl e,
user _cl ock

Achronix Proprietary and Confidential

47

Speedcore Component Library User Guide (UG065)

ACX_DFFNR (Negative Clock Edge D-Type Register With Asynchronous Reset)

ckn

m

5374051-12.2022.11.17

Figure 22: Negative Clock Edge D-Type Register With Asynchronous Reset

ACX_DFFNR is a single D-type register with data input (d), clock (ckn), and active-low reset (r n) inputs and
data (q) output. The active-low reset input overrides the other inputs when it is asserted low and sets the data
output low. The response of the q output in response to the asserted reset is described under the

sr_asserti on parameter. If the reset input is not asserted, the data output is set to the value on the data input
upon the next falling edge of the clock.

Table 35: Parameters

Parameter il Dafault Description
Values Value P

The i ni t parameter defines the initial value of the output of the
init 1'b0,1'b1l |1'DbO DFFNR register. This is the value the register takes upon the initial
application of power to the FPGA.

The sr_asserti on parameter defines the behavior of the output
when the r n reset input is asserted. Assigning the sr_asserti on
to "unclocked" results in an asychronous assertion of the reset
"unclocked" | signal, where the g output is set low upon assertion of the active-low
reset signal. Assigning the sr_asserti on to "clocked" results in a
synchronous assertion of the reset signal, where the q output is set
low at the next falling edge of the clock.

"unclocked",

sr_assertion
- "clocked"

Achronix Proprietary and Confidential 48

Speedcore Component Library User Guide (UG065)

Table 36: Pin Descriptions

Name | Type Description
d Input Data input.
n Inout Active-low asynchronous reset input. A low on r n sets the g output low independent of the other
P inputs.
ckn Input Negative-edge clock input.
Outout Data output. The value present on the data input is transferred to the q output upon the falling
q P edge of the clock if the asynchronous reset input is high.

Table 37: Function Table With sr_assertion = "unclocked"

Inputs Output
rn | d | ckn q
0 X X 0
1 X X Hold
1 0 |y 0
1 111 1

Table 38: Function Table With sr_assertion = "clocked"

Inputs Output
rn [d | ckn q
0 X |y 0
1 X | X Hold
1 0 |y 0
1 1 |y 1

Achronix Proprietary and Confidential

49

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_DFFNR #(
Linit (1' bO)
) instance_nane (

.q (user_out),
.d (user _din),
.rn (user_reset),
. ckn (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY -------nn---
l'ibrary speedster7t;

use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nanme : ACX_DFFNR
generic map (

init ='0
)
port map (
q => user_out,
d => user _din,
rn => user_reset,
ckn => user_cl ock
)

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

ACX_DFFNS (Negative Clock Edge D-Type Register With Asynchronous Set)

sn

ckn

5374061-13.2022.11.17

Figure 23: Negative Clock Edge D-Type Register With Asynchronous Set

ACX_DFFNS is a single D-type register with data input (d), clock (ckn), and active-low set (sn) inputs and data (
g) output. The active-low set input overrides the other inputs when it is asserted low and sets the data output
high. The response of the g output in response to the asserted set is described under the sr_asserti on
parameter. If the set input is not asserted, the data output is set to the value on the data input upon the next
falling edge of the clock.

Table 39: Parameters

Defined Default . .
Parameter Description
Values Value
The i ni t parameter defines the initial value of the output of the
init 1'b0,1'bl |[1'b1 DFFNS register. This is the value the register takes upon the initial
application of power to the FPGA.
The sr _asserti on parameter defines the behavior of the output
when the sn set input is asserted. Assigning the sr_asserti on to
" " "unclocked" results in an asychronous assertion of the set signal,
. unclocked", |, " . . .
Ssr_assertion "clocked” unclocked" | where the q output is set to one upon assertion of the active-low set

signal. Assigning the sr _asserti on to "clocked" results in a
synchronous assertion of the set signal, where the q output is set to
one at the next falling edge of the clock.

Achronix Proprietary and Confidential

51

Speedcore Component Library User Guide (UG065)

Table 40: Pin Descriptions

Name | Type Description
d Input Data input.
sn Inout Active-low asynchronous set input. A low on sn sets the q output high independent of the other
P inputs.
ckn Input Negative-edge clock input.
Outout Data output. The value present on the data input is transferred to the q output upon the falling
q P edge of the clock if the asynchronous set input is high.

Table 41: Function Table With sr_assertion = "unclocked"

Inputs Output
sn | d | ckn q
0 X X 1
1 X X Hold
1 0 |y 0
1 111 1

Table 42: Function Table With sr_assertion = "clocked"

Inputs Output
sn [d | ckn q
0 X |y 1
1 X | X Hold
1 0 |y 0
1 1 |y 1

Achronix Proprietary and Confidential

52

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_DFFNS #(
Linit (1' b1)
) instance_nane (

.q (user_out),
.d (user _din),
.sn (user_set),
. ckn (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY -------nn---
l'ibrary speedster7t;

use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nanme : ACX_DFFNS
generic map (

init = '1
)
port map (
q => user_out,
d => user _din,
sn => user_set,
ckn => user_cl ock
)

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

ACX_DFFR (Positive Clock Edge D-Type Register With Asynchronous Reset)

ck

rm

5374051-14.2022 1117

Figure 24: Positive Clock Edge D-Type Register With Asynchronous Reset

ACX_DFFR is a single D-type register with data input (d), clock (ck), and active-low reset (r n) inputs and data (q
) output. The active-low reset input overrides the other inputs when it is asserted low and sets the data output
low. The response of the q output in response to the asserted reset is described under the sr_asserti on

parameter. If the reset input is not asserted, the data output is set to the value on the data input upon the next
rising edge of the clock.

Note

© References may be seen to DFFC in the resulting netlist. This macro is functionally equivalent to the
DFFR. ACE software automatically replaces any instance of DFFC with DFFR.

Table 43: Parameters

Defined Default

Parameter
Values Value

Description

The i ni t parameter defines the initial value of the output of the
init 1'b0,1'bl |1'bO DFFR register. This is the value the register takes upon the initial
application of power to the FPGA.

The sr_asserti on parameter defines the behavior of the output
when the r n reset input is asserted. Assigning the sr_asserti on
to "unclocked" results in an asychronous assertion of the reset
"unclocked" | signal, where the g output is set low upon assertion of the active-low
reset signal. Assigning the sr_asserti on to "clocked" results in a
synchronous assertion of the reset signal, where the q output is set
low at the next rising edge of the clock.

"unclocked",

sr_assertion|, "
- clocked

Achronix Proprietary and Confidential 54

Speedcore Component Library User Guide (UG065)

Table 44: Pin Descriptions

Name | Type Description
d Input Data input.
n Inout Active-low asynchronous reset input. A low on r n sets the g output low independent of the other
P inputs.

ck Input Positive-edge clock input.

Data output. The value present on the data input is transferred to the q output upon the rising edge
q Output) . L

of the clock if the asynchronous reset input is high.

Table 45: Function Table With sr_assertion = "unclocked"

Inputs Output
rn | d | ck q
0 X X 0
1 X X Hold
1 0 |1 0
1 1 |1 1

Table 46: Function Table With sr_assertion = "clocked"

Inputs Output
rn | d | ck q
0 X |1 0
1 X | X Hold
1 0 |1 0
1 1 |1 1

Achronix Proprietary and Confidential

55

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_DFFR #(
Linit (1' bO)
) instance_nane (

.q (user_out),
.d (user _din),
.rn (user_reset),
.ck (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY -------nn---
l'ibrary speedster7t;

use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nane : ACX_DFFR
generic map (

init ='0
)
port map (
q => user_out,
d => user _din,
rn => user_reset,
ck => user_cl ock
)

Achronix Proprietary and Confidential

56

Speedcore Component Library User Guide (UG065)

ACX_DFFS (Positive Clock Edge D-Type Register With Asynchronous Set)

sn

ck

5374051-15.2022.11.17

Figure 25: Positive Clock Edge D-Type Register With Asynchronous Set

ACX_DFFS is a single D-type register with data input (d), clock (ck), and active-low set (sn) inputs and data (q)
output. The active-low set input overrides the other inputs, when it is asserted low the data output is asserted
high. The response of the q output in response to the asserted set is described under the sr _asserti on

parameter. If the set input is not asserted, the data output is set to the value on the data input upon the next
rising edge of the clock.

Note

© References may be seen to DFFP in the resulting netlist. This macro is functionally equivalent to the
DFFS. ACE software automatically replaces any instance of DFFP with DFFS.

Table 47: Parameters

Defined Default

Parameter
Values Value

Description

The i ni t parameter defines the initial value of the output of the
init 1'b0,1"'b1l |1'b1 DFFS register. This is the value the register takes upon the initial
application of power to the FPGA.

The sr_asserti on parameter defines the behavior of the output
when the sn set input is asserted. Assigning the sr_asserti on to
"unclocked" results in an asychronous assertion of the set signal,
"unclocked" | where the q output is set to one upon assertion of the active-low set
signal. Assigning the sr _asserti on to "clocked" results in a
synchronous assertion of the set signal, where the q output is set to
one at the next rising edge of the clock.

"unclocked",

sr_assertion|, "
- clocked

Achronix Proprietary and Confidential 57

Speedcore Component Library User Guide (UG065)

Table 48: Pin Descriptions

Name | Type

Description

d

Input

Data input.

Active-low asynchronous set input. A low on sn sets the q output high independent of the other

sn Input inputs.
ck Input Positive-edge clock input.
q Output Data output. The value present on the data input is transferred to the q output upon the rising edge

of the clock if the asynchronous set input is high.

Table 49: Function Table With sr_assertion = "unclocked"

Inputs Output
sn | d | ck q
0 X |1 1
1 X X Hold
1 0 |1 0
1 1 |1 1

Table 50: Function Table With sr_assertion = "clocked"

Inputs Output
sn [d | ck q
0 X [X 1
1 X | X Hold
1 0 |1 0
1 1 |1 1

Achronix Proprietary and Confidential

58

Speedcore Component Library User Guide (UG065)

Instantiation Template
Verilog

ACX_DFFS #(
Linit (1' b1)
) instance_nane (

.q (user_out),
.d (user _din),
.sn (user_set),
.ck (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY -------nn---
l'ibrary speedster7t;

use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_nane : ACX_DFFS
generic map (

init = '1
)
port map (
q => user_out,
d => user _din,
sn => user_set,
ck => user_cl ock
)

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Register Macros

The following DFF modes are not natively supported by the hardware, but are transparently resolved into the
appropriate primitives by ACE software.

ACX_DFFNEP (Negative Clock Edge D-Type Register With Clock Enable and
Synchronous Preset)

pn

ce

ckn

5374051-09.2022.11.17

Figure 26: Negative Clock Edge D-Type Register With Clock Enable and
Synchronous Preset

ACX_DFFNEP is a single D-type register with data input (d), clock enable (ce), clock (ckn), and active-low
synchronous preset (pn) inputs and data (q) output. The active-low synchronous preset input sets the data
output high upon the next falling edge of the clock if it is asserted low and the clock enable signal is asserted
high. If the synchronous preset input is not asserted, the data output is set to the value on the data input upon
the next falling edge of the clock if the active-high clock enable input is asserted.

Table 51: Parameters

Defined Default

Values Value Description

Parameter

The i ni t parameter defines the initial value of the output of the DFFNEP
init 1'b0,1'b1l |1'b1 register. This is the value the register takes upon the initial application of
power to the FPGA.

Achronix Proprietary and Confidential

60

Speedcore Component Library User Guide (UG065)

Table 52: Pin Descriptions

Name | Type Description
d Input Data input.

n Inout Active-low synchronous preset input. A low on pn sets the g output high upon the next falling edge
P P of the clock if the clock enable is asserted high.
ce Input Active-high clock enable input.
ckn Input Negative-edge clock input.

Outout Data output. The value present on the data input is transferred to the q output upon the falling

q P edge of the clock if the clock enable input is high and the synchronous preset input is high.

Table 53: Function Table

Inputs Output
pn | ce | d | ckn q
X 0 X [X Hold
0 1 X |y 1
1 1 0 || 0
1 1 1 |1 1

Achronix Proprietary and Confidential

61

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_DFFNEP #(
Linit (1' b1)
) instance_nane (

.q (user_out),
.d (user _din),
.pn (user_preset)
.ce (user_cl ock_enabl e),
. ckn (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY - -=--=--=---

l'ibrary speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_name : ACX_DFFNEP
generic map (

init = '1'
)
port map (
q => user_out,
d => user _din,
pn => user_preset,
ce => user _cl ock_enabl e,
ckn => user_cl ock
)

Achronix Proprietary and Confidential

62

Speedcore Component Library User Guide (UG065)

ACX_DFFEC (Positive Clock Edge D-Type Register With Clock Enable and
Synchronous Clear)

ce

ck

cn

5374051-03.2022.11.17

Figure 27: Positive Clock Edge D-Type Register With Clock Enable and
Synchronous Clear

ACX_DFFEC is a single D-type register with data input (d), clock enable (ce), clock (ck), and active-low
synchronous clear (cn) inputs and data (q) output. The active-low synchronous clear input sets the data output
low upon the next rising edge of the clock if it is asserted low and the clock enable signal is asserted high. If the

synchronous clear input is not asserted, the data output is set to the value on the data input upon the next rising

edge of the clock if the active-high clock enable input is asserted.

Table 54: Parameters

Parameter el Dofault Description
Values Value P

power to the FPGA.

The i ni t parameter defines the initial value of the output of the DFFEC
init 1'b0,1'bl |[1'bO register. This is the value the register takes upon the initial application of

Achronix Proprietary and Confidential

63

Speedcore Component Library User Guide (UG065)

Table 55: Pin Descriptions

Name | Type Description
d Input Data input.
cn Inout Active-low synchronous clear input. A low on cn sets the q output low upon the next rising edge of
P the clock if the clock enable is asserted high.
ce Input Active-high clock enable input.
ck Input Positive-edge clock input.
Outout Data output. The value present on the data input is transferred to the q output upon the rising edge
q P of the clock if the clock enable input is high and the synchronous clear input is high.

Table 56: Function Table

Inputs Output
cn [ce | d | ck q
X 0 X [X Hold
0 1 X |1 0
1 1 0 |1 0
1 1 1 |1 1

Achronix Proprietary and Confidential

64

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_DFFEC #(
Linit (1' bO)
) instance_nane (

.q (user_out),
.d (user _din),
.cn (user_clear),
.ce (user_cl ock_enabl e),
.ck (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY - -=--=--=---

l'ibrary speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_name : ACX_DFFEC
generic map (

init ="'0
)
port map (
q => user_out,
d => user _din,
cn => user_cl ear,
ce => user _cl ock_enabl e,
ck => user_cl ock
)

Achronix Proprietary and Confidential

65

Speedcore Component Library User Guide (UG065)

ACX_DFFEP (Positive Clock Edge D-Type Register With Clock Enable and
Synchronous Preset)

pn

ce

ck

5374051-04.2022.11.17

Figure 28: Positive Clock Edge D-Type Register With Clock Enable and
Synchronous Preset

ACX_DFFEP is a single D-type register with data input (d), clock enable (ce), clock (ck), and active-low
synchronous preset (pn) inputs and data (q) output. The active-low synchronous preset input sets the data
output high upon the next rising edge of the clock if it is asserted low and the clock enable signal is asserted
high. If the synchronous preset input is not asserted, the data output is set to the value on the data input upon
the next rising edge of the clock if the active-high clock enable input is asserted.

Table 57: Parameters

Parameter el Dofault Description
Values Value P

The i ni t parameter defines the initial value of the output of the DFFEP
init 1'b0,1'bl |[1'b1 register. This is the value the register takes upon the initial application of
power to the FPGA.

Achronix Proprietary and Confidential

66

Speedcore Component Library User Guide (UG065)

Table 58: Pin Descriptions

Name | Type Description
d Input Data input.

n Inout Active-low synchronous preset input. A low on pn sets the g output high upon the next rising edge
P P of the clock if the clock enable is asserted high.
ce Input Active-high clock enable input.
ck Input Positive-edge clock input.

Outout Data output. The value present on the data input is transferred to the q output upon the rising edge

q P of the clock if the clock enable input is high and the synchronous preset input is high.

Table 59: Function Table

Inputs Output
pn | ce | d | ck q
X 0 X [X Hold
0 1 X |1 1
1 1 0 |1 0
1 1 1 |1 1

Achronix Proprietary and Confidential

67

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_DFFEP #(
Linit (1' b1)
) instance_nane (

.q (user_out),
.d (user _din),
.pn (user_preset),
.ce (user_cl ock_enabl e),
.ck (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY - -=--=--=---

l'ibrary speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_name : ACX_DFFEP
generic map (

init = '1'
)
port map (
q => user_out,
d => user _din,
pn => user_preset,
ce => user _cl ock_enabl e,
ck => user_cl ock
)

Achronix Proprietary and Confidential

68

Speedcore Component Library User Guide (UG065)

ACX_DFFNEC (Negative Clock Edge D-Type Register With Clock Enable and
Synchronous Clear)

ce

ckn

cn

§374051-08.2022.11.17

Figure 29: Negative Clock Edge D-Type Register With Clock Enable and
Synchronous Clear

ACX_DFFNEC is a single D-type register with data input (d), clock enable (ce), clock (ckn), and active-low
synchronous clear (cn) inputs and data (q) output. The active-low synchronous clear input sets the data output

low upon the next falling edge of the clock if it is asserted low and the clock enable signal is asserted high. If the
synchronous clear input is not asserted, the data output is set to the value on the data input upon the next falling

edge of the clock if the active-high clock enable input is asserted.

Table 60: Parameters

Parameter el Dofault Description
Values Value P

power to the FPGA.

The i ni t parameter defines the initial value of the output of the DFFNEC
init 1'b0,1'bl |[1'bO register. This is the value the register takes upon the initial application of

Achronix Proprietary and Confidential

69

Speedcore Component Library User Guide (UG065)

Table 61: Pin Descriptions

Name | Type Description
d Input Data input.
cn Inout Active-low synchronous clear input. A low on cn sets the g output low upon the next falling edge of
P the clock if the clock enable is asserted high.
ce Input Active-high clock enable input.
ckn Input Negative-edge clock input.
Outout Data output. The value present on the data input is transferred to the q output upon the falling
q P edge of the clock if the clock enable input is high and the synchronous clear input is high.

Table 62: Function Table

Inputs Output
cn | ce | d [ckn q
X 0 X | X Hold
0 1 X |y 0
1 1 0 || 0
1 1 1 |1 1

Achronix Proprietary and Confidential

70

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_DFFNEC #(
Linit (1' bO)
) instance_nane (

.q (user_out),
.d (user _din),
.cn (user_clear),
.ce (user_cl ock_enabl e),
. ckn (user _cl ock)
)
VHDL

------------- ACHRONI X LI BRARY - -=--=--=---

l'ibrary speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_name : ACX_DFFNEC
generic map (

init ="'0
)
port map (
q => user_out,
d => user _din,
cn => user_cl ear,
ce => user _cl ock_enabl e,
ckn => user_cl ock
)

Achronix Proprietary and Confidential

71

Speedcore Component Library User Guide (UG065)

Boundary Pin Cells

In Speedcore devices, boundary pins provide the mechanism for routing signals between the core logic and
surrounding ASIC logic. Boundary pins are directional buffers, with optional flip-flops. Boundary pins do not
support enables nor bidirectional 1/0. Boundary pins can either be handled automatically as part of the user
software design flow or instantiated directly in the design.

IPIN (Input Data Pin)

ACX_IPIN

L

dout

din }

ce
mode

(parameter)

clk

rstn

5374004-01.2022.11.16

Figure 30: ACX_IPIN Logic Diagram

ACX_IPIN is an input boundary pin with a bypass-capable flip-flop, which supports data, reset, and enable
signals. Clock signals must use ACX_CLK_IPIN. Set the node parameter to 0 to use combinational mode, or to 1

to use flopped mode.

Table 63: Ports
Name | Type Description
din Input Data input.
cl k Input Clock input. Used only in flopped mode (mode == 1).
ce Input Active-high clock enable input.

Active-low asynchronous/synchronous reset input. A low on r st n sets the dout output to the
value of the r st _val ue parameter independent of the other inputs if the sr_asserti on

rstn | Input parameter is set to uncl ocked. If the sr _asserti on parameter is set to cl ocked, a low on
r st n sets the dout output to the value of the r st _val ue parameter at the next rising edge of the
clock.

dout Output | Data output.

Achronix Proprietary and Confidential 72

Speedcore Component Library User Guide (UG065)

Table 64: Parameters

Parameter

Defined Values

Default
Value

Description

node

A value of 0 selects combinational mode for the IPIN, and the
cl k pin connection is ignored. A value of 1 selects flopped
mode for the IPIN, and the cl k pin must be connected to a
valid clock.

init

The initial value of the flop if mode is set to 1.

sr_assertion

uncl ocked,
cl ocked

uncl ocked

The sr_asser ti on parameter defines the behavior of the
output when the r st n reset input is asserted. Assigning the
sr_assertion to uncl ocked results in an asynchronous
assertion of the reset signal, where the dout output is set to
the value of the r st _val ue parameter upon assertion of the
active-low reset signal. Assigning the sr_asserti on to

cl ocked results in a synchronous assertion of the reset signal,
where the dout output is set to the value of the r st _val ue
parameter at the next rising edge of the clock. The default value
of the sr _asserti on parameter is uncl ocked".

rst_val ue

0,1

The r st _val ue parameter defines the value (1 or 0) that is
output on the dout pin when reset is asserted.

| ocation

<pi n_| ocati on>

An optional parameter that can be used to place the instance
on a site in the target device. It is recommended to use PDC
constraints for placement instead of this parameter.

Table 65: ACX_IPIN Function Table When sr_assertion = "unclocked"

Inputs Output
rstn | ce | din | clk dout
0 X | X X rst_val ue
1 0 [X X Hold
1 1 1o [+ |o
1 111 [|1

Achronix Proprietary and Confidential

73

Speedcore Component Library User Guide (UG065)

Table 66: ACX_IPIN Function Table When sr_assertion = "clocked"

Inputs Output
rstn | ce | din | clk dout
0 X | X 1 rst_val ue
1 0 X X Hold
1 1 10 [+ |o
1 111 [t |1

Instantiation Templates

Verilog — Combinational Mode

ACX_I PI N #(

. node

.init
.sr_assertion
.rst_val ue
.location

) instance_nane (

.din
.clk
.ce

.rstn
. dout

(
(

(0),
(0),
("uncl ocked"
(0),

")

user _pad),
)

0,
0,

(user _dout)

Verilog — Flopped Mode

ACX_I PIN #(

. mode

.init
.sr_assertion
.rst_val ue
.location

) instance_nane (

.din
.clk
.ce

.rstn
. dout

(1),
(0,

("uncl ocked"

(0),

")

(user _pad),
(user_cl k),

(user_ce)
(user_rstn),
(user _dout)

).

),

Achronix Proprietary and Confidential

74

Speedcore Component Library User Guide (UG065)

VHDL — Combinational Mode

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.io.all;

------------- DONE ACHRONI X LI BRARY -------

-- Conponent Instantiation
i nstance_name : ACX_IPIN
generic map (

nmode = 0,
init = 0,
sr_assertion => "uncl ocked",
rst_val ue = 0,
| ocati on = ""

)

port map (
din => user _pad,
dout => user _dout

)

VHDL - Flopped Mode

------------- ACHRONI X LI BRARY ------nmn---
|l'ibrary speedster7t;

use speedster7t.io.all;

------------- DONE ACHRONI X LI BRARY -------

-- Conponent Instantiation
i nstance_name : ACX_IPIN
generic map (

node = 1,
init => 0,
sr_assertion => "uncl ocked",
rst_val ue => 0,
| ocati on = ""
)
port map (
din => user _pad,
clk => user_cl k,
ce => user_ce,
rstn => user_rstn,
dout => user _dout
)

Achronix Proprietary and Confidential

75

Speedcore Component Library User Guide (UG065)

ACX_OPIN (Output Data Pin)

ACX_OPIN

L]

dout

din }

ce

mode
(parameter)
clk

rstn

5374004-02.2022.11.16

Figure 31: ACX_OPIN Logic Diagram

ACX_OPIN is an output boundary pin with a bypass-capable flip-flop, which supports data, reset, and enable
signals. Clock signals must use ACX_CLK_OPIN. Set the node parameter to 0 to use combinational mode, or to
1 to use flopped mode.

Table 67: Ports

Name | Type Description

din Input Data input.

clk Input Clock input. Used only in flopped mode (mode == 1).

ce Input Active-high clock enable input.
Active-low asynchronous/synchronous reset input. A low on r st n sets the dout output to the
value of the r st _val ue parameter independent of the other inputs if the sr_asserti on

rstn |Input parameter is set to uncl ocked. If the sr _asserti on parameter is set to cl ocked", a low on
r st n sets the dout output to the value of the r st _val ue parameter at the next rising edge of the
clock.

dout Output | Data output.

Achronix Proprietary and Confidential 76

Speedcore Component Library User Guide (UG065)

Table 68: Parameters

Parameter

Defined Values

Default
Value

Description

node

A value of 0 selects combinational mode for the OPIN, and the
cl k pin connection is ignored. A value of 1 selects flopped
mode for the OPIN, and the cl k pin must be connected to a
valid clock.

init

The initial value of the flop if node is setto 1.

Ssr_assertion

uncl ocked,
cl ocked

uncl ocked

The sr_asser ti on parameter defines the behavior of the
output when the r st n reset input is asserted. setting
sr_assertiontouncl ocked results in an asynchronous
assertion of the reset signal, where the dout output is set to
the value of the r st _val ue parameter upon assertion of the
active-low reset signal. Setting sr _asserti on to cl ocked
results in a synchronous assertion of the reset signal, where the
dout output is set to the value of the r st _val ue parameter at
the next rising edge of the clock. The default value of the
sr_assertion parameteris uncl ocked.

rst_val ue

0,1

The r st _val ue parameter defines the value (1 or 0) that is
output on the dout pin when reset is asserted.

| ocation

<pi n_| ocati on>

An optional parameter that can be used to place the instance
on a site in the target device. It is recommended to use PDC
directives for placement instead of this parameter.

Table 69: ACX_OPIN Function Table When sr_assertion = "unclocked"

Inputs Output
rstn | ce | din | clk dout
0 X | X X rst_val ue
1 0 X X Hold
1 1 10 [+ |o
1 111 [|1

Achronix Proprietary and Confidential

77

Speedcore Component Library User Guide (UG065)

Table 70: ACX_OPIN Function Table When sr_assertion = "clocked"

Inputs Output
rstn | ce | din | clk dout
0 X | X 1 rst_val ue
1 0 X X Hold
1 1 10 [+ |o
1 111 [t |1

Instantiation Templates

Verilog — Combinational Mode

ACX_OPI N #(

. node

.init
.sr_assertion
.rst_val ue
.location

) instance_nane (

.din
.clk
.ce

.rstn
. dout

(
(

(0),
(0),
("uncl ocked"
(0),

")

user _din),
)
OF
OF
(user _pad)

Verilog — Flopped Mode

ACX_OPI N #(

. mode

.init
.sr_assertion
.rst_val ue
.location

) instance_nane (

.din
.clk
.ce

.rstn
. dout

(1),

(0),

("uncl ocked"
(0),

")

(user _din),

(user_cl k),

(user_ce)

(user_ce),
(user _pad)

).

),

Achronix Proprietary and Confidential

78

Speedcore Component Library User Guide (UG065)

VHDL — Combinational Mode

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.io.all;

------------- DONE ACHRONI X LI BRARY -------

-- Conponent Instantiation
i nstance_nanme : ACX_OPIN
generic map (

nmode = 0,
init = 0,
sr_assertion => "uncl ocked",
rst_val ue = 0,
| ocati on = ""

)

port map (
din => user _din,
dout => user_pad

)

VHDL - Flopped Mode

------------- ACHRONI X LI BRARY ------nmn---
|l'ibrary speedster7t;

use speedster7t.io.all;

------------- DONE ACHRONI X LI BRARY -------

-- Conponent Instantiation
i nstance_name : ACX_OPIN
generic map (

node => 1,
init => 0,
sr_assertion => "uncl ocked",
rst_val ue => 0,
| ocati on = ""
)
port map (
din => user _din,
clk => user _cl k,
ce => user_ce,
rstn => user_rstn,
dout => user_pad
)

Achronix Proprietary and Confidential

79

Speedcore Component Library User Guide (UG065)

ACX_CLK_IPIN (Input Clock Pin)
ACX_CLK_IPIN

din dout

5374004-03.2022.11.16
Figure 32: ACX_CLK_IPIN Logic Symbol

ACX_CLK_IPIN is an input boundary pin which supports only clock signals. Data and reset signals must use
IPIN.

Table 71: Ports

Name | Type | Description

din Input Clock input.

dout Output | Clock output.

Table 72: Parameters

Parameter Defined Values Default Value

| ocation <pi n_| ocati on>

Table 73: Input Function Table

din | dout
0 0
1 1
X X
y4 X

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog
ACX_CLK_I PI N #(
.location ")
) instance_nane (
.din (user_pad),
. dout (user _cl kout)
)i
VHDL

------------- ACHRONI X LI BRARY ------------
|library speedster7t;

use speedster7t.io.all;

------------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_name : ACX_CLK_IPIN
generic map (

| ocati on = "
)
port map (
din => user _pad,
dout => user _cl kout
)

Achronix Proprietary and Confidential

81

Speedcore Component Library User Guide (UG065)

ACX_CLK_OPIN (Output Clock Pin)
ACX_CLK_OPIN

din dout

5374004-04.202211.16
Figure 33: ACX_CLK_OPIN Logic Symbol

ACX_CLK_IPIN is an output boundary pin which supports only clock signals. Data and reset signals must use
OPIN.

Table 74: Ports

Name | Type | Description

din Input Clock input.

dout Output | Clock output.

Table 75: Parameters

Parameter Defined Values Default Value

| ocation <pi n_| ocati on>

Table 76: Input Function Table

din | dout
0 0
1 1
X X
y4 X

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog
ACX_CLK_CPI N #(
.location ")
) instance_nane (
.din (user_cl kin),
. dout (user _pad)
)i
VHDL

------------- ACHRONI X LI BRARY ------------
|library speedster7t;

use speedster7t.io.all;

------------- DONE ACHRONI X LI BRARY ---------

-- Conponent Instantiation
i nstance_name : ACX_CLK _OPIN
generic map (

| ocati on = "
)
port map (
din => user _cl ki n,
dout => user_pad
)

Achronix Proprietary and Confidential

83

Speedcore Component Library User Guide (UG065)

Chapter - 3: Logic Functions

ACX_SYNCHRONIZER, ACX_SYNCHRONIZER_N

din dout

ACX_SYNCHRONIZER

clk

rstn

43550700-001.2022.10.31

Figure 34: ACX_SYNCHRONIZER Logic Symbol

ACX_SYNCHRONIZER implements a data synchronizer to reduce the frequency of metastability when sampling
data synchronous to one clock domain with a register clocked by another clock domain. It is strongly
recommended that this macro be used for control signals that cross clock domains. Using this macro has several
advantages over using a two-register synchronizer:

The ACX_SYNCHRONIZER macro uses two back-to-back registers and improves the mean time between
failures (MTBF) by including ACE pragmas (and SDC) that constrain the placement of the registers relative to
one another. When constructing a synchronizer from two registers (not recommended), there is a chance that the
tool might separate the flip-flops within the fabric.

Embedded ACE and SDC constraints in the ACX_SYNCHRONIZER macro ensure that:

® All timing paths through the di n input are disabled, while the r st n input paths are not disabled. When
constructing a synchronizer from two registers (not recommended), manually add constraints to disable
these paths. If such a path is timed, the tool may report false critical paths resulting in longer run-times.

® The two registers in the macro are not cloned or duplicated by the tools.

ACX_SYNCHRONIZER N is identical to ACX_SYNCHRONIZER, except that it synchronizes to the falling edge
of the reference clock instead of the rising edge.

Table 77: Parameters

Parameter Dafined izl Description
Values Value P

The i ni t parameter defines the initial value of the output of the
synchronizer and of the intermediate register, whose results are seen
init 1'b0,1' bl 1' b0 after the first rising clock edge after reset. This setting is also the value
that the synchronizer takes upon the initial application of power to the
FPGA.

Achronix Proprietary and Confidential 84

Speedcore Component Library User Guide (UG065)

Table 78: Pin Descriptions

Clock o

Name | Type Domain Description

Active-low reset input. Resets the value of the output register and the intermediate
rstn |Input |- . ; S

register to the value provided by the i ni t parameter.
din Input - Data input.
cl k Input Clock reference. The dout signal is synchronized to the rising edge of this clock.
dout Output |cl k Data output.

Table 79: Function Table

Inputs | Output

din | clk dout

0o |11 |o

1 11 |1

Using ACX_SYNCHRONIZER to Synchronize Reset

An instance of the ACX_SYNCHRONIZER module can also be used to synchronize reset signals. In this case,

din rstn_sync

ACX_SYNCHRONIZER

clk

rstn

20161208-03.2022.10.31

Figure 35: ACX_SYNCHRONIZER Synchronizing Reset

the active-low non-synchronous reset input is connected to the r st n input of the ACX_SYNCHRONIZER
module, the di n input is driven with 1' b1, and the i ni t parameteris setto 1' b0. When the r st n input is

asserted, the output is immediately driven to a value of 1' b0 (as determined by the i ni t parameter). The 1' bl
on the data input propagates to the output after two output clock cycles; after which, when r st n is de-asserted,

the output is set to 1' b1 on the next rising edge of cl k.

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_SYNCHRONI ZER #(
.init (1' bO)
) instance_nane (

.clk (user _out put _cl ock),
.rstn (user_reset_n),

.din (user_din),

. dout (user _out)

Achronix Proprietary and Confidential

86

Speedcore Component Library User Guide (UG065)

ACX_SHIFTREG

rstn
en
din[W-1:0]

clk dout[W-1:0][N-1:0]

20161208-04.2022.10.31

Figure 36: ACX_SHIFTREG Logic Symbol

ACX_SHIFTREG is a macro that provides an efficient multi-tap shift register implementation using LRAMs, with a
configurable data width and delay for each tap. On each rising clock edge, the data at the di n input pins is
captured and saved by the shift register. The data is then presented on dout [n] after the number of cycles of
delay assigned to tap n. De-asserting the en input pauses operation of the shift register, such that the data
present on the input pins is not captured by the shift register, and the output does not change. For example, if the
shift register is configured to have three taps, and the delays for the taps are 2, 5, and 7, then the data sampled
at the input to the shift register on a given clock cycle is available at dout [0] after two clock cycles, at dout [1]
after five clock cycles, and at dout [2] after seven clock cycles. To use this macro, include the following in the
Verilog source code that instantiates the ACX_SHIFTREG macro:

“include "speedster 7t/ macros/ ACX_SH FTREG v"

The shift register implementation optionally uses both edges of the clock, allowing for two taps per LRAM
instance. This implementation reduces the number of LRAMs used at the expense of timing closure at higher
clock frequencies.

Table 80: Parameters

Parameter D OES Default Value Description
Values
W <int> 32 The width of the di n[] signal, dout [] signals, and internal data
storage.
N <int> 1 The number of taps supported by the shift register.
Array of tap latencies. The nth entry in the TAPS array specifies the
TAPS [<int>] latency of the nth tap, as seen on the dout [n] signals. Individual

latencies are measured from di n, each value in the array must be
larger than the previous value.

Array of modes. Setting the nth entry in the MODE array to 1' b1 allows
MODE [0, 1] [0, O, .] that entry to be implemented using an LRAM with both rising and falling
clock edges. A mode of 1' b0 uses only the rising clock edge.

Achronix Proprietary and Confidential 87

Speedcore Component Library User Guide (UG065)

Table 81: Pin Descriptions

Name Type Description
Clock reference. All inputs and outputs are relative to the rising edge of this clock.
cl k Input Depending on the implementation mode, internal logic may use the falling edge of
this clock.
Active-low reset. When asserted, the value of the internal data registers are reset to
rstn Input 0. Using this signal prevents the shift register data storage from being mapped to
LRAMs, and the shift register is built out of core registers.
Active-high clock enable. De-asserting this signals stops operation of the shift
en Input .
register.
din[(W1):0] Input Data input.
dout [(W1):0] Outout An array of data outputs, where dout [(W 1) : 0] [O] carries the data out from the
[(N-1):0] P first tap, and dout [(W 1) : 0] [N- 1] represents the data out from the last tap.

Table 82: Function Table

Inputs Output
rstn | en | clk dout[n].
0 X [X 0 (and resets all internal states).
1 0 1 Previous dout [n] .
1 1 1 dout [n] gets the next data element in the shift register.

Achronix Proprietary and Confidential

88

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog

ACX_SHI FTREG #(
// Data is 32 bit w de

W (32),
.N (3), /1 3 taps
. TAPS ([3, 5, 7]), /Il Taps at 3 cycles, 5 cycles, and 7 cycles
. MODE ([0,0,0]) /1 Rising clock edge only.

) instance_nanme (

.clk (user_cl ock),

.rstn (user _reset_n),
.en (user_en),
.din (user _din),
. dout (user_out _array)

Achronix Proprietary and Confidential

89

Speedcore Component Library User Guide (UG065)

Chapter - 4: Clock Functions

ACX_CLKDIV (Clock Divider)

The ACX_CLKDIV component implements a clock divider to provide an output clock at 1/2, 1/4, 1/6, or 1/8 the
frequency of the input clock with a configurable offset.

clk_in clk_out
34020563-01.2022.10.31
Figure 37: ACX_CLKDIV Logic Symbol
Table 83: Parameters
Parameter DTS PEEULE Description
Values Value P

di v_by 2,4,6,8 2 Determines the factor by which the input clock is divided.
of f set 0,1,2.3 0 (E)Iil:es the number of input clock cycles by which to delay the output

Table 84: Pin Descriptions

Name Type Description
clk_i n(") Input Input clock to be divided.
cl k_out™ Output Divided clock output.
Table Notes
1. Both cl k_i n and cl k_out must connect to clock tracks within the FPGA. They cannot connect directly
with data tracks.

Achronix Proprietary and Confidential

90

Speedcore Component Library User Guide (UG065)

The following timing diagram shows how the di v_by and of f set parameters affect the output clock.

clk_in
=0)
=1)

clk_out, (offset
clk_out, (offset

{

z=Ag™nIp

(=) = N ®
1 Iy Jx I
@ @ @ @
@ @ %} »
b= s b b=

R < RS L

7 - - 7

=] 3 5 5

(=} o o o
1 o N J

= - = 3

© o [3) 5}
\ J
Y

y=Aq~AIp

=0)

clk_out, (offset

~

i

il
I
@ @
0 Z)
Rt w
= N
R S
- o
5 5
O_ o
x ~
3] ©

=3)

clk_out, (offset:

~

9=Aq7nIp

=0)

clk_out, (offset

~

1)
2)

clk_out, (offset
clk_out, (offset:

=3)

clk_out, (offset:

~

8=Aq~AIp

34020563-02.2022.17.11

Figure 38: Output Clock Timing Diagram

91

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Constraints

The ACX_CLKDIV component does not propagate the input clock frequency from cl k_i n to cl k_out .
Therefore, suitable constraints for cl k_out must be specified to ensure that correct timing is applied. These
constraints should be present in both the Synplify Pro and ACE constraint files.

Exanpl e of constraint required with divide by 2, and offset of 0. Input clock is fromthe port

"i_clk_in". CQutput of divider connects to net named "cl k_in_div_2"
create_generated_clock -nanme clk _div_2 -source [get_port i_clk_in] -divide by 2 [get_nets

clk_in_div_2]

Instantiation Templates
Verilog

ACX_CLKDI V #(
Jdiv_by (2),

.of fset (1)
) instance_nane (
.clk_in (user_cl k_in),
. cl k_out (user_cl k_out)
)
VHDL

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.core.all;

------------- DONE ACHRONI X LI BRARY -------

-- Conponent Instantiation
i nstance_nanme : ACX_CLKD V
generic map (
div_by => 2,
offset =>1
)
port map (
clk_in => user_clk_in,
cl k_out => user_cl k_out

)

Achronix Proprietary and Confidential

92

Speedcore Component Library User Guide (UG065)

ACX_CLKGATE (Clock Gate)

en

clk_in clk_out

34020563-03.2022.10.31
Figure 39: ACX_CLKGATE Logic Symbol

The ACX_CLKGATE component implements a clock gate that allows the output to toggle only when the input, en
, is asserted high. This component disables the clock only after the clock input has transitioned low, guaranteeing
that the output is glitchless. The output clock is guaranteed to never have a pulse width narrower in time than the

input pulse width.

Note

When simulating the ACX_CLKGATE component, if the transition on the input signal, en, and the

@ transition on the input clock arrive at the same moment, the time that it takes for the en transition to
have an effect is dependent on how the simulator schedules events and may vary with different
simulators, different designs, and different simulation models.

Table 85: Pin Descriptions

Name Type Description
en Input When asserted high, the cl k_out output is driven by the cl k_i n input.
clk_i n(" Input Input clock to be gated.

clk_out® Output | Gated clock output.

Table Notes
1. Both cl k_i nand cl k_out must connect to clock tracks within the FPGA. They cannot connect directly
with data tracks.

Achronix Proprietary and Confidential 93

Speedcore Component Library User Guide (UG065)

The following timing diagram illustrates the behavior of the ACX_CLKGATE component.
wol L L T T T
clk_out / \ / \ /

34020563-04.2022.17.11

Figure 40: ACX_CLKGATE Timing Diagram

Constraints

The ACX_CLKGATE component does not propagate the input clock frequency from cl k_i nto cl k_out in
Synplify Pro. Therefore, it is necessary to specify additional constraints for cl k_out . With the constraint,
Synplify Pro correctly passes through the input clock domain to the output clock domain for static timing analysis
purposes. ACE can propagate the input clock frequency through the ACX_CLKGATE to the output clock. The

following constraint is needed by Synplify Pro.

Exanpl e of defining a generated clock for ACX CLKGATE. In this exanple, 'i_clkgate' is the

i nstance name of the ACX _CLKGATE and the input clock is "i_clk'.
create_generated_clock -name clk_gate [get_pins {i_clkgate/clk_out}] -source [get_ports

{i clk}] -divide by 1

Instantiation Templates
Verilog

ACX_CLKGATE i nst ance_nane
(
.en (user_en),
.clk_in (user_clk_in),
.cl k_out (user_clk_out)

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.core.all;
------------- DONE ACHRONI X LI BRARY -------

-- Conponent Instantiation
i nstance_nanme : ACX_CLKGATE

port map (

en
clk_in

=> user_en,
=> user_cl k_in,

cl k_out => user_cl k_out

Achronix Proprietary and Confidential

94

Speedcore Component Library User Guide (UG065)

ACX_CLKSWITCH (Clock Switch)

SEL[1:0]

desel[1:0]

clk_in[1:0] clk_out

34020563-05.2021.07.14

Figure 41: ACX_CLKSWITCH Logic Symbol

The ACX_CLKSWITCH component implements clock switching functionality allowing the output clock to be
glitchlessly switched between two different clock inputs. The glitchless behavior is implemented by disabling the
clock being switched from when that clock is at value 0, and then enabling the clock being switched fo when that
clock has a value of 0. In this way, the output clock never has a pulse that is narrower than the original clock or
the new clock.

There are three switching behaviors depending on the value applied to the SYNCHRONI ZE_SEL parameter:

® 0 —ensures the input, sel [], for each clock is synchronized to the rising and then falling edge of the
clock being selected

® 1 - synchronizes the input signal, sel [], to the falling edge followed by the next falling edge of the clock
being selected

® 2 —synchronizes sel [] to a single falling edge of the clock it is selecting (a value of 2 should only be
used when the input signal, sel [] is synchronized to both cl k_i n[0] andcl k_i n[1])

To ensure glitchless operation, set SYNCHRONI ZE_SEL to the appropriate value to meet timing requirements and
ensure that each bit of sel [] is synchronized to the clock that it is used to select.

If a clock is not toggling, then de-asserting the sel [] input bit for that clock does not deselect the clock. In this
case, the desel [] input can be used to asynchronously force deselection of a clock input.

Note

When simulating the ACX_CLKSWITCH component, if the transition on the sel [] input signal and the

T transition on one of the input clocks arrive at the same moment, the time that it takes for the sel []
transition to have an effect is dependent on how the simulator schedules events and may vary with
different simulators, different designs, and different simulation models. Using desel [] when the input
clock is toggling can cause a glitch or partial pulse on the output.

Achronix Proprietary and Confidential 95

Speedcore Component Library User Guide (UG065)

Table 86: Parameter Descriptions

Parameter

Defined
Values

Default
Value

Description

PRESEL

0,1,2

Determines the operation of the CLKSWITCH at startup time to prevent
the need for a clock switching event when the FPGA begins normal
operation. The value should match the startup value of the input, sel [1:
0] .

SYNCHRONI ZE_SEL

0,1,2

Determines how many half-cycle or full cycle synchronization stages are
used to synchronize the inputs, sel [1: 0] :

0 — synchronizes the input, sel [1: 0], to the rising and then falling
edge of the selected clock

1 — synchronizes the input, sel [1: 0] , to two conscutive falling edges of
the selected clock.

2 — synchronizes the input, sel [1: 0] , to a single falling edge of the
selected clock.

Table 87: Pin Descriptions

Name

Type

Description

sel [1: 0]

Input

Assert sel [0] to drive the output clock from cl k_i n[0] and assert sel [1] to drive
the output clock from cl k_i n[1] . If both bits of sel [] are de-asserted, the cl k_out
output stops toggling. Asserting both bits of sel [] at the same time results in
unpredictable output.

desel [1: 0] U

Input

When switching from one input clock to another clock using sel [], the first clock is
synchronously disabled before the second clock is enabled. If the first clock is not
toggling, it can not be synchronously disabled. The desel [] input provides a
mechanism for deselecting a clock that is not toggling. Asserting desel [n]
asynchronously deselects cl k_i n[n], allowing cl k_i n[n] to be deselected even
when it is not toggling.

clk_in[1:0]®

Input Input clocks.

cl k_out 2

Output | Output clock.

Table Notes

1. Using desel [] to deselect a clock while it is toggling can cause a glitch on the output clock

2. Bothcl k_in[1: 0] and cl k_out must connect to clock tracks within the FPGA. They cannot connect
directly with data tracks.

Achronix Proprietary and Confidential 96

Speedcore Component Library User Guide (UG065)

The following timing diagrams show how the SYNCHRONI ZE_SEL parameter affects the output clock.

wo T
e W e R s W e WL s e W
i \) \
s e, \‘
won| T R e W/ s W

34020563-06.2022.17.11

S VO W VO W Ve W WO W
W R g W e W O e W
. \

S e W T W e (W

34020563-07.2022.17.11

aol T T T T
/ \ / el \ / \ / -
e U e \ / \ / -

34020563-08.2022.17.11

Figure 44: SYNCHRONIZE_SEL = 2 Timing Diagram

Achronix Proprietary and Confidential 97

Speedcore Component Library User Guide (UG065)

Constraints

The ACX_CLKSWITCH component does not propagate the input clock frequency from both cl k_i n ports to the
cl k_out port in Synplify Pro. Therefore, it is necessary to specify additional timing constraints for cl k_out .
With these added constraints, Synplify Pro correctly passes the input clock domains through to the output clock
domain for static timing analysis purposes. ACE can propagate the input clock frequency through the
ACX_CLKSWITCH to the output clock. The following constraints are needed by Synplify Pro.

Exanpl e of defining a generated clock for ACX CLKSWTCH. In this exanple, '"i_clkswitch' is the

i nstance name of the ACX_CLKSW TCH and the input clock is "i_clk_0" and "i_clk_1".
create_generated_clock -nanme clk_switchO [get_pins {i_clkswitch/clk _out}] -source [get_ports
{i_clk_0}] -divide_by 1

create_generated_clock -nanme clk_switchl [get_pins {i_clkswitch/clk_out}] -add -naster_cl ock
clkl -source [get_ports {i_clk_ 1}] -divide_by 1

Instantiation Templates

Verilog

ACX_CLKSW TCH #(
. SYNCHRONI ZE_SEL (1),

. PRESEL (1)

) instance_nane (
. sel (user_sel),
. desel (user _desel),
.clk_in (user_cl k_in),
. cl k_out (user_cl k_out)

)

VHDL

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.core.all;

------------- DONE ACHRONI X LI BRARY -------

-- Conponent Instantiation
i nstance_nane : ACX_CLKSW TCH
generic map (

SYNCHRONI ZE_SEL => 1 ,

PRESEL = 1

)

port map (
sel => user_sel,
desel => user_desel,
clk_in => user_cl k_in,
cl k_out => user_cl k_out

Achronix Proprietary and Confidential 98

Speedcore Component Library User Guide (UG065)

Chapter - 5: Arithmetic and DSP Functions

ACX_ALUS8

The ACX_ALUS8 implements either an 8-bit adder or 8-bit subtractor.

load
d[7:0]
b[7:0] ACX_ALUS s[7:0]
a[7:0]
cin cout

44859580-01.2022.10.31

Figure 45: Eight-Input Adder/Subtractor With Programmable Load

Description

The ACX_ALUS8 has the following inputs:
® Adder/subtractor (a[7: 0] , b[7: 0])
® Load value (d[7: 0])
® |oad enable (I oad)

® Carry-in (ci n)

The following outputs are generated:
® Sum/difference (s[7: 0])
® Carry-out (cout)

Asserting the load signal high assigns the s[7: 0] output with the load value, d[7: 0] , input.

Multiple ACX_ALUB8 blocks may be combined by connecting the cout output of one slice to the ci n input of the

next significant eight-bit slice. Selection of whether the ACX_ALUS is configured as an adder or subtractor is
determined by the value of the i nvert _b parameter.

Note

T When chaining the output, cout , of one ACX_ALUS to the input, ci n, of another ACX_ALUS, special
routing details should be understood. Refer to the figure showing routing between RLBs in the section
on Speedcore Fabric Architecture (see page 11).

Achronix Proprietary and Confidential

99

Speedcore Component Library User Guide (UG065)

Parameters

Table 88: Parameters

Parameter Ll izl Description
Values Value P

The i nvert _b parameter determines whether the ACX_ALUS functions
as an adder or a subtractor:

1' b0 — the ACX_ALUS performs two's complement addition of a[7: 0]

+ b[7:0] + cin.

1' bl — the ACX_ALUS inverts the b[7: 0] input so that two's
complement subtraction of a[7: 0] — b[7: 0] can be performed. When
subtraction is desired, the ci n input must be connected to 1' b1. With
the input b[7: 0] inverted and ci n setto 1' b1, in two's compliment
arithmetic, this creates the value —b. When multiple ACX_ALU8s are
connected to perform higher resolution subtractors, only the ci n of the
LSB of the subtractor is to be connected to 1' b1, all other ci n inputs
must be setto 1' bO.

invert b |1'b0,1'bl 1' b0

Ports

Table 89: Pin Descriptions

Name Type Description

Data input a. An 8-bit two's complement signed input, where bit 7 is the most significant bit. In

af7: 0] Input subtraction mode, data input a is the minuend.

Data input b. An 8-bit two's complement signed input, where bit 7 is the most significant bit. In

b[7 0] Input subtraction mode, data input b is the subtrahend.

Load value input. Input d[7: 0] is loaded onto the outputs s[7: 0] upon the active-high

drv: 0] Input assertion of the load input.

Load input (active-high). Asserting the | oad input sets the s[7: 0] output equal to the d[7: 0]

| oad Input input.

Carry-In input (active-high). The ci n is the carry-in to the ALU8. For subtraction, ci n should be

ctn nput 1 ied high.

Sum/difference output.

If the i nvert b parameteris setto 1' b0 and the | oad input is low, the s[7: 0] output
reflects the sum of the a, b, and ci n inputs. If the i nvert b parameteris setto 1' b1l and the
| oad input is low, the s 7: 0] output reflects the difference of the a, b, and ci n inputs.

s[7:0] Output

cout Output | Carry-out output. The cout is set high during an add when the s[7: 0] output overflows.

Achronix Proprietary and Confidential 100

Speedcore Component Library User Guide (UG065)

Functions

Table 90: Function Table With invert_b = 1'b0
load | cin s[3:0] Note
1 X d[7: 0] Load.
0 - a[7:0] + b[7:0] + cin Add.

Table 91: Function Table With invert_b = 1'b1

load | cin s[7:0] Note

1 X d[7: 0] Load.

0 1 a[7:0] - b[7:0] Subtract.

0 0 a[7:0] — b[7:0] -1 Subtract —1.

Instantiation Template
Verilog

ACX_ALUB #(
.invert_b (1' b0)
) instance_nane (

.a (user_a),

.b (user_b),

.d (user _| oad_val ue),
. | oad (user_| oad),

.cin (user _carry_in),

.S (user _sum,

. cout (user_cout)

Achronix Proprietary and Confidential 101

Speedcore Component Library User Guide (UG065)

ACX_DSP_GEN

The ACX_DSP_GEN block is optimized for fixed-point digital signal processing (DSP). Columns of
ACX_DSP_GEN blocks reside within the Achronix embedded FPGA core to aid in the efficient implementation of
blocks such as FIR filters and processing of wireless signals.

a[17:0] cout

b[26:0] dout[44:0]
sub
cin
load over_pos/dout[47]
over_neg/dout[46]
match/dout[45]

rnd
mshift

reg_addr[2:0]

ce_a
ce_b
ce_addsub
ce_addsub_a
ce_dout
ce_cascade

Rnd/
saturate

ce_multout

rstn_a

rstn_b
rstn_addsub
rstn_addsub_a
rstn_dout
rstn_cascade
rstn_multout

fwdi_casc[26:0]*
fwdi_dout_[63:0]*
fwdi_cin*

fwdo_casc[26:0]*
fwdo_dout[63:0]*
fwdo_cout*
fwdi_match*
revi_casc[26:0]*
revi_dout[31:0]*

fwdo_match*
revo_casc[26:0]*
revo_dout[31:0]*

clk

4228235-01.2023.03.01

Figure 46: ACX_DSP_GEN Tile Logic Symbol

Achronix Proprietary and Confidential 102

Speedcore Component Library User Guide (UG065)

revi_casc[26:0] fwdo_casc[26:0] |fwdo_dout[83:0] fwdo_match | fwdo_cout |fvi_dout[31:0]
Id ql
9 4 13 cout
B reg_addr[2:0],a[17:0],b[26:0] 4
19x27 cout L
27-bit Muttiplier over_pos | 4 gkl 16 over_pos/
al17.0] Pre-Adder . dout[47]
ce_a r
a[63:0]
rstn_a | D—
15 over_neg/
over_ne; - -
b[26:0] = d dout[46]
ce_b Add/Sub/ -
Rnd/Sat
rstn_b match | B‘ match/
XOR 4 9m dout[45]
r
ce_multout
rstn_multout dout[63:0] 4 q _B—
ce_cascade const H— ce;
rstn_cascade rnd 1
ce_addsub_a uE
_ i t[44:
rstn_addsub_a dout[44:0]
rnd _@_
ce_addsub —
rstn_addsub
sub
load
ce
2
S
cin — |4
27 d 4
e
= -
8
mshift d q:]:
ce
r
.
reg_addr[2:0] ——
Lr IRy ¢ 527 ©
H 251 | oo Regfile
T

—@J

ce_dout
rstn_dout
revo_casc[26:0] | fwdi_casc[26:0] fwdi_dout[63:0] fwdi_cin fwdi_match revo_dout[31:0]
4228235-02.2022.11.17
Figure 47: ACX_DSP_GEN Block Diagram
Note

@ The signals, fwdi _*,fwdo_*,revi _*,andrevo_* atthe top and bottom of the ACX DSP_GEN
Block Diagram denote hardwired connections to/from adjacent ACX_DSP_GEN tiles

Achronix Proprietary and Confidential 103

Speedcore Component Library User Guide (UG065)

Table 92: Control Parameter References Index Numbers for the ACX_DSP_GEN Block Diagram

Index Parameter Index Parameter Index Parameter
1 a_del 13 cout _del 25 sel _addsub_a

2 b_del 14 mat ch_del 26 sel _addsub_b

3 sub_del 15 over _neg_del 27 sel _cin

4 ci n_del 16 over _pos_del 28 addsub_bypass

5 | oad_del 17 fwdi _casc_del 29 sel _fwdo_dout

6 rnd_del 18 fwdo_casc_del 30 sel _dout

7 regaddr _del 19 revi _casc_del 31 round_node

8 nshi ft _del 20 sel _revi _casc 32 preadd_node

9 preadd_del 21 sel _fwd_preadd |33 sat _node

10 nmul t out _del 22 sel _rev_preadd |34 sel _48_dout

11 addsub_ar eg_del 23 sel _mult_a 35 &mat ch_pattern & ~(| mat ch_nask)
12 dout _del 24 sel _mult_b 36 sel _fwdo_cout

Achronix Proprietary and Confidential

104

Speedcore Component Library User Guide (UG065)

ACX_DSP_GEN Pins

Table 93: ACX_DSP_GEN Pin Descriptions

Name

Type

Description

a[17: 0]

Input

Data input A, an 18-bit two’s complement signed input, where bit 17 is the most
significant bit.

b[26: 0]

Input

Data input B, a 27-bit, two’s complement signed input, where bit 26 is the most
significant bit.

sub

Input

Active-high subtract input. Setting sub to 1 inverts the B input allowing an a[27:
0] — b[27: 0] subtraction operation to be performed. The ci n input must be
asserted during a subtract operation.

Input

Active-high user carry input. The ci n input to the adder/subtractor is determined by
the setting of the sel _ci n parameter.

| oad

Input

Active-high add/sub load input. Asserting | oad high results in the add/sub block
summing the a[63: 0] and the const [63: 0] inputs. Set the | oad_const
parameter to 64' hO if a load accumulator function is desired. The ci n input is
ignored when the | oad input is asserted.

rnd

Input

Active-high round add/sub input. Asserting the r nd input high rounds the sum of
(a + b + cin) with the rounding mode selected by the r ound_node parameter.
For rounding modes that may result in an overflow condition, enable saturation with
the sat _node parameter.

nshift

Input

Active-high multiplier shift input. Asserting nshi f t high shifts the B input of the add
/sub block seventeen bits to the right with sign extension. Aids in the computation of
products larger than the 19x27 bits provided natively by the multiplier unit.

reg_addr[2: 0]

Input

Register address input. Selects one of eight 27-bit constants in the register file for
the A or B inputs of the multiplier block. The output of the register is valid on the
next rising edge of the clock after the address is presented on the r eg_addr
inputs. The register file contents are programmed with the 27-bit values of the
regfil e_O throughregfil e_7 parameters.

ce_a

Input

Active-high data input A register clock enable. Set high to allow data input A to be
clocked into the A-input register when the r st n_a signal is high.

ce_b

Input

Active-high data input B register clock enable. Set high to allow data input B to be
clocked into the B-input register when the r st n_b signal is high.

ce_addsub

Input

Active-high add/sub input register clock enable. Set high to assert the clock enable
inputs for the r nd, sub, | oad, ci n and nmshi ft input registers. Set low to allow
these registers to hold their value at the next rising edge of the clock.

Achronix Proprietary and Confidential 105

Speedcore Component Library User Guide (UG065)

Name Type Description

Active-high add/sub A input register clock enable. Set high to allow input to the add
/sub A input register to be clocked into the register when the r st n_addsub_a
signal is inactive. Set low to allow the add/sub A input register to hold its value at
the next rising edge of the clock.

ce_addsub_a Input

Active-high add/sub output register clock enable. Set high to allow the data output
ce_dout Input of the add/sub block to be clocked into the dout and cout registers when the
rst n_dout signal is high.

Active-high cascade bus register clock enable. Set high to enable the r evi _casc,

ce_cascade Input fwdi _casc and f wdo_casc registers when the r st n_casc signal is high.
Active-high multiplier output register clock enable. Set high to allow the multiplier
ce_nul t out Input output to be clocked into the multiplier output register when the r st n_nul t out

signal is high.

Active-low data input A register reset. Assert low to perform a synchronous reset of
the data input A register upon the next rising edge of the clock, and set the register
rstn_a Input to the value defined by the r st _val ue_a parameter. The priority of r st n_a
relative to the clock enable input, ce_a, is determined by the value of the
regce_priority_a parameter.

Active-low data input B register reset. Assert low to perform a synchronous reset of
the data input B register upon the next rising edge of the clock, and set the register
rstn_b Input to the value defined by the r st _val ue_b parameter. The priority of r st n_b
relative to the clock enable input, ce_b, is determined by the value of the
regce_priority_b parameter.

Active-low add/sub control input registers reset. Assert low to perform a
synchronous reset of the r nd, sub, | oad, ci n and nshi ft input registers upon
the next rising edge of the clock. Upon reset, the value taken on by these registers
is determined by the r st _val ue_<r egnane> parameters. The priority of

r st n_addsub relative to the clock enable input, ce_addsub, is determined by the
value of the regce_pri ority_<regnane> parameters.

rstn_addsub Input

Active-low add/sub A input register reset. Assert low to perform a synchronous
reset of the add/sub A input register upon the next rising edge of the clock, and set
rstn_addsub_a Input the register to the value defined by the r st _val ue_addsub_a parameter. The
priority of r st n_addsub_a relative to the clock enable input, ce_addsub_a, is
determined by the value of the regce_priority_addsub_a parameter.

Active-low dout/cout output register reset. Assert low to performs a synchronous
reset of the dout and cout output registers upon the next rising edge of the clock,
and set the dout register to the value defined by the r st _val ue_dout
rstn_dout Input parameter. Also sets the cout register to the value defined by the

rst _val ue_cout parameter. The priority of r st n_dout relative to the clock
enable input, ce_dout , is determined by the value of the regce_priority_dout
parameter.

Active-low cascade bus register reset. Assert low to perform a synchronous reset of
therevi _casc, fwdi _casc and f wdo_casc registers upon the next rising edge

Achronix Proprietary and Confidential 106

Speedcore Component Library User Guide (UG065)

Name

Type

Description

rstn_cascade

Input

of the clock, and set the value of these registers to zero. The operation of
r st n_cascade is independent of the value of the ce_cascade input.

rstn_nul t out

Input

Active-low multiplier output register reset. Assert low to perform a synchronous
reset of the multiplier output register upon the next rising edge of the clock, and set
the value of this register to zero. The operation of r st n_nul t out is independent
of the value of the ce_mul t out input.

cl k

Input

Clock input. Data is clocked into the input and output registers at the rising edge of
this input.

dout [44: 0] O

Output

Data out. The dout[44:0] output is a 45-bit signed two’s complement output of the
add/sub block, where bit 44 is the most significant bit. Alternatively, the dout output
may be programmed to output the upper or lower 32 bits of the add/sub output as
determined by the value of the del_dout parameter. This output is conditionally
registered as determined by the value of the sel_dout_del parameter.

cout

Output

Active-high carry out. Set high if a carry was generated out of the add/sub block.
This output is conditionally registered as determined by the value of the
sel _dout _del parameter.

over _pos

Output

Active-high positive overflow output. Set high if an overflow of the add/sub/round
block is detected for a positive number. If the saturation block is enabled, the output
is limited to the maximum value determined by the rounding and saturation
parameter settings (see the Saturation (see page 135) section for details). This
output is conditionally registered as determined by the mat ch_del parameter.

over _neg

Output

Active-high negative overflow output. Set high if an overflow of the add/sub/round
block is detected for a negative number. If the saturation block is enabled, the
output is limited to the minimum value determined by the rounding and saturation
parameter settings (see the Saturation (see page 135) section for details). This
output is conditionally registered as determined by the mat ch_del parameter.

mat ch

Output

Active-high match output. Set high if the mat ch_pat t er n parameter (masked by
the mat ch_mask parameter value) matches the value of the add/sub block output
(see the ACX_DSP_GEN Rounding (see page 121) chapter for details). This output
is conditionally registered as determined by the mat ch_del parameter.

fwdi _casc[26: 0]

Input

Forward data cascade bus input. Aids in the development of FIR filters. The

fwdi _casc input directly connects to the f wdo_casc output of the
ACX_DSP_GEN block adjacent to the bottom of this block. This input must not be
connected to the FPGA fabric or an error condition occurs. The forward data cbus
traverses from the bottom of the ACX_DSP_GEN column to the top, connecting
adjacent ACX_DSP_GEN blocks.

fwdi _dout [63: 0]

Input

Forward accumulator cascade bus input. Daisy chains the accumulator outputs to
enable fast summation of FIR filter multiplier outputs. The f wdi _dout input directly
connects to the f wdo_dout output of the ACX_DSP_GEN block adjacent to the
bottom of this block. This input must not be connected to the FPGA fabric or an
error condition occurs. The forward accumulator cascade bus traverses from the
bottom of the ACX_DSP_GEN column to the top, connecting adjacent
ACX_DSP_GEN blocks.

Achronix Proprietary and Confidential 107

Speedcore Component Library User Guide (UG065)

Forward carry cascade input. Cascades the current add/sub block with the previous
ACX_DSP_GEN block to provide accumulation of widths greater than 64 bits. The
fwdi _ci n input directly connects to the f wdo_cout output of the ACX_DSP_GEN
fwdi _cin Input block adjacent to the bottom of this block. This input must not be connected to the
FPGA fabric or an error condition occurs. The forward carry cascade bus traverses
from the bottom of the ACX_DSP_GEN column to the top, connecting adjacent
ACX_DSP_GEN blocks.

Forward match cascade input. The forward match cascade input is used to daisy-
chain the current block with the previous ACX_DSP_GEN block to allow
comparisons wider than the 64 bit comparison provided by a single
ACX_DSP_GEN block. The f wdi _mat ch input directly connects to the

f wdo_nat ch output of the ACX_DSP_GEN block adjacent to the bottom of this
block. This input must not be connected to the FPGA fabric or an error condition
occurs. The forward match cascade bus traverses from the bottom of the
ACX_DSP_GEN column to the top, connecting adjacent ACX_DSP_GEN blocks.

fwdi _mat ch Input

Reverse data cascade bus input. Aids in the development of symmetric FIR filters.
The r evi _casc input directly connects to the r evo_casc output of the
ACX_DSP_GEN block adjacent to the top of this block. This input must not be
connected to the FPGA fabric or an error condition occurs. The reverse data
cascade bus traverses from the top of the ACX_DSP_GEN column to the bottom,
connecting adjacent ACX_DSP_GEN blocks.

revi _cascl[26: 0] Input

Reverse dout bus input. Routes the bottom 32 bits of the add/sub block to the
ACX_DSP_GEN block adjacent to the top of this block. Allows this block to output
the bottom 32 bits of the add/sub output while the next ACX_DSP_GEN block
outputs the top 32 bits of the add/sub output, making the entire 64-bit add/sub
revi _dout[31: 0] Input output available to the FPGA fabric. The r evi _dout input directly connects to the
revo_dout output of the ACX_DSP_GEN block adjacent to the top of this block.
This input must not be connected to the FPGA fabric or an error condition occurs.
The reverse dout bus traverses from each ACX_DSP_GEN block to the adjacent
ACX_DSP_GEN block below.

Forward data cascade bus output. Aids in the development of FIR filters. The

f wdo_casc output directly connects to the f wdi _casc output of the
ACX_DSP_GEN block adjacent to the top of this block. This output must not be
connected to the FPGA fabric or an error condition occurs. The forward data
cascade bus traverses from the bottom of the ACX_DSP_GEN column to the top,
connecting adjacent ACX_DSP_GEN blocks.

fwdo_casc][26: 0] Output

Forward accumulator cascade bus output. Daisy chains the accumulator outputs to
enable fast summation of FIR filter multiplier outputs. The f wdo_dout output
directly connects to the f wdi _dout input of the ACX_DSP_GEN block adjacent to
fwdo_dout [63: 0] Output | the top of this block. This output must not be connected to the FPGA fabric or an
error condition occurs. The forward accumulator cascade bus traverses from the
bottom of the ACX_DSP_GEN column to the top, connecting adjacent
ACX_DSP_GEN blocks.

Forward carry cascade output. Cascades the current add/sub block with the next
ACX_DSP_GEN block to provide accumulation of widths greater than 64 bits. The
fwdo_cout output directly connects to the f wdi _ci n input of the ACX_DSP_GEN

Achronix Proprietary and Confidential 108

Speedcore Component Library User Guide (UG065)

Name

Type

Description

fwdo_cout

Output

block adjacent to the top of this block. This output must not be connected to the
FPGA fabric or an error condition occurs. The forward carry cascade bus traverses
from the bottom of the ACX_DSP_GEN column to the top, connecting adjacent
ACX_DSP_GEN blocks.

fwdo_mat ch

Output

Forward match cascade output. Daisy chains the current block with the next
ACX_DSP_GEN block to allow comparisons wider than the 64 bit comparison
provided by a single block. The f wdo_nat ch output directly connects to the

fwdi _mat ch input of the ACX_DSP_GEN block adjacent to the top of this block.
This output must not be connected to the FPGA fabric or an error condition occurs.
The forward match cascade bus traverses from the bottom of the ACX_DSP_GEN
column to the top, connecting adjacent ACX_DSP_GEN blocks.

revo_casc| 26: 0]

Output

Reverse data cascade bus output. Aids in the development of symmetric FIR filters.
The r evo_casc output directly connects to the r evi _casc input of the
ACX_DSP_GEN block adjacent to the bottom of this block. This output must not be
connected to the FPGA fabric or an error condition occurs. The reverse data
cascade bus traverses from the top of the ACX_DSP_GEN column to the bottom,
connecting adjacent ACX_DSP_GEN blocks.

revo_dout [31: 0]

Output

Reverse dout bus output. Routes the bottom 32 bits of the add/sub block to the
ACX_DSP_GEN block (if addsub_bypass = 1' b0) or the bottom 32 bits of the add
/sub block A input (if addsub_bypass =1' b1) to the ACX_DSP_GEN block
adjacent to the bottom of this block. This allows this block to output the top 32 bits
of the add/sub output while the previous ACX_DSP_GEN block outputs the bottom
32 bits of the add/sub output, making the entire 64-bit add/sub output available to
the FPGA fabric. The r evo_dout output directly connects to the r evi _dout input
of the ACX_DSP_GEN block adjacent to the bottom of this block. This output must
not be connected to the FPGA fabric or an error condition occurs. The reverse dout
bus traverses from current block to the adjacent ACX_DSP_GEN block below.

Table Notes

1. The output precision of a single ACX_DSP_GEN block may be expanded to 48 bits by setting the
sel _48 dout parameter to reallocate the over _pos, over _neg and mat ch outputs as dout [47: 45] .

Achronix Proprietary and Confidential 109

Speedcore Component Library User Guide (UG065)

Parameters

Table 94: ACX_DSP_GEN Parameters

Parameter Defined Values POETL Description
Value
init_a 18-bit hexadecimal value | 18' hO Defines the power-up default value of the 18-
bit data input A input register.
init_b 27-bit hexadecimal value | 27' ho | Defines the power-up default value of the 27-
bit data input B input register.
init_sub 1'b0, 1' bl 1' bo Defines t.he power-up default value of the 1-bit
subtract input register.
init cin 1' b0, 1' bl 1' bo Deﬂngs lthe power-up default value of the
- carry-in input register.
init |oad 1' b0, 1' bl 1' bo !Defines the power-up default value of the load
- input register.
init rnd 1' b0, 1' bl 1' bo Def|ne§ the power-up default value of the
- round input register.
init mshift 1' b0, 1' bl 1' bo Def|pe§ the power-up default value of the
- mshift input register.
init_dout 64-bit hexadecimal value 64' hO Qeflnes the power-up default value of the 64-
bit data output register.
init cout 1' b0, 1' bl 1' b0 Defines the power-up default value of the
- carry-out output register.
Defines the value assigned to the 18-bit data
rst_val ue_a 18-bit hexadecimal value 18' hO !nputA Input register whgn the r.s.t n_a input
is asserted concurrent with the rising edge of
the clock.
Defines the value assigned to the 27-bit data
rst_value_b 27-bit hexadecimal value 27' hO !nput B input register wh(?n the r.slt n_b input
is asserted concurrent with the rising edge of
the clock.
Defines the value assigned to the subtract
rst value sub 1' b0, 1' bl 1' bo input register when thg rst n_.s.ub input is
- - asserted concurrent with the rising edge of
the clock.

Achronix Proprietary and Confidential 110

Speedcore Component Library User Guide (UG065)

Parameter

Defined Values

Default
Value

Description

rst_value_cin

1'b0,1' bl

Defines the value assigned to the carry-in
input register when the r st n_ci n inputis
asserted concurrent with the rising edge of
the clock.

rst_val ue_l oad

1' b0, 1' b1

1' b0

Defines the value assigned to the load input
register when the r st n_| oad input is
asserted concurrent with the rising edge of
the clock.

rst_val ue_rnd

1' b0, 1' bl

1' b0

Defines the value assigned to the round input
register when the r st n_r nd input is asserted
concurrent with the rising edge of the clock.

rst_val ue_nshift

1' b0, 1' b1

Defines the value assigned to the mshift input
register when the r st n_nshi ft inputis
asserted concurrent with the rising edge of
the clock.

rst_val ue_dout

64-bit hexadecimal value

64' hO

Defines the value assigned to the 64-bit data-
out output register when the r st n_dout
input is asserted concurrent with the rising
edge of the clock.

rst_val ue_cout

1' b0, 1' bl

Defines the value assigned to the carry-out
output register when the r st n_dout inputis
asserted concurrent with the rising edge of
the clock.

rst_node_a (1)

1' b0, 1' b1

1' b0

Determines whether the assertion of the reset
of the data A input register is synchronous or
asynchronous with respect to the cl k input.

rst _rmde_b“)

1' b0, 1' bl

1' b0

Determines whether the assertion of the reset
of the data B input register is synchronous or
asynchronous with respect to the cl k input.

rst _rmde_subm

1'b0,1" bl

1' b0

Determines whether the assertion of the reset
of the subtract input register is synchronous
or asynchronous with respect to the cl k
input.

rst_node_ci n("

1' b0, 1' b1

Determines whether the assertion of the reset
of the carry-in input register is synchronous or
asynchronous with respect to the cl k input.

rst_node_| oad(™

1'b0,1' bl

1' b0

Determines whether the assertion of the reset
of the load input register is synchronous or
asynchronous with respect to the cl k input.

Achronix Proprietary and Confidential 111

Speedcore Component Library User Guide (UG065)

Parameter

Defined Values

Default
Value

Description

rst_node_r nd("

1' b0, 1' b1

1' b0

Determines whether the assertion of the reset
of the round input register is synchronous or
asynchronous with respect to the cl k input.

rst_nmode_nshi ft(

1' b0, 1' bl

1' b0

Determines whether the assertion of the reset
of the mshift input register is synchronous or
asynchronous with respect to the cl k input.

rst_node_dout U

1' b0, 1' bl

1' b0

Determines whether the assertion of the reset
of the data out output register and the carry-
out output registers are synchronous or
asynchronous with respect to the cl k input.

regce_priority_a

"rstreg","regce"

"regce"

Defines the priority of the ce_a clock enable
input relative to the r st n_a reset input during
assertion of the r st n_a reset input on the
data input A input register when parameter
rst _node_a is set high. Setting
regce_priority ato"rstreg" allows
the data input A input register to be set/reset
at the next rising edge of the clock without
requiring the ce_a clock enable input to be
active. Settingregce_priority_ato
"regce" requires that the ce_a clock enable
input is high for the reset operation to occur at
the next rising edge of the clock.

regce_priority_b

"rstreg","regce"

"regce"

Defines the priority of the ce_b clock enable
input relative to the r st n_b reset input during
an assertion of the r st n_b reset input on the
data input B input register when parameter
rst _node_b is set high. Setting
regce_priority bto"rstreg" allows
the data input B input register to be set/reset
at the next rising edge of the clock without
requiring the ce_b clock enable input to be
active. Settingregce_priority_bto
"regce" requires that the ce_b clock enable
input is high for the reset operation to occur at
the next rising edge of the clock.

regce_priorit y_sub(z)

"rstreg","regce"

"regce"

Defines the priority of the ce_addsub clock
enable input relative to the r st n_addsub
reset input during an assertion of the

r st n_addsub reset input on the sub input
register when parameter r st _node_sub is
set high. Settingregce_priority_sub to
"rstreg" allows the sub input register to be

Achronix Proprietary and Confidential 112

Speedcore Component Library User Guide (UG065)

Parameter Defined Values i Description
Value

set/reset at the next rising edge of the clock
without requiring the ce_addsub clock
enable input to be active.

Defines the priority of the ce_addsub clock
enable input relative to the r st n_addsub
reset input during an assertion of the

r st n_addsub reset input on the cin input
register when parameter r st _node_cinis
set high. Settingregce_priority_cinto
"rstreg" allows the cin input register to be
set/reset at the next rising edge of the clock
without requiring the ce_addsub clock
enable input to be active.

regce_priority cin@ |"rstreg”,"regce” "regce"

Defines the priority of the ce_addsub clock
enable input relative to the r st n_addsub
reset input during an assertion of the

rst n_addsub reset input on the load input
register when parameter r st _node_| oad is
set high. Settingregce_priority_| oadto
"rstreg" allows the load input register to be
set/reset at the next rising edge of the clock
without requiring the ce_addsub clock
enable input to be active.

regce priority load® |"rstreg”,"regce" "regce"

Defines the priority of the ce_addsub clock
enable input relative to the r st n_addsub
reset input during an assertion of the

rst n_addsub reset input on the round input
register when parameter r st _node_rnd is
set high. Setting regce_priority_rndto
"rstreg" allows the round input register to
be set/reset at the next rising edge of the
clock without requiring the ce_addsub clock
enable input to be active.

regce_priority rnd@ |"rstreg","regce" "regce"

Defines the priority of the ce_addsub clock
enable input relative to the r st n_addsub
reset input during an assertion of the

r st n_addsub reset input on the mshift input
register when parameter r st _node_nshi ft
regce" "regce" |is set high. Setting
regce_priority_nshift to"rstreg"
allows the mshift input register to be set/reset
at the next rising edge of the clock without
requiring the ce_addsub clock enable input
to be active.

ggce_pri ority_mshift “rstreg”,”

Achronix Proprietary and Confidential 113

Speedcore Component Library User Guide (UG065)

Parameter Defined Values i Description
Value

Defines the priority of the ce_dout clock
enable input relative to the r st n_dout reset
input during an assertion of the r st n_dout
reset input on the dout output register and the
carry-out output register when parameter

r st _node_dout is set high. Setting
regce_priority_dout to"rstreg"
regce" "regce" | allows the Dout output register and the carry-
out output register to be set/reset at the next
rising edge of the clock without requiring the
ce_dout clock enable input to be active.
Setting regce_priority_dout to"regce"
requires that the ce_dout clock enable input
is high for the reset operation to occur at the
next rising edge of the clock.

regce_priority_dout "rstreg”,

Defines whether the data A input register is

®) ' ' '
a_del 1"b0,1'b1 1" bo used or bypassed.

Defines whether the data B input register is

@) ' ' '
b_del 1"b0,1'b1 1'bo used or bypassed.

Defines whether the sub input register is used

@) b0, 1 -
sub_del 1'b0, 1"b1 1'b0 or bypassed.

Defines whether the cin input register is used

. (3) 1 1 1
cin_del 1'b0, 1" b1 1'b0 or bypassed.

Defines whether the load input register is

@) ' b0, 1 '
| oad_del 1'b0,1" b1 1'bo used or bypassed.

Defines whether the round input register is

© b0, 1 -
rnd_del 1750, 1" b1 1'b0 used or bypassed.

Defines whether the mshift input register is

i ®) ' ' '
mshi ft_del 1'b0, 1" b1 1" b0 used or bypassed.

Defines whether the dout output register is

®) ' ' '
dout _del 1'b0,1" b1 1'bo used or bypassed.

Defines whether the cout output register is

@) ' ' '
cout _del 1'b0, 1" b1 1b0 used or bypassed.

Defines whether the over _pos output
register is used or bypassed. Setting to 1' b0
bypasses the register while setting to 1' b1
enables the register.

over _pos_del 1' b0, 1' bl 1' b0

Defines whether the over _neg output
register is used or bypassed. Setting to 1' b0

Achronix Proprietary and Confidential 114

Speedcore Component Library User Guide (UG065)

Parameter

Defined Values

Default
Value

Description

over _neg_del

1' b0, 1' b1

1' b0

bypasses the register while settingto 1' bl
enables the register.

mat ch_del ®)

1'b0,1" bl

Defines whether the match output register is
used or bypassed.

preadd_del @)

1' b0, 1" bl

Defines whether the pre-adder output register
is used or bypassed.

mul t out _del ®)

1' b0, 1' b1

Defines whether the multiplier output register
is used or bypassed.

addsub_ar eg_del ®)

1' b0, 1' b1

Defines whether the add/sub A input register
is used or bypassed.

regaddr _del @)

1' b0, 1' b1

1' b0

Defines whether the register file address input
register is used or bypassed.

fwdi _casc_del @)

1' b0, 1' b1

1' b0

Defines whether the forward cascade data
input register is used or bypassed.

fwdo_casc_del @)

1' b0, 1' b1

1' b0

Defines whether the forward cascade data
output register is used or bypassed.

revi _casc_del @)

1' b0, 1' b1

Defines whether the reverse cascade data
input register is used or bypassed.

addsub_bypass

1' b0, 1' bl

1' bl

Defines whether the add/sub block is used or
bypassed. Setting addsub_bypass to 1' b0
allows the add/sub block to be used, while
setting addsub_bypass to 1' b1 bypasses
the add/sub block by connecting the A input of
the add/sub block to the input of the dout
output register.

sel _addsub_a

2' b00-2' b1l

2' b0O

Defines what is routed to the input of the add
/sub block A input:

2' b00 — multiplier output sign extended to 64
bits.

2' b01 — multiplier output arithmetically
shifted 18 bits to the left. sel _48_dout must
also be setto 1' bO.

2' b10 — 64-bit sign extension of the
concatenation of the r eg_addr, A and B
inputs: sext{reg_addr[2:0],a[17:0],b
[26: 0] } . Also routes the data A input
register clock enable and reset signals to the
register file address input registers.

2' bl1 — 64-bit f wdi _dout input from the
ACX_DSP_GEN block below the current

Achronix Proprietary and Confidential 115

Speedcore Component Library User Guide (UG065)

Parameter

Defined Values

Default
Value

Description

block. sel _addsub_b must also be set to
1' bO.

sel _addsub_b(4) ®)

1'b0,1" bl

1' b0

Defines what is routed to the input of the add
/sub block B input:

1' b0 — registered ACX_DSP_GEN output
dout[63: 0] .

1' b1 — 64-bit f wdi _dout input from the
ACX_DSP_GEN block below the current
block.

sel _cin

1' b0, 1' b1

1' b0

Selects either the carry-in input of this
ACX_DSP_GEN block or the carry-out output
of the ACX_DSP_GEN block below the
current block:

1' b0 —the ci n input is routed to the add/sub
block ci n input.

1' b1 —the f wdi _ci n input is routed to the
add/sub block ci n input.

sel _fwdo_dout ®)

2' b00-2' b10

2' b0O

Defines what is routed to the forward
accumulator cascade bus (f wdo_dout)
output:

2' b00 — addsub_bypass = 1' b0: 64-bit
unregistered add/sub block output.

2' b00 — addsub_bypass = 1' bl: 64-bit
add/sub block A input.

2' b01 — addsub_bypass = 1' b0: 64-bit
registered add/sub block output.

2' b01 — addsub_bypass = 1' bl: 64-bit
registered add/sub block A input.

2' b10 — 64-bit f wdi _dout input.

2' b11 — Undefined.

sel _fwdo_cout

1' b0, 1' b1

Defines what is routed to the f wdo_cout
output that is connected to the next
ACX_DSP_GEN block f wdi _ci n input:

1' b0 — the cout from the add/sub/rnd/sat
block is routed to f wdo_cout .

1' bl —the fwdi _cout inputis routed to
fwdo_cout .

Defines what is routed to the 45-bit dout
output:

2' b00 — addsub_bypass = 1' b0: the
conditionally-registered (by dout _del) lower
45 bits of the add/sub block output.

2' b00 — addsub_bypass = 1' bl:the
conditionally registered (by dout _del) lower

Achronix Proprietary and Confidential 116

Speedcore Component Library User Guide (UG065)

Parameter Defined Values i Description
Value

sel dout 2' b00=2' b10 2' b0O 45 bits of the add/sub block A input.

B 2' b01 — the upper 32 bits of add/sub output:
{13' h0, Add/ Sub[63: 32] }.

2' b10 - the bottom 32 bits of the add/sub
block above the current ACX_DSP_GEN
block: { 13' hO, revi _dout[31:0]}.

2' b11 — undefined.

Expands the dout precision from 45 to 48 bits
by reallocating the over _pos, over _neg
and mat ch outputs as dout [48] through
dout [46] :

1' b0 — the over _pos output is isused as
positive overflow output.

1' b0 — the over _neg output is used as the
negative overflow output.

1' b0 — the match output is used as the
pattern match output.

1' b0 — the cout output is used as a carry for
a 64-bit add/sub/rnd/sat word.

1' b1l —the over _pos output isused as dout
sel _48_dout 1' b0, 1' bl 1' b0 [47].

1' b1l —the over _neg output is used as dout
[46] .

1' bl — the match output is used as dout
[45].

1' b1l —the cout outputis used as a carry for
a 48-bit add/sub/rnd/sat word.

This parameter also redefines the cout

output to generate the carry signal on the 48th
bit of the add/sub/rnd/sat block so that pairs of
ACX_DSP_GEN blocks may be used as 48-
bit slices of adders or subtractors. If

sel _48_dout issetto1' bl, sel _dout
must be set to 2' b0O.

Defines what is routed to the input of the
reverse data cascade bus delay register:

1' b0 —revi _casc is routed to the reverse
data cascade bus delay register input.

1' bl —fwdo_casc of the current
ACX_DSP_GEN block is routed to the

sel _revi _casc 1' b0, 1" bl 1' b0 reverse data cascade bus delay register input.

Usually setto 1' b0 to select the revi _casc
data input. If the current block is the middle
stage of a symmetric FIR filter, where the
forward data cascade bus must be looped
back to the reverse data cascade bus, this
parameter must be setto 1' b1.

Achronix Proprietary and Confidential 117

Speedcore Component Library User Guide (UG065)

Parameter Defined Values i Description
Value

Defines what is routed to the B input of the
preadder:

2' b00 —27' hO.

2' b01 - fwdi _casc[26:0].

2' b10 — data input b[26: 0] .

2' b11 — undefined.

sel _fwd_preadd 2' b00-2' b10 2' b0O

Defines what is routed to the A input of the
preadder:

2' b00 —27' hO.

sel _rev_preadd 2' b00-2' b10 2' b0O 2' b01 —revi _casc[26:0].

2' b10 —data input a[17: 0] sign extended
to 27 bits.

2' b11 — Undefined.

Defines what is routed to the A input of the
multiplier:

2' b0O —data input a[17: 0] sign extended
to 19 bits: {a[17],a[17: 0] }.

2' b01 — pre-adder output [18: 0] .

2' b10 - register file output [18: 0] .

2' b11 — unsigned data input a[17: 0] :

{1' b0, a[17: 0] }.

sel _mult_a 2' b00-2' b1l 2' b0O

Defines what is routed to the B input of the
multiplier:

2' b0O — data input b[26: 0] .

2' b0l - fwdi _casc[26:0].

2' b10 — pre-adder output [26: 0] .

2' b11 - register file output [26: 0] .

sel _mult_b 2' b00-2' b1l 2' b0O

Defines the functionality of the pre-adder:
2' b0O — data input A plus data input B.
pr eadd_node(”) 2' b00-2' b10 2' b0O 2' b01 — data input A minus data input B.
2' b10 — data input B minus data input A.
2' b11 — Undefined.

Defines the functionality of the rounding unit
within the add/sub block:

3' b00O — no rounding.

3' b001 — round towards nearest integer.

3' b010 - round towards zero.

3' b011 — round towards infinity.

3' b100 — round towards plus infinity, round
towards nearest even, round towards nearest
odd, or round half down.

round_rode(®) 3" b000-3' b111l 3" ho 3' b101 — round half away from zero.

3' b110 - round half up.

3' b111 - round half towards zero.

Achronix Proprietary and Confidential 118

Speedcore Component Library User Guide (UG065)

Parameter

Defined Values

Default
Value

Description

See ACX_DSP_GEN Rounding (see page 121
) for a complete description of the rounding
modes.

sat _node

6' h0—6' h3F

6' hO

Defines the saturation mode of the add/sub
block. The default value of 6' hO disables
saturation and directly passes the add/sub
output to the dout pins. A non-zero value of
the sat _node parameter selects the most
significant bit of where saturation is detected
to allow saturation of data paths less than the
full 64-bit resolution of the add/sub block. See
the Saturation (see page 135) section for
further details. If sel _48 dout issetto1' bl
, sat _node must be 6' h0.

use_match_in

1' b0, 1' bl

Allows the pattern match function to occur
across multiple ACX_DSP_GEN blocks.
When setto 1' b1, requires the previous
ACX_DSP_GEN block output, f wdo_mat ch,
to be high when evaluating the match
function. Leaving the default value of 1' b0
performs the match function only within the
current block. If setto 1' b1, r ound_node
must be set to 3' hO.

mat ch_pattern

64' hO—
64' hFFFFFFFFFFFFFFFF

64' hO

Defines the data pattern that should be used
to compare against the output of the add/sub
block when performing match detection.

mat ch_mask

64' hO—
64' hFFFFFFFFFFFFFFFF

64' hO

Defines which of the 64 bits at the output of
the add/sub block should be used in the
match detection operation. The match
detection compares each bit position that
contains a high bit in the mat ch_mask
parameter. The bit positions in the parameter
that are set to zero are not used in the match
function.

round_const

64' hO—
64' hFFFFFFFFFFFFFFFF

64' hO

Defines the offset to be added to the output of
the add/sub block if a rounding operation is to
be performed. Please refer to the
ACX_DSP_GEN Rounding (see page 121)
section for a detailed description of the
rounding function.

| oad_const

64' hO—
64' hFFFFFFFFFFFFFFFF

64' hO

Defines what is loaded into the B side of the
add/sub block if the load input is asserted. To
load only the A side into the add/sub block,
this parameter should be set to 64'h0.

Achronix Proprietary and Confidential 119

Speedcore Component Library User Guide (UG065)

Parameter Defined Values i Description
Value

Theregfile_Othroughregfile_ 7
parameters define the value of the output of

regfile_O-regfile_7 27' h0-27' h7FFFFFF 27' hO the register file on the clock cycle after the

reg_addr[2: 0] inputs are setto 3' hO
through 3' h7, respectively.

Table Notes
1.

Setting this parameter high defines the assertion of reset to be asynchronous with respect to the clock
input. Setting this parameter low defines the assertion of the reset to be synchronous with the rising edge
of the cl k input.

Setting this parameter to r egce requires that the ce_addsub clock enable input is high for the reset
operation to occur at the next rising edge of the clock.

Setting this parameter to 1' b0 bypasses the register while setting it to 1' b1 enables the register.

The 64-bit value selected by the sel _addsub_b input is conditionally shifted seventeen bits to the right
by the mshift input before it is routed to the B input of the add/sub block.

If the sel _addsub_b parameteris setto 1' b0, dout _del must be setto 1' b1, r ound_node must be
set to 3' hO.

. If the 64-bit registered add/sub block output is selected, then parameter dout _del must be setto 1' b1,

and inputs, r st n_dout and ce_dout , must be driven appropriately.

The pre-adder operates on two 27-bit inputs and produces a 27-bit result. If full 27-bit resolution of the
output is required, limit the dynamic range of the inputs to 26 bits and sign-extend into the 27th bit to
prevent an overflow condition at the output of the pre-adder.

The r ound_node parameter must be used in conjuction with the use of the mat ch_patt ern,

mat ch_mask and r ound_const parameters.

Achronix Proprietary and Confidential

120

Speedcore Component Library User Guide (UG065)

Add/Subtract/Round/Saturate Blocks

The add/sub/round/saturate block can be sub-divided into adder/subtracter, round, and saturate blocks as shown
in the following figure. The A input from the multiplier to the adder/subtracter may bypass the adder/subtractor,
round, and saturate blocks by enabling the addsub_bypass parameter.

ADDER / SUBTRACTER SATURATE

over_pos

addsub_a[63:0]
over_neg

addsub_b[63:0]
addsub_dout[63:0] round_din round_dout dout[63:0]
cin cin

rnd_const cout

sub sub

load load

load_const addsub_bypass

cin_sel

cin_prev_dsp

rnd

ROUND CIN

round_mode

rnd

4228235-03.2022.11.17

Figure 48: Adder/Subtracter, Round, and Saturate Blocks Example

ACX_DSP_GEN Rounding

As mathematical operations are performed, the number of bits required to represent the number may increase.
For example, in multiplication, multiplying an m-bit number and an n-bit number will result in an (m + n)-bit
product. Also, adding two n-bit numbers may result in a (n+1)-bit result.

Rounding is a method used to control bit growth and approximate the result to a fixed number of bits. There are
also many variations in how the rounding is performed. The ACX_DSP_GEN block supports a variety of rounding
methods.

Note

A given rounding mode may have several different names all referring to the same method.

The rounding unit within the add/sub block supports the rounding modes shown in the following table. The
various names for the rounding modes are also reflected in the table. The rounding operation is performed on the
output of the adder/subtracter after the add or subtract operation has been performed and before the saturation
unit.

Achronix Proprietary and Confidential 121

Speedcore Component Library User Guide (UG065)

Table 95: Supported Rounding Modes

Rounding Mode Alternative Name
No rounding No
MATLAB fix()
Round to zero Sign-magnitude truncation

Round away from infinity

Round to infinity -

MATLAB ceil()
Round to plus infinity Ceiling
Round up

Two’s complement truncation

Round to minus infinity Downward-directed rounding

MATLAB floor()

Round down
Round to nearest integer MATLAB round()
Round to nearest-even Round half to nearest-even
Round to nearest-odd Round half to nearest-odd
Round half up Round half towards plus infinity
Round half down Round half towards minus infinity
Round half away from zero Round half towards infinity
Round half towards zero Round half away from infinity

The following sections describe each of the rounding modes. Each of the diagrams show the number X on the x
axis and the corresponding rounded value of X on the y axis.

Note

(i) When there is a dot on the end of a line segment, that end value is included on the line. For example, in
the Round to Zero diagram, the line that corresponds to the range of X from one to two with the dot on
the left side of the line, represents the X values greater than or equal to (>=) one and less than (<) two.

Achronix Proprietary and Confidential 122

Speedcore Component Library User Guide (UG065)

Below each rounding mode figure is a table containing the values of the nat ch_pat t er n, mat ch_nask,
round_const and r ound_node parameters required for the given rounding model. Additionally, for rounding to
occur, the round input, r nd, must be asserted. At the top of the table, the number to be rounded is shown in the
form of XXXX.YYYYYY, where XXXX is the integer part of the number and YYYYYY is the fractional part. For
this specific example XXXX.YYYYYY, the integer part is four bits and the fractional part is six bits. Depending on
where the decimal point needs to be for the specific number format, the shown values of XXXX and YYYYYY
might have to be expanded or contracted about the position of the decimal point. If the Y value needs to be
widened, the shown Y value should be extended to the right, copying the Isb of the shown Y value. Likewise, the
XXXX value can be expanded or contracted from the leftmost position.

Note

@ The resultant XXXX.YYYYYY pattern must be zero-extended to the left to fill out the entire 64-bit value
of the given parameter.

For the result of the rounding operation, use the XXXX bits and discard the YYYYYY bits.

For each of the rounding modes, the rounding circuitry is looking for certain conditions that determine if the
number needs rounding or not. Where one rounding mode differs from the next depends upon what happens
when the number is exactly half way between two integers. For example, 2.5 or -2.5, or exactly at an integer
boundary (2.0 or -2.0). Since the circuitry also allows the assumed position of the decimal point to be moved, the
assumed location of the decimal point must be declared.

To check for the half boundary, the match pattern is set to have a match pattern of 0.5. The programmed
match_pattern value is a 64-bit number in the form of a string of zeroes on the left, a single one, and a string of
zeroes to the right. The position of the one is in the 2*(-1) bit position. The mat ch_rmask parameter determines
which of the mat ch_pat t er n bit positions are used. To check for the integer boundary, the match pattern is set
to all zeroes to the right of the decimal and the nat ch_nmask is set to select the bits to the right of the decimal
point.

When the rounding condition is determined by the check using the mat ch_pat t er n and mat ch_nask, the
round_node parameter setting is used to select the conditions when the forced rounding is to occur. The
rounding is usually performed by adding a one to the 2”0 bit position. The rounding circuit forces a one into the
carry-in input of the rounding unit. The r ound_const parameter determines how far the carry is to ripple to the
left to get to the assumed 2”0 bit position.

Round to even or odd is accomplished in a similar fashion, with the pattern detection circuitry looking for even
/odd boundaries.

Achronix Proprietary and Confidential 123

Speedcore Component Library User Guide (UG065)

Round Towards Zero

Round (X)

4228248-01.2022.16.11

Figure 49: Round Towards Zero

Table 96: Required Parameter Settings for Round Towards Zero Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.000000

mat ch_mask 0000.111111
round_const 0000.111111
round_node 3' b010

Achronix Proprietary and Confidential 124

Speedcore Component Library User Guide (UG065)

Rounding Towards Infinity

Round (X)

4228248-02.2022.16.11

Figure 50: Round Towards Infinity

Table 97: Required Parameter Settings for Round Towards Infinity Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.000000

mat ch_mask 0000.111111
round_const 0000.111111
round_node 3' b011

Achronix Proprietary and Confidential 125

Speedcore Component Library User Guide (UG065)

Round Towards Plus Infinity

Round (X)

4228248-03.2022.16.11

Figure 51: Round Towards Plus Infinity

Table 98: Required Parameter Settings for Round Towards Plus Infinity Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.000000

mat ch_mask 0000.111111
round_const 0000.111111
round_node 3' b100

Achronix Proprietary and Confidential 126

Speedcore Component Library User Guide (UG065)

Round Towards Minus Infinity

Round (X)

4228248-04.2022.16.11

Figure 52: Round Towards Minus Infinity

Table 99: Required Parameter Settings for Round Towards Minus Infinity Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern | XXXX.XXXXXX

mat ch_mask XXXX. XXXXXX
round_const XXXX. XXXXXX
round_node 3' b000

Achronix Proprietary and Confidential 127

Speedcore Component Library User Guide (UG065)

Round Towards Nearest Integer

Round (X)

4228248-05.2022.16.11

Figure 53: Round Towards Nearest Integer

Table 100: Required Parameter Settings for Round Towards Nearest Integer Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.100000

mat ch_mask 0000.111111
round_const 0000.111111
round_node 3' b001

Achronix Proprietary and Confidential 128

Speedcore Component Library User Guide (UG065)

Round Towards Nearest Even

Round (X)

4228248-06.2022.16.11

Figure 54: Round Towards Nearest Even

Table 101: Required Parameter Settings for Round Towards Nearest Even Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.100000

mat ch_mask 0001.111111
round_const 0000.011111
round_node 3' b100

Achronix Proprietary and Confidential 129

Speedcore Component Library User Guide (UG065)

Round Towards Nearest Odd

Round (X)

4228248-07.2022.16.11

Figure 55: Round Towards Nearest Odd

Table 102: Required Parameter Settings for Round Towards Nearest Odd Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0001.100000

mat ch_mask 0001.111111
round_const 0000.011111
round_node 3' b100

Achronix Proprietary and Confidential 130

Speedcore Component Library User Guide (UG065)

Round Half Up

Round (X)

4228248-08.2021.26.07

Figure 56: Round Half Up

Table 103: Required Parameter Settings for Round Half Up Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.100000

mat ch_mask 0000.100000
round_const 0000.111111
round_node 3'b110

Achronix Proprietary and Confidential 131

Speedcore Component Library User Guide (UG065)

Round Half Down

Round (X)

4228248-09.2022.16.11

Figure 57: Round Half Down

Table 104: Required Parameter Settings for Round Half Down Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.100000

mat ch_mask 0000.111111
round_const 0000.011111
round_node 3' b100

Achronix Proprietary and Confidential 132

Speedcore Component Library User Guide (UG065)

Round Half Away From Zero

Round (X)

4228248-10.2022.16.11

Figure 58: Round Half Away From Zero

Table 105: Required Parameter Settings for Round Half Away from Zero Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.100000

mat ch_mask 0000.111111
round_const 0000.011111
round_node 3' b101

Achronix Proprietary and Confidential 133

Speedcore Component Library User Guide (UG065)

Round Half Towards Zero

Round (X)

4228248-11.2022.16.11

Figure 59: Round Half Towards Zero

Table 106: Required Parameter Settings for Round Half Towards Zero Mode

Required Parameter Value

LR XXXX.YYYYYY Format

mat ch_pattern 0000.100000

mat ch_mask 0000.111111
round_const 0000.011111
round_node 3'b111

Achronix Proprietary and Confidential 134

Speedcore Component Library User Guide (UG065)

Saturation

When two numbers are added or subtracted, the result may require an additional bit to represent the result. If
there is not sufficient room for bit growth in the adder/subtractor to contain the result, an overflow condition may
occur.

Overflow is defined as when the maximum value allowed by the provided number of bits is exceeded. This may
occur for both positive and negative numbers.

The usual remedy is to either guarantee that an overflow never occurs, or take corrective measures. One way to
handle overflow is with a saturation unit. The function of the saturation unit is to correct an overflow to the
maximum positive value in the case of a positive overflow, and to correct an overflow to the maximum negative
value in the case of a negative overflow.

In the ACX_DSP_GEN block, an optional saturation block is available. Additionally, the bit position where the
saturation is to be performed may be specified. This allows the saturation function to accommodate word widths
less than the full 64 bit precision of the add/sub block.

To enable saturation, the 6-bit sat _nopde parameter must be set to a non-zero value. The value of the sat _node
parameter sets the position of the msb where the rounding is to occur. For example, if the location of the msb is
at the fifteenth bit (zero relative) in the add/sub block, the sat _node parameter should be set to 6' hOF.

Pre-Adder Block

The ACX_DSP_GEN block contains a 27-bit pre-adder block used to halve the number of required multipliers.
The pre-adder may be configured as either an adder or subtracter so it may support either symmetric or
asymmetric filter coefficients. The pre-adder may take data from either the A and B inputs to the ACX_DSP_GEN
block, or the forward and reverse cascades buses. The output of the pre-adder block can be routed to the either
the 19-bit or 27-bit input of the multiplier. Care should be taken to limit the input data to the pre-adder so that the
resultant sum is within the resolution of the multiple input. For example, if the pre-adder output is routed to the 27-
bit input of the multiplier, the input to the pre-adder should contain 26-bit data sign extended into the 27th bit so
as to prevent an overflow condition at the output of the pre-adder. If using the output of the pre-adder to drive the
19-bit input of the adder, the full resolution of the 18-bit data may be used, as there is a 19-bit into the multiplier
to accommodate a carry.

Achronix Proprietary and Confidential 135

Speedcore Component Library User Guide (UG065)

ACX_DSP_GEN Verilog Instantiation Template

The recommended method of including the ACX_DSP_GEN in a design is by inference (see ACX_DSP_GEN

Verilog Inference Template (see page 138)). However, if the full range of ACX_DSP_GEN functions are required,

or a function that cannot be fully inferred is needed, the ACX_DSP_GEN can be directly instantiated.

The Verilog instantiation template is shown in the following example.

ACX_DSP_GEN Verilog Instantiation Tenpl ate

ACX_DSP_GEN

#(

.init_a

.init_b

.init_sub

.init_cin
.init_|oad
.init_rnd
Linit_nshift
.init_dout
.init_cout
.rst_value_a
.rst_value_b
.rst_val ue_sub
.rst_value_cin
.rst_val ue_| oad
.rst_value_rnd
.rst_val ue_nshift
.rst_val ue_dout
.rst_val ue_cout
.regce_priority_a
.regce_priority_b
.regce_priority_sub
.regce_priority_cin
.regce_priority_| oad
.regce_priority_rnd
.regce_priority_nshift
.regce_priority_dout
.a_del

. b_del

. sub_del

. cin_del

.1 oad_del

.rnd_del

.mshift_del

. dout _del

. mat ch_del

. preadd_del

. mul t out _del
.addsub_areg_del

. regaddr _del

.fwdi _casc_del
.fwdo_casc_del

.revi _casc_del

. addsub_bypass

.sel _addsub_a

.sel _addsub_b

.sel _cin

(18' hO),
(27' hO),
(1' bo),
(1'b0),
(1" bO),
(1'b0),
(1" b0),
(64' h0),
(1" b0),
(18' hO),
(27' hO),
(1" b0),
(1" b0),
(1'b0),
(1" b0),
(1'b0),
(64' ho),
(1' b0),
("regce"),
("regce"),
("regce"),
("regce"),
("regce"),
("regce"),
("regce"),
("regce"),
(1" bO),
(1" b0),
(1'b0),
(1'b0),
(1'b0),
(1' bO),
(1' bO),
(1' bO),
(1' bO),
(1" b0),
(1'b0),
(1'b0),
(1" b0),
(1" b0),
(1" b0),
(1" b0),
(1" bO),
(2' bo0),
(1' bo)
(1'b0),

Achronix Proprietary and Confidential

136

Speedcore Component Library User Guide (UG065)

.sel _fwdo_dout
.sel _fwdo_cout
.sel _dout

.sel _48_dout
.sel _revi_casc
.sel _fwd_preadd
.sel _rev_preadd
.sel _mult_a
.sel _mult_b

. preadd_node

. round_node

. sat _node
.use_match_in
.match_pattern
. mat ch_mask
.round_const

.a
.b

.1 oad_const

.regfile_0O

.regfile_1

.regfile_2

.regfile_3

.regfile_4

.regfile_5

.regfile_6

.regfile_7
i nstance_nane (

.clk

.sub

.cin

.l oad

.rnd

.mshift

. reg_addr

.ce_a

.ce_b

. ce_addsub

.ce_addsub_a

. ce_dout

. ce_cascade

.ce_mul t out

.rstn_a

.rstn_b

.rstn_addsub
.rstn_addsub_a
.rstn_dout
.rstn_cascade
.rstn_mul t out
. dout

. cout

. over _pos
.over _neg
.match

.fwdi _casc

. fwdi _dout
.fwdi _cin
.fwdi _match
.revi_casc

(2' b00),

(1" b0),

(2' b0O),
(1' b0y,

(1" b0),
(2' b00),
(2' b00),
(2' b00),
(2' b0O),

(2" b0),

(3' b000),
(6' h0O),
(1'b0),

(64' ho),
(64' ho),

(64' h0),

(64' h0),

(27" hoy,

(27' hoy,

(27" ho),

(27" hoy,

(27" hoy,

(27" ho),

(27" hoy,

(27' ho)

(user_cl k),

(user_a),

(user_b),
(user_sub),
(user_cin),

(user _l oad),
(user_rnd),

(user _nshift),
(user _reg_addr),
(user_ce_a)
(user_ce_b),

(user _ce_addsub),
(user_ce_addsub_a),
(user_ce_dout),

(user _ce_cascade),

(user_ce_nul tout)

(user_rstn_a),

(user_rstn_b),

(user _rstn_addsub),
(user _rstn_addsub_a)
(user_rstn_dout),

(user _rstn_cascade),
(user _rstn_mul t out)
(user _dout)

(user _cout),
(user_over_pos),
(user _over _neg),

(user _mat ch)

(user_fwdi _casc),

(user_fwdi _dout),

(user _fwdi _cin),

(user _fwdi _match),

(user_revi_casc),

Achronix Proprietary and Confidential

137

Speedcore Component Library User Guide (UG065)

.revi _dout (user_revi _dout),
.fwdo_casc (user_fwdo_casc),

. fwdo_dout (user_fwdo_dout),

. fwdo_cout (user_fwdo_cout),
.fwdo_mat ch (user _fwdo_mat ch),
.revo_casc (user _revo_casc),
.revo_dout (user _revo_dout)

ACX_DSP_GEN Verilog Inference Template

Synplify Pro supports both direct instantiation of the Speedcore ACX_DSP_GEN block as well as inferencing

with specific code structures. Inferencing occurs for multiplication functions of up to 36 x 27 bits. For addition and

subtraction functions, fabric logic is inferred. For direct instantiation of a DSP64, see ACX_DSP_GEN Verilog

Instantiation Template (see page 136).

In addition, the ACE IP generator supports the generation of multiple DSP-based math functions which can then

be directly instantiated within the user code (see the ACE User Guide (UG070) for details.

The following example shows how to correctly infer an 18 x 18 bit multiplier to be mapped to an ACX_DSP_GEN

block.
Inferred Multiplier Example

“tinescal e 1ps/1ps

nmodul e inferred_nmult_18x18 signed (ina, inb, multout, clk);
| ocal param a_wi dth = 18;

| ocal param b_wi dth = 18;

| ocal param prod_width = a_width + b_wi dth;

i nput cl k;

i nput signed [a_w dth-1:0] i na;

input signed [b_w dth-1:0] i nb;

out put signed [prod_wi dth-1:0] nultout;

reg signed [a_w dt h-1:0] ina_reg = 18' hO;
reg signed [b_w dt h-1:0] inb_reg = 18' hO;
reg signed [prod_wi dth-1:0] nultout = 36' hO;

al ways @ posedge cl k)
begin
ina_reg <= ina;
inb_reg <= inb;
mul tout <= ina_reg * inb_reg;
end
endnodul e

Implementing Finite Impulse Response (FIR) Filters

A finite impulse response (FIR) filter is implemented as a sum-of-products of the form:

i=(n—-1)

y(n) =2 x(i) % c(i)
i=0

Figure 60: Generic FIR Filter Equation

Achronix Proprietary and Confidential

138

https://www.achronix.com/documentation/ace-user-guide-ug070

Speedcore Component Library User Guide (UG065)

Parallel Filter Implementation

The following figure shows the block diagram of a direct FIR filter implementation using a parallel adder tree.
While this is functionally correct, it uses more resources than necessary.

© ﬁ x(0) ﬁ x(0) [_| x(0) oo x(n-4) ﬁ x(n-3) ﬁ x(n-2) x(n-1)
X

O ONESORNC ®» ® ® ®

Adder
Tree

6586424 _11/19/2022

Figure 61: FIR Filter Block Diagram Using a Parallel Adder Tree

The following figure shows the FIR filter implemented with a serial adder tree. While this implementation is more
resource efficient, it suffers from poor performance due to the serial chain of adders.

-

[[[[
—+] > | > | > | oo | b > |
c(0) c(l) — c(2) c(3) c(n-4) c(n-3) —= c(n-2) c(n-1)
[N J
r [X X]

Figure 62: FIR Filter Block Diagram Using a Serial Adder Tree

]

6586425_11/21/2022

As shown in the following figure, A pipeline register can be added at the last filter tap without changing the
functionality. An additional cycle of latency is added for this pipeline stage.

Achronix Proprietary and Confidential 139

Speedcore Component Library User Guide (UG065)

[] [[[] [[]
—+] > > > ooe | > > >
c(0) c() c(2) c@3) c(n-4) c(n-3) c(n-2) c(n-1)
[N N J
0
B e B [

6586426_11/21/2022

Figure 63: FIR Filter Block Diagram With Pipelined Output

Performance can be improved further by adding a pair of pipeline registers at the last stage of the FIR filter as
shown in the following figure. A pipeline register added at the input to the last adder must be matched by a
pipeline register in front of the last multiplier to maintain proper functionality. An additional cycle of latency is

added for this register pair.

M M M
@ > | b | b oo JQ
c(0) c(t) — c(2) c(3) c(n-4)
00
0
[X N]

Figure 64: FIR Filter Block Diagram With Additional Pipeline Registers at the Last
Stage

6586427_11/21/2022

Likewise, a pipeline register pair may be added at each stage for additional performance. The following figure
shows the FIR filter with pipeline registers at the input of the adder and the multiplier at each stage. An additional
cycle of latency is added for each pair of added pipeline registers. For lower latency, optionally pipeline every
other stage and trade lower latency at the output versus higher performance.

6586428_11/21/2022

Figure 65: FIR Filter Block Diagram With Pipeline Registers at Each Stage

Achronix Proprietary and Confidential 140

Speedcore Component Library User Guide (UG065)

For further timing improvements, choose to add a pipeline stage at the output of the multipliers to separate the
multiplications and the additions by a cycle. If this option is selected, pipeline registers must be added to all
stages of the FIR filter as shown in the following figure.

6586429_11/21/2022

Figure 66: FIR Filter Block Diagram With Pipelined Multiplier Outputs

Symmetric FIR Filter Implementation
FIR filters, in which the coefficients for the first half of the filter are symmetric to the coefficients of the second half
of the filter, are said to be symmetric. There are four variants to the symmetric filter, depending on whether the
filter coefficients are symmetric versus anti-symmetric, or whether the length of the filter is odd or even:

1. Odd-length symmetric impulse response filters

2. Odd-length, anti-symmetric impulse response filters
3. Even-length symmetric impulse response filters
4

. Even-length, anti-symmetric impulse response filters

The following four subsections detail the four variants of symmetric FIR filters.

Odd-Length Symmetric Impulse Response FIR Filters

An odd-length symmetric FIR filter has the first half of the filters coefficients equal to the second half of the filter
coefficients with the following relationship. For a filter with n (n odd) filter taps:

coefficient(n—1) = coefficient(0)

coefficient(n—2) = coefficient(1)

® coefficient(n—3) = coefficient(2)

® coefficient(((n—1)/2)-3) = coefficient(((n—1)/2) + 3)
® coefficient(((n—1)/2)-2) = coefficient(((n—1)/2) + 2)
* coefficient(((n—=1)/2)-1) = coefficient(((n—1)/2) + 1)

coefficient((n—-1)/2) (middle tap) does not have a paired coefficient

The multipliers for the filter taps with equivalent coefficients may be shared if the corresponding data inputs for
the taps are added before the multiplier.

® (coef.(0) x data(0)) + (coef.(0) x data(n—1)) = (data(0) + data(n—1)) x coef.(0)

This optimization halves the number of multipliers required to implement a FIR filter.

Achronix Proprietary and Confidential 141

Speedcore Component Library User Guide (UG065)

The figure below shows an unoptimized block diagram of a odd-length symmetric FIR filter. The following
discussion and figures illustrate how to optimize the performance.

m M M M M M
@ b b | b oo ﬂ b | b > |
c(0) c®) c() c(3) c(3) c(2) c c(0)
[X N}
0 —
[... [

6586437_11/21/2022

Figure 67: Odd-Length Symmetric FIR Filter Block Diagram

A pre-adder is then added to the input of each multiplier with the second input of the pre-adder tied to zero. The
structure shown in the following figure maintains the functionality of the FIR filter.

[N)
[] [] [] [] []
AEf , 2 , 2 , 2J . g . =J , 2J o o
[X N)
c(0) c®) c(2) c(3) c(d) c(2 c®) c(0)
’_> [X N) ’—>
0

6586438_11/21/2022

Figure 68: Odd-Length Symmetric FIR Filter with Pre-Adder Block Diagram

The required number of multipliers are halved (excluding the unpaired center tap) if the shift register path is
folded back and the filter taps with equivalent coefficients are connected to the second input of the pre-adder as
shown in the following figure. The FIR filter maintains the functionality of the unfolded version.

[] [] [[] [] []
b > 32 b oo b b >
4‘;} [] [] [] g [] [] [
> > > > > > 0
s
«© o) — @ @ o(0-1/2)-3 MDD) MOV () o))
xx

6586439_11/21/2022

Figure 69: Odd-Length Symmetric FIR Filter Block With Folded Back Datapath

Achronix Proprietary and Confidential 142

Speedcore Component Library User Guide (UG065)

The current structure of the FIR filter suffers from poor performance due to the serial chain of adders. Pipeline
registers must be added to the adder chain. A pair of pipeline registers can be added in the forward path at the
second-to-last filter tap to improve timing. In order to maintain functionality, one of the registers in the reverse
delay line must be removed as shown in the following figure.

M M M M M
b > | > @“‘ b >

S e e ey 4 8

]

eece
o(0) o) —= @ o3 ol((n-1/2)-3) o0-02)2) (oo ell-1/2)-

6586440_11/21/2022

Figure 70: Odd-Length Symmetric FIR Filter Block With Single Pipeline Stage
Added

Likewise, an additional pipeline stage pair is added in the forward path two stages earlier. For each additional
pipeline stage, a register must be removed from the backwards datapath. Pipeline stages should not be added at
each stage of the folded symmetric FIR filter or the reverse datapath becomes unregistered and performance
suffers. A balance must be maintained between adding pipeline stages in the forward datapath and removing
pipelines stages in the reverse datapath.

M M M M
b b | b | Q"‘ b |

S =

F]

(N]
c(0) ct) — c(2) c(3) c(((n-1)/2)-3)

-

0

6586441_11/21/2022

Figure 71: Odd-Length Symmetric FIR Filter Block With Additional Pipeline Stage
Added

Achronix Proprietary and Confidential 143

Speedcore Component Library User Guide (UG065)

To achieve a balance between adding pipeline stages in the forward datapath and removing pipeline stages in
the reverse datapath, pipeline stages have been added every two stages as shown in the following figure.

L Ll eoe L

ST i

)

[X N J
c(((n-1)72)-3)

c(((n-1)/2)-2)

—

c(0)

6586442_11/21/2022

Figure 72: Odd-Length Symmetric FIR Filter Block with Every Other Stage Pipelined

Further pipelining can be achieved by adding pipeline registers at the output of the multipliers and/or the output
of the pre-adders. If pipelining at the output of the multipliers and/or the pre-adders is used, it must be performed
at every stage of the filter to maintain proper functionality. The use of these pipeline registers is shown in the

following figure.

L L eee L]

)

c(((n-1)/2)-3)

6586443 _11/21/2022

Figure 73: Odd-Length Symmetric FIR Filter With Pipelined Pre-Adders and
Multipliers

Achronix Proprietary and Confidential 144

Speedcore Component Library User Guide (UG065)

Odd-Length, Anti-Symmetric Impulse Response FIR Filters

An odd-length anti-symmetric FIR filter has the first half of the filter coefficients related to the second half of the
filter coefficients with the following relationship. For a filter with n (n odd) filter taps:

coefficient(n—1) = -1 x coefficient(0)
coefficient(n—2) = -1 x coefficient(1)

coefficient(n—3) = —1 x coefficient(2)

coefficient(((n—1)/2)-3) = =1 x coefficient(((n-1)/2) + 3)
coefficient(((n—1)/2)-2) = =1 x coefficient(((n—1)/2) + 2)
coefficient(((n—-1)/2)—-1) = =1 x coefficient(((n—1)/2) + 1)
coefficient((n—1)/2) (middle tap) does not have a paired coefficient

The multipliers for the filter taps with equivalent coefficients may be shared if the corresponding data inputs for
the taps are added before the multiplier.

(coef.(0) x data(0)) + (—coef.(0) x data(n—1)) = (data(0) — data(n-1)) x coef.(0)

This optimization has the same structure as an odd-length symmetric filter with the pre-adder replaced with a pre-
subtracter. Pre-subtracting the data before the multiplier halves the number of multipliers required to implement a
FIR filter. The final structure of the optimized even-length anti-symmetric FIR filter is shown in the following
figure. Again, this structure is identical to that of the even-length symmetric FIR filter with the pre-adder replaced
with a pre-subtracter.

L) Ll eoe L

o(((n-1)/2)-3) —|

Figure 74: Odd-Length Anti-Symmetric FIR Filter With Pipelined Pre-Adders and
Multipliers

Achronix Proprietary and Confidential 145

Speedcore Component Library User Guide (UG065)

Even-Length Symmetric Impulse Response FIR Filters

An even-length symmetric FIR filter has the first half of the filter coefficients equal to the second half of the filter
coefficients with the following relationship. For a filter with n (n even) filter taps:

coefficient(n—1) = coefficient(0)
coefficient(n—2) = coefficient(1)

coefficient(n—3) = coefficient(2)

coefficient((n/2)-3) = coefficient((n/2) + 2)
coefficient((n/2)-2) = coefficient((n/2) + 1)
coefficient((n/2)-1) = coefficient((n/2))

The multipliers for the filter taps with equivalent coefficients may be shared if the corresponding data inputs for
the taps are added before the multiplier.

(coef.(0) x data(0)) + (coef.(0) x data(n—1)) = (data(0) + data(n—1)) x coef.(0)

This optimization halves the number of multipliers required to implement a FIR filter.

The following figure shows an unoptimized block diagram of an even-length symmetric FIR filter. The following
discussion and figures illustrate how to optimize the performance.

m M M M M M
ﬂ b b b | eee ﬂ > b b |
c(0) c(l) —| c(2) c(3) c(3) c(2) —= c(1) c(0)
00
° [[
[N N]

6586430_11/21/2022

Figure 75: Even-Length Symmetric FIR Filter Block Diagram

A pre-adder is then added to the input of each multiplier, with the second input of the pre-adder tied to zero. This
structure, shown in the following figure, maintains the functionality of the FIR filter.

(N N]
(] (] [] [] (]
4@ > > | > 4@ > >
0 0 0 0 0 0 0 0
(N N]
c(0) c() c(2) c(3) c(3) c(2) — c(®) c(0)
0 e0e0 r

6586431_11/21/2022

Figure 76: Even-Length Symmetric FIR Filter With Pre-Adder Block Diagram

Achronix Proprietary and Confidential 146

Speedcore Component Library User Guide (UG065)

The required number of multipliers is halved if the shift register path is folded back and the filter taps with
equivalent coefficients are connected to the second input of the pre-adder as shown in the following figure. The
FIR filter maintains the functionality of the unfolded version.

M M M M M M
b | b b J g"’ b | b | b | BT

ﬂ (] [[] g [] [(]
> > > > > >
X
o) o) —= e o) oln/2)-4) oln/2)8), (o) cllv22) eln/2)14)
eoe
0
6586432_11/21/2022

Figure 77: Even-Length Symmetric FIR Filter Block With Folded Back Datapath

The current structure of the FIR filter suffers from poor performance due to the serial chain of adders. Pipeline
registers must be added to the adder chain. A pair of pipeline registers can be added in the forward path at the
last filter tap to improve timing. In order to maintain functionality, one of the registers in the reverse delay line
must be removed as shown in the following figure.

e L R AL bt QT
ST pd i e S a8 8

c(0) o) — c(2 c(3) c((n/2)-4)

6586433 11/21/2022

Figure 78: Even-Length Symmetric FIR Filter Block With Single Pipeline Stage
Added

Achronix Proprietary and Confidential 147

Speedcore Component Library User Guide (UG065)

Likewise, an additional pipeline stage pair is added in the forward path, two stages earlier. For each additional
pipeline stage, a register must be removed from the backwards datapath. Pipeline stages should not be added at
each stage of the folded symmetric FIR filter or the reverse datapath becomes unregistered and performance
suffers. A balance must be maintained between adding pipeline stages in the forward datapath and removing
pipeline stages in the reverse datapath.

L e 16 LU q QT
S S S e 418

[X N J
c(0) c®) c(2) c(3) c((n/2)-4)

6586434_11/21/2022

Figure 79: Even-Length Symmetric FIR Filter Block With Additional Pipeline Stage
Added

To achieve a balance between adding pipeline stages in the forward datapath and removing pipeline stages in
the reverse datapath, pipeline stages have been added every two stages as shown below in in the following
figure.

| S e >] S
STkl e e b

[N
o2 c([n/2)ﬁ> c((n/2)-1)

6586435_11/21/2022

Figure 80: Even-Length Symmetric FIR Filter Block Mith Every Other Stage
Pipelined

Achronix Proprietary and Confidential 148

Speedcore Component Library User Guide (UG065)

Further pipelining can be achieved by adding pipeline registers at the output of the multipliers and/or the output
of the pre-adders. If pipelining at the output of the multipliers and/or the pre-adders is used, it must be performed
at every stage of the filter to maintain proper functionality. The use of these pipeline registers is shown in the
following figure.

N T} oo N i

c((n/2)-4)

6586436_11/21/2022

Figure 81: Even-Length Symmetric FIR Filter with Pipelined Pre-Adders and
Multipliers

Even-Length, Anti-Symmetric Impulse Response FIR Filters

An even-length anti-symmetric FIR filter has the first half of the filter coefficients related to the second half of the
filter coefficients with the following relationship. For a filter with n (n even) filter taps:

coefficient(n—1) = =1 x coefficient(0)
coefficient(n—-2) = —1 x coefficient(1)

coefficient(n—3) = —1 x coefficient(2)

coefficient((n/2)-3) = -1 x coefficient((n/2) + 2)
coefficient((n/2)-2) = -1 x coefficient((n/2) + 1)
coefficient((n/2)-1) = —1 x coefficient((n/2))

The multipliers for the filter taps with equivalent coefficients may be shared if the corresponding data inputs for
the taps are subtracted before the multiplier.

(coef.(0) x data(0)) + (—coef.(0) x data(n-1)) = (data(0) — data(n—1)) x coef.(0)

This optimization has the same structure as an even-length symmetric filter with the pre-adder replaced with a
pre-subtracter. Presubtracting the data before the multiplier halves the number of multipliers is required to
implement an FIR filter.

Achronix Proprietary and Confidential 149

Speedcore Component Library User Guide (UG065)

The final structure of the optimized even-length anti-symmetric FIR filter is shown in the following figure. This
structure is identical to that of the even-length symmetric FIR filter with the pre-adder replaced with a pre-
subtracter.

y e y
0198 @@gg@gﬁ

c(0) c(1) c(((n-1)/2)-3)

6586444_11/21/2022

Figure 82: Even-Length Anti-Symmetric FIR Filter With Pipelined Pre-Adders and
Multipliers

Achronix Proprietary and Confidential

150

Speedcore Component Library User Guide (UG065)

ACX_DSP_MACC_GEN

The ACX_DSP_MACC_GEN macro provides a multiply-accumulate function with an optional C input to be added
to the output. The macro supports multiplication of A x B, where A and B can either be 27 x 18 or 27 x 26. The C
input is 48 bits. The macro provides all multiplication and accumulate options up to and including 36 x 27 + 48-bit
C with 64-bit accumulator.

Table 107: ACX_DSP_MACC_GEN Macro Parameters

dout + (A x B + C). When disabled, the function is dout = A x B + C.

Parameter Values | Default Description

A_I NPUT W DTH ;g or |4g Width of the A input to the multiplier.

REG STER | NPUTS | On/Off | Off gzttzcl)tnally register the A and B inputs, adding one cycle of latency to the
Register the output of the multiplier, adding one cycle of latency to the

REG STER_MJULT On/Off | Off result. Registering the output may be required when operating at high
target frequencies.

C_I NPUT_48B On/Off | Off Add a 48-bit C input, this value is added to the output.

ACC_64_OUTPUT on/off | off When enabled, the output accumulates, performing the function dout =

The following table shows the number of DSP blocks consumed by the ACX_DSP_MACC_GEN macro based on
the provided parameters.

Table 108: ACX_DSP_MACC_GEN DSP Block Usage Based On Parameter Values

Parameter Value | Number of DSP | Value | Number of DSP
A INPUT_WDTH |18 36 2
C_I NPUT_48B Off 0 On 1
ACC_64_QUTPUT | Off 0 On 1

In the maximum configuration of 36 x 27 + 48-bit C with 64-bit accumulator, the macro uses 4 DSP blocks.

Achronix Proprietary and Confidential

151

Speedcore Component Library User Guide (UG065)

Table 109: ACX_DSP_MACC_GEN Macro Ports

Port Name | Direction Description
cl k In DSP clock.
DSP reset. Whenreset _nissettol' b0, dout =0; Whenreset _n=1'bl, the
reset_n In
DSP operates as follows.
a_in[n:0] In Signed A input, either 18 or 36 bits. This input is multiplied by the B input.
b_in[26: 0] In Signed B input. This input is multiplied by the A input.
c_in[47: 0] In Optional signed 48-bit C input. When present, this input is added to the multiplication of
- ’ A x B, resultingin Ax B + C.
dout [63: 0] Out Signed sum or accumulation of A x B + C.
Timing

The output timing from ACX_DSP_MACC_GEN is dependent upon the input parameters. The parameters

REGQ STER | NPUTS and REG STER_MULT each add an extra stage of latency to the result. These delays are

shown in the following timing diagrams:

clk 4

I
reset_n | | [

Mgy

iy e O W

a_in[0] a0) al) a2 X a3) a4) a5) a6

b_in[0] b0 X b1 b2 X b3) pa b5 X b6

c_in[o] ‘ @ X a ‘X a X 3 X @ X s ‘X @

doutt® ‘ 0 ‘ X albl+cl X a2b2rc2) a3b31c3 X adba+c4 X a5b5+c5 X T a6b6ics X o
dout® 0 { awbi+ct Y azb2+c2) a3b3r3 Y adba+cd | asbsecs | agborcs | 0
dout® 0 { atbiral) azba+ca [a3b3+c3 | adbdrca f asbS+cs | 0
dout(‘)‘ 0 ‘X s1 ‘X ‘52) ‘53 ‘X s4 ‘X ‘55)¢ ‘56 I)(s7 ‘X o‘

Figure 83: DSP MACC Timing Diagram
Note

The dout values shown in the timing diagram illustrate the following parameter settings:

® dout (M Not registered.
dout @ : REG STER | NPUTS applied.
dout) : REG STER | NPUTS and REGI STER_MULT applied.
dout 4 : ACC _64_QUTPUT applied with no registers.

Achronix Proprietary and Confidential

152

Speedcore Component Library User Guide (UG065)

ACX_DSP_ACCUMULATOR_GEN

The ACX_DSP_ACCUMULATOR_GEN macro provides for an input of up to 192 bits, which are successively
accumulated. The macro uses one DSP for each 48 bits of output.

Table 110: ACX_DSP_ACCUMULATOR_GEN Parameters

Parameter Values

Default Description

ACC_WDTH |32t0192 |96

Specifies the width of the data input and accumulator output.

Table 111: ACX_DSP_ACCUMULATOR_GEN Ports

Name Direction Description
cl k In DSP clock.
DSP reset. When reset _nissettol1' b0, dout =0; Whenreset _n=1'bl, the
reset_n In - -
- DSP operates as follows.
acc enabl e | When acc_enabl e is setto 1' b1, the DSP accumulates dout with acc_val ue.
- n When acc_enabl e is setto 1' b0, dout remains constant.
When | oad is setto 1' b1, the value on acc_val ue[n: 0] is loaded into the
| oad In DSP, and one cycle later dout [n: 0] is setto acc_val ue. When | oad is set to
1' b0, the DSP operates in accumulate mode. The | oad input is independent of,
and has priority over acc_enabl e.
) Unsigned load value. When | oad is setto 1' b1, acc_val ue is used to load the
acc_value[n:0] |In . -
DSP with an initial value.
dout [n: 0] Out Unsigned result of the DSP accumulation.

Achronix Proprietary and Confidential 153

Speedcore Component Library User Guide (UG065)

Timing

The timing for the DSP accumulator is shown in the following figure.

reset_n 2

|

1
|
|
|
|
acc_data a X b
I
I

T T T T
I] | |
I I
load \ :
i i
| |
acc_enable { : X : : |
|] | |
1 | |
dout 0 a atb at+2b } a+3b

4228242-02.2022.11.21

Figure 84: ACX_DSP_ACCUMULATOR_GEN Timing Diagram

Achronix Proprietary and Confidential

154

Speedcore Component Library User Guide (UG065)

ACX_DSP_COUNTER_GEN

The ACX_DSP_COUNTER_GEN macro provides a counter of up to 192 bits. The macro uses one DSP for each

48 bits of output.

Table 112: ACX_DSP_COUNTER_GEN Macro Parameters

Parameter

Values

Default Description

COUNTER W DTH

32 to 192

96 Specifies the width of the data input and accumulator output.

Table 113: ACX_DSP_COUNTER_GEN Macro Ports

Name Direction Description
cl k In DSP clock.
DSP reset. Whenreset _nissettol' b0, dout =0; Whenreset _n=1'bl,
reset_n In - -
- the DSP operates as follows.
count enabl e | When count _enabl e is setto 1' b1, the DSP performs a rising count on dout
- n . When count _enabl e is setto 1' b0, dout remains constant.
When | oad is setto 1' b1, the value on | oad_val ue[n: 0] is loaded into the
| oad In DSP, and one cycle later dout [n: 0] is setto | oad_val ue[n: 0] . When | oad
is setto 1' b0, the DSP operates as a counter. The | oad input is independent
of, and has priority over count _enabl e.
| oad_val ue[n: 0] In Unsigned load value. When | oad is setto 1' b1, | oad_val ue is used to load
- ' the DSP with an initial value.
dout [n: 0] Out Unsigned result of the DSP count.

Achronix Proprietary and Confidential 155

Speedcore Component Library User Guide (UG065)

Timing

The following figure shows the timing diagram for the DSP counter.

S N 0 G (T G G L
load \ /__\

count_enable

—

dout

c X c+l X c+2 X g XE
34016093-03.2022.11.22

Figure 85: DSP Counter Timing Diagram

Achronix Proprietary and Confidential

156

Speedcore Component Library User Guide (UG065)

ACX_DSP_SUM_SQUARES_GEN

The ACX_DSP_SUM_SQUARES_GEN macro provides for N sum of squares function: (A iB)2 where the A and
B inputs can be up to 18 bits each and N can be up to 4 pairs of values. This macro consumes one DSP for each

(A £B) pair of inputs.

Table 114: ACX_DSP_SUM_SQUARES_GEN Macro Parameters

Name Values | Default Description
NUM_I NPUT_PAI RS 1to4 2 Specifies the number of A and B input pairs.
REGI STER AB_| NPUTS | On/Off off Optionally register the A and B inputs, adding one cycle of latency to
the result.
Register the output of the multiplier, adding one cycle of latency to
REG STER_ MULT On/Off Off the result. Registering may be required when operating at high target
frequencies.
(A+B), Each pair of inputs may be summed or subtracted from one another
ADD_SUB N (A-B), (A+B) . L .) '
(B-A) This addition or subtraction occurs before the result is squared.

Table 115: ACX_DSP_SUM_SQUARES_GEN Macro Ports

Name Direction Description

clk In DSP clock.
DSP reset. Whenreset _nissettol' b0, dout =0; Whenreset _n=1'bl, the

reset_n In
DSP operates as follows.
Array of signed A inputs. The definition of the input is [17:0] A

a_in In [NUM_I NPUT_PAI RS- 1: 0] . Each A input is 18 bits wide. A value must be
supplied for each A input in the array.
Array of signed B inputs. The definition of the input is [17:0] B

b_in In [NUM_I NPUT_PAI RS- 1: 0] . Each B input is 18 bits wide. A value must be
supplied for each B input in the array.

dout [47: 0] Out Signed 48-bit sum of each pair of (A +B)2.

Achronix Proprietary and Confidential 157

Speedcore Component Library User Guide (UG065)

Timing

The following figure shows the timing diagram for ACX_DSP_SUM_SQUARES_GEN.

clk
reset_n / \
a_in[0] a0 X al X a2 X a3 X ad X a5 X a6
[1 1 [I I] 1 1 I 1 1] 1 I
b_in[0] b0 X bt X b2 X b3 X b4 X b5 X b6
[1 1] I 1] i] I 1 1 I I 1 I i] I 1
dout® 0 X (al+b1)A2 X (a2+b2)A2 X (a3+b3)A2 X (a4+bd)A2 X (a5+b5)A2 X (aB+bB)A2 X 0
[I I [I I I [I [I I [I I I [[I I
dout? 0 X (at+b1)A2 X (a2+b2)A2 X (a3+b3)A2 X (ad+b4}r2 X (a5+b51A2 X (a6+b6)A2 X 0
[I I I I I I I I I I I I I I I [I I I
dout® 0 (al+b1)A2 (a2+b2)A2 X (a3+b3)2 X (a4+ba)r2 X (a5+b5)A2 X 0

T T T T T T T T T T T T T T T T T T T T
i i ' ' P i ' ' i i i i ' i i ' ' ' i i

34016093-02.2022.11.22

Figure 86: ACX_DSP_SUM_SQUARES_GEN Timing Diagram

Note

The dout values shown in the timing diagram illustrate the following parameter settings:
® dout (V: Not registered.

dout) : REG STER_AB_I NPUTS applied.

dout) : REG STER AB_| NPUTS and REG STER_MULT applied.
Enabling each one of these parameters adds one cycle of latency to the output.

Achronix Proprietary and Confidential 158

Speedcore Component Library User Guide (UG065)

ACX_MLP72

Arithmetic within the Speedster7t architecture is primarily focused on the machine learning processing block
(ACX_MLP72). This dedicated silicon block is optimized for artificial intelligence and machine learning (Al/ML)
functions.

The machine learning processor block (MLP) is an array of up to 32 multipliers, followed by an adder tree, and an
accumulator. The MLP is also tightly coupled with two memory blocks, a BRAM72k and LRAM2k. These
memories can be used individually or in conjunction with the array of multipliers. The number of multipliers
available varies with the bit width of each operand and the total width of input data. When the MLP is used in
conjunction with a BRAM72k, the number of data inputs to the MLP block increases, enabling the use of
additional multipliers.

The MLP offers a range of features:

® Configurable multiply precision and multiplier count. Any of the following modes are available:
® Up to 32 multiplies for 4-bit integers or 4-bit block floating-point values in a single MLP
® Up to 16 multiplies for 8-bit integers or 8-bit block floating-point values in a single MLP
® Up to 4 multiplies for 16-bit integers in a single MLP
® Up to 2 multiplies for 16-bit floating point with both 5-bit and 8-bit exponents in a single MLP
® Up to 2 multiplies for 24-bit floating point in a single MLP

® Multiple number formats:
® Integer
® Floating point 16 (including B float 16)
® Floating point 24

® Block floating point, a method that combines the efficiency of the integer multiplier-adder tree with
the range of the floating point accumulators

® Adder tree and accumulator block

® Tightly-coupled register file (LRAM) with an optional sequence controller for easily caching and feeding
back results

® Tightly-coupled BRAM for reusable input data such as kernels or weights

® (Cascade paths up a column of MLPs
® Allows for broadcast of operands up a column of MLPs without using up critical routing resources
® Allows for adder trees to extend across multiple MLPs
® Broadcast read/write to tightly-coupled BRAMs up a column of MLPs to efficiently create large

memories

Along with the numerous multiply configurations, the MLP block includes optional input and pipelining registers at
various locations to support high-frequency designs. There is a deep adder tree after the multipliers with the
option to bypass the adders and output the multiplier products directly. In addition, a feedback path allows for
accumulation within the MLP block.

Achronix Proprietary and Confidential 159

Speedcore Component Library User Guide (UG065)

The following block diagrams show the MLP using the fixed or floating-point formats:

/ 144-bit/72-bit

144-bit/72-bit | [

MLP (Fixed-Point Mode)

144-bit/72-

bi

72-bit

144-bit

72-bit |

BRAM (72k)

Multiplier Array Adder Tree

-bit/72-bit

I
S

72-bit

144-bit >

Multiplier Array Adder Tree Accumulator

72-bit é

Figure 87: MLP Using Fixed-Point Mode

37161126-01.2022.30.11

/ 144-bit/72-bit

144-bit/72-bit 1 ¢

144-bit

144-bit/72-}

72-bit

72-bit

MLP (Floating-Point Mode)

BRAM (72k) LRAM (2Kk)

,,,,,,,,,,,,,

Floating-point Multiplier Al P

Accumulator/Adder

Floating-point
Accumulator/Adder

Floating-point Multiplier

-bit/72-bit >‘

144-bit >

72-bit E

Figure 88: MLP Using Floating-Point Mode

37161126-02.2022.30.11

Achronix Proprietary and Confidential

160

Speedcore Component Library User Guide (UG065)

A powerful feature available in the Achronix MLP is the ability to connect several MLPs with dedicated high-
speed cascade paths. The cascade paths allow for the adder tree to extend across multiple MLP blocks in a
column without using extra fabric routing resources, and a data cascade/broadcast path is available to send
operands across multiple MLP blocks. Cascading input or result data to multiple MLPs in parallel allows for
complex, multi-element operations to be performed efficiently without the need for extra routing. The following

diagram shows the cascade paths across MLPs:

Note

Straight addition within the ACX_MLP72 (without a leading multiplication) is not supported.

Cascade out

Mult-accum

Cascade in

Cascade out

Mult-accum

Cascade in

Cascade out

Mult-accum

Cascade in

37161126-03.2022.02.12

Figure 89: MLP Cascade Path

Achronix Proprietary and Confidential

161

Speedcore Component Library User Guide (UG065)

Numerical Formats

The ACX_MLP72 can process the following numerical formats:

Table 116: ACX_MLP72 Supported Numerical Formats

Formats

Integer

int3, int4, int6, int7, int8, int16

Block floating point

BFP Int3, BFP Int4, BFP Int6, BFP Int7, BFP Int8, BFP Int16

Floating point

fp3, fp4, fp6, p8, fp16, fp16e8, fp24.

See Speedster7t MLP Number Formats for details of each of the numerical formats.

Parallel Multiplications

The following table lists the maximum number of parallel multiplies that are supported in the ACX_MLP72 as a

function of the data type, and the input mode. The input modes specify from where the data input to the MLP is
sourced and are described in the section Modes.

For block floating-point operations, the bit width shown is the mantissa width.

Table 117: Parallel Multiplication Capabilities

Data x1 Mode x2 Mode _ x4 Mode _
Type Inputs only fr.om Inputs from FPGA Fabric and Inputs from FPGA Fabric and
FPGA Fabric Coupled BRAM Input Coupled BRAM Output

Integer

Int3 12 24 32

Int4 8 16 32

Int6 6 12 16

Int7 5 10 16

Int8 4 8 16

Int16 2 4 4 M

Block Floating Point

Exponents

@) 2 4/2 4

BFP Int3 10 16/20 32

BFPInt4 |8 12/16 32

Achronix Proprietary and Confidential

162

Speedcore Component Library User Guide (UG065)

Data x1 Mode x2 Mode x4 Mode
Tupe Inputs only from Inputs from FPGA Fabric and Inputs from FPGA Fabric and
yp FPGA Fabric Coupled BRAM Input Coupled BRAM Output
BFP Int6 5 8/10 16
BFP Int7 4 8/9 16
BFP Int8 4 6/8 16
BFP Int16 | 2 4 4
Floating Point
fp16 1 2 2 (1)
fp16e8 1 2 2 (1)
fp24 1 2 2 (1)
Table Notes
1. The number of multiplications is limited by the available hardware multipliers, and can be achieved by
using x2 input mode.
2. With x2 input mode, the number of block floating point exponents can be either 2 or 4. Using only 2
exponents allows for a greater number of mantissas to be input to the MLP, resulting in a greater number
of parallel multiplications.

Memories

A key feature of the ACX_MLP72 is its tight coupling with local memories. Each ACX_MLP72 is grouped with a
ACX BRAM72K and a ACX_LRAMZ2K at a single silicon site. In addition to the normal fabric I/O, the
ACX_MLP72, ACX_BRAM72K and the ACX_LRAM2K are also connected by dedicated, non-fabric paths. This
tight coupling supports 144-bit paths between the elements, with deterministic timing, allowing full-speed
operation of all multipliers operating in parallel.

This arrangement allows for efficient processing by storing input data that is reused (such as a convolution kernel
or weights) and by storing results in a register file to allow for efficient burst transfers to external memory stores
or other processing blocks. Using this architecture, it is possible to construct highly efficient matrix vector
multiplication, 2D convolution and dot product processes that maximize the functionality of the ACX_MLP72 and
its tightly-coupled memories.

Instantiation

Currently it is not possible to infer a full ACX_MLP72. In addition, due to the complexity of the full ACX_MLP72,
Achronix supports, and recommends, the use of the ACX_MLP72 via libraries of macros and primitive functions
derived from the full ACX_MLP72. These libraries enable implementing complex mathematical functions, all
within a single block, via a simplified interface. The provided libraries include support for integer and floating-point
functions.

Achronix Proprietary and Confidential 163

Speedcore Component Library User Guide (UG065)

For particular use cases not covered by the libraries of ACX_MLP72 macros and primitives, details of the full
ACX_MLP72 are provided. Refer to Achronix reference designs for further examples of direct instantiation of a
full ACX_MLP72.

Common Stages

Stages

Due to the complexity of the ACX_MLP72, the details that follow, including tables of parameters and ports, have
been divided up into various stages. Each of these stages represents a functional stage within the ACX_MLP72,
whether that be input selection or multiplier configuration. The stages are described in signal flow order,
beginning with common signals and input selection, and proceeding through the multiplier stages to the output
routing. Understand each stage thoroughly before configuring it via the various parameters.

The initial overview of the full ACX_MLP72 structure focuses on the integer modes. This overview details:
® Common Signals (see page 165)
® |nput Selection (see page 167)
® Integer Byte Selection
® Integer Multiplier Stage
® |nteger Output Stage
* LRAM
When familiar with the overall ACX_MLP72 integer structure and data flow, additional sections are provided on
floating-point support:
® Block Floating Point
® Floating Point

Symmetrical Structure

In general terms, the functions of the MLP72 can be divided into two halves: upper and lower (also referred to as
"ab" and "cd"). For the purposes of clarity, a number of the block diagrams which follow only show one half of the
ACX_MLP72. In these cases, unless indicated otherwise, it can be assumed that the other half operates in an
identical manner.

Modes

Operation of the ACX_MLP72 is commonly categorized into three operating modes, each of which reflects the
number of multipliers in use, and the necessary routing of the inputs in order to supply the multipliers. The
number of multipliers given in the following definitions refers to 8 bit multiplication; when 16 bit or 4 bit values are
used, these values halve or double respectively.

® By-one mode (x1) — just the four multipliers in the lower half of the ACX_MLP72, muli[3:0], are in use. This
requires the A and B input buses to each have 32 bits of data, or for a single input source to have 64 bits
of data. Therefore any of the available input sources can be switched to these four multipliers, and it is
possible to provide all the multiplier inputs from a single data source.

® By-two mode (x2) — all eight of the multipliers in the lower half of the ACX_MLP72, mult[7:0], are in use.
This requires each of the A and B input buses to have 64 bits of data, so at least two of the input sources
are required. In addition there are some x2 split modes whereby four of the multipliers from the lower half,
and four of the multipliers from the top half of the ACX_MLP72 are used.

Achronix Proprietary and Confidential 164

Speedcore Component Library User Guide (UG065)

¢ By-four mode (x4) — all 16 multipliers in the ACX_MLP72 are in use. This requires two A and B input
buses, each with 64 bits of data, resulting in the combined A and B input buses each having 128 bits of
data. To achieve this, one of the advanced routing techniques is required. The most common method is to
provide one of the 128 bit buses from the coupled ACX_BRAM72K output, and then to input the other 128
bus split between the normal MLP input and the BRAM input (each 72 bits). Methods for routing data in x4
mode are discussed in the Speedster7t Machine Learning Processing User Guide (UG088).

Common Signals

There are a number of signals and parameters that are common to multiple sections of the ACX_MLP72. These
common signals are primarily for controlling delay stages throughout the ACX_MLP72.

Between each functional stage there are optional registers, known as delay stages. These can be optionally
enabled (using the del _xx parameter). If enabled, their clock enable and negative resets can be connected to
any one of a common set of ce[] and rst n[] inputs. The cesel _xx and r st sel _xx parameters respectively
control which of the ce[11: 0] and r st n[3: 0] inputs are connected to the selected delay stage. Further, for
certain delay stages it is possible to control whether the reset is synchronous or asynchronous using the
appropriate r st _node_xx parameter.

These optional delay stages all follow the same structure as shown in the following figure.

del_<delay_stage>

— <delay_stage>output

<delay_stage>input

cesel_<delay_stage>[3:0]

rstsel_<delay_stage>[2:0]

RSTN[0] RSTNI[3]

38371543-01.2022.30.11

Figure 90: Delay Stage Structure

In the diagrams which follow, showing the various stages of the MLP72, the delay stages are shown as a register
with a dotted outline indicating that they are optionally selected to be in circuit. The parameters for each delay
stage are then shown in the dashed box alongside the register symbol. This representation is shown in the
following figure.

Achronix Proprietary and Confidential 165

https://www.achronix.com/documentation/speedster7t-machine-learning-processing-user-guide-ug088

Speedcore Component Library User Guide (UG065)

Parameters

<delay_stage>input

<delay_stage>output

del_<delay_stage> :

|
cesel_<delay_stage>[3:0] :
rstsel_<delay_stage>[2:0] |

38371543-02.2022.30.11

Figure 91: Delay Stage Symbol

Table 118: Common Parameters

Parameter

Supported Values

Default Value

Description

clk_polarity

"rise", "fall"

"rise"

Specifies whether the registers are clocked
by the rising or the falling edge of the clock.

cesel _*[3:0]

4' b0000-4' b1101

Must be set (0-13)

Selects the ce inputs for each delay stage
register:

4' b0000 - 1' bO.

4' b0001 —ce[0] .
4' b0010 —ce[1] .
4' b0011 —ce[2] .
4' b0100 —ce[3] .
4' b0101 —ce[4] .
4' b0110 —ce[5] .
4' b0111 —ce[6] .
4' b1000 —ce[7] .
4' b1001 —ce[8] .
4' b1010 -ce[9] .
4' b1011 —ce[10].
4' b1100 — ce[11] .
4' 1101 -1' bl.

rstsel _*[2:0]

3' b000-3' b101

Must be set (0-5)

Selects the r st n input for each delay stage
register:

3' b000 —1' bO.

3'b001l —-rstn[0].

3'b010—-rstn[1].

3'b011 -rstn[2].

3'b100—-rstn[3].

3'b101-1' b1l.

rst_node_*

1' b0-1' bl

1' b0

Selects the reset mode (clocked vs.
unclocked) for each delay stage register:
1' b0 — synchronous reset mode.

1' bl — asynchronous reset mode.

Achronix Proprietary and Confidential 166

Speedcore Component Library User Guide (UG065)

Parameter Supported Values Default Value Description

Selects if each delay stage register is
enabled or bypassed:

1' b0 — delay stage register is bypassed.
1' b1 — delay stage register is enabled.

del _* 1' b0-1' bl 1' bO

Ports

Table 119: Common Ports

Name Direction Description

Clock input. If input or output registers are enabled, they are updated on the active edge

clk Input of this clock.

Set of clock enable signals for delay stage registers. Asserting the clock enable signal
ce[11: 0] Input for a delay stage register causes it to capture that data at it's input on the rising edge of
cl k. Has no effect when the register is disabled.

Set of negative reset signals for the delay stage registers. When the reset signal for a
rstn[3:0] |Input delay register stage is asserted (1' b0), a value of 0 is written to the output of that
register on the rising edge of cl k. Has no effect when the register is disabled.

dft_0 Input Reserved for Achronix internal use. Must be left unconnected.
dft_1 Input Reserved for Achronix internal use. Must be left unconnected.
dft_2 Input Reserved for Achronix internal use. Must be left unconnected.

Input Selection

The ACX_MLP72 can accept inputs from a wide variety of sources. The purpose of the input selection block is to
select from these sources, and generate four internal data buses. These four buses are then divided into byte
lanes (byte is used as a generic term, the lanes are not necessarily 8 bits, the width is applicable to the selected
number format). These byte lanes are then sent to the two banks of multipliers (high and low), with each bank
consisting of 8 multipliers, and each multiplier having an A and B input.

The selected internal data buses are also output to the cascade paths so that they can be used by adjacent
ACX_MLP72s in the same column.

The internal data buses, and their respective input selection are notated as nul t X_Y, where:
® X = A or B to indicate whether the bus is for the A or B input of the respective multipliers
® Y =HorL toindicate whether the bus is for the High or Low set of multipliers.

The buses are therefore namedasnulta_| ,multb I, multa_h,nultb_h.

The high bank of multipliers has a wider selection of input data buses (8) than the low bank (4). This is shown in
the following diagrams.

Achronix Proprietary and Confidential 167

Speedcore Component Library User Guide (UG065)

Iram_out2multb_h

mux_sel_multX_h
BRAM_DIN[71:0](1)) ————— ah FWDO_MULTx_H[71:0]
MLP_DIN[71:0] ——— —
LRAM_DOUTI[143:72](2) .
LRAM_DOUT[71:0])(2) —— —
BRAM_DOUT[143:72](1) ——| ——
BRAM_DOUT[7L0](0) —— — BYTESEL To multX multipliers [15:8]
N A —
L L
| del_mutx_h | multo_h —
| cesel_multX_h !
| rstsel_multX_h |
FWDI_MULTx_H[71:0] FWDI_MULTx_L[71:0]
38371643-03.2022.30.11
Figure 92: High Bank Multipliers Input Selection
Note
The noted MUX inputs in the preceding diagram have the following conditions:
@ 1. BRAM DI N 71: 0] and BRAM DQOUT[143: 0] are logical names for the respective signal paths.

The physical port names vary, and are listed in the following Ports table.

2. LRAM DQUT[143: 0] is an internal connection only from the coupled LRAM. This is not available

as an input port on the MLP.

Achronix Proprietary and Confidential

168

Speedcore Component Library User Guide (UG065)

Iram_out2multb_|

mux_sel_multX_I

M FWDO_MULTx_L[71:0]
MLP_DIN[71:0] ————
 EEE—
—
LRAM_DOUT([71:0](2)
—_—
 —
BRAM_DOUT([71:0](1) —/— —— BYTESEL To multX multipliers [7:0]
_—
_
_
P | multb_I
1 del_multX_| !
| cesel_multX_I |
| rstsel_multX_Iv |
FWDI_MULTx_L[71:0] 38371543-04.2022.30.1

Figure 93: Low Bank Multipliers Input Selection

Note
The noted MUX inputs in the preceding diagram have the following conditions:
i) 1. BRAM_DIN[71:0] and BRAM_DOUT[143:0] are logical names for the respective signal paths.
The physical port names vary, and are listed in the following Ports table.

2. LRAM_DOUT[143:0] is an internal connection only from the coupled LRAM. This is not available
as an input port on the MLP.

Achronix Proprietary and Confidential 169

Speedcore Component Library User Guide (UG065)

Parameters

Table 120: Input Selection Parameters

Parameter Supported Values Default Value

Description

nux_sel _mul ta_h[2: 0] 3' b000-3' b111 3' b000

" b000 — MLP_DI N[71: 0] .

b001 — BRAM DI N[71: 0] .

b010 — LRAM DoUT[71: 0] . (D

' b011 — LRAM DOUT[143: 72] . ()
3' 100 — BRAM DOUT[71: 0] . (D
3' b101 — BRAM DOUT[143: 72] . @
3' b110 — FWDI _MULTA L[71: 0] .
3'b111 — FWDI_MULTA H 71:0].

nux_sel _mul ta_I [1: 0] 2' b00-2' b1l 2' b00

" b00 — MLP_DI N[71: 0] .

b01 — LRAM DOUT[71: 0] . (V)
b10 — BRAM DOUT[71: 0] . @
"b1l—FWDI_MIULTA L[71:0].

NN NN

nux_sel _mul tb_h[2: 0] 3' b000-3' b111 3' b000

3' b000 — M.P_DI N[71: 0] .
3' b001 — BRAM DI N[71: 0] .

3' b010 — LRAM DoUT[71: 0] . (1)
3' b011 — LRAM DOUT 143: 72] . (1)
3' 100 — BRAM DOUT[71: 0] . @

3' b101 — BRAM DOUT] 143: 72] . @
3' b110 — FWDI_MULTB L[71: 0] .
"b111 - FWDI _MULTB H 71:0] .

w

mux_sel _mul tb_| [1: 0] 2' b00-2' b1l 2' b0

2' b00 — M_.P_DI N[71: 0] .
2' b01 — LRAM bout[71: 0] . ()
2' b10 — BRAM DOUT[71: 0] . @
2' b1l - FWD _MULTB L[71:0].

I ram out 2mul tb_| 1' b0-1' b1 1' b0

Routes LRAM DOUT[71: 0] direct to the mul t b_| bus, bypassing mux_sel _m
ultb_I:

1' b0 —"b" input to the multipliers is the bus selected by mux_sel _mul tb_I .
1' bl -"b" inputto the low bank of multipliers is LRAM DOUT[71: 0] . M

I ram out 2rmul tb_h 1' bO-1' b1

Routes LRAM DOUT[143: 72] direct to the nul t b_h bus, bypassing mux_sel
_mul tb_h:

1' b0 —"b" input to the multipliers is the bus selected by mux_sel _nmul t b_h.
1'bl—"b' inputto the high bank of multipliers is LRAM DOUT[143: 72] . (1)

cesel _mul t X_Y[3: 0] 4' b0000—4' b1101 Must be set (0-13)

Selects the ce inputs for each register group:
4' b0000 —1' bO.

4' b0001 —ce[0] .

4' b0010 —ce[1] .
4' b0011 —ce[2] .
4' b0100 —ce[3] .
4' b0101 —ce[4] .
4' b0110 —ce[5] .
4' b0111 —ce[6] .
4' b1000 —ce[7] .
4' b1001 —ce[8] .
4' b1010 —ce[9] .
4' b1011 —ce[10] .
4' b1100 —ce[11] .
4'b1101 —1' bl.

Selects the r st n input for each register group:

Achronix Proprietary and Confidential

170

Speedcore Component Library User Guide (UG065)

Parameter

Supported Values

Default Value

Description

rstsel _nul t X_Y[2: 0]

3' b000-3' b101

Must be set (0-5)

' b000 —1' bO.
b001 —rstn[0].
b010 —rstn[1].
b011 —rstn[2].
b100 —rstn[3].
b101 —-1' b1.

QW ww e

Selects the reset mode (clocked vs. unclocked) for each register group:

following Ports table.

rst_node_mult X_Y 1' b0-1' bl 1' b0 1' b0 — synchronous reset mode.
1' bl — asynchronous reset mode.
Controls if each register group is enabled:
del _nul t X_Y 1' b0-1' bl 1' b0 1' b0 — pipeline register is disabled.
1' bl — pipeline register is enabled.
Table Notes

1. LRAM DQUT[143: 0] is an internal connection only from the coupled LRAM. This is not available as an input port on the MLP.
2. BRAM DI N[71: 0] and BRAM DQUT][143: 0] are logical names for the respective signal paths. The physical port names vary, and are listed in the

Ports

Table 121: Input Selection Ports

Name Direction Description
di n[71: 0] Input M.P_DI N[71: 0] data inputs
.)) Dedicated path from co-sited ACX_BRAM72K. Connects
m pr am_br andi n2m pdl n[71: O] InPUt BRAM DI N[71: O] port to MLP.
(1) Dedicated path from co-sited ACX_BRAM72K. Connects
m pram br andout 2m p[143: 0] Input BRAM DOUT[143: 0] to MLP.
fwdi_mul ta_h[71: 0] Input For\/\./afd cascade path inputs for multiplier A inputs, higher
multiplier block.
fwdi _mul tb_h[71: 0] Input For\/\./afd cascade path inputs for multiplier B inputs, higher
multiplier block.
fwdi _multa | [71:0] Input For\/\./afd cascade path inputs for multiplier A inputs, lower
multiplier block.
fwdi _multh_I [71: 0] Input For\/\./afd cascade path inputs for multiplier B inputs, lower
multiplier block.
fwdo_mul ta_h[71: 0] Output FOT’V\.Iand cascade path output for multiplier A inputs, higher
multiplier block.

Achronix Proprietary and Confidential

171

Speedcore Component Library User Guide (UG065)

Name

Direction

Description

fwdo_mul tb_h[71: 0]

Output

Forward cascade path output for multiplier B inputs, higher
multiplier block. This bus is the selection from

mul t _sel _mul t b_h and is not affected by the value of

| ram_ out 2nul t b_h.

fwdo_multa_ | [71: 0]

Output

Forward cascade path output for multiplier A inputs, lower
multiplier block.

fwdo_rmultb_I[71: 0]

Output

Forward cascade path output for multiplier B inputs, lower
multiplier block. This bus is the selection from

mul t _sel _mul tb_I| and is not affected by the value of
lramout2multb_I.

Table Notes

1. This port can only be connected to the equivalent, same-named output on a ACX_BRAM72K. This port
cannot be driven directly by fabric logic. A BRAM must be instantiated to use this connection.

Achronix Proprietary and Confidential

172

Speedcore Component Library User Guide (UG065)

Integer Modes

The most straightforward operation of the ACX_MLP72 is in integer mode, when up to 32 parallel multiplications
can be performed, and combined with various adder and accumulation stages.

Byte Selection

When the four input buses have been selected; the buses are divided up into "byte" lanes. These lanes are then
sent to each multiplier. Normally byte implies an 8-bit signal, however in this instance the signal width varies and
is dependent upon the selected number format. Throughout this description, byte is used as nomenclature for the
selected group of bits sent to each multiplier. The byte selection is controlled by the two parameters,

byt esel _00_07 to select the words from mul t a_| and mul t b_I| into multipliers [7:0], and byt esel _08_15 to
select the words from nul t a_h and nul t b_h for multipliers[15:8].

In most applications, byt esel _00_07 and byt esel _08_15 are assigned the same value. However, it is
possible to assign different values, particularly when treating the MLP72 as two independent halves. In addition,
for the expanded modes (%2 and x4) byt esel _00_07 value may retain the same value as for the x1 mode
configuration, with just byt esel 08 15 changing to map the bytes to the upper multipliers.

The sources fornmul ta_| ,mul tb_I, nul ta_h, and nul t b_h are selected independently. With particular

byt esel mappings, the same input source could be used for the a and b multiplier inputs. For instance, if
selecting Int8 in 1x mode (only 4 multipliers used), then both nul t a_I and nul t b_| can be set to select the
MLP_DI N[71: 0] input. If this input is packed as M_LP_DI N[71: 0] = {8' h00O, b3, b2, bl, b0, a3,

a2, al, a0}, then using the correct byt esel , the a and b inputs to the 4 multipliers can be selected from just
this one single input. (As reference, in this example, byt esel _00_07 and byt esel _08_15 should both be set
to 'h0).

The following tables show the integer byte selection from each input bus, based on the values of byt esel . The
tables are grouped by the required number format. Greyed out cells are not used, and should be set to 1'b0.

Achronix Proprietary and Confidential 173

Speedcore Component Library User Guide (UG065)

Int8
A total of up to 16 multipliers can be used, in either x1, x2, x4 or a split mode.

Table 122: Four Multipliers (x1 Mode - bytesel_00_07 = 'h00; bytesel_08_15 = 'h00)

Input Bus | [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
multa_| a3 a2 al a0
multb_| b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table 123: Eight Multipliers (2 Mode - bytesel_00_07 = 'h01; bytesel_08_15 = 'h01)

Input Bus | [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
multa_| a7 ab ab a4 a3 a2 al a0
multb_| b7 b6 b5 b4 b3 b2 b1 b0
multa_h Unused

multb_h Unused

Table 124: Sixteen Multipliers (x4 Mode - bytesel_00_07 = 'h01; bytesel_08_15 = 'h21)

Input Bus | [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
multa_| a7 ab ab a4 a3 a2 al a0
multb_| b7 b6 b5 b4 b3 b2 b1 b0
multa_h a15 al4 al3 al2 al1 al10 a9 a8
multb_h b15 b14 b13 b12 b11 b10 b9 b8

The following mode uses 4 multipliers from the lower half, and 4 multipliers from the top half of the MLP72.
Table 125: Eight Multipliers (x2 Split Mode - bytesel_00_07 = 'h00; bytesel_08_15 = 'h20)

Input Bus | [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
multa_| a3 a2 al a0
multb_| b3 b2 b1 b0

multa_h all al0 a9 a8
multb_h b11 b10 b9 b8

Achronix Proprietary and Confidential 174

Speedcore Component Library User Guide (UG065)

Int7

A total of up to 16 multipliers can be used, in either x1, x2, x4 or a split mode.
Table 126: Five Multipliers (x1 Mode - bytesel_00_07 = 'h07; bytesel_08_15 = 'h07)

Input Bus | [71:70] | [69:63] | [62:56] | [55:49] | [48:42] | [41:35] | [34:28] | [27:21] | [20:14] | [13:7] | [6:0]
multa_| a4 a3 a2 al a0
multb_| b4 b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table 127: Ten Multipliers (2 Mode - bytesel_00_07 = 'h08; bytesel_08_15 = 'h08)

Input Bus | [71:70] | [69:63] | [62:56] | [55:49] | [48:42] | [41:35] | [34:28] | [27:21] | [20:14] | [13:7] | [6:0]
multa_| a7 a6 ab a4 a3 a2 al a0
multb_| b7 b6 b5 b4 b3 b2 b1 b0
multa_h a9 a8

multb_h b9 b8

Table 128: Sixteen Multipliers (x4 Mode - bytesel_00_07 = 'h08; bytesel_08_15 = 'h28)

Input Bus | [71:70] | [69:63] | [62:56] | [55:49] | [48:42] | [41:35] | [34:28] | [27:21] | [20:14] | [13:7] | [6:0]
multa_| a7 a6 ab a4 a3 a2 al a0
multb_| b7 b6 b5 b4 b3 b2 b1 b0
multa_h al5 al4 al3 al12 all al10 a9 a8
multb_h b15 b14 b13 b12 b11 b10 b9 b8

The following mode uses 5 multipliers from the lower half, and 5 multipliers from the top half of the MLP72.
Table 129: Ten Multipliers (%2 Split Mode - bytesel_00_07 = 'h07; bytesel_08_15 = 'h27)

Input Bus | [71:70] | [69:63] | [62:56] | [55:49] | [48:42] | [41:35] | [34:28] | [27:21] | [20:14] | [13:7] | [6:0]
multa_| a4 a3 a2 ail a0
multb_| b4 b3 b2 b1 b0

multa_h al2 all al0 a9 a8
multb_h b12 b11 b10 b9 b8

Achronix Proprietary and Confidential

175

Speedcore Component Library User Guide (UG065)

Inté

A total of up to 16 multipliers can be used, in either x1, x2, x4 or a split mode.
Table 130: Six Multipliers (x1 Mode - bytesel_00_07 = 'hOa. bytesel_08_15 = 'h0Oa)

Input Bus | [71:66] | [65:60] | [59:54] | [53:48] | [47:42] | [41:36] | [35:30] | [29:24] | [23:18] | [17:12] | [11:6] | [5:0]
multa_| ab a4 a3 a2 al a0
multb_| b5 b4 b3 b2 b1 b0
multa_h Unused
multb_h Unused
Table 131: Twelve Multipliers (x2 Mode - bytesel_00_07 = 'hOb; bytesel_08_15 = 'h0Ob)
Input Bus | [71:66] | [65:60] | [59:54] | [53:48] | [47:42] | [41:36] | [35:30] | [29:24] | [23:18] | [17:12] | [11:6] | [5:0]
multa_| a7 a6 ab a4 a3 a2 al a0
multb_| b7 b6 b5 b4 b3 b2 b1 b0
multa_h al1 al10 a9 a8
multb_h b11 b10 b9 b8
Table 132: Sixteen Multipliers (x4 Mode - bytesel_00_07 = 'hOb; bytesel_08_15 = 'h2b)
Input Bus | [71:66] | [65:60] | [59:54] | [53:48] | [47:42] | [41:36] | [35:30] | [29:24] | [23:18] | [17:12] | [11:6] | [5:0]
multa_| a7 a6 ab a4 a3 a2 al a0
multb_| b7 b6 b5 b4 b3 b2 b1 b0
multa_h a15 al4 al3 al12 all a10 a9 a8
multb_h b15 b14 b13 b12 b11 b10 b9 b8
176

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

The following mode uses 6 multipliers from the lower half, and 6 multipliers from the top half of the MLP72.
Table 133: Twelve Multipliers (%2 Split Mode - bytesel_00_07 = 'hOa; bytesel_08_15 = 'h2a)

Input Bus | [71:66] | [65:60] | [59:54] | [563:48] | [47:42] | [41:36] | [35:30] | [29:24] | [23:18] | [17:12] | [11:6] | [5:0]
multa_| ab a4 a3 a2 al a0
multb_| b5 b4 b3 b2 b1 b0

multa_h al13 al12 all a10 a9 a8
multb_h b13 b12 b11 b10 b9 b8

Int4

MLP72 supports up to 32 int4 multipliers. This is achieved by internally dividing each of the native int8 multipliers
into two. There are no separate byt esel modes for int4. Instead, use the int8 byt esel modes, packing two int4
arguments per int8 value. The number of mapped int4 multiplications is double the number of int8 multiplications

for the same mode.

Int3

MLP72 supports up to 32 int3 multipliers. This is achieved by internally dividing each of the native int8 multipliers
into two. There are no separate byt esel modes for int3. Instead, use the int6 byt esel modes, packing two int3
arguments per int6 value. The number of mapped int3 multiplications is double the number of int6 multiplications

for the same mode.

Int16
A total of up to 4 multiplications can be performed in parallel, in either x1, x2, split or compact mode.

Table 134: Two Multiplications (x1 Mode - bytesel_00_07 = 'h11. bytesel_08_15 = 'hi1)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
multa_| al a0
multb_| b1 b0

multa_h Unused

multb_h Unused

Table 135: Four Multiplications (2 Mode - bytesel_00_07 = 'h12. bytesel_08_15 = 'h12)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
multa_| al a0
multb_| b1 b0
multa_h a3 a2

multb_h b3 b2

Achronix Proprietary and Confidential 177

Speedcore Component Library User Guide (UG065)

The following mode achieves 2 multiplications in the lower half, and 2 multiplications in the top half of the MLP72.
Table 136: Four Multiplications (x2 Split Mode - bytesel_00_07 = 'h11. bytesel_08_15 = 'h31)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
multa_| al a0
multb_| b1 b0

multa_h a3 a2
multb_h b3 b2

The following mode achieves 2 multiplications in the lower half, and 2 multiplications in the top half of the MLP72.
Table 137: Four Multiplications (2 Compact Mode - bytesel_00_07 = 'h12. bytesel_08_15 = 'h32)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
multa_| al a0
multb_| b1 b0
multa_h a3 a2
multb_h b3 b2

Achronix Proprietary and Confidential 178

Speedcore Component Library User Guide (UG065)

Parameters

Table 138: Integer Byte Selection Parameters

Parameter Supported Values | Default Value Description

5' h00 — Int8 x1 and x2 split mode.
5' h01 - Int8 x2 and x4 mode.
5' h07 — Int7 x1 and x2 mode.
5' h08 — Int7 x2 and x4 mode.

byt esel _00_07[4: 0] 5' h00-5' h12 5' h0o 5' hOA— Int6 x1 and x2 split mode.
5' hOB - Int6 x2 and x4 mode.
5' h11l - Int16 x1 mode.
5'h12 — Int16 x2 mode.
6' h0O0 — Int8 x1 mode.
6' h01 — Int8 x2 mode.
6' h07 — Int7 x1 mode.
6' h08 — Int7 x2 mode.
6' hOA - Int6 x1 mode.
6' hOB — Int6 x2 mode.
6' hl11l — Int16 x1 mode.
byt esel _08_15[5: 0] 6' h00-6' h2B 6' h0O 6" h12 —Int16 x2 mode.

6' h20 — Int8 x2 split mode.

6' h21 — Int8 x4 mode.

6' h27 — Int7 x2 split mode.

6' h28 — Int7 x4 mode.

6' h2A - Int6 %2 split mode.

6' h2B - Int6 x4 mode.

6' h31 — Int16 x2 split mode.

6' h32 — Int16 x2 compact mode.

Multiplier Stage

The ACX_MLP72 contains 16 integer multipliers, each of which can multiply two 8 bit values. These multipliers
can then either be combined to support multiplication of larger integer values such as 16 bit, or else subdivided to
support double the multiplication capacity for 4 and 3 bit integers. The multipliers are divided into two banks, high
and low, and each bank is fed from the corresponding input stage.

Within each bank, there are 8 multipliers which are summed as two groups of 4. These intermediate sums are
then optionally summed, or subtracted from each other. Finally the sum of each bank is added together to give
an overall result, representing the sum of all 16 input multipliers.

The input to each integer multiplier supports an optional delay stage. For multipliers[3:0] each individual input has
it's own delay stage control, including control of the reset mode. For multipliers[15:4], the delay stages are
controlled in banks of 4, corresponding to the group of 4 multipliers which are initially summed together.

The structure of integer multiplication, summing and delay stages is shown in the following figure. The
parameters which control signal selection, delay stage selection, add or subtract are shown as text only
alongside the component they apply to.

Achronix Proprietary and Confidential 179

Speedcore Component Library User Guide (UG065)

Stage 1 Registers

multA[15:12]
4 multipliers

ADD[15:12]

del_mult12_15a
cesel_mult12_15a
rstsel_mult12_15a

add_08_15_sub

multA[15:12] add_08_15_bypass

del_mult12_15b
cesel_mult12_15b
rstsel_mult12_15b

multA[11:8]

del_add_00_07_reg
cesel_add_00_07_reg
rstsel_add_00_07_reg

4 multipliers ADD_SUBI[15:8]

del_mult08_11a ADDI[11:8]

cesel_mult08_11a
rstsel_mult08_11a

ADDI[15:8]

multA[11:8]

del_mult08_11b
cesel_mult08_11b
rstsel_mult08_11b

multA[7:4]
4 multipliers

del_mult04_07a ADD[7:4]

cesel_mult04_07a
rstsel_mult04_07a

ADD[15:0]

add_00_07_sub

multA[7:4] add_00_07_bypass

del_mult04_07b
cesel_mult04_07b
rstsel_mult04_07b

multA[3:0]
del_add_00_07_reg

cesel_add_00_07_reg

rstsel_add_00_07_reg

4 multipliers ADD_SUB([15:8]

del_mult03/02/01/00a -
cesel_mult03/02/01/00a ADD[3:0]
rstsel_mult03/02/01/00a

rst_mode_mult03/02/01/00a

ADD[7:0]

multA[3:0]

del_mult03/02/01/00b
cesel_mult03/02/01/00b
rstsel_mult03/02/01/00b
rst_mode_mult03/02/01/00b

38371543-05.2022.30.11

Figure 94: Multiplication Stage Structure (Integer)

Parallel Multiplications

The ACX_MLP72 combines multipliers in appropriate structures based on the selected number formats. Each
multiplier natively supports an Int8 x Int8 multiplication with a 16 bit result. These multipliers can then also be
split to perform two parallel Int4 x Int4, or Int3 x Int3 multiplications. In these split modes, the output of the
multiplier can either be the two individual results (8 bits each, configured by the nul t rode_xx_xx parameter
SNOADD mode), or the sum of the two results. 16 parallel multiplications can then be achieved for number
formats of 8 bits and 6 bits. Finally, for number formats greater than 8 bits, such as Int16, a lower number of
parallel integer multiplications is achieved as the multipliers are combined to compute the larger result. The
maximum number of parallel multiplications for each number format is shown in the following table.

Achronix Proprietary and Confidential 180

Speedcore Component Library User Guide (UG065)

Table 139: Maximum Possible Integer Multiplications

Number Format | Maximum Parallel Multiplications
Int3 32

Int4 32

Int6 16

Int8 16

Int16 4

Number Formats

For details of the number formats used within the ACX_MLP72, refer to Number formats . In addition to the
actual number formats listed, there is a further processed format, Si gn - No Add, that is specific to the
ACX_MLP72.

Sign - No ADD (SNOADD)

SNOADD is an output only number format from a multiplier. When the multiplier is set to Int4 or Int3 format, the
multiplier is split into two separate multipliers, each performing either a Int4 x Int4, or Int3 x Int3 multiplication.
The multiplier can then be set to either add the two results together, to give the multiply-accumulate sum of the
two input pairs, or alternatively the multiplier can be set to output the two results in parallel, each using 8 bits of
the 16 bit multiplier output. It is not intended that there would be any further processing of this value within the
MLP72, instead this split value can be sent directly to the ACX_MLP72 output stage.

Format Consistency

Between the Input Selection and the Integer Multiplier Stage (see page 179) the ACX_MLP72 selects the
appropriate slice of the input bus to route to each multiplier. This slice selection is dependent upon the input
number format, and is controlled by the byt esel _xx_xx parameters, and detailed in Byte Selection (see page
173). Equally the multiplier modes are controlled by the nul t nbde_xx_xx parameters, which are dependent
upon the selected number format. The byt esel and nul t nrode parameters must be consistent in terms of
number format and sizes in order to achieve correct multiplication results.

Parameters

Parameters that are specific to the integer multiplication stage are detailed in the following table. For the
purposes of clarity, the delay stage parameters are not shown in this table, instead they are shown in the
previous Figure (see page 180).

Achronix Proprietary and Confidential 181

Speedcore Component Library User Guide (UG065)

Table 140: Integer Multiplication Parameters

Parameter

Supported Values

Default Value

Description

mul t nrode_00_07[4: 0]

5' h00-5' h11

5' hoo

5' h0O — SIGNED 8x8.

5' h01 — UNSIGNED 8x8.

5' h02 — SMAG 8x8 (SignMAGnitude).

5' h03 — SIGNED 7x7.

5' h04 — SMAG 7x7 (SignMAGnitude).

5' h05 — SIGNED 6x%6.

5' h06 — SMAG 6x6 (SignMAGnitude).

5' h07 — SIGNED 4x4.

5' h08 — SMAG 4x4 (SignMAGnitude).

5' h09 — SNOADD 4x4 (Sign-NOADDer).

5' hOA— SIGNED 3x3.

5' hOB — SMAG 3x3 (SignMAGnitude).

5' h0OC— SNOADD 3x3 (Sign-NOADDer).

5' hOD - SIGNED 16x16.

5' hOE - SA_UB 16%16 (SignedA_UnsignedB).
5' hOF — UA_SB 16x16 (UnsignedA_SignedB).
5' h10 — UNSIGNED 16x%16.

5'h11 — NO OP (NO OPeration).

5' h12 — A SIGNED, B UNSIGNED 8x8.

5' h13 — A UNSIGNED, B SIGNED 8x8.

mul t rode_08_15[4: 0]

5' h00-5' h11l

5' h0o

5' h0O — SIGNED 8x8.

5' h01 — UNSIGNED 8x8.

5' h02 — SMAG 8x8 (SignMAGnitude).

5' h03 — SIGNED 7x7.

5' h04 — SMAG 7x7 (SignMAGnitude).

5' hO5 — SIGNED 6x6.

5' h06 — SMAG 6x6 (SignMAGnitude).

5' h07 — SIGNED 4x4.

5' h08 — SMAG 4x4 (SignMAGnitude).

5' h09 — SNOADD 4x4 (Sign-NOADDer).

5' hOA — SIGNED 3x3.

5' hOB — SMAG 3x3 (SignMAGnitude).

5' h0C— SNOADD 3x3 (Sign-NOADDer).

5' hOD— SIGNED 16%16.

5' hOE — SA_UB 16x16 (SignedA_UnsignedB).
5' hOF — UA_SB 16x16 (UnsignedA_SignedB).
5' h10 — UNSIGNED 16x%16.

5' h11 — NO OP (NO OPeration).

5' h12 — A SIGNED, B UNSIGNED 8x8.

5' h13 — A UNSIGNED, B SIGNED 8x8.

add_00_07_bypass

1' b0-1' bl

1' b0

Controls if ADDO7 is bypassed:

1' b0 — ADDO_7_REGinput selects ADDO7 output.
1' b1l - ADDO_7_REGinput selects ADDO3 output.

add_00_07_sub

1' b0-1' bl

Controls if ADDO7 is in subtract mode:

1' b0 — ADDO7 performs A + B.
1' b1l - ADDO7 performs A — B.

add_08_15_bypass

1' b0-1' bl

Controls if ADD815 is bypassed:

1' b0 — ADD8_15_REG input selects ADD815 output.
1' b1 — ADD8_15_REG input selects ADD811 output.

add_08_15_sub

1'b0-1'bl

Controls if ADD815 is in subtract mode:

1' b0 — ADD815 performs A + B.
1' b1 — ADD815 performs A — B.

Achronix Proprietary and Confidential

182

Speedcore Component Library User Guide (UG065)

Output Stage

The ACX_MLP72 output stage supports addition, subtraction or accumulation of the output from the multiplier
stage. Other signals from the BRAM and LRAM may also be combined or routed through for specific

configurations.

rndsubload_share ——
sUB —P— "\

SUB_AD —/——~

LOAD ————

LOAD_AB ————#|

add_00_15_sel
fpmult_ab_bypass

add[7:0] ————»

add[15:0] —————»=

del_fpmult_ab_reg
cesel_fpmult_ab_sel
rstsel_fpmult_ab_sel

add_accum_ab_bypass

(floating point ab input)

fpadd_ab_dinb_sel

$ LRAM_DOUT[119:71]
$ LRAM_DOUT[47:0]

$ LRAM_DOUT[59:36]

FWDI_DOUT[47:0]

ADD_ACCUM_AB

(floating point ab sum)

(same circuit for cd)
dout_mip_sel

accum_ab_reg_din_sel

del_accum_ab_reg
cesel_acoum_ab_reg
rstsel_accum_ab_reg

——————— FWDO_DOUT[47:0]

outmode_sel

DOUT[71:0]

- mipram_mip_dout[47:0]

g

(floating point ab dout) —!

(floating point cd dout)

$ LRAM_DOUT[71:0]

* BRAM_DOUT[143:72]

Figure 95: Output Stage

mipram_mip_dout[95:48]

38371543-06.2022.02.12

Achronix Proprietary and Confidential

183

Speedcore Component Library User Guide (UG065)

Parameters

Table 141: Output Stage Parameters

Parameter

Supported
Values

Default
Value

Description

add_00_15_sel

1' b0-1' b1

Selects if the output of ADD015 is used:

1' b0 — ADDO_7_REG output is routed toward FPMULT_AB_REG.
1' b1l — ADDO015 output is routed toward FPMULT_AB_REG.

fpnul t _ab_bypass

1' bO-1' b1

Select to bypass (A*B) Floating-Point Multiplier:
1' b0 - floating-Point Multiplier is enabled.
1' b1 - floating-Point Multiplier is bypassed; integer multiplier is selected.

fpmul t _cd_bypass

1' bO-1' bl

Select to bypass (C*D) Floating-Point Multiplier:

1' b0 - floating-Point Multiplier is enabled.
1' b1 - floating-Point Multiplier is bypassed; integer multiplier is selected.

f padd_cd_di na_sel

1' bO-1' b1

Select the value between (C*D) Floating-Point multiplier and (A*B) Accumulator:

1' b0 - selection the value from (C*D) Floating-Point-Multiplier.
1' b1 - selection the value from (A*B) Accumulator.

This selector is not shown on the diagram above.

f padd_cd_di nb_sel [2: 0]

3' b000-3' b100

3' b000

Select the addend, or subtrahend for the CD Accumulator:

3' b000 — 48-bit ACCUM _CD_REGinput (registered).

3' b001 — 48-bit MLP Forward Cascaded input FWDI _DOUT[47: 0] .
3' b010 — 48-bit LRAM DOUT[47: 0] .

3' b011 — reserved.

3' b100 — 48-bit AB Accumulator data output.

f padd_ab_di nb_sel [2: 0]

3' b000-3' b101

3' b000

Select the addend, or subtrahend for the AB Accumulator:

3' b00O0 — 48-bit ACCUM_AB_REG input (always registered).

3' b001 — 48-bit MLP Forward Cascaded input FWDI _DOUT[47: 0] .

3' b010 — 48-bit LRAM DOUT] 47: 0] .(1)

3' b011 — 24-bit LRAM DOUT[59: 36] (top 24 bits tied to zero).

3' b100 — 24-bit MLP Forward Cascade input FWDI _DQUT[47: 24] (top 24 bits tied to zero).
3' b101 — 48-bit LRAM DOUT[119: 72] .

add_accum ab_bypass

1' bO-1' b1

Select to bypass the AB accumulator output:

1' b0 — integer AB accumulator value is used.
1' b1 — bypass integer AB accumulator.

add_accum cd_bypass

1' bO-1' b1

Select to bypass the CD accumulator output:

1' b0 — integer CD accumulator value is used.
1' b1 — bypass integer CD accumulator.

out _reg_din_sel [2:0]

3' b000-3' b110

2' b00

Select out _r eg input:

3' b00O0 — value is from Mult8x4.

3' b010 — output of floating point FP_ADD_CD accumulator.

3' b011 — output or bypass of integer CD accumulator, as set by add_accum cd_bypass.
3' b100 — 8-bit wide A * B output.

3' b110 — value is Mult16x2.

This selector is not shown on the diagram above.

accum ab_reg_di n_sel

1'b0-1' bl

1' b0

Select between integer and floating point AB result:

1' b0 — value from integer AB accumulator block.
1' b1 — value from floating point FP_ADD_AB accumulator block.

Select values for the forward DOUT cascade path:

2' b00 — value from optionally registered output OUT_REQJ 63: 0] (Not shown on diagram).
2' b01 — concatenated outputs of upper and lower MLP outputs { 24" h0, ACCUM_AB_REG

Achronix Proprietary and Confidential 184

Speedcore Component Library User Guide (UG065)

Parameter gl LN Description
Values Value
dout _m p_sel [1: 0] 2' hb00=2' b1l 2' 0O [23: 0], QUT_REG 23: 0] }, used to pass floating point values via f wdo_dout .
-7 2' b10 — value from optionally registered output ACCUM AB_REQ 47: 0] .
2' b11 — concatenated lower 36 bits from upper and lower MLP outputs { ACCUM AB_REG
[35:0], OUT_REG 35:0]}.
Select final DOUT value:
2' b00 — 72-bit output of value selected by parameter dout _m p_sel [1: 0] .
2' b01 — LRAM DouT] 71: 0] .(1
out node_sel [1: 0] 2' b00-2' b1l 2' b00 2' b10 — BRAM DOUT 143: 72] .
2' b11 — optionally registered concatenated outputs of floating point format conversion
registers with status { 20" hO, f p_ab_status, fp_cd_status, accum ab_reg,
out _reg}.
rndsubl oad_shar e 1" bO-1' b1 1' b0 Select to share Round, Sub, and Load input from the upper (cd sum) half with the lower (ab
sum) half.
Table Notes
1. LRAM_DOUT is not a physical port on the ACX_MLP72. It is an internal only connection from the associated tightly-coupled ACX_LRAM.

Ports

Table 142: Output Stage Ports

Name Direction Description
rndsubshare = 1' b0 — when the upper half cd_add_accum accumulator is enabled, load the accumulator
| oad Input with the add[15: 8] sum.
rndsubshare = 1' bl —load both ab_add_accum and cd_add_accum with their respective sum inputs.
rndsubshare = 1' b0 —when the lower half ab_add_accum accumulator is enabled, load the accumulator with
| oad_ab Input the output of the add_00_15_sel multiplexer.
rndsubshare = 1' bl —unused.
sub Inout rndsubshare = 1' b0 — configure upper half cd_add_accum adder to subtraction mode.
P rndsubshare = 1' bl — configure both add_accum adders to subtraction mode.
rndsubshare = 1' b0 — configure lower half ab_add_accum adder to subtraction mode.
sub_ab Input o
rndsubshare = 1' bl —unused.
dout [71: 0] Output The result of the multiply-accumulate operation.
fwdi _dout [47: 0] Input MLP72 internally calculated result, cascaded from the ACX_MLP72 block below.
fwdo_dout [47: 0] Output MLP72 internally calculated results, cascaded up to the ACX_MLP72 block above.
Bits[47:0] ACX_MLP72 internally calculated result truncated to 48 bits.
m pram m p_dout [95: 0] Output B|ts[?5:48] result of t.he ab sum path. .
The intended operation of M pram nl p_dout is when dout _m p_sel selects the result of the cd sum path.
Then ml pram_m p_dout is a concatenation of the cd and ab sums, each truncated to 48 bits.

Achronix Proprietary and Confidential 185

Speedcore Component Library User Guide (UG065)

Integrated LRAM

The ACX_MLP72 has an integrated Logic 2-kb RAM (LRAM) tightly bonded to both its external inputs and
internal signals. This LRAM enables local storage and reuse of both input values, and output results. The LRAM
is often referred to as a register file, particularly when it is configured to store and replay ACX_MLP72 results.
The LRAM can be configured as 36 bits x 64, 72 bits x 32, or 144 bits x 16, dependent upon the application.

Standalone LRAM

If an LRAM independent of the MLP72 is required, use the dedicated ACX_LRAM2K_SDP or
ACX_LRAM2K_FIFO (see page 449) primitive, appropriate to the application. These primitives have only the
required ACX_LRAMZ2K ports and parameters, simplifying instantiation.

Note

©@ Whenan ACX_LRAMZK is instantiated directly, the associated ACX_MLP72 is not available due to the
use of shared pins.

LRAM Operational Modes

When the LRAM is used as an integrated part of the ACX_MLP72, it can be operated in three modes (the mode
values correspond to the values set for the | ram i nput _control _node and | ram out put _contr ol _node
parameters):

® Mode 0 (default) — LRAM is slaved to co-sited ACX_BRAM72K. Using the wr nsel and r dnsel address
enables on the co-sited ACX_BRAM72K, the LRAM operates as an extension to the ACX_BRAM72K,
supporting additional address space. The data, read and write signals are connected from the
ACX_BRAM72K to the LRAM using the dedicated signal paths. This mode is intended for initializing the
LRAM via the NoC during power-up.

® Mode 1 — LRAM operates as either a RAM or FIFO (dependent upon | ram fi f o_enabl e). Re-
purposing several dual-use inputs (CE, RSTN, EXPB), the LRAM can store the results of the ACX_MLP72
calculation, and its output can be routed back into the ACX_MLP72 Input Selection stage. For details of
how the ACX_MLP72 inputs can be re-purposed to the LRAM, see LRAM Virtual Ports. (see page 186)

® Mode 2 — the LRAM must be set to operate as a FIFO in Mode 1 (I ram fi f o_enabl e = 1'b1). Mode 2
then adds additional signals that allow the reset of the FIFO address generators (see FIFO Address
Generators (see page 189)). This additional flexibility allows the LRAM to store groups of results or

coefficients that do not necessarily match the length of the FIFO, i.e., their length is not a power of 2".

Note

Although | ram i nput _control _node and | ram out put _control node are separate

(1) parameters, it is anticipated that in normal operation they would both be set to the same value. If the
user application requires these parameters to be set to differing values, it is recommended to discuss
the requirements with Achronix Support.

LRAM Virtual Ports

When the LRAM is configured within the ACX_MLP72, several of the ACX_MLP72 ports are re-purposed to the
LRAM. These configurations are also dependent upon the operating mode. These re-purposed ports have logical
internal signal names and can be considered virtual ports to the LRAM. The mapping of these virtual ports is
detailed in the following table.

Achronix Proprietary and Confidential 186

Speedcore Component Library User Guide (UG065)

Table 143: LRAM Virtual Port Mapping

External Pin

Virtual Port Name Description Mode 0 Mode 1 Mode 2

| ram wraddr[5: 0] | Write address. M pram wr addr | expb[7: 2] 6' hO

I ramw en Write enable. m pram w en ce[7] ce[7]

| ram rdaddr[5: 0] |Read address. m pram rdaddr |{expb[1:0],ce[11:8]} |6'hO

I ram rden Read enable. m pram rden ce[6] ce[6]
Output register reset,

I ramrstregn (optionally block memory 1' bl rstn[0] rstnf 0]
reset).

I ram fsmwrst Re_set FIFO write address 1' b0 1' b0 cel[9]
pointer.

I ram fsmrdrst Re_set FIFO read address 1' b0 1' b0 ce[8]
pointer.

Achronix Proprietary and Confidential 187

Speedcore Component Library User Guide (UG065)

Interconnection Diagram
The block diagram and interconnection of the LRAM is shown in the following figure.

Iram_write_data_mode

Iram_accum_data_input_sel —\t
{84’h0, accum_ab_reg[23:0],12°h0, accum_cd_reg[23:0]} ————

/
L
{24’h0, accum_ab_reg[47:0], 24’h0, accum_cd_reg[47:0]}
multb_h[71:00], multb_I[71:0]
{MLPRAM_DIN2MLPDOUT[71:0], MLP_DIN[71:0] >
Iram_reg_dout
MLPRAM_DIN2MLPDOUT(143:0] - 'famv—_S'_—iSEi"'m
DOUT D Q> LRAM_DOUT[143:0]
|
CE[7] ——— :
Iram_wren >
RDEN RSTN |

MLPRAM_WREN ————
— WRADDR RDADDR

RSTN
CE[6] —

MLPRAM_RDEN ———— J

RSTN[0] —]

N

bl — P~ J
N
N

Iram_rden

Iram_regrstn

EXPB[7:2] —

Iram_wraddr

MLPRAM_WRADDRI[5:0] —

CE[9] —]
Iram_fsm_wrrst

b0 —
FIFO
Controller

Iram_input_control_mode

{EXPBI[L:0],CE[11:8]} —|

Iram_rdaddr

MLPRAM_RDADDRI[5:0] —"]

Text Legends

CAPITAL[71:0] = Inputs to MLP

lower case[71:0] = Internal MLP signals
Iram_fsm_rdrst Italics = parameters

CE[8] — ™

b0 —

Iram_fifo_enable

Iram_output_control_mode

38371543-07.2022.02.12

Figure 96: LRAM connectivity

Note

The LRAM DOUT[143: 0] port is an internal connection only to the coupled LRAM and is not available

@ asan output port from the MLP. Inputs prefixed with M_.PRAM are dedicated paths and can only be
connected to equivalent, same-named outputs on a co-sited ACX_ BRAM72K and cannot be driven
directly by fabric logic.

Achronix Proprietary and Confidential 188

Speedcore Component Library User Guide (UG065)

FIFO Address Generators

The LRAM is designed with particular flexibility around its FIFO address generators. allowing them to be used as
built-in generic address counters. This mode of operation is particularly useful when partial sums produced by
the MLP are written to the LRAM, to be read back some cycles later as input to the MLP for further additions.
Using built-in address pointers rather than external address counters reduces user logic, and allows the virtual

[ram wr addr and | ram r daddr ports defined above to be used as ce and expb inputs.

Three separate features can be enabled to transform the FIFO address pointers into regular address counters.
When these features are used, the FIFO counters no longer satisfy normal FIFO operation, they allow over and
underflow, and for entries to be read multiple times. Although the FIFO status flags are still computed, user logic
should ignore them as the pointers no longer maintain the FIFO property; this applies to the ful | , enpt y,

al nost _full,al nost_enpty,wite error,andread_error flags.

Length Adjustment

The ACX_MLP72 supports programmable end locations for both the write and read address generators. These
thresholds are set usingthe | ram fifo_w ptr_naxval andlramfifo_rdptr_maxval parameters.
When an address pointer is equal to the specified maxval threshold, the next increment assigns the address
counter back to 0.

Mode 2 Pointer Reset

In Mode 2 (requirement that| ram fi f o_enabl e = 1'b1) two external pins are re-purposed as internal FIFO
address generator resets:

® Asserting | ram f sm wrr st resets the FIFO write pointer to 0 on the next active edge of | ram wr cl k.

® Asserting | ram fsm rdr st resets the FIFO read pointer to 0 on the next active edge of | ram r dcl k.

These additional signals allow the read or write pointers to be dynamically reset.

Ignore Flags

Normally, in FIFO mode, a write in the full state has no effect: no memory location is changed, and the write
pointer is not incremented. Likewise, a read from an empty FIFO does not change the output, and the read
pointer is not incremented. However, whenthe [ram fifo_i gnore_fl ags parameter is set, these rules are
not followed: A write always writes the current memory location and increments the write pointer, and a read
always returns the value stored at the current location and increments the read pointer. (The increments wrap
around as specified by their mraxval thresholds).

Achronix Proprietary and Confidential 189

Speedcore Component Library User Guide (UG065)

Parameters
Table 144: LRAM Parameters

Parameter

Supported
Values

Default
Value

Description

I ramwcl k_polarity

"rise", "fall"

"rise"

Specifies whether registers are clocked by the rising or falling edge of the clock.

I ram rdcl k_pol arity

"rise", "fall"

"rise"

Specifies whether registers are clocked by the rising or falling edge of the clock.

| ram sync_node

1'b0-1' bl

1' b0

Set LRAM synchronous mode:

1' b0 — write clock and read clock are asynchronous.
1' b1 — write clock and read clock are the same clock (synchronous).

| ram reg_dout

1' bO-1' bl

Enable optional LRAM DOUT[143: 0] register:

1' b0 — LRAM read data is asynchronous read, no register.
1' b1 — LRAM read data is synchronous read, register enabled.

| ram sr_assertion

1' b0-1' b1

Set reset mode for the output register:
1' b0 — synchronous reset mode.
1' b1 — asynchronous reset mode.

If1 ram r eg_dout = 1'b0, then this parameter has no effect.

Iramfifo_enable

1' b0-1' bl

Enable LRAM FIFO mode:

1' b0 — LRAM is not in FIFO mode.
1' b1 - LRAM is in FIFO mode.

| ram cl ear _enabl e

1'b0-1' b1

1' b0

Enable LRAM block memory clear:
1' b0 — LRAM block memory clear is disabled.

1' b1 — when the virtual port | r am r egr st n is asserted (1'b0), the contents of the

LRAM memory are reset to 0.

Iramwite_w dth[1:0]

2' b00-2' b10

2' b0O

Select LRAM write data width and depth value:
2' b00 — data is 72-bit wide and 32 deep.

2' b01 — data is 36-bit wide and 64 deep.

2' b10 — data is 144-bit wide and 16 deep.

| ram read_wi dt h[1: 0]

2' b00-2' b10

2' b0O

Select LRAM read data width and depth value:
2' b00 — data is 72-bit wide and 32 deep.

2' b01 — data is 36-bit wide and 64 deep.

2' b10 — data is 144-bit wide and 16 deep.

| ram i nput _control _node[1: 0]

2' b00-2' b1l

2' b00

Select LRAM Input control mode:

2' b00 — BRAM controls LRAM write control.

2' b01 — LRAM uses MLP inputs.

2' b10 — LRAM uses MLP inputs with additional FIFO controller FSM inputs.
2' b11 — LRAM is off/disabled.

This controls the source of wraddr and wren.

| ram out put _control _node[1: 0]

2' b00-2' b1l

2' b00

Select LRAM output control mode:

2' b00 — BRAM controls LRAM read control.

2' b01 — LRAM uses MLP inputs.

2' b10 — LRAM uses MLP inputs with additional FIFO controller FSM inputs.
2' b11 — LRAM is off/disabled.

This controls the source of r daddr, r den and r egr st n:

LRAM DI N[143: 0] source:

2' b00 —m pram di n2m pdout [143: 0] . BRAM internal x144-bit write data.
2' b01 — aggregation of {m pram di n2m pdout [71: 0] , MLP_DI N[71: 0] }.
BRAM internal x72-bit input and MLP x72-bit data in.

2' b10 —input selected by | ram accum dat a_i nput _sel .

Achronix Proprietary and Confidential

190

Speedcore Component Library User Guide (UG065)

Parameter SUpRCie LN Description
Values Value

I ram write_data_node[1: 0] 2' b00-2' b11 2' b00 2' b11 — aggregation of mutliplier "b" input buses, {rul t b_h[71: 0] , nul t b_]|

[71:0]}.
Select Accumulated data for LRAM DI N[143: 0] :
1' b0 — aggregation of {24' h0, ADD_ACCUM AB[47: 0] , 24' hO, ADD_ACCUM CD

| ram accum dat a_i nput _sel 1' b0-1' bl 1' b0 [47: 0] }. x144-bit mode.

1' b1l — aggregation of {72' h0, 12' h0, ADD_ACCUM ABJ[23: 0] , 12" h0, ADD_ACCU
M_CD[23: 0] }. x72-bit mode.

I'ramfifo_wrptr_maxval [6: 0] 7' h00—7' h7F 7' h7E LRAM.FIFO write pointer maximum value (must be ' h7F for normal FIFO
operation)

Iramfifo_rdptr_maxval [6: 0] 7' h00-7' h7F 7' h7F LRAM FIFO read pointer maximum value (must be ' h7F for normal FIFO operation)
Enable LRAM FIFO synchronous mode:

Iram fifo_sync_node 1' b0-1" bl 1' bo 1' b0 — LRAM FIFOQ is in asynchronous mode.

1' b1 — LRAM FIFOQ is in synchronous mode.

Iramfifo_aful|_threshol d[6: 0] 7' h00—7" haF 7' haF Set LRAM FIFO almoslt full threshold. User-defined configuration bit. Recommended
values are less than 7' h3F.

. . o , Set LRAM FIFO almost empty threshold. User-defined configuration bit.

Iramfifo_aenpty_threshold 7' h00-7" hoF 7' hoo Recommended values are not less than 7' h0O1.

Enable LRAM FIFO address pointers to ignore empty/full status

1' b0 — LRAM FIFO does not write when the FIFO is full (asserting wri te_error)
and does not read when the FIFO is empty (asserting r ead_er r or). This is normal
FIFO behavior.

Ilramfifo_ignore_flags 1'b0-1' bl 1' b0 1' b1l — a write always writes to memory and increments the write pointer,
regardless of f ul | status. A read always reads from memory and increments the
read pointer, regardless of enpt y status. In this mode, the read and write pointers
act as regular address counters without operating as a FIFO. Ignore the ful | , enpt
y,al most_full,al nost_enpty,wite_error,andread_error flags.
Enable LRAM FIFO in first-word-fall-through (FWFT) mode:

I ramfifo_fwft_node 1' b0-1' bl 1' b0 1' bl — FWFT support is enabled.

1' b0 — FWFT is not enabled.

Table Notes

1. The LRAM output register is always reset when | r am r egr st n is asserted low, independent of the state of | ram cl ear _enabl e.

Ports
Table 145: LRAM Ports
Name Direction Description
I ramwecl k Input Write side clock input for LRAM.
| ram rdcl k Input Read side clock input for LRAM.
nl pram di n2m pdout [143: 0] (") Input Connects BRAM data input, either BRAM_DIN or BRAM internal din, to LRAM_DIN.
ml pram r daddr [5: 0] (") Input Allows BRAM to control LRAM read address.
ml pram w addr [5: 0] (") Input Allows BRAM to control LRAM write address.

Achronix Proprietary and Confidential

191

Speedcore Component Library User Guide (UG065)

Name Direction Description
nl pram rden(" Input Allows BRAM to control LRAM read enable.
nl pram w en(" Input Allows BRAM to control LRAM write enable.
m pram sbit_error M Input Allows BRAM to pass through single bit error indication.
m pram dbit_error ™M Input Allows BRAM to pass through double bit error indication.
shit_error Output Co-sited BRAM72K dedicated pass through of m pram sbi t _error.
dbit_error Output Co-sited BRAM72K dedicated pass through of m pram dbi t _error.
enpty Output LRAM FIFO empty flag.
full Output LRAM FIFO full flag.
al nost _enpty Output LRAM FIFO almost empty flag.
al nost _ful | Output LRAM FIFO almost full flag.
wite_error Output Asserted when LRAM in FIFO mode, and write enable is asserted when LRAM FIFO is full.
read_error Output Asserted when LRAM in FIFO mode, and read enable is asserted when LRAM FIFO is empty.
Table Notes

1. Allinputs prefixed with m pr am_ are a dedicated path from the co-sited ACX_BRAM72K and are for when the BRAM and LRAM operate as a co-
joined pair. The inputs can only be connected to equivalent, same-named outputs on the ACX_BRAM72K and cannot be driven directly by fabric
logic. Instantiate a ACX_BRAM72K to use these connections. If used, same site placement constraints must be used for the paired
ACX_BRAM72K and ACX_MLP72.

Achronix Proprietary and Confidential

192

Speedcore Component Library User Guide (UG065)

Block Floating-Point Modes

The ACX_MLP72 can be operated in either Integer, block floating-point or floating-point modes. The block
floating-point structure follows the integer structure with some differences around the use of the multipliers.

Input Selection

The selection of the input source to multiplier bus is the same as for integer. Refer to Input Selection (see page
193) for details

Multiplication Operation

Block floating point combines the integer multiplier-adder tree with the floating-point multipliers. The input
consists of integer mantissas (in signed magnitude format) and a shared exponent. The mantissa arguments
follow the same convention as integer mode: a0 refers to the 'a’ input of mult0, etc.

The exponents are named ea and eb for the 'ab’ floating point result, and ec and ed for the 'cd’ floating point
result. In all block floating-point modes, there is space for an 8-bit exponent, but a separate parameter may be
set to indicate that only a 5-bit exponent should be used.

In some modes, there is not sufficient data width in the input bus for all exponents. In these instances, the
separate expb[7: 0] input of the MLP is used to pass eb (and in some cases ed). Since there is only one expb
[1 input, if both eb and ed are mapped to expb, they must be equal. The expb[] input has dual purpose; it is
also used to input LRAM addresses. As a result, a number of the block floating-point modes are incompatible
with some LRAM modes.
The block floating point operation computes:

® mult _ab = (a0*b0 + ... + a7*b7) * 2ea * 2eb

(a8*b8 + ... + alb*bl5) * 2ec * 2ed

® mult_cd
Byte Selection

Note

@ The following byte selection tables are listed by the mantissa size, which have the same conventions
and names as their integer equivalents.

BFP Int8
Table 146: Int8 3 Multiplications (x1 Mode - bytesel_00_07 = 'h03; bytesel_08_15 = 'h03)

Input Bus | [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]

mul ta_l ea a2 al a0

nmul tb_| eb b2 bl o]0]

mul ta_h Unused

nmul tb_h Unused

Achronix Proprietary and Confidential 193

Speedcore Component Library User Guide (UG065)

Table 147: Int8 4 Multiplications (x1 Mode - bytesel_00_07 = 'h04. bytesel_08_15 = 'h04)

Input Bus [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
mul ta_l ea a3 a2 al a0
miltb | (M b3 b2 b1l bo
nmul ta_h Unused
mul tb_h Unused

Table Notes

1. The eb input is driven directly from the expb[7: 0] pins.

Table 148: Int8 6 Multiplications (x2 Mode Split - bytesel_00_07 = 'h03; bytesel_08_15 = 'h23)

Input Bus () | [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
nmul ta_l ea a2 al EW
mul tb_| eb b2 b1l b0
mul ta_h ec alo a9 a8
mul tb_h ed b10 b9 b8

Table Notes
1. A and B input data fields are numbered to reflect the multiplier to which they are applied.

Table 149: Int8 8 Multiplications (x2 Mode Exponent Split - ; bytesel_00_07 = 'h04; bytesel_08_15 =
'h24)

Input Bus [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
mul ta_l ea a3 a2 al a0
miltb_| (M b3 b2 b1 b0
mul ta_h ec all alo a9 a8
mul tb_h(™ b11 b10 b9 b8

Table Notes

1. The eb and ed exponents are the same, and are both taken from the expb[7: 0] pins.

Achronix Proprietary and Confidential 194

Speedcore Component Library User Guide (UG065)

Table 150: Int8 8 Multiplications (2 Mode - bytesel_00_07 = 'h05; bytesel_08_15 = 'h05)

Input Bus | [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
mita_l |ea a7 a6 a5 a4 a3 a2 al a0
miltb_| |eb b7 b6 b5 b4 b3 b2 bl b0
mul ta_h
mul tb_h
Table 151: Int8 16 Multiplications (x4 Mode - bytesel_00_07 = 'h05; bytesel_08_15 = 'h25)
Input Bus | [71:64] | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
mita_l |ea a7 a6 a5 a4 a3 a2 al a0
miltb_| |eb b7 b6 b5 b4 b3 b2 bl b0
milta_h |ec al5 als al3 al12 all al0 a9 a8
miltb_h |ed b15 b14 b13 b12 b1l b10 b9 b8
BFP Int7
Table 152: Int7 4 Multiplications (x1 Mode - bytesel_00_07 = 'h09; bytesel_08_15 = 'h09)
Input Bus | [71:64] | [63:56] | [55:49] | [48:42] | [41:35] | [34:28] | [27:21] | [20:14] | [13:7] | [6:0]
multa_l ea a3 a2 al a0
miltb_| |eb b3 b2 bl bo
milta_h | Unused
miltb_h | Unused

Table 153: Int7 8 Multiplications (x2 Mode Split - bytesel_00_07 = 'h09; bytesel_08_15 = 'h29)

Input Bus | [71:64] | [63:56] | [55:49] | [48:42] | [41:35] | [34:28] | [27:21] | [20:14] | [13:7] | [6:0]
mul ta_l ea a3 a2 al a0
mul tb_| eb b3 b2 b1 b0

mul ta_h ec all alo a9 a8
multb_h |ed b11 b10 b9 b8

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Table 154: Int7 9 Multiplications (x2 Mode - bytesel_00_07 = 'h1b; bytesel_08_15 = 'h1b)

Input Bus | [71:64] | 63 | [62:56] | [55:49] | [48:42] | [41:35] | [34:28] | [27:21] | [20:14] | [13:7] | [6:0]
mul ta_l ea a7 a6 a5 a4 a3 a2 al a0
nmul tb_| eb b7 b6 b5 b4 b3 b2 bl b0
mul ta_h ec a8
multb_h ed b8
Table 155: Int7 16 Multiplications (x4 Mode - bytesel_00_07 = 'h1C; bytesel_08_15 = 'h1C)
Input Bus | [71:64] | [63:56] | [55:49] | [48:42] | [41:35] | [34:28] | [27:21] | [20:14] | [13:7] | [6:0]
mul ta_l ea a7 a6 ab a4 a3 a2 al a0
nmul tb_| eb b7 b6 b5 b4 b3 b2 bl b0
nmul ta_h ec als al4d al3 alz all alo a9 a8
nmul tb_h ed b15 b14 b13 b12 b1l b10 b9 b8
BFP Int6
Table 156: Int6 4 Multiplications (x1 Mode - bytesel_00_07 = 'h0D; bytesel_08_15 = 'h0D)
Input Bus | [71:64] | [63:56] | [55:50] | [49:44] | [43:38] | [37:32] | [31:24] | [23:18] | [17:12] | [11:6] | [5:0]
mul ta_l ea a3 a2 al a0
nmul tb_| eb b3 b2 b1l o]0]
mul ta_h Unused
miltb_h | Unused

Table 157: Int6 5 Multiplications (x1 Mode - bytesel_00_07 = 'hOE; bytesel_08_15 = 'hOE)

Input Bus [71:64] | [63:60] | [59:54] | [53:48] | [47:42] | [41:36] | [35:30] | [29:24] | [23:18] | [17:12] | [11:6] | [5:0]
mul ta_l ea a4 a3 a2 al a0
miltb_| (M b4 b3 b2 b1 b0
multa_h Unused
nmul tb_h Unused

Table Notes

1. The eb input is driven directly from the expb[7: 0] pins.

Achronix Proprietary and Confidential

196

Speedcore Component Library User Guide (UG065)

Table 158: Int6 8 Multiplications (2 Mode - bytesel_00_07 = 'h0OD; bytesel_08_15 = 'h2D)

Input Bus | [71:64] | [63:56] | [55:50] | [49:44] | [43:38] | [37:32] | [31:24] | [23:18] | [17:12] | [11:6] | [5:0]
nmul ta_l ea a3 a2 al a0
mul tb_| eb b3 b2 b1 b0

nul ta_h ec all alo a9 a8
multb_h ed b11 b10 b9 b8

Table 159: Int6 10 Multiplications (x2 split Mode - bytesel_00_07 = 'hOE; bytesel_08_15 = 'h2E)

1. The eb and ed exponents are the same, and are both taken from the expb[7: 0] pins.

Input Bus | [71:64] | [63:60] | [59:54] | [53:48] | [47:42] | [41:36] | [35:30] | [29:24] | [23:18] | [17:12] | [11:6] | [5:0]
multa_l ea ad a3 a2 al a0
milth | (M b4 b3 b2 b1 b0
multa_h ec al2 all alo a9 a8
mul tb_h(" b12 b1l b10 b9 b8

Table Notes

Table 160: Int6 10 Multiplications (x2 split Mode - bytesel_00_07 = 'hOF; bytesel_08_15 = 'hOF)

Input Bus | [71:64] | [63:60] | [59:54] | [53:48] | [47:42] | [41:36] | [35:30] | [29:24] | [23:18] | [17:12] | [11:6] | [5:0]
mul ta_l ea a7 a6 ab a4 a3 a2 al a0
mul tb_| eb b7 b6 b5 b4 b3 b2 bl b0
mul ta_h ec a9 a8
miltb h |ed b9 b8
Table 161: Int6 16 Multiplications (x4 Mode - bytesel_00_07 = 'h10; bytesel_08_15 = 'h10)
Input Bus | [71:64] | [63:56] | [55:48] | [47:42] | [41:36] | [35:30] | [29:24] | [23:18] | [17:12] | [11:6] | [5:0]
mul ta_l ea a7 a6 a5 a4 a3 a2 al a0
nmul tb_| eb b7 b6 b5 b4 b3 b2 bl b0
multa_h ec als ala al3 al2 all al0 a9 a8
nmul tb_h ed b15 b14 b13 b12 b1l b10 b9 b8
Achronix Proprietary and Confidential 197

Speedcore Component Library User Guide (UG065)

BFP Int4 and Int3

There are 32 multipliers of these types. There are no separate bytesel modes for block floating point int4 and
block floating point int3. Instead, use the BFP int8 bytesel modes for BFP int4, packing two int4 arguments per
int8 value; the number of mapped int4 multiplications is double the number of int8 multiplications for the same
mode. Likewise, use the BFP int6 bytesel modes for BFP int3, packing two int3 arguments per int6 value.

BFP Int16

Unlike the other block floating-point modes, the BFP int16 input must be in two's complement format (there is no
16-bit signed magnitude support). A single BFP Int16 multiplication uses four multipliers, mult0, ..., mult3, in the
same way that four multipliers are required for integer Int16 multiplication.

Table 162: Int16 2 Multiplications (x1 Mode - bytesel_00_07 = 'h11; bytesel_08_15 = 'h11)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]
mul ta_l ea al a0
multh | M b1 b0
nmul ta_h Unused
mul tb_h Unused

Table Notes
1. The eb input is driven directly from the expb[7: 0] pins.

Table 163: Int16 4 Multiplications (x2 split Mode - bytesel_00_07 = 'h11; bytesel_08_15 = 'h31)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]
mul ta_l ea al a0
mul tb_| (1) b1 b0
mul ta_h ec a3 a2
mul t b_h(” b3 b2
Table Notes
1. The eb and ed exponents are the same, and are both taken from the expb[7: 0] pins

Table 164: Int16 4 Multiplications (x2 Mode - bytesel_00_07 = 'h12; bytesel_08_15 = 'h12)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]

mul ta_l ea al a0

miltb | |eb b1 b0

Achronix Proprietary and Confidential 198

Speedcore Component Library User Guide (UG065)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
multa_h ec a3 a2
miltb_h |ed b3 b2
Ports
Table 165: Block Floating-Point Inputs
Name Direction Description
expb[7: 0] Input Separate exponent input.
Parameters

Table 166: Block Floating-Point Byte Selection Parameters

Parameter

Supported Values

Default
Value

Description

byt esel _00_07[4: 0]

5'h00-5' h1C

5' h00

5' h03 — block floating point (BFP) Int8. 3 or 6 multiplications.
5' h04 — BFP Int8 separate expb. 4 or 8 multiplications.

5' h05 — BFP Int8 x2/x4 mode. 8 or 16 multiplications.

5' h09 — BFP Int7 x1/x2 mode. 4 or 8 multiplications.

5' hOD- BFP Int6.

5' hOE — BFP Int6 separate expb.

5' hOF — BFP Int6 x2 mode.

5' h10 — BFP Int6 x4 mode.

5' h1B — BFP Int7 x2 mode. 9 multiplications.

5' h1C- BFP Int7 x4 mode. 16 multiplications.

byt esel _08_15[5: 0]

6' h00—6' h3A

6' h00

[«

' h03 — BFP Int8 3 multiplications.

h04 — BFP Int8 separate expb. 4 multiplications.
' h05 — BFP Int8 x2 mode. 8 multiplications.

' h09 — BFP Int7 x1 mode. 4 multiplications.

' hOD - BFP Int6.

' hOE — BFP Int6 separate expb.

6' hOF — BFP Int6 x2 mode.

' h10 — BFP Int6 x4 mode.

' h1B - BFP Int7 x2 mode. 9 multiplications.

' h1C- BFP Int7 x4 mode. 16 multiplications.

' h23 — BFP Int8 6 multiplications.

h24 — BFP Int8 separate expb. 8 multiplications.
' h25 — BFP Int8 x4 mode. 16 multiplications.

' h29 — BFP Int7 x2 mode. 8 multiplications.

o oo oo

(SR N N N Ne)

fpmul t _ab_bl

ockfp

1' bO-1' b1

1' bo

Select (AxB) regular floating point or block floating point:

1' b0 — regular floating point (input — floating point numbers).
1' b1 — block floating point (input — integer mantissas and shared exponent).

f prrul t _ab_bl ockf p_node[2: 0]

3' b000-3' b100

3' b000

Select size of integer multipliers for (AxB) block floating point:
3' b000 — 8x8.

3' b001 — 16%16.

3' b011 —3x3.

3' b100 —4x4.

3'b110 — 6x6.

3'b111 - 7%7.

Select (CxD) regular floating point or block floating point:

Achronix Proprietary and Confidential

199

Speedcore Component Library User Guide (UG065)

Default inti
Parameter Supported Values Value Description
f pmul t _cd_bl ockf p 1' bO-1' b1 1' b0 1' b0 — regular floating point (input — floating point numbers).

1' b1 — block floating point (input — integer mantissas and shared exponent).

Select size of integer multipliers for (CxD) block floating point:
' b00O — 8x8.

' b001 — 16%16.

b011 — 3x3.

' b100 —4x4.

' b110 — 6x6.

'b111l —7x7.

fpmul t_cd_bl ockf p_node[2: 0] | 3' b000-3' b100 | 3' b00O

WWwwWwwww

Floating-Point Modes

For single and twin floating-point multiplications or addition, use the existing ACX_MLP72 Floating-Point Library.
This library consists of macros which instantiate the ACX_MLP72 suitably configured for different floating-point
operations. However, if the library does not contain macros suitably configured for the user's needs, then the
following details enable configuring the base ACX_MLP72 to perform a large number of differing floating-point
operations.

There are two floating-point multipliers, mult_ab with inputs 'a' and b, and mult_cd with inputs ¢ and d. In some
byte selection modes there is only space for a, b, and c. In those cases, d = 1.0. This configuration can be used
to compute Result=a x b + c.

Before configuring the ACX_MLP72 for floating-point operation, understand how the differing types of floating
point numbers are represented and manipulated within the ACX_MLP72 as detailed in Number Formats.

Byte Selection

The following byte selection values are available for floating-point inputs. In the configurations with three inputs,
resulting in a x b + ¢, the d input is automatically set to a value of 1.0 internal to the ACX_MLP72.

Note

@ BFLOAT16 refers to the Tensor flow nomenclature "Brain Float 16 bits". This term should not be
confused with block floating point which is referred to as BFP.

BFLOATI16

Table 167: Bfloat16. a x b + c. 8-bit Exponent. d=1.0 (x1 Mode - bytesel_00_07 = 'h13; bytesel _08_15 =
'h13)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]

mul ta_l a

mul th_| b

mul ta_h c

multb_h Unused

Achronix Proprietary and Confidential 200

Speedcore Component Library User Guide (UG065)

Table 168: Bfloat16. Two Multipliers. 8-bit exponent (x2 Split Mode - bytesel_00_07 = 'h13;
bytesel_08_15 = 'h33)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
mul ta_l a

mul tb_| b

mul ta_h c

mul tb_h d

Table 169: Bfloat16. Two Multipliers. 8-bit exponent (x2 Mode - bytesel_00_07 = 'h14; bytesel_08_15
='hi4)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
mul ta_l a

mul tb_| b

mul ta_h c

mul tb_h d

Table 170: Bfloat16. Two Multipliers. 8-bit exponent (x2 Alternate Mode - bytesel_00_07 = 'h15;
bytesel_08_15 = 'h15)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
mul ta_l a

mul tb_| b

mul ta_h c

mul tb_h d

Table 171: Bfloat16. Two Multipliers. 8-bit exponent (x2 Compact Mode - bytesel_00_07 = 'h15;
bytesel_08_15 = 'h35)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
mul ta_l a
mul tb_| b
mul ta_h c
mul tb_h d

201

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

FP16
Table 172: Floating Point 16. a x b + c¢; 5-bit Exponent; d = 1.0 (x1 Mode - bytesel_00_07 = 'h16;

bytesel_08_15 = 'h16)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]

mul ta_l

mul tb_|

mul ta_h c

mul tb_h Unused

Table 173: Floating Point 16. Two Multipliers ; 5-bit Exponent (x2 Split Mode - bytesel_00_07 = 'h16;
bytesel_08_15 = 'h36)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
nmul ta_l a

mul th_| b

mul ta_h c

mil tb_h d

Table 174: Floating Point 16. Two Multipliers; 5-bit Exponent. (x2 Mode - bytesel_00_07 = 'h17;
bytesel_08_15 = 'h17)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
mul ta_l a

mul tb_| b

mul ta_h c

mul tb_h d

Table 175: Floating Point 16. Two Multipliers; 5-bit Exponent. (x2 Alternate Mode - bytesel_00_07 =
'h18; bytesel_08_15 = 'h18)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]
mul ta_l a
miltb_| b
multa_h c

mul tb_h d

Achronix Proprietary and Confidential 202

Speedcore Component Library User Guide (UG065)

Table 176: Floating Point 16. Two Multipliers; 5-bit Exponent. (x2 Compact Mode - bytesel_00_07 =
'h18; bytesel_08_15 = 'h38)

Input Bus | [71:64] | [63:48] | [47:32] | [31:16] | [15:0]

mul ta_l

mul tb_|

multa_h

mul tb_h

FP24
Table 177: Floating Point 24. a x b + c. 8-bit Exponent. d = 1.0 (x1 Mode - bytesel_00_07 = 'h19;

bytesel_08_15 = 'h19)

Input Bus | [71:48] | [47:24] | [23:0]

mul ta_l

mul tb_| b

multa_h c

mul tb_h Unused

Table 178: Floating Point 24. Two Multipliers; 8-bit Exponent (x2 Split Mode - bytesel_00_07 = 'h19;
bytesel_08_15 = 'h39)

Input Bus | [71:48] | [47:24] | [23:0]
nmul ta_l a

mul th_| b

mul ta_h c

mul tbh_h d

Table 179: Floating Point 24. Two Multipliers; 8-bit Exponent. (x2 Mode - bytesel_00_07 = 'h1A;
bytesel_08_15 = 'h1A)

Input Bus | [71:48] | [47:24] | [23:0]
mul ta_l a

mul tb_| b

mul ta_h c

mul tb_h d

Achronix Proprietary and Confidential 203

Speedcore Component Library User Guide (UG065)

Table 180: Floating Point 24. Two Multipliers; 8-bit Exponent (x2 Compact Mode - bytesel_00_07 =

'hiA; bytesel_08_15 = 'h3A)

Input Bus | [71:48] | [47:24] | [23:0]

mul ta_l a

mul tb_| b

multa_h c

mul tb_h d
Parameters

Table 181: Floating-Point Byte Selection Parameters

Parameter

Supported Values

Default
Value

Description

byt esel _00_07[4: 0]

5' h00-5' h1C

5' h0O

5' h13 — BFLOAT16. 1 or 2 multiplications.
5' h14 — BFLOAT16. 2 multiplications.

5' h15 — BFLOAT16. 2 multiplications.
5'h16 — FP16. 1 or 2 multiplications.

5' h17 — FP16. 2 multiplications.

5' h18 — FP16. 2 multiplications.

5' h19 — FP24. 1 or 2 multiplications.

5' h1A - FP24. 2 multiplications.

byt esel _08_15[5: 0]

6' h00-6' h3A

6' h0O

6' h13 — BFLOAT16. x1 mode. 1 multiplication.
6' h14 — BFLOAT16. x2 mode. 2 multiplications.

6' h15 — BFLOAT16. x2 alternate mode. 2 multiplications.

6' h16 — FP16. x1 mode. 1 multiplications.

6' h17 — FP16. x2 mode. 2 multiplications.

6' h18 — FP16. %2 alternate mode. 2 multiplications.
6' h19 — FP24. x1 mode. 1 multiplication.

6' h1A—FP24. x2 mode. 2 multiplications.

6' h33 — BFLOAT16. x2 split mode. 2 multiplications.

6' h35 — BFLOAT16. x2 compact mode. 2 multiplications.

6' h36 — FP16. x2 split mode. 2 multiplications.
6' h38 — FP16. x2 compact mode. 2 multiplications.
6' h39 — FP24. x2 split mode. 2 multiplications.
6' h3A— FP24. x2 split mode. 2 multiplications.

Achronix Proprietary and Confidential

204

Speedcore Component Library User Guide (UG065)

Multiplication Stage

The ACX_MLP72 floating-point multiplication stage consists of two 24-bit full floating-point multipliers, and a 24-
bit full floating-point adder. The two multipliers perform parallel calculations of AxB and CxD. The adder sums
the two results to provide AxB + CxD.

There are two outputs from the multiplication stage. The lower half output can be selected between AxB, or (AxB
+ CxD). The upper half output is always CxD.

The numerical formats used by the multipliers and adder are determined by the format set by the byte selection
parameters, and in addition, the f prrul t _ab_exp_si ze and f prrul t _cd_exp_si ze parameters.

Warning!

The fpnult _ab_exp_sizeandfprult _cd _exp_si ze parameters must be consistent with the byte
selection (byt esel _xx_xx) parameters in terms of the selected number format. If they are
inconsistent, the final output result will be incorrect.

The following diagram shows the floating-point multiplication stage. The sign and exponent inputs are sourced
from the input selection and byte selection multiplexers. There are optional multi-stage delay registers for the
sign and exponent paths, and single delay registers for the multiplier outputs.

Achronix Proprietary and Confidential 205

Speedcore Component Library User Guide (UG065)

Stage 1 Registers Stage 2 Registers
(0-2 stages of delay)

(From Input Selection)
ExpD

del_expd[1:0]

n

FP_MULT_CD
(From Input Selection) 24 bit FP

ExpC
del_expc[1:0]
del_fpmult_cd_pipe_reg

' cesel_fpmult_cd_pipe_reg
rstsel_fpmult_cd_pipe_reg

(From integer)

_ (Tofloati int
ADD [15:8] (To floating point)

FPMULT_CD_PIPE_REG

(From Input Selection)
ExpD

del_expd[1:0]

(From Input Selection)
ExpC

del_expc[1:0]

FP_ADD_ABCD
24 bit FP

(From Input Selection)
ExpB

del_expd[1:0]

(From Input Selection)

ExpA fpadd_abcd_sel

FP_MULT_CD
24 bit FP

del_expc[1:0]

del_fpmult_ad_pipe_reg

cesel_fpmult_ad_pipe_reg [To ﬂoating point]
rstsel_fpmult_ad_pipe_reg FPADD_ABCD_SEL

(From integer)
ADD [7:0]

(From Input Selection)
ExpB

del_expb[1:0]

(From Input Selection)
ExpA
del_expal[1:0]

(J

Figure 97: Floating-Point Multiplier Stage

51478563-01.2022.17.12

Achronix Proprietary and Confidential 206

Speedcore Component Library User Guide (UG065)

Parameters

Table 182: Floating-Point Multiplication Stage Parameters

Default

Parameter Value

Supported Values

Description

del _expa_reg[1:0] 2' b00-2' b11 2' b00

Number of delay stages applied to floating point A input sign and
exponent from byte selection to FP_MULT_AB.

del _expb_reg[1: 0] 2' b00-2' b1l 2' b00

Number of delay stages applied to floating point B input sign and
exponent from byte selection to FP_MULT_AB.

del _expc_reg[1:0] 2' b00-2' b11 2' b00

Number of delay stages applied to floating point C input sign and
exponent from byte selection to FP_MULT_CD.

del _expd_reg[1: 0] 2' b00-2' b1l 2' b00

Number of delay stages applied to floating point D input sign and
exponent from byte selection to FP_MULT_CD.

f padd_abcd_sel 1'b0-1'bl 1' b0

FPADD_ABCD select:

1' b0 — FPMULT_AB output routed to FPMULT_AB_REG.

1' bl — Sum of FPMULT_AB + FPMULT_CD output routed to
FPMULT_AB_REG.

fprmul t _ab_bl ockfp 1'b0-1'bl 1' b0

Select (AxB) regular floating point or block floating point:

1' b0 — Regular floating point (input — floating-point numbers).

1' b1 - Block floating point (input — integer mantissas and shared
exponent).

fprul t _ab_exp_si ze 1'b0-1' bl 1' b0

Exponents ea and eb are represented by biased unsigned
integers ea and eb:

1' b0 — Bits ealeb are 8 bits.

1' bl — Bits ea/eb are 5 bits.

fpnul t _cd_bl ockfp 1'b0-1'bl 1' b0

Select (CxD) regular floating point or block floating point:

1' b0 — Regular floating point (input — floating point numbers).

1' b1 — Block floating point (input — integer mantissas and shared
exponent).

fprul t _cd_exp_size 1'b0-1' bl 1' b0

Exponents ec and ed are represented by biased unsigned
integers ec and ed:

1' b0 — Bits ec/ed are 8 bits.

1' b1 — Bits ec/ed are 5 bits.

Output Stage

The floating-point output stage has a common path and structure to the integer output stage. The ACX_MLP72
can be configured to select either the integer or the equivalent floating-point inputs at particular stages. The
output supports two 24-bit full floating-point adders which can be configured for either addition or accumulation.
Further the adders can be loaded (to start an accumulation), can be set for subtraction, and support optional

rounding modes.

The final output stage supports formatting the floating-point output to any one of the three floating-point formats
supported within the ACX_MLP72. This ability allows the ACX_MLP72 to externally support consistently sized
floating-point inputs and outputs (such as fp16 or bfloat16), while internally performing all calculations at fp24.

Achronix Proprietary and Confidential 207

Speedcore Component Library User Guide (UG065)

(from Integer)
ADD_ACCUM_CD

fpmult_cd_bypass

fpadd_cd_dina_sel

(From integer)

ADD_8_15_REG

(From floating point)

FPMULT_CD_PIPE_REG

fpadd_cd_dinb_sel —
FWDI_DOUT[47:0] ——/M——= 1

SLRAM_DOUT[47:0] ——/——»=

add_accum_cd_bypass

out_reg_din_sel

del_out_reg00/16/32/48
cesel_out_reg00/16/32/48
rstsel_out_reg00/16/32/48
rst_made_out_reg00/16/32/48

A_PLUS_B_XB ———

MULT8_BYP ———

del_fp_format_cd_reg
cesel_fp_format_cd_reg
rstsel_fp_format_cd_reg

MULT16_BYP ——|

FPADD_CD
24 bit FP

Format

fpadd_cd_output_format

dout_mlp_sel

$ LRAM_DOUT[71:0]

$ BRAM_DOUT[143:72]

(From Integer)
ADD_ACCUM_AB

fpmult_ab_bypass

(From integer)

ADD_0_15_SEL

(From floating point)

FPADD_ABCD_SEL

SLRAM_DOUT[119:72] | S——
SLRAM_DOUT[47:0] N
—

P

$LRAM_DOUT[59:36]

del_fpmult_ab_reg
cesel_fpmult_ab_reg
rstsel_fpmult_ab_reg

a

fpadd_ab_dinb_sel

o] Q
CE
RSTN
(J

add_accum_ab_bypass

accum_ab_reg_din_sel

del_accum _ab_reg
cesel_accum_ab_reg
rstsel_accum_ab_reg

Format

—format
del_fp_format_ab_reg

cesel_fp_format_ab_reg

rstsel_fp_format_ab_reg

$LRAM_DIN[47:0]

= FWDO_DOUT[47:0]

= mlpram_mlp_dout[47:0]

DOUT[7L:0]

outmode_sel

mipram_mip_dout[95:48]

FPADD_AB
24 bit FP

-

FWDI_DOUT[47:0]

OUT_REG

Figure 98: Floating-Point Output Stage

51478563-02.2022.17.12

The optional delay register outputting the top-half (CD) calculation is titted OUT_REG. This register bank is 64
bits and can optionally be enabled and reset in four banks of 16 bits each. This feature enables for power saving
if the required output is less than 64 bits. Only the required banks need be enabled; the other banks can be left

out of circuit or held in reset.

Achronix Proprietary and Confidential

208

Speedcore Component Library User Guide (UG065)

Parameters

Table 183: Floating-Point Output Stage Parameters

Parameter

Supported Values

Default
Value

Description

accum ab_reg_di n_sel

1' b0-1' b1

' bO

Select between integer and floating-point AB result:

1' b0 — Value from integer AB accumulator block.
1' b1 — Value from floating-point AB accumulator block.

add_accum ab_bypass

1' bO-1' bl

' bO

Select to bypass the AB accumulator output:
1' b0 — AB accumulator value is used.
1' b1 — Bypass AB accumulator.

add_accum cd_bypass

1' bO-1' bl

' bo

Select to bypass the CD accumulator output:

1' b0 — CD accumulator value is used.
1' b1 — Bypass CD accumulator.

dout _m p_sel [1: 0]

2' b00-2' b10

' b00

Select individual or concatenated results from OUT_REG and
ACCUM_AB_REG:

2' b00 — Value from optionally registered output {8'h0, OUT_REG[63:0]}.
2' b01 — Concatenated outputs of upper and lower MLP outputs {24'h0,
ACCUM_AB_REGJ[23:0], OUT_REGJ[23:0]}.

2' b10 — Value from optionally registered output {24'h0, ACCUM_AB_REG
[47:0]}.

2' b11 — Concatenated lower 36 bits from upper and lower MLP outputs
{ACCUM_AB_REG]I35:0], OUT_REG[35:0]}.

f padd_ab_nor nd

1'b0-1' bl

' bo

Disable FPADD_AB adder/accumulator rounding:
1' b0 — FPADD_AB round to even mode.
1' bl — FPADD_AB rounding disabled (truncation).

f padd_ab_di nb_sel [2: 0]

3' b000-3' b101

3

b000

Select the addend, or subtrahend for the FPADD_AB adder/accumulator:

3' b000 — 48-bit ACCUM_AB_REG input (always registered).

3' b001 — 48-bit MLP forward cascaded input FWDI_DOUTI[47:0].

3' b010 — 48-bit LRAM_DOUT[47:0].

3' b011 — 24-bit LRAM_DOUT[59:36] (top 24 bits tied to zero).

3' b100 — 24-bit MLP forward cascade input FWDI_DOUT[47:24] (top 24 bits
tied to zero).

3' b101 — 48-bit LRAM_DOUT[119:72].

f padd_ab_out put _fornat[1: 0]

2' b00-2' b10

' b00

Selection of floating-point output format of FPADD_AB floating-point adder
/accumulator:

2' b00 — Output format is FP24.

2' b01 — Output format is BFLOAT16.

2' b10 — Output format is FP16.

f padd_cd_di na_sel

1' bO-1' bl

' b0

Select the value between (CxD) floating-point multiplier and (AxB)
accumulator:

1' b0 — Select the output from the (CxD) floating-point multiplier.
1' bl — Select the output from the (AxB) accumulator.

f padd_cd_di nb_sel [2: 0]

3' b000-3' b100

3

b000

Select the addend, or subtrahend for the CD accumulator:

3' b000 —48-bit ACCUM_CD_REG input (registered).

3' b001 — 48-bit MLP forward cascaded input FWDI_DOUTI[47:0].
3' b010 — 48-bit LRAM_DOUT[47:0].

3' b011 — Reserved.

3' b100 — 48-bit AB Accumulator data output.

f padd_cd_nor nd

1' b0-1' bl

1

b0

Disable FPADD_CD rounding:
1' b0 — FPADD_CD round to even mode.
1' bl — FPADD_CD rounding disabled (truncation).

Achronix Proprietary and Confidential

209

Speedcore Component Library User Guide (UG065)

Default

Parameter Supported Values Value

Description

Selection of floating-point output format from FPADD_CD floating-point adder
Jaccumulator:

f padd_cd_out put _format[1: 0] 2' b00-2' b10 2' b00 2' b0O0 — Output format is FP24.

2' b01 — Output format is BFLOAT16.

2' b10 — Output format is FP16.

Select to bypass (AxB) floating-point multiplier:

fprul t _ab_bypass 1' b0-1" bl 1' bo 1' b0 — Floating-point Multiplier output is selected.
1' b1 — Integer multiplier output is selected.

Select to bypass (CxD) floating-point multiplier:
fprul t _cd_bypass 1' b0-1" bl 1' bo 1' b0 — Floating-point multiplier output is selected.
1' b1 — Integer multiplier output is selected.

Select to bypass floating-point value and accumulator value:
3' b000 — Value is from Mult8x4.

3' b010 — FP_ADD_CD floating-point value.

3' b011 — Bypass FP_ADD_CD accumulator value.

3' b100 — 8-wide A +/— B output.

3' b110 - Value is Mult16x2.

out _reg_din_sel [2:0] 3' b000-3' b100 2' b00

Select source of MLP DOUT:

2' b00 — 72-bit output of value selected by parameter dout_mlp_sel[1:0].

2' b01 - LRAM_DOUT[71:0].

out node_sel [1: 0] 2' b00-2' b10 2' b0O 2' b10 - BRAM_DOUT[143:72].

2' b11 — Optionally registered concatenated outputs of floating-point format
conversion registers with status {20'h0, w_fp_ab_status_reg,
w_fp_cd_status_reg, w_accum_ab_reg_output_format_reg,
w_out_reg_output_format_reg}.

Achronix Proprietary and Confidential 210

Speedcore Component Library User Guide (UG065)

Instantiation Template
Verilog

ACX_MLP72 #(
.mux_sel _nmulta_
.mux_sel _multa_h
.mux_sel _multb_|
.mux_sel _multb_h

.del _multa_l
.del _multa_h
.del _multb_I
.del _multb_h

.cesel _multa_

.cesel _multa_h
.cesel _multb_

.cesel _multb_h
.rstsel _multa_
.rstsel _multa_h
.rstsel _multb_
.rstsel _multb_h

.del _mul t 00a
.del _mul t0la
.del _nul t 02a
.del _mul t03a

.del _nmul t04_07a
.del _nul t08_11a
.del _mult12_15a

. del _nmul t 00a
.del _mul t0la
.del _nul t02a
.del _nmul t 03a

.del _nmul t04_07a
.del _nult08_11a
.del _nult12_15a
.cesel _mul t 00a
.cesel _mul t0la
.cesel _mul t02a
.cesel _mul t03a
.cesel _mul t04_07a
.cesel _nmult08_1lla
.cesel _multl1l2_15a
.rstsel _mul t 00a
.rstsel _mult0la
.rstsel _mul t02a
.rstsel _mul t03a
.rstsel _mult04_07a
.rstsel _nmult08_11a
.rstsel _mult12_15a
. byt esel _00_07

. bytesel _08_15

. mul t node_00_07

. mul t nonde_08_15
.add_00_07_bypass
.add_08_15_bypass
.del _add_00_07_reg
.del _add_08_15_reg

(rmux_sel _multa_l),
(mux_sel _multa_h),
(mux_sel _multb_I),
(rmux_sel _multb_h),
(del _multa_l)

(del _multa_h,),
(del _multb_I)

(del _mul tb_h)
(cesel _multa_l)
(cesel _multa_h),
(cesel _multb_l)
(cesel _multb_h)
(rstsel _multa_l)
(rstsel _multa_h)
(rstsel _multb_1),
(rstsel _multb_h)
(del _nul t 00a)

(del _mul t0la)

(del _nmul t 02a)

(del _nul t 03a)

(del _mul t04_07a),
(del _mul t08_11a)
(del _mult12_15a)
(del _nmul t 00a)

(del _nmul t01la)

(del _mul t 02a)

(del _nmul t 03a)

(del _mul t 04_07a)
(del _nmul t08_11a)
(del _mul t12_15a)
(cesel _mul t 00a)
(cesel _mul t01a)
(cesel _mul t 02a)
(cesel _mul t03a)
(cesel _mul t04_07a)
(cesel _nul t08_11a)
(cesel _nmult12_15a)
(rstsel _mul t00a)
(rstsel _mult0la)
(rstsel _mult02a)
(rstsel _mult03a),
(rstsel _mul t04_07a)
(rstsel _nmult08_11a),
(rstsel _mult12_15a),
(bytesel _00_07)
(bytesel _08_15),
(mul t rode_00_07),
(mul t rode_08_15)
(add_00_07_bypass)
(add_08_15_bypass)
(del _add_00_07_reg),
(del _add_08_15_reg),

Achronix Proprietary and Confidential 211

Speedcore Component Library User Guide (UG065)

.cesel _add_00_07_reg
.cesel _add_08_15_reg
.rstsel _add_00_07_reg
.rstsel _add_08_15_reg
.add_00_15_sel
.fpmul t _ab_bypass
.fpmult _cd_bypass

. f padd_ab_di nb_sel
.add_accum ab_bypass
.accum ab_reg_din_se
.del _accum ab_reg
.cesel _accum ab_reg
.rstsel _accum ab_reg
. rndsubl oad_share

. del _rndsubl oad_r eg
.cesel _rndsubl oad_reg
.rstsel _rndsubl oad_reg
.dout _m p_se

.out node_se

i_mp72 (

.clk

.din

. m pram brandout 2ni p
. m pram brandi n2m pdi n
.m pram_m p_dout

. sub

. | oad

.sub_ab

.l oad_ab

.ce

.rstn

. expb

. dout

.shit_error
.dbit_error

Cfull

.al most _full
.enpty

. al nost _enpty
.write_error
.read_error
.fwdo_multa_h
.fwdo_nultb_h
.fwdo_multa_
.fwdo_multh_

. fwdo_dout
.mpramdin

. m pram dout

. pram we

fwdi _multa_h
fwdi _multb_h
fwdi _multa_

fwdi _nmul tb_

. fwdi _dout

. m pram di n2m pdout
. m pram r daddr

. m pram w addr
.mpramdbit_error
.m pram rden

(cesel _add_00_07_reg)
(cesel _add_08_15_regq)
(rstsel _add_00_07_reqg),
(rstsel _add_08_15_regq)
(add_00_15_sel),
(fpmul t _ab_bypass)
(fpmul t _cd_bypass)
(fpadd_ab_di nb_sel),
(add_accum ab_bypass),
(accum ab_reg_din_sel),
(del _accum ab_req)
(cesel _accum ab_reg),
(rstsel _accum ab_reg),
(rndsubl oad_share)

(del _rndsubl oad_reg),
(cesel _rndsubl oad_reg),

(rstsel _rndsubl oad_reg)

(dout _m p_sel),
(out node_sel)

(clk),
(din),
(m pram brandout 2ni p),

(m pram branmdi n2m pdi n)

(m pram.n p_dout),
(sub),

(1 oad),

(sub_ab)

(1 oad_ab),

(ce),

(rstn),

(expb),

(dout),
(shit_error),
(dbit_error),
(full),

(al most _full),
(enpty),

(al nost _enpty),
(wite_error),
(read_error),
(fwdo_mul ta_h),
(fwdo_mul tb_h),
(fwdo_multa_l),
(fwdo_multb_I),
(fwdo_dout),

(m pramdin),

(m pram dout)
(m pramwe),
(fwdi _multa_h),
(fwdi _multb_h),
(fwdi _multa_l),
(fwdi _multb_l),
(fwdi _dout),

(m pram di n2m pdout),
(m pram_rdaddr)
(m pram w addr),
(m pramdbit_error),
(m pram_rden)

Achronix Proprietary and Confidential

212

Speedcore Component Library User Guide (UG065)

.m pramsbit_error
.m pramwen
Iramwecl k
.lramrdcl k

(m pramsbit_error),

(m pramwen),
(lramwcl k),
(I'ramrdcl k)

Achronix Proprietary and Confidential

213

Speedcore Component Library User Guide (UG065)

MLP72_INT

The ACX_MLP72_INT supports up to 12 integer multiply operations, followed by an adder tree and an optional
accumulate. The number of arithmetic operations that can be supported depends on the operand width, where
more arithmetic operations can be supported per clock cycle with narrower operands. Inputs can be encoded as
unsigned integers, signed two's-complement integers, or signed-magnitude integers. Outputs are always 48-bit
signed integers.

The supported arithmetic equations are as follows. The first equation represents the functionality of the block
when the accumulator is disabled, and the second represents the functionality of the block when the accumulator
is enabled, and dout ' is the previous value of the accumulator block. The number of operations as a function of
operand width are as shown.

1 I
dout= a0xb0 + alxbl + 32xb2 + a3xb3 + adXb4 + abxb5 + aSXbGE +a7xb7 + ... + al1xbll (no accumulator)
| |

. %

37160452-01.2022.16.11

Figure 99: ACX_MLP72_INT Arithmetic Expressions

Achronix Proprietary and Confidential 214

Speedcore Component Library User Guide (UG065)

clk

————— -

outreg_ce

outreg_rst

reg_ce[4:0]

reg_rstn[4:0]
inreg_ce
inreg_rst

3

o
@

INREG

Q
®

o
5}
o

3-bit operands

4-bit operands

L]

WY Y AR,
i{j

o
o

bit operands

16-
I
=

bl —

e imtnteetetttttt |

P e

perands
jo)
N

8-bito
o
e}

6-bit operands

a9 —=

b9 —»

al0 —»

b10 —

all —=

bll —=

a
o

*)
*)
*)
*)

r

OUTREG

ce

| dout[47:0]

D
*)

L L L)
P 10 O 4 1L 1 A1 AR 4B Y OB
i{j

WY ARV AW,
ii\@

*)
*)

Figure 100: ACX_MLP72_INT Block Diagram

37160452-02.2022.16.11

Achronix Proprietary and Confidential

215

Speedcore Component Library User Guide (UG065)

Parameters
Table 184: ACX_MLP72_INT Parameters

Supported Default

il Values Value

Description

Determines which edge of the input clock to use:

clk_polarity "rise", "fall" "rise" "rise" — rising edge of clock.
"fall" — falling edge of clock.

operand_wi dt h 3,4,6,7,8,16 8 Determines the width of the a and b input operands.

Determines the format of the input operands and the output result:

0 — unsigned (only supported for operand_width of 8 and 16).

nunber _f or mat 0,1,2,3 4 1 1- s?gned two's f:omplement.)

2 — signed-magnitude (only supported for operand_width of 8 or less).

3 — unsigned "A" input with signed "B" input (only supported for operand_width of 16).
4 — signed "A" input with unsigned "B" input (only supported for operand_width of 16).

Controls whether or not the optional accumulator is enabled:

accunul at or _enabl e 0,1 1 0 — accumulator is not enabled.
1 — accumulator is enabled.

i nreg_enabl e Controls whether or not the input register, intermediate registers and output register is enabled:
reg_enabl e 0,1 0 0 — disable the register.
outreg_enabl e 1 — enable the register. Results in extra latency.

Controls whether the assertion of the reset of the input registers is synchronous or asynchronous
with respect to the cl k input:

"clocked" — synchronous reset; the register is reset upon the next rising edge of the clock when
"clocked" | the associated r st n signal is asserted low. This mode is supported for all oper and_wi dt hs.
"unclocked" — asynchronous reset. The register is reset immediately when the associated r st n

signal is asserted low. See the section, Asynchronous Reset Rules, (see page 220) for more
details.

"clocked",

inreg_sr_assertion N "
98" unclocked

Controls whether the assertion of the reset of the output registers is synchronous or
asynchronous with respect to the cl k input:

"clocked", "olocked" | "clocked" —synchronous reset. The register is reset upon the next rising edge of the clock when
"unclocked" the associated r st n signal is asserted low.

"unclocked" — asynchronous reset. The register is reset immediately when the associated r st n
signal is asserted low.

outreg_sr_assertion

Achronix Proprietary and Confidential 216

Speedcore Component Library User Guide (UG065)

Ports

Table 185: ACX_MLP72_INT Pin Descriptions

Name Direction Description
Clock input. If input or output registers are enabled, they are updated on the active
cl k Input .
edge of this clock.
When the accumulator is enabled, this signal controls when to accumulate versus load
| oad Input the accumulator with the newly calculated sums (without accumulating). The | oad
signal is also registered if i nr eg_enabl e is enabled.
din[71: 0] Input Data inputs.
inreg_rstn Register reset signal for each register stage. When the register reset signal for each
reg_rstn Input register stage is asserted, a value of 0 is written to all of the registers in that register
outreg_rstn stage on the rising edge of cl k. This signal has no effect when the register is disabled.
inreg_ce Register clock enable signal for each register stage. Asserting the register clock enable
reg_ce Input signal for a register stage causes it to capture that data at its input on the rising edge of
outreg_ce cl k. This signal has no effect when the register is disabled.
dout [47: 0] Output The result of the multiply-accumulate operation.

Achronix Proprietary and Confidential

217

Speedcore Component Library User Guide (UG065)

Input Data Mapping

The assignment of the 72-bit input data to the 'a' and 'b' operands is as shown in the following table. The data

input is easily assigned as a single concatenation, such as (for 8-bit mode):

din = {a0, al, a2, a3, b0, bl, b2, b2};

Table 186: A Operand Input Data Mapping

Opel:an ds Input Widths
3-bit 4-bit 6-bit 7-bit 8-bit 16-bit
a0 di n[2: 0] di n[3: 0] di n[5: 0] di n[6: 0] din[7: 0] di n[15: 0]
al di n[5: 3] din[7: 4] din[11: 6] di n[13: 7] di n[15: 8] di n[31: 16]
a2 di n[8: 6] di n[11: 8] din[17:12] di n[20: 14] di n[23: 16]
a3 din[11: 9] di n[15: 12] di n[23: 18] di n[27: 21] di n[31: 24]
a4 di n[14: 12] di n[19: 16] di n[29: 24] di n[34: 28]
ab di n[18: 15] di n[23: 20] di n[35: 30]
a6 di n[20: 18] di n[27: 24]
a7 di n[23: 21] di n[31: 28]
a8 di n[26: 24]
a9 di n[29: 27]
alo di n[32: 30]
all di n[35: 33]

Achronix Proprietary and Confidential

218

Speedcore Component Library User Guide (UG065)

Table 187: B Operand Input Data Mapping

ope?an i Input Widths
3-bit 4-bi t 6- bi t 7-bit 8- bi t 16- bi t
b0 di n[38: 36] di n[35: 32] di n[41: 36] di n[41: 35] di n[39: 32] di n[47: 32]
b1l di n[41: 39] di n[39: 36] di n[47: 42] di n[48: 42] di n[47: 40] di n[63: 48]
b2 din[44:42] |din[43:40] |din[53:48] |din[55:49] |din[55:48]
b3 di n[47: 45] di n[47: 44] di n[59: 54] di n[62: 56] di n[63: 56]
b4 din[50: 48] |din[51:48] |din[65:60] |din[69:63]
b5 di n[49: 51] di n[55: 52] di n[71: 66]
b6 di n[56: 54] di n[59: 56]
b7 di n[59: 57] di n[63: 60]
b8 di n[62: 60]
b9 di n[65: 63]
b10 di n[68: 66]
b1l di n[71: 69]

Achronix Proprietary and Confidential 219

Speedcore Component Library User Guide (UG065)

Output Formatting and Error Conditions

The number format of the data output is the same as the format of the data input, as controlled by the
number_format parameter. The output register is always 48 bits wide, regardless of the number format or input
data width.

Asynchronous Reset Rules

Asynchronous reset mode on input registers, i nreg_sr _asserti on="uncl ocked", is only supported in the
lower four internal multiply units. The upper multiply units only supporti nreg_sr _asserti on="cl ocked".
Therefore, to use i nreg_sr_asserti on="uncl ocked", do one of the following:

® Tie off the upper multipliers and do not use them
® Setinreg_enabl e=0 and replace the input registers of the MLP with fabric DFFs

Note

For optimal MLP performance on upper multipliers, use synchronous ("clocked") resets in a design.

When accunul at or _enabl e is setto 1, thenseti nreg_sr_asserti on="cl ocked";

i nreg_sr_assertion="uncl ocked" is not supported when using the accumulator feature. The following
table describes valid scenarios when i nreg_sr _asserti on can be set to "uncl ocked" when the input
register is enabled.

Table 188: ACX_MLP72_INT Asynchronous Reset Rules

operand_width accumulator_enable . MuItipIiers_For U?'e With) Multi_pliers to be Tiec_i Off a?d Not User;l' with
inreg_sr_assertion of "unclocked inreg_sr_assertion of "unclocked

3 0 Lower 8 multipliers (sets of A/B inputs). Upper 4 multipliers (sets of A/B inputs).

4 0 All 8 multipliers (sets of A/B inputs).

6 0 Lower 4 multipliers (sets of A/B inputs). Upper 2 multipliers (sets of A/B inputs).

7 0 Lower 4 multipliers (sets of A/B inputs). Upper 1 multiplier (set of A/B inputs).

8 0 All 4 multipliers (sets of A/B inputs).

16 0 Lower 1 multiplier (set of A/B inputs). Upper 1 multiplier (set of A/B inputs).
Inference

The ACX_MLP72_INT is inferrable using RTL constructs commonly used to infer multiplication and addition
operations, such as those shown.

Data widths which fall between the supported values infer the next largest input size and, if appropriate, sign
extend the input when it is defined as a signed value. For example, 9-bit signed signals would be extended to be
16-bit signed inputs of the ACX_MLP72_INT.

Achronix Proprietary and Confidential 220

Speedcore Component Library User Guide (UG065)

Examples
inreg_enable=0, outreg_enable=0, 4 inputs

x = a0 * b0 + al * bl + a2 * b2 + a3 * b3;

inreg_enable=0, outreg_enable=1

al ways @ posedge cl k) begin
X <= a0 * b0 + al * bl + a2 * b2 + a3 * b3;
end

inreg_enable=0, outreg_enable=1, Asynchronous Reset

al ways @ posedge cl k, negedge rstn) begin
if (rstn == 1'b0)
X <= 'hO;
else if (en == 1'bl)
X <= a0 * b0 + al * bl + a2 * b2 + a3 * bg3;
end

Instantiation Template

Verilog
ACX_MLP72_I NT #(
.clk_polarity (clk_polarity),
.operand_wi dth (operand_wi dt h),
. nunber _f or mat (nunber _f or mat),
.accunul ator _enabl e (accunul ator_enable),
.inreg_enabl e (i nreg_enabl e),
.reg_enabl e (reg_enabl e),
.outreg_enabl e (outreg_enabl e),
.inreg_sr_assertion (inreg_sr_assertion),
.outreg_sr_assertion (outreg_sr_assertion)

) instance_nane (

.clk (clk),
.l oad (1 oad),
.din (din),
.inreg_rstn (inreg_rstn),
.inreg_ce (inreg_ce),
.reg_rstn (reg_rstn),
.reg_ce (reg_ce),
.outreg_rstn (outreg_rstn),
.outreg_ce (outreg_ce),
. dout (dout)

Achronix Proprietary and Confidential 221

Speedcore Component Library User Guide (UG065)

MLP72_INT8_MULT_4X

The ACX_MLP72_INT8_MULT_4X primitive is a simple multiplier block with support for up to four parallel
multipliers using 8-bit two's-complement signed, signed magnitude, or unsigned integers. For higher performance
operation, additional input and/or output registers can be enabled. Enabling each register causes an additional
cycle of latency.

Achronix Proprietary and Confidential 222

Speedcore Component Library User Guide (UG065)

Clk =

outreg3_ce

rstn0

inrega3_ce

a3[7:.0]

inregb3_ce

dout3[15:0]

b3[7:0]

outreg2_ce

rstn3

inrega2_ce

a2(7:0]

inregh?_ce

dout2(15:0]

b2(7:0]

outregl_ce

rstnl

inregal_ce

a1[7:0]

inregh _ce

dout1[15:0]

b1(7:0]

outreg0_ce

rstn0

inrega0_ce

a0[7:0]

inregb0_ce

dout0[15:0]

b0[7:0]

38371766-01.202216.11

Figure 101: ACX_MLP72_INT8_MULT_4X Block Diagram

Achronix Proprietary and Confidential 223

Speedcore Component Library User Guide (UG065)

Parameters
Table 189: ACX_MLP72_INT8_MULT_4X Parameters

Parameter SUEPRIEE | PR Description
Values Value
Controls which edge of the input clock to use:
clk_polarity "rise", "fall" | "rise" "rise" — rising edge of clock.
"fall" — falling edge of clock.
Controls the number format to use for all data inputs for each
of the four multipliers:
nunber _f or mat 0,1,2 0 0 — unsigned.
1 — signed two's complement.
2 — signed-magnitude.
i nrega3_enabl e
i nregh3_enabl e
i nrega2_enabl e
i nregh2_enabl e
i nregal_enabl e Controls whether or not the input and output registers are
i nreghl_enabl e 01 0 enabled:
i nrega0_enabl e ’ 0 — disable the register.
i nregb0_enabl e 1 — enable the register. Results in extra latency.
outreg3_enabl e
outreg2_enabl e
outregl_enabl e
out reg0_enabl e
i nrega3_sr_assertion
i b3 ti . .
: nreghs_sr_asser ! on Controls whether the assertion of the reset of the input and
i nrega2_sr_assertion . . .
. . output registers is synchronous or asynchronous with respect
i nregbh2_sr_assertion . .
. . to the cl k input:
i nregal_sr_assertion . . .)
i nregbl sr_assertion | "clocked"." elocked" clock.e_d - sdynch;orr:ousI re:et.hThehreglster is redset upon the
i nrega0_sr_assertion | unclocked" ngxt r||§|ng e geglt e clock when the associated r st n
i nregb0_sr_assertion §|gna 1S as:e,er‘(e ow. . .
. unclocked" — asynchronous reset. The register is reset
outreg3_sr_assertion . ; . ; .
. immediately when the associated r st n signal is asserted
outreg2_sr_assertion
. low.
outregl_sr_assertion
outregO_sr_assertion

Achronix Proprietary and Confidential

224

Speedcore Component Library User Guide (UG065)

Ports
Table 190: ACX_MLP72_INT8_MULT_4X Pin Descriptions

Name Direction Description

Clock input. If input or output registers are enabled, they are updated on the active

clk Input edge of this clock.

ao[7: 0]

al[7: 0] . . o

a2[7: 0] Input Operand A input, in the specified number_format.

a3[7: 0]

bO[7: 0]

bi[7 0l Input Operand B input, in the specified number_format.

b2[7: 0]

b3[7: 0]

rstno Register resets. When a given r eg_r st n is asserted (active low), a value of 0 is

rstnl written to the input register upon the next active edge of cl k. Synchronous or
Input L . . .

rstn2 asynchronous reset assertion is determined by the out reg/ i nreg_sr_assertion

rstn3 parameter.

nrega3_ce
nregb3_ce
nrega2_ce
nregb2_ce
nregal_ce
nreghl _ce
nregaO_ce
nregb0_ce

Input register clock enable (active high). When the i nr eg_enabl e parameter is 1,
Input de-asserting the i nr eg_ce signal causes the MLP72_INT8_MULT to keep the
contents of the input register unchanged.

outreg3_ce
outreg2_ce
outregl_ce
outreg0_ce

Output register clock enable (active high). When the out r eg_enabl e parameter is 1,
Input de-asserting the out r eg_ce signal causes the MLP72_INT8_MULT to keep the
contents of the output register unchanged.

dout O[15: 0]
dout 1] 15: 0]
dout 2[15: 0]
dout 3[15: 0]

Output The result of the multiply operation.

Achronix Proprietary and Confidential 225

Speedcore Component Library User Guide (UG065)

Timing Diagrams

The following timing diagram shows typical use of ACX_MLP72_INT8 MULT_4X, where both i nreg_enabl e
and out r eg_enabl e are true, and all control inputs are active high.

a IIXhOXh1Xh2Xh3Xh4Xh5Xh6Xh7Xh8Xh9X:

o

D 0 S B 0 A B O B
rog.ce \ |/
U
outreg_ce \ /
\
N S 0 0 ST 8 0) &

38371766-02.2022.16.11

Figure 102: Timing Diagram for Single Multiplier Channel

Achronix Proprietary and Confidential 226

Speedcore Component Library User Guide (UG065)

Inference

The ACX_MLP72_INT8_MULT_4Xis inferrable using RTL constructs commonly used to infer multiplication
operations, such as those shown in the following examples.

Note

® This component is appropriate for integer data widths of 8 bits and less.
@ ® For widths larger than 8 bits, use ACX_MLP72_INT16_MULT_2X.

® As an inference target, it is only necessary to use a single pair of inputs and a single output. If
there are other compatible instances in a design, they are merged during the build flow.

Examples

inreg_enable = 0, outreg_enable=0

x1 = al * b2;

inreg_enable = 0, outreg_enable=1

al ways @ posedge cl k) begin
X2 <= a2 * bz,
end

inreg_enable = 0, outreg_enable=1, with reset

al ways @ posedge cl k) begin
if (rstn == 1'b0)
x3 <= 'hoO;
else if (en)
x3 <= a3 * b3;
end

Achronix Proprietary and Confidential

227

Speedcore Component Library User Guide (UG065)

inreg_enable=1, outreg_enable=1, with input clock enable and output clock enable

al ways @ posedge cl k) begin
if (rstn == 1'b0) begin
ad_d <= 'ho;
b4 _d <= 'hoO;
end else if (inreg_ce == 1'bl) begin
ad_d <= a4,
b4 _d <= a4,
end
end

al ways @ posedge cl k) begin
if (rstn == 1'b0)
x4 <= "'ho;
else if (outreg_ce == 1'bl)
x4 <= a4 _d * b4_d;
end

Achronix Proprietary and Confidential 228

Speedcore Component Library User Guide (UG065)

Instantiation Template

Verilog

ACX_MLP72_| NT8_MULT_4X
#(

.clk_polarity

. nunber _f or mat
nrega3_enabl e
nregb3_enabl e
nrega2_enabl e
nregb2_enabl e
nregal_enabl e
nregbl_enabl e
nrega0_enabl e
nregb0_enabl e
.outreg3_enabl e
.outreg2_enabl e
.outregl_enabl e
.outreg0_enabl e
.inrega3_sr_asserti
nregb3_sr_asserti
nrega2_sr_asserti
nregb2_sr_asserti
nregal_sr_asserti
nregbl_sr_asserti
nrega0_sr_asserti
nregb0_sr_asserti

.outreg3_sr_assert

.outreg2_sr_assert

.outregl_sr_assert

.outreg0_sr_assert
) instance_nane (

.clk

.a0

.al

.az2

.a3

. bO

. b1

. b2

. b3

.rstn0

.rstnl

.rstn2

.rstn3

.inrega3_ce
nregb3_ce
nrega2_ce
nregh2_ce
nregal_ce
nregbl ce
nrega0_ce
nregb0_ce
.outreg3_ce
.outreg2_ce
.outregl_ce

on
on
on
on
on
on
on

(clk_polarity
(nunber _f or mat

i nrega3_enabl e
i nregh3_enabl e
i nrega2_enabl e
i nregh2_enabl e
i nregal_enabl e
i nregbl_enabl e
i nrega0_enabl e
i nregh0_enabl e

(outreg3_enabl e
(outreg2_enabl e
(outregl_enabl e
(outreg0O_enabl e
on (inrega3_sr_assert

(i
(i
(i

nregb3_sr_ass
nrega2_sr_ass
nregb2_sr_ass

i nregal_sr_ass
i nregbl_sr_ass
i nrega0_sr _ass
i nregh0_sr_ass

erti
erti
erti
erti
erti
erti
erti

on (outreg3_sr_assert
on (outreg2_sr_assert
on (outregl_sr_assert
on (outreg0O_sr_assert

(clk
(a0)
(a1)
(a2)
(a3)
(b0)
(b1)
(b2)
(b3)
(rstno)
(rstnl)
(rstn2)
(rstn3)
(inrega3_ce)
(inregh3_ce)
(inrega2_ce)
(inregh2_ce)
(inregal_ce)
(inreghl_ce)
(inrega0_ce)
(inreghO_ce)
(outreg3_ce)
(outreg2_ce)
(outregl_ce)

on
on
on
on
on
on
on
on
on
on
on
on

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

.outreg0_ce (outreg0_ce),
.doutO (dout 0),
.dout 1 (dout 1),
.dout 2 (dout 2),
.dout 3 (dout 3)

Achronix Proprietary and Confidential 230

Speedcore Component Library User Guide (UG065)

MLP72_INT16 _MULT_2X

The ACX_MLP72_INT16_MULT_2X primitive is a simple multiplier block with support for up to two parallel 16-bit
multipliers using 16-bit two's-complement signed, signed magnitude, or unsigned integers. For higher
performance operation, additional input and/or output registers can be enabled. Enabling each register causes
an additional cycle of latency.

Achronix Proprietary and Confidential 231

Speedcore Component Library User Guide (UG065)

OlK = e e

outregl_ce

rstn0

inregal_ce

a1[15:0]

inregbl_ce

.._________________.l

doutl[31:0]

b1[15:0]

outreg0_ce

rstnl

inregaO_ce

a0[15:0]

inregb0_ce

'._________________.I

dout0[31:0]

b0[15:0]

Figure 103:

39289331-01.2022.16.11

ACX_MLP72_INT16_MULT_2X Block Diagram

Achronix Proprietary and Confidential 232

Speedcore Component Library User Guide (UG065)

Parameters
Table 191: ACX_MLP72_INT16_MULT_2X Parameters

Parameter il Dl Description
Values Value
Controls which edge of the input clock to use:
clk_polarity "rise", "fall" "rise" "rise" — rising edge of clock.
"fall" — falling edge of clock.
Controls the number format to use for all data inputs for both of the
multipliers:
nunber _f or mat 0,1,2,3 0 0 — unsigned.
- 1 — signed two's complement.
2 —signed "A" input with unsigned "B" input.
3 — unsigned "A" input with signed "B" input.
i nrega0_enabl e
: nregal_enabl e Controls whether or not the input and output registers are enabled:
i nregbh0_enabl e 01 0 . .
i nregbl_enabl e) ?—dlsat?llett:e reglstter.R " o Lot
out reg0_enabl e — enable the register. Results in extra latency.
outregl_enabl e
Controls whether the assertion of reset for the input and output registers is
i nrega0_sr_assertion synchronous or asynchronous with respect to the cl k input:
i nregbO_sr_assertion "clocked"," "clocked" "clocked" — synchronous reset. The register is reset upon the next rising
outreg0_sr_assertion unclocked" edge of the clock when the associated r st n signal is asserted low.
outregl_sr_assertion "unclocked" — asynchronous reset. The register is reset immediately when
the associated r st n signal is asserted low.
The hardware only supports synchronous reset with respect to the cl k
input for the upper multiplier input registers. If a circuit uses asynchronous
. 1 ti reset, then i nregal_enabl e and i nregbl_enabl e should be set to 0,
Lor egzl_sr —assertion "clocked" (1) "clocked" and the upper multiplier input register must be instantiated outside the
Inregbl_sr_assertion MLP72_INT16_MULT_2X as a DFF.
"clocked" — synchronous reset. The register is reset upon the next rising
edge of the clock when the associated r st n signal is asserted low.
Table Notes
1. For optimal MLP performance on upper multipliers, use synchronous ("clocked") resets.

Achronix Proprietary and Confidential

233

Speedcore Component Library User Guide (UG065)

Ports
Table 192: ACX_MLP72_INT16_MULT_2X Pin Descriptions

Name Direction Description
Clock input. If input or output registers are enabled, they are updated on the active
cl k Input .
edge of this clock.
a0[15: 0] . . o
al[15: 0] Input Operand A input, in the specified number_format.
bO[15: 0] . o
bi[15: 0] Input Operand B input, as specified by the number_format.
i nrega0_ce
: :; gggé—gz Input register clock enable (active high). When the i nr eg_enabl e parameteris 1,
i nr egbl_ce Input de-asserting the i nr eg_ce signal causes the MLP72_INT16_MULT2X to keep the

out reg0_ce contents of the input register unchanged.

outregl_ce

Register resets. When a given r eg_r st n is asserted (active low), a value of 0 is
rstno written to the input register upon the next active edge of cl k. Synchronous or

rstnl Input asynchronous reset assertion is determined by the <out r eg/
i nreg>_sr_assertion parameter.
dout 1[31: 0] Output The result of the multiply operation.

dout O 31: 0]

Achronix Proprietary and Confidential 234

Speedcore Component Library User Guide (UG065)

Timing Diagrams

INT16_MULT2X, where both

The following timing diagram shows typical use of the ACX_MLP72

i nreg_enabl e and out r eg_enabl e are true, and all control inputs are active high.

inreg_rstn

outreg_ce

outreg_rstn

‘h2d

X ‘h15 X ‘h0 X

D

39289331-02.2022.16.11

Figure 104: Timing Diagram for a Single Multiplier Channel

235

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

Inference

The ACX_MLP72_INT16_MULT_2X is inferrable using RTL constructs commonly used to infer multiplication
operations, such as those shown in the following examples.

Note
This component is appropriate for integer data widths between 9 and 16 bits, inclusive:
® For widths between 9 and 15 inclusive, sign extend the inputs and truncate the output as
(1) appropriate.
® For widths narrower than 9 bits, use ACX_MLP72_INT8_MULT_4X.

As an inference target, it is only necessary to use a single pair of inputs and a single output. If there are
other compatible primitives in the design, they are merged during the build flow.

Examples

inreg_enable=0, outreg0_enable=0

inreg_enable=0, outreg_enable=1

al ways @ posedge cl k) begin
X <= a * b;
end

inreg_enable=0, outreg0_enable=1, synchronous reset

al ways @ posedge cl k) begin
if (rstn == 1'b0)
x <= 'hO;
else if (en == 1'bl)
X <= a * b;
end

Achronix Proprietary and Confidential

236

Speedcore Component Library User Guide (UG065)

inreg_enable=1, outreg_enable=1, asynchronous resets

al ways @ posedge cl k, negedge rstn) begin

if (rstn
ad <=
end el se
a_d <=
end
end

== 1'b0) begin

' ho;

if (inrega_ce == 1'bl) begin
a;

al ways @ posedge cl k, negedge rstn) begin

if (rstn
b d <=
end el se
b d <=
end
end

== 1'b0) begin

' hO;

if (inregb_ce == 1'bl) begin
b;

al ways @ posedge cl k, negedge rstn) begin

if (rstn

== 1' b0)

X <= 'hO;
else if (outreg_ce == 1'Dbl)
X <= a_d * b_d;

end

Achronix Proprietary and Confidential

237

Speedcore Component Library User Guide (UG065)

Instantiation Template

Verilog

ACX_MLP72_I NT16_MJILT_2X

)

#(
.clk_polarity
. nunber _f or mat
.inrega0_enabl e
.inregbh0_enabl e
.inregal_enabl e
.inregbl_enabl e
.outreg0_enabl e
.outregl_enabl e
.inrega0_sr_assertion
.inregbh0_sr_assertion
.inregal_sr_assertion
.inregbl_sr_assertion
.outreg0_sr_assertion
.outregl_sr_assertion

i nstance_nane (
.clk
.a0
. bo
.al
. b1
.rstn0
.rstnl
.inrega0_ce
.inregbh0_ce
.inregal_ce
.inregbl_ce
.outreg0_ce
.outregl_ce
.dout 0
.dout 1

(clk_polarity)
(nunber _f or mat)
(i nregaO_enabl e)
(i nregbO_enabl e)
(inregal_enabl e)
(inregbl_enabl e)
(outreg0O_enabl e)
(outregl_enabl e),
(inrega0_sr_assertion)
(inreghO_sr_assertion)
(inregal_sr_assertion)
(inregbl_sr_assertion)
(outregO_sr_assertion)
(outregl_sr_assertion)

(clk)
(a0)
(b0)
(al)
(bl)
(rstno)
(rstni)
(inregaO_ce),
(inregh0_ce)
(inregal_ce)
(inreghl_ce)
(outreg0_ce)
(outregl_ce)
(dout O)
(dout 1)

Achronix Proprietary and Confidential

238

Speedcore Component Library User Guide (UG065)

Integer Library

The Achronix integer library provides macros that use the ACX_MLP72 to perform common integer operations. In
addition, the library enables the use of the MLUT logic cell to efficiently implement integer multiplication with
programmable logic. To use the library, include the following in the Verilog source code that instantiates any of
the integer library macros:

“include "speedster7t/comon/acx_i nteger.sv"

MLP Registers

The ACX_MLP72 has a number of internal registers that can be enabled to pipeline operations. Pipelining allows
for higher clock frequencies, but operations take more clock cycles. Generally, for operation at the maximum
fabric speed, all registers need to be enabled, but for lower frequencies some may be omitted.

For the integer library, modules support input registers, and one or more pipeline registers. The latter are simply
identified by the number of desired pipeline stages. All registers are disabled by default.

Clock Enable and Reset

The input registers typically have separate clock enables for the 'a' and 'b' inputs and a shared reset. The
pipeline registers have a shared clock enable and a shared reset, separate from the input registers. Many
designs do not need clock enables and resets, in which case these inputs can simply be tied to 1' b1 (in
particular, the accumulator is normally started with a load signal rather than a reset).

Achronix Proprietary and Confidential 239

Speedcore Component Library User Guide (UG065)

Accumulation

Most operations have an option to accumulate results. When accumulation is enabled, a new accumulation is
started by asserting the | oad signal. When | oad is high, the previous value of the internal accumulation register
is ignored, and the new value is stored. The output is then set to this value. When | oad is low, the old and new
values are added, and the sum is stored. The output is this sum.

The | oad signal is internally pipelined to have the same latency as the input. If a set of inputs start a new
accumulation, then | oad must be high when those inputs are presented. If accumulation is not enabled, then the
| oad signal is ignored.

The accumulator uses an internal register, independent of the pipelining. In particular, accumulation may be used
with pi pel i ne_regs = 0, though this setting results in a lower frequency.

load
(same latency >
as ‘result’)
1
> dout
result of 0
calculation

44860198-01.2022.16.11

Figure 105: Accumulator With Load Signal

Achronix Proprietary and Confidential 240

Speedcore Component Library User Guide (UG065)

ACX_INT_MULT

The ACX_INT_MULT module implements integer multiplication with fabric logic or with the ACX_MLP72, and
delivers the following features:

® N x N multiplication, for N = 3-8, 16, 32

® Either input can be signed or unsigned

® Optional accumulator

® Optional registers to enable higher frequency operation

i_load
i_in_reg_rstn
i_pipeline_ce
i_pipeline_rstn
i_in_reg_b_ce o_dout[dout_size - 1:0]
i_in_reg_a_ce
i_din_b[int_size - 1:0]

i_din_a[int_size - 1:0]

i_clk

53807763-01.2022.16.11

Figure 106: Integer Multiplier With Optional Accumulate

Achronix Proprietary and Confidential 241

Speedcore Component Library User Guide (UG065)

Parameters

Table 193: ACX_INT_MULT Parameters

Parameter Supported Values Default Description

int_size 3,4,5,6,7,8,16, 32 8 Number of bits of each integer input.

i nt_unsi gned_a 0.1 0 0- i _d! n_ais S|gqed (two's complement).
1—1i _di n_ais unsigned.

i nt_unsi gned_b 0.1 0 0- i _d! n_b is S|gn.ed (two's complement).
1—1i _di n_b is unsigned.
0 — no accumulation: dout = i_din_a * i_din_b

accunul ate 0,1 0 1 — accumulation: dout is the accumulated value. The start of accumulation is signaled by
asserting i _| oad=1.
0 — no input registers.

) 1-i_din_aandi_din_b are registered.

in_reg_enabl e 0,1 0)) oo .
The input registers are controlled by the i _in_reg_a_ce,i _in_reg_b_ce, and
i _i n_reg_rstn inputs. Enabling the input register adds one cycle of latency.
The number of pipeline registers, not counting the input register. The total latency is

pi pel i ne_regs 0,1,2(3) 0 pi peline_regs + in_reg_enabl e. Avalue of 3 is only allowed if i nt _si ze=32
and accurul at e=1. For all other cases, the valid values are 0, 1, and 2.
Width of the o_dout output. The default and range are determined by several other

dout _si ze Output (see page 244) parameters, as explained in the Output (see page 244) section. Signed results are sign-
extended as necessary. Values that do not fit are truncated at the high-order bits.
This string-valued parameter determines the implementation method. Refer to Architecture (see
page 244) for more information.

architecture "auto”, "rlb", "mip" auto "rlb" — implementation is with reconfigurable logic, including MLUT, ALU8, and DFF's.

"mlp" — implementation uses a single MLP72.
"auto" — equivalent to "rlb" if i nt _si ze <= 8; equivalent to "mlp" ifi nt _si ze > 8.

Achronix Proprietary and Confidential

242

Speedcore Component Library User Guide (UG065)

Ports
Table 194: ACX_INT_MULT Pin Descriptions

Name Direction Description

i_clk Input Clock input, used for the (optional) registers and accumulator.
i _din_a[(int_size-1):0] Input A data input to multiplier.
i _din_b[(int_size-1):0] Input B data input to multiplier.
i inreq a ce Inout ifi n_reg_enabl e=0 — ignored.

~tn_reg_a_ pu ifi n_reg_enabl e=1 — clock enable fori _din_a.
i inred b ce Inout ifi n_reg_enabl e=0 —ignored.

~In_reg_b_ P ifi n_reg_enabl e=1 — clock enable fori _di n_b.
i inreq rstn Input ifi n_reg_enabl e=0 —ignored.

~tn_reg_ pu if i n_reg_enabl e=1 — synchronous active-low reset for input registers.
i _pipel i ne_ce Input if pi pel i ne_r egs=0 — ignored.

if pi pel i ne_r egs>0 — clock enable for pipeline and accumulator registers.

if pi pel i ne_r egs=0 —ignored.
i _pipeline_rstn Input if pi pel i ne_r egs>0 — synchronous active-low reset for pipeline and
accumulator registers.

if accumul at e=0 — ignored.
if accunul at e=1 — resets the accumulator to i _di n_a*i _di n_b, ignoring the

i _|oad Input previous value.
This signal is internally pipelined to have the same latency as i _di n_a and
i _din_b.

o_dout [dout _si ze- 1: 0] Qutput Result of multiplication and accumulation.

Achronix Proprietary and Confidential 243

Speedcore Component Library User Guide (UG065)

Usage and Inference

ACX_INT_MULT is intended for situations where direct control over the implementation of multiplication is
required, in particular, when a fabric logic based implementation is desired or when manual control over the
registers is needed. Alternatively, integer multiplication written as a* b in RTL is recognized and inferred, using
an MLP-based implementation similar to the one provided by this module.

In addition to direct instantiation in Verilog or VHDL, an instance of ACX_INT_MULT can also be created in the
ACE IP Configuration Perspective. See Speedster7t Soft IP User Guide (UG103) for details.

Architecture

For small integer sizes (i nt _si ze < 8), by default, the multiplier is constructed using reconfigurable logic which
uses the efficient Achronix MLUT feature to reduce LUT count compared to other FPGAs.

Forint _si ze <8, the architecture parameter can be used to select an implementation with an ACX_MLP72
(this includes all registers and the accumulator). However, while this setting can result in a faster design, using

an entire ACX_MLP72 for a single multiplication is not an efficient use of resources. Better efficiency can be
achieved by using the ACX_INT_MULT_N module, which allows combining several multiplications in a single
ACX_MLP72. Alternatively, one can write a* b and let Synplify and ACE handle the implementation, which also
maps to an ACX_MLP72, and may pack several multiplications into a single ACX_MLP72 (packing decisions are
based on the netlist connectivity).

Fori nt _si ze = 16, the implementation always uses a single ACX_MLP72 (this includes all registers and the
accumulator). As before, resource usage can be improved by using ACX_INT_MULT_N to combine two 16x16
multiplications in a single ACX_MLP72. Alternatively, writing a* b also uses an ACX_MLP72 implementation, and
may pack two multiplications depending on netlist connectivity.

Fori nt _si ze = 32, the implementation always uses a single ACX_MLP72. The ACX_MLP72 includes most of
the registers, but not the accumulator. If accumulation is enabled, the accumulator and associated register are
implemented with fabric logic.

Output

For multiplication, the default output size is two times the input size, but a smaller dout _si ze can be specified if
the result is known to fit. When accumulation is enabled, typically a larger output size is required. For fabric logic
based implementations (i nt _si ze <8), and fori nt _si ze = 32, the accumulator is built with fabric logic and
with dout _si ze bits as specified by the user. For ACX_MLP72 based implementations with i nt _si ze < 16, the
accumulator is a maximum of 48 bits wide. The default and limits are summarized in the following table. The
output format is unsigned if both inputs are unsigned, otherwise the output is signed (two's complement).

Table 195: dout _si ze Default and Limits

accumulate=0 accumulate=1
int_size | architecture Default Max Default Max
3-8 auto, rlb 2 x int_size |48 2 xint_size |48
3-8 mip 2 x int_size |48 48 48
16 auto, mlp 32 48 48 48
32 auto, mlp 64 64 64 any

Achronix Proprietary and Confidential 244

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

/1 Verilog tenplate for ACX_I NT_MJULT
ACX_|I NT_MULT #(

.int_size (int_size)

.int_unsigned_a (int_unsigned_a)

.int_unsigned_b (int_unsigned_b)

.accunul ate (accumul ate),

)

)

)

)

.in_reg_enable (in_reg_enable

.pipeline_regs (pipeline_regs

. dout _si ze (dout _si ze

.architecture (architecture
) instance_nane (

Li_clk (user_i_clk ,
_din_a (user_i_din_a[int_size-1: 0]
_din_b (user_i _din_b[int_size-1 : 0]

_in_reg_a_ce

)
)
)
)
_in_reg_b_ce),
)
)
)
)
)

.

L

.i_in_reg_a_ce (user
.i_in_reg_b_ce (user
.i_in_reg_rstn (user
.i_pipeline_ce (user _i _pipeline_ce
.i_pipeline_rstn (user_i_pipeline_rstn

.i_l oad (user_i _| oad

. 0_dout (user _o_dout [dout _size-1 : 0]

_in_reg_rstn

)

Achronix Proprietary and Confidential 245

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX_I NT_MULT
conponent ACX_I NT_MULT is

generic (
int_size i nteger := 8;
i nt_unsigned_a integer := 0;
int_unsigned_b integer := 0;
accumul ate : integer := 0;
in_reg_enabl e integer := 0;
pi peli ne_regs integer := 0;
dout _si ze . integer := 48;
architecture : string = "auto"
)
port (
i_clk in std_logic;
i_din_a in std_logic_vector(int_size-1 downto 0);
i_din_b in std_logic_vector(int_size-1 downto 0);
i_in_reg_a_ce in std_logic;
i_in_reg_b _ce :in std_logic;
i_in_reg_rstn in std_logic;
i _pipeline_ce in std_logic;
i _pipeline_rstn in std_logic;
i _|oad in std_logic;
o_dout : out std_logic_vector(dout_size-1 downto 0)
)

end component ACX_| NT_MULT

-- VHDL Instantiation tenplate for ACX I NT_MILT
instance_nane : ACX_I NT_MULT
generic map (

int_size => int_size,
int_unsigned_a => int_unsigned_a,
int_unsigned_b => int_unsi gned_b,
accunul at e => accunul at e,
in_reg_enable => in_reg_enabl e,
pi peli ne_regs => pi pel i ne_regs,
dout _si ze => dout _si ze,
architecture => architecture
)

port map (
i_clk => user_i _clk,
i_din_a => user_i _din_a,
i_din_b => user_i _di n_b,
i_in_reg_a ce => user_i_in_reg_a_ce,
i_in_reg_b_ce => user_i_in_reg_b_ce,
i_in_reg_rstn => user_i _in_reg_rstn,
i _pipeline_ce => user_i _pi peline_ce,
i _pipeline_rstn => user_i _pipeline_rstn,
i _|oad => user_i _| oad,
o_dout => user_o_dout

)

Achronix Proprietary and Confidential 246

Speedcore Component Library User Guide (UG065)

ACX_INT_MULT_N

The ACX_INT_MULT_N module computes N parallel multiplications with all numbers using the same format.

There is no accumulation option. The macro has the following features:
® K x K multiplication, with K = 3-8, or 16
® FEitherinput (a, b, or both) can be signed or unsigned
® N parallel multiplications (all the same format)
® Optional registers to enable higher clock frequency

i_in_reg_rstn

i_pipeline_ce

i_pipeline_rstn
i_in_reg_b_ce[num_ce - 1:.0]
o_dout[num_mult x 2 x int_size - 1:0]
i_in_reg_a_ce[num_ce - 1:.0]
i_din_b[num_mult x int_size - 1:0]

i_din_a[num_mult x int_size - 1:0]

i_clk

53807768-01.2022.16.11

Figure 107: N Integer Parallel Multiplications

Achronix Proprietary and Confidential

247

Speedcore Component Library User Guide (UG065)

Parameters

Table 196: ACX_INT_MULT_N Parameters

Parameter EUEREIC Default Description
Values
int_size 3,4,5,6,7,8,16 |8 Number of bits of each integer input.
num mul t 1-8 1 Number of parallel multiplications. Refer to Maximum Parallel
- Multiplications (see page 250) for the limit per number format.
i nt_unsi gned_a |0, 1 0 0- i _d! n_a(!) !s S|gn.ed (two's complement).
1—i_din_a(i) isunsigned.
. . 0—i_din_b(i) issigned (two's complement).
i nt_unsigned_b 0,1 0 1—i _din_b(i) isunsigned.
0 — No input registers.
1—i_din_aandi_din_b are registered. The input registers
in_reg_enable |[0,1 0 are controlled by thei _in_reg_a_ce,i _in_reg_b_ce, and
i _i n_reg_rstn inputs. Enabling the input register adds one
cycle of latency.
. . The number of pipeline registers, not counting the input register.
pipeline_regs 0.1 0 The total latency is pi pel i ne_regs + in_reg_enabl e.

An internal parameter, num ce, is generated from the above parameters. This parameter determines the number
of clock enables supported. The calculation of num ce is shown in the following example.

| ocal param i nteger numce =

(int_size <= 4)? (numnult + 1)/2 :

num mul t

Achronix Proprietary and Confidential

248

Speedcore Component Library User Guide (UG065)

Ports
Table 197: ACX_INT_MULT_N Pin Descriptions

Name Direction Description
i_clk Input Clock input, used for the (optional) registers.
i _din_a[(numnmult*int_size-1):0] Input Packed (see page 249) vector of A data input to multipliers.
i _din_b[(numnult*int_size-1):0] Input Packed (see page 249) vector of B data input to multipliers.

ifi n_reg_enabl e =0 —ignored.
i_in_reg_a_ce[(numce-1):0] Input ifi n_reg_enabl e =1 —clock enable for i _di n_a. Refer to Clock Enables
(see page 249).

ifi n_reg_enabl e =0 —ignored.
i_in_reg_b_ce[(numce-1):0] Input ifi n_reg_enabl e =1 —clock enable for i _di n_b. Refer to Clock Enables
(see page 249).

ifi n_reg_enabl e =0 —ignored.

I_in_regrstn Input ifi n_reg_enabl e =1 — synchronous active-low reset for input registers.
- . if pi pel i ne_r egs =0 —ignored.
| _pipeline_ce Input if pi pel i ne_r egs >0 — clock enable for pipeline registers.
i pipeline rstn Inout if pi pel i ne_regs =0 —ignored.
-P'p - pu if pi pel i ne_r egs > 0 — synchronous active-low reset for pipeline registers.
Packed (see page 249) vector of multiplication results. The results are
o_dout[(num_nul t*2*int_si ze-1): 0] Output unsigned if both inputs are unsigned. Otherwise, the results are signed (two's

complement).

Data Packing

Inputs and outputs are packed in single input and output vectors.

a(i) =i _din_a[i*int_size + int_size];

b(i) = i_din_b[i*int_size +: int_size];

dout (i) = o_dout[i*2*int_size +: 2*int_size];
Clock Enables
If the input register is enabled, each input has its own clock enable if i nt _si ze >=5. Forint_size =3 or4,
two adjacent inputs share the same clock enable. For example, a(0) and a(1) share i _in_reg a ce[0],
etc.

Achronix Proprietary and Confidential 249

Speedcore Component Library User Guide (UG065)

Maximum Parallel Multiplications

Parameter num nul t specifies the number of parallel multiplications. The maximum is determined by the input
format (if either input is unsigned, the "Unsigned" column applies).

Table 198: Maximum Parallel Multiplications

int size Max Signed Max Unsigned
- Multiplications | Multiplications

3 8 8

4 8 4

5,6,7,8 4 4

16 2 2

Usage and Inference

ACX_INT_MULT_N maps to a single ACX_MLP72. This macro is intended for situations where direct control
over the implementation of multiplications is required, including the use of registers and the choice of which
multiplications to combine in a single ACX_MLP72. Alternatively, integer multiplication written as a*b in RTL is
recognized and inferred using an ACX_MLP72-based implementation, and combines multiplications based on
netlist connectivity.

In addition to direct instantiation in Verilog or VHDL, an instance of ACX_INT_MULT_N can also be created in
the ACE IP Configuration Perspective. See Speedster7t Soft IP User Guide (UG103) for details.

Achronix Proprietary and Confidential

250

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

/1 Verilog tenplate for ACX_INT_MJLT_N

ACX_I NT_MULT_N #(
.int_size (int_size),
.num nmul t (num_mul t),
.int_unsigned_a (int_unsigned_a)
.int_unsigned_b (int_unsigned_b)
.in_reg_enable (in_reg_enable)
.pipeline_regs (pipeline_regs)

) instance_nane (

.i_clk (user_i_clk),
.i_din_a (user _i _din_a[nummult*int_size-1: 0]),
.i_din_b (user_i _din_b[numnmult*int_size-1: 0]),
.i_in_reg_a_ce (user_i_in_reg_a_ce[numce-1 : 0]),
.i_in_reg_b_ce (user_i_in_reg_b ce[numce-1 : 0]),
.i_in_reg_rstn (user_i_in_reg_rstn),
.i _pipeline_ce (user_i _pipeline_ce),
.i_pipeline_rstn (user_i_pipeline_rstn),
. 0_dout (user_o_dout[num nmul t*2*int_size-1 : 0])

)

Achronix Proprietary and Confidential 251

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX_INT_MULT_N

conponent ACX_INT_MJUT N is

generic (
int_size
num nmul t

int_unsigned_a
int_unsigned_b
in_reg_enabl e
pi peli ne_regs

)

port (
i_clk
i_din_a
i_din_b
i_in_reg_a_ce
i_in_reg_b ce
i_in_reg_rstn
i _pipeline_ce
i _pipeline_rstn
o_dout

)

out std_logic_vector(numnult*2*int_size-1 downto 0)

nteger := 8;

nteger :=1

nteger := 0;

nteger := 0;

nteger := 0,

nteger := 0

n std_logic;

n std_l ogic_vector(
n std_| ogi c_vector(
n std_l ogi c_vector(
n std_l ogi c_vector(
n std_logic;

n std_l ogic;

n std_logic;

end component ACX_ I NT_MJLT_N

num nul t*int_size-1 downto 0)
num nul t*int_size-1 downto 0)
numce-1 downto 0)
num ce-1 downto 0)

-- VHDL Instantiation tenplate for ACX_I NT_MJULT_N

i nstance_nane :

generic map (

int_size
num_nul t
int_unsigned_a
int_unsigned_b
in_reg_enabl e
pi pel i ne_regs
out _reg_enabl e

)

port map (
i_clk
i_din_a
i_din_b
i_in_reg_a ce
i_in_reg_b ce
i_in_reg_rstn
i _pipeline_ce
i _pipeline_rstn
o_dout

)

ACX_I NT_MULT_N

int_size

num_mul t,

i nt_unsigned_a
int_unsigned_b
in_reg_enabl e,
pi pel i ne_regs,
out _reg_enabl e

user _i _cl k,
user i _din_a
user _i _din_b

user i _in_reg_a_ce
user i _in_reg_b _ce
user _i _in_reg_rstn,
user _i _pipeline_ce

user i _pipeline_rstn

user _o_dout

Achronix Proprietary and Confidential

252

Speedcore Component Library User Guide (UG065)

ACX_INT_MULT_ADD

The ACX_INT_MULT_ADD module computes a parallel sum of products, SUM a(i) x b(i), with optional
accumulation. This macro features:

® K x K multiplication, for K=3 -8, or 16
® |nputs can be signed or unsigned

® Sum of N parallel multiplications

® Optional accumulator

® Optional registers to enable higher frequency

i_load

i_in_reg_rstn

i_pipeline_ce ——|

i_pipeline_rstn

i—in_reg_b_ce ACX_INT_MULT_ADD o_dout[dout_size - 1:0]

i_in_reg_a_ce

i_din_b[num_mult x int_size - 1:0]
i_din_a[num_mult x int_size - 1:0]

i_clk

53807773-01.2022.16.11

Figure 108: N Integer Sum of Products With Optional Accumulation

Achronix Proprietary and Confidential

253

Speedcore Component Library User Guide (UG065)

Parameters

Table 199: ACX_INT_MULT_ADD Parameters

Parameter Supported Values Default Description
int_size 3,4,5,6,7,8,16 8 Number of bits of each integer input.
Number of parallel multiplications. Refer to Maximum Parallel Multiplications
num _nmul t 1-24 1 S
(see page 256) for the limits per number format.
i nt_unsi gned_a 0.1 0 0 i _d! n_ais S|gn_ed (two's complement).
1—1i _di n_ais unsigned.
i nt_unsi gned_b 0.1 0 0 =i _d! n_b is S|gn.ed (two's complement).
1—1i_di n_b is unsigned.
0 — No accumulation: dout = SUMi _din_a(i)*i_din_b(i)).
accunul ate 0,1 0 1 — Accumulation: dout is the accumulated value. The start of accumulation
is signaled by asserting i _| oad=1.
0 — No input registers.
. 1—i_din_aandi_din_b are registered. The input registers are controlled
in_reg_enabl e 0,1 0 PR . S .
bythei _in_reg_a_ce,i_in_reg_b_ce,andi_in_reg_rstninputs.
Enabling the input register adds one cycle of latency.
pi pel i ne_r egs 0.1,2 0 The nurpber of pl.pellne reglsters_, not counting the input register. The total
latency is pi pel i ne_regs + in_reg_enable.
dout_si ze <48 48 Z\::jd;b;{sthe o_dout output. Values that do not fit are truncated at the high-

Achronix Proprietary and Confidential

254

Speedcore Component Library User Guide (UG065)

Ports
Table 200: ACX_INT_MULT_ADD Pin Descriptions

Name Direction Description
i_clk Input Clock input, used for the (optional) registers and accumulator.
i _din_a[nummult*int_size-1: 0] Input Packed (see page 255) vector of A data input to multipliers.
i _din_b[numnult*int_size-1: 0] Input Packed (see page 255) vector of B data input to multipliers

ifi n_reg_enabl e=0 — ignored.

I_In_reg_a_ce Input ifi n_reg_enabl e=1 — clock enable fori _di n_a.
i inred b ce Inout ifi n_reg_enabl e=0 —ignored.
~In_reg_b_ P ifi n_reg_enabl e=1 — clock enable fori _di n_b.
i inreq rstn Inout ifi n_reg_enabl e=0 —ignored.
~tn_reg_ pu if i n_reg_enabl e=1 — synchronous active-low reset for input registers.
i _pipel i ne_ce Input if pi pel i ne_r egs=0 — ignored.

if pi pel i ne_r egs>0 — clock enable for pipeline and accumulator registers.

if pi pel i ne_r egs=0 —ignored.
i _pipeline_rstn Input if pi pel i ne_r egs>0 — synchronous active-low reset for pipeline and
accumulator registers.

if accumul at e=0 — ignored.
if accunul at e=1 — resets the accumulator to SUM i _di n_a*i _di n_b),

i _|oad Input ignoring the previous value.
This signal is internally pipelined to have the same latency as i _di n_a
andi _din_b.
o_dout [(dout _si ze-1): 0] Output Sum of products, or result of accumulation.
Input Packing

Inputs are packed in single input vectors:

a(i)
b(i)

i_din_a[i*int_size +: int_size];
i _din_b[i*int_size +: int_size];

Achronix Proprietary and Confidential 255

Speedcore Component Library User Guide (UG065)

Maximum Parallel Multiplications

Parameter num_mul t specifies the number of parallel multiplications. The ACX_MLP72 used by the module has
two input modes, normal and wide. Wide mode enables more parallel multiplications per ACX_MLP72. However,
in this mode, the adjacent ACX_BRAM72K site is used as route-through, meaning it is no longer available for
BRAM placement. The selection between normal and wide mode is automatically made based on the number of
requested multiplications and the size of the inputs.

The following table lists the maximum number of parallel multiplications for each of the two modes. If either input
is unsigned, the Unsigned columns apply. Wide mode is only selected if num_nul t is larger than the maximum
for normal mode. For example, fori nt _si ze =8, ifnum nul t <=4, ACX_INT_MULT_ADD requires one

ACX_MLP72, butif num nul t >4, ACX_INT_MULT_ADD requires one ACX_MLP72 and one ACX_BRAM72K.

Table 201: Maximum Number of Parallel Multiplications

Normal Mode Wide Mode
int size Ma_x S_ign.ed Max_Ur:nsig.ned Ma_x S_ign_ed Max_Ur:nsig.ned
- Multiplications | Multiplications | Multiplications | Multiplications
3 12 8 24 16
4 8 6 16 12
5 6 6 12 12
6 6 5 12 10
7 5 4 10 8
8 4 4 8 8
16 2 2 4 4

Usage and Inference

The ACX_INT_MULT_ADD module gives direct control over the multiply-add functionality of the ACX_MLP72. In
particular, it enables the use of wide mode to increase the number of parallel multiplications. Alternatively, a sum
of products written in RTL, such as x=a0*b0 + al*bl is recognized and inferred. However, an inferred multiply-
add does not use wide mode and is currently limited to int8 and int16.

In addition to direct instantiation in Verilog or VHDL, an instance of ACX_INT_MULT_ADD can also be created in
the ACE IP Configuration Perspective. See Speedster7t Soft IP User Guide (UG103) for details.

Achronix Proprietary and Confidential 256

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

/1 Verilog tenplate for ACX_|I NT_MJULT_ADD
ACX_| NT_MULT_ADD #(
.int_size (int_size)
.num nmul t (num_mul t)
.int_unsigned_a (int_unsigned_a)
.int_unsigned_b (int_unsigned_b)
.accunul ate (accumul at e)
.in_reg_enable (in_reg_enable)
.pipeline_regs (pipeline_regs)
)

. dout _si ze (dout _si ze
) instance_nane (
Li_clk (user_i_clk ,
_din_a (user_i _din_a[numult*int_size-1: 0]
_din_b (user _i _din_b[numrmult*int_size-1: 0]

_in_reg_a_ce (user

.

.

i _in_reg_a_ce
.i_in_reg_b_ce (user

.

.

L

L

_in_reg_b_ce

_in_reg_rstn (user_i_in_reg_rstn
_pipeline_ce (user _i _pipeline_ce
_pipeline_rstn (user_i_pipeline_rstn
_|l oad (user_i _| oad

. 0_dout (user _o_dout [dout _size-1 : 0]

)

Achronix Proprietary and Confidential 257

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX_| NT_MJLT_ADD
conponent ACX_|I NT_MJULT_ADD is

generic (
int_size
num nmul t

)

int_unsigned_a
int_unsigned_b
accumul at e
in_reg_enable
pi pel i ne_regs
dout _si ze

port (

)

i_clk

i_din_a
i_din_b
i_in_reg_a_ce
i_in_reg_b _ce
i_in_reg_rstn

i _pipeline_ce

i _pipeline_rstn
i _| oad

o_dout

integer := 8;

integer := 1,

integer := 0;

integer := 0;

integer := 0;

integer := 0;

integer := 0;

integer := 48

in std_logic;

in std_logic_vector(numnmult*int_size-1 dowmto 0);
in std_logic_vector(numnult*int_size-1 downto 0);
in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

out std_l ogic_vector(dout_size-1 downto 0)

end component ACX_| NT_MJLT_ADD

-- VHDL Instantiation tenplate for ACX_ | NT_MJULT_ADD
instance_nane : ACX_I NT_MJL
generic map (

int_size =>
num nul t =>
i nt_unsigned_a =>
int_unsigned_b =>
accumul ate =>
in_reg_enabl e =>
pi pel i ne_regs =>
dout _si ze =>

)

port map (
i_clk =>
i_din_a =>
i_din_b =>
i_in_reg_a_ce =>
i_in_reg_b_ce =>
i_in_reg_rstn =>
i _pipeline_ce =>
i _pipeline_rstn =>
i _|oad =>
o_dout =>

)i

T_ADD
int_size,
num nul t,

i nt _unsi gned_a,

i nt _unsi gned_b,
accumul at e,
in_reg_enabl e,

pi pel i ne_regs,

dout _si ze

user _i _cl k,

user _i _din_a,

user _i _din_b,

user i _in_reg_a_ce,
user _i _in_reg_b_ce,
user i _in_reg_rstn,
user _i _pi peline_ce,
user _i _pipeline_rstn,

user _i _| oad,
user _o_dout

Achronix Proprietary and Confidential

258

Speedcore Component Library User Guide (UG065)

Floating-Point Library

Introduction

The Achronix floating-point library provides macros that instantiate the ACX_MLP72 to perform common floating-
point operations. To use the library, include the following in the Verilog source code:

“include "speedster7t/comon/acx_fl oating_point.sv"

MLP Registers

The MLP has a number of internal registers that can be enabled to pipeline operations. Pipelining allows for
higher clock frequencies, but operations take more clock cycles. Generally, for operation at the maximum fabric
speed, all registers need to be enabled, but for lower frequencies some may be omitted.

For the floating-point library, modules support input registers and one or more pipeline registers. The latter are
simply identified by the number of desired pipeline stages. All registers are by default disabled (bypassed).

Clock Enable and Reset

The input registers typically have separate clock enables for the 'a' and 'b' inputs, and a shared reset. The
pipeline registers have a shared clock enable and a shared reset, separate from the input registers. Many
designs do not need clock enables and resets, in which case these inputs can simply be tied to 1' b1 (in
particular, the accumulator is normally started with a load signal rather than a reset).

Accumulation

Most operations have an option to accumulate results. When accumulation is enabled, a new accumulation is
started by asserting the | oad signal. When | oad is high, the previous value of the internal accumulation register
is ignored, and the new value is stored. The output is then set to this value. When | oad is low, the old and new
values are added, and the sum is stored. The output is this sum.

The | oad signal is internally pipelined to have the same latency as the input. If a set of inputs start a new
accumulation, then | oad must be high when those inputs are presented. If accumulation is not enabled, then the
| oad signal is ignored.

The accumulator uses an internal register, independent of the pipelining. In particular, accumulation may be used
with pi pel i ne_regs = 0, though this setting results in a lower frequency.

Achronix Proprietary and Confidential 259

Speedcore Component Library User Guide (UG065)

load
(same latency
as ‘result’)

\

> dout

result of 0
calculation

A

%

Figure 109: Accumulator With Load Signal

44860198-01.2022.16.11

Floating-Point Format

The input and output format of each operation is specified with two parameters, f p_si ze and f p_exp_si ze.

Refer to Number Formats for an explanation of these two parameters.

Note

©@ The selected format applies to both inputs and outputs. Internally, the actual multiplications and
additions are always performed with fp24.

Achronix Proprietary and Confidential

260

Speedcore Component Library User Guide (UG065)

Output Status

Operations have a two bit status output. The interpretation is as follows.

Table 202: Output Status Bits

Status Description

2' b00 Normal.

2' b01 Result is £ 0.0.

2' bl1 Last operation had underflow, and thus, the result is + 0.0.

2' b10 Result is + infinity.

That a result is 0.0 or infinity can also be determined by inspecting the exponent field of the result. The status
flags are an additional method to check the result.

When a result is 0.0, it can be because the result is mathematically 0 (e.g., x — x = 0) or because an underflow
occurred. For instance, if dout = a x b + ¢, the underflow status refers to the addition. Underflow of the
multiplication would merely result in dout = 0 + ¢, which itself has no underflow.

Note

Underflow refers to the last operation that produced the current output.

Achronix Proprietary and Confidential

261

Speedcore Component Library User Guide (UG065)

ACX_FP_ADD

The ACX_FP_ADD module computes A+B, with optional accumulation. Internal register stages can be enabled
to allow for higher operating frequencies.

i_load

i_in_reg_rstn
i_in_reg_a_ce
i_in_reg_b_ce
i_din_b[fp_size - 1:0] ACX_FP_ADD o_dout[fp_size - 1:0]
i_din_a[fp_size - 1:0] o_status[1:0]
i_pipeline_ce

i_pipeline_rstn

i_clk

51478787-01.2022.16.11

Figure 110: Floating-Point Adder With Optional Accumulate

Achronix Proprietary and Confidential 262

Speedcore Component Library User Guide (UG065)

Parameters
Table 203: ACX_FP_ADD Parameters

Parameter SRR Default Description
Values
fp_size 16, 24 16 Width of floating point number. Supports fp24, fp16, and fp16e8.
fp_exp_si ze 58 5 Size of floating-point exponent.
subtract 0,1 0 0-computei_din_a +1i_din_b.
1—computei _din_a - i _din_b.
0 — no accumulation: dout = i _din_a % i_di n_b (determined by
accumul at e 01 0 the subt ract parameter).
’ 1 —accumulation: dout is the accumulated value. The start of
accumulation is signaled by asserting i _| oad=1.
0 — no input registers.
1—i_din_aandi _din_b are registered. The input registers are
in_reg_enable|0,1 0 controlled by thei _in_reg_a_ce,i _in_reg_b_ce, and
i _in_reg_rstn inputs. Enabling the input registers adds one cycle of
latency.
pi pel i ne_regs | 0-5 0 The number pf p_|peI|n_e registers, not_ counting the input register. The
total latency is pi pel i ne_regs + in_reg_enabl e.

Achronix Proprietary and Confidential 263

Speedcore Component Library User Guide (UG065)

Ports
Table 204: ACX_FP_ADD Pin Descriptions

Name Direction Description
i_clk Input Clock input. Used by the (optional) registers and accumulator.
i_din_a[(fp_size-1):0] Input 'A' data input to adder.
i _din_b[(fp_size-1):0] Input 'B' data input to adder.
i inreq a ce Inout Ifi n_reg_enabl e=0 — ignored.
~tn_reg_a_ pu Ifi n_reg_enabl e=1 — clock enable fori _din_a.
i inred b ce Input Ifi n_reg_enabl e=0 — ignored.
~In_reg_b_ P Ifi n_reg_enabl e=1 — clock enable fori _di n_b.
i inreq rstn Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_ pu Ifi n_reg_enabl e=1 — synchronous active-low reset for input registers.
i biveline ce Inout If pi pel i ne_regs=0 — ignored.
-prp - P If pi pel i ne_regs>1 — clock enable for pipeline and accumulator registers.
If pi pel i ne_regs=0 — ignored.
i _pipeline_rstn Input If pi pel i ne_r egs>1 — synchronous active-low reset for pipeline and accumulator
registers.
If accunul at e=0 — ignored.
i 1 oad | If accunul at e=1 — resets the accumulator toi _di n_a + i _di n_b, ignoring the
1_1oa nput previous value.
This signal is internally pipelined to have the same latency asi _din_a + i _din_b.
o_dout [(fp_size-1):0] Output Result of addition and accumulation.
o_status[1:0] (D Output Error status of o_dout .
Table Notes
1. See Output Status for details.

Usage and Inference

ACX_FP_ADD cannot be inferred and must be directly instantiated. The specified floating point format applies to
the inputs and output but, internally, the operations are performed with fp24.

Achronix Proprietary and Confidential 264

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

/1 Verilog tenplate for ACX_FP_ADD
ACX_FP_ADD #(

.fp_size (fp_size),
.fp_exp_size (fp_exp_size),
.subtract (subtract),
.accunul ate (accumul ate),

.in_reg_enable (in_reg_enable),
.pipeline_regs (pipeline_regs)
) instance_nane (

.i_clk (user_i_clk),
.i_din_a (user_i_din_a),
.i_din_b (user_i_din_b),
.i_in_reg_a_ce (user_i_in_reg_a_ce),
.i_in_reg_b_ce (user_i_in_reg_b _ce),
.i_in_reg_rstn (user_i_in_reg_rstn),
.i _pipeline_ce (user_i _pipeline_ce),
.i_pipeline_rstn (user_i_pipeline_rstn),
.i_load (user _i _| oad),
. 0_dout (user _o_dout),
.0_status (user_o_status)

)

Achronix Proprietary and Confidential 265

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX_FP_ADD
conponent ACX_FP_ADD i s

generic (
fp_size i nteger := 16;
fp_exp_si ze integer :=5;
subtract integer := 0;
accumul ate i nteger := 0;
in_reg_enabl e integer := 0;
pi peli ne_regs integer := 0
K
port (
i_clk in std_logic;
i_din_a in std_logic_vector(fp_size-1 downto 0);
i_din_b in std_logic_vector(fp_size-1 dowmnto 0);
i_in_reg_a_ce in std_logic;
i_in_reg_b ce :in std_logic;
i_in_reg_rstn in std_logic;
i _pipeline_ce in std_logic;
i _pipeline_rstn in std_logic;
i _|oad :in std_logic;
o_dout : out std_logic_vector(fp_size-1 downto 0);
o_status : out std_logic_vector(1 downto O)
)

end conponent ACX_FP_ADD

-- VHDL Instantiation tenplate for ACX _FP_ADD
i nstance_nanme : ACX_FP_ADD
generic map (

fp_size => fp_size,
f p_exp_si ze => fp_exp_si ze,
subtract => subtract,
accunul ate => accumul at e,
in_reg_enable => in_reg_enabl e,
pi pel i ne_regs => pipeline_regs

)

port map (
i_clk => user_i _clk,
i_din_a => user_i _din_a,
i_din_b => user _i _di n_b,
i_in_reg_a ce => user_i_in_reg_a_ce,
i_in_reg_b_ce => user_i_in_reg_b_ce,
i_in_reg_rstn => user_i _in_reg_rstn,
i _pipeline_ce => user_i _pipeline_ce,
i _pipeline_rstn => user_i _pipeline_rstn,
i _|oad => user_i _| oad,
o_dout => user_o_dout,
o_status => user_o_status

)

Achronix Proprietary and Confidential 266

Speedcore Component Library User Guide (UG065)

ACX_FP_MULT

The ACX_FP_MULT module computes A x B, with optional accumulation. Internal register stages can be
enabled to allow for higher operating frequencies.

i_load

i_in_reg_rstn
i_in_reg_b_ce
i_in_reg_a_ce
i_din_b[fp_size - 1:0] o_dout[fp_size - 1:0]
i_din_al[fp_size - 1:0] o_status[1:0]
i_pipeline_ce

i_pipeline_rstn

i_clk

53807739-01.202.16.11

Figure 111: Floating-Point Multiplier With Optional Accumulate

Achronix Proprietary and Confidential

267

Speedcore Component Library User Guide (UG065)

Parameters

Table 205: ACX_FP_MULT Parameters

Parameter SRR Default Description
Values

fp_size 16, 24 16 Width of floating-point number. Supports fp24, fp16, and fp16e8.

fp_exp_size 58 5 Size of floating-point exponent.
0 — no accumulation: dout = i _din_a x i _din_b.

accumul at e 0,1 0 1 — accumulation: dout is the accumulated value. The start of
accumulation is signaled by asserting i _| oad=1.
0 — no input registers.
1—i_din_aandi _din_b are registered. The input registers are

in_reg_enable |01 0 controlled by thei _in_reg_a_ce,i _in_reg_b_ce,and
i _in_reg_rstn inputs. Enabling the input registers adds one cycle of
latency.

pi pel i ne_regs | 0-4 0 The number of pipeline registers, not counting the input register. The

total latency is pi pel i ne_regs + in_reg_enabl e.

Achronix Proprietary and Confidential 268

Speedcore Component Library User Guide (UG065)

Ports
Table 206: ACX_FP_MULT Pin Descriptions

Name Direction Description
i_clk Input Clock input, used for the (optional) registers and accumulator.
i_din_a[(fp_size-1):0] Input 'A' data input to multiplier.
i _din_b[(fp_size-1):0] Input 'B' data input to multiplier.
i inreq a ce Inout Ifi n_reg_enabl e=0 — ignored.
~tnhreg_a_ pu Ifi n_reg_enabl e=1 — clock enable fori _din_a.
i inred b ce Input Ifi n_reg_enabl e=0 — ignored.
~In_reg_b_ P Ifi n_reg_enabl e=1 — clock enable fori _di n_b.
i inreq rstn Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_ pu Ifi n_reg_enabl e=1 — synchronous active-low reset for input registers.
i biveline ce Inout If pi pel i ne_r egs=0 — ignored.
-Ptp - P If pi pel i ne_regs>1 — clock enable for pipeline and accumulator registers.
If pi pel i ne_regs=0 — ignored.
i _pipeline_rstn Input If pi pel i ne_r egs>1 — synchronous active-low reset for pipeline and accumulator
registers.
If accunul at e=0 — ignored.
) If accumul at e=1 — resets the accumulator toi _di n_a x i _di n_b, ignoring the previous
i _|oad Input
value.
This signal is internally pipelined to have the same latency asi _din_a x i _din_b.
o_dout [(fp_size-1):0] Output Result of multiplication and accumulation.
o_status[1:0] (D Output Error status of o_dout .
Table Notes
1. See Output Status for details.

Usage and Inference

ACX_FP_MULT cannot be inferred and must be directly instantiated. The specified floating point format applies
to the inputs and output but, internally, the operations are performed with fp24.

Achronix Proprietary and Confidential 269

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog

/1 Verilog tenplate for ACX_FP_MILT
ACX_FP_MULT #(

)

)

.fp_size (fp_size),
.fp_exp_size (fp_exp_size),
.accunmul ate (accunul ate),

.in_reg_enable (in_reg_enable),
.pipeline_regs (pipeline_regs)

i nstance_nane (

.i_clk (user _i_clk
_din_a (user_i_din_a
_din_b (user_i _din_b

L

L

.i_in_reg_a_ce (user
.i_in_reg_b_ce (user
.i_in_reg_rstn (user
.i_pipeline_ce (user
L
L

i
i
i
i
i
i
i
_pipeline_rstn (user_i

_|l oad (user_i _| oad
. 0_dout (user _o_dout
.o_status (user_o_status

_in_reg_a_ce
_in_reg_b_ce
_in_reg_rstn
_pipeline_ce
_pipeline_rstn

Achronix Proprietary and Confidential

270

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX FP_MULT
conponent ACX_FP_MULT is

generic (
fp_size i nteger := 16;
fp_exp_si ze integer :=5;
accunul at e integer := 0;
in_reg_enabl e i nteger := 0;
pi peli ne_regs integer := 0
)
port (
i_clk in std_logic;
i_din_a in std_logic_vector(fp_size-1 dowmnto 0);
i_din_b in std_logic_vector(fp_size-1 downto 0);
i_in_reg_a_ce in std_logic;
i_in_reg_b _ce :in std_logic;
i_in_reg_rstn in std_logic;
i _pipeline_ce in std_logic;
i _pipeline_rstn in std_logic;
i _|oad :in std_logic;
o_dout : out std_logic_vector(fp_size-1 dowmnto 0);
o_status : out std_logic_vector(1 downto O)
)

end conponent ACX_FP_MULT

-- VHDL Instantiation tenplate for ACX_FP_MILT
i nstance_nanme : ACX_FP_MULT
generic map (

fp_size => fp_size,
fp_exp_size => fp_exp_size,
accumul ate => accumul at e,
in_reg_enabl e => in_reg_enabl e,
pi pel i ne_regs => pi pel i ne_regs

)

port map (
i_clk => user_i _cl Kk,
i_din_a => user_i _din_a,
i_din_b => user_i _din_b,
i_in_reg_a_ce => user_i_in_reg_a_ce,
i_in_reg_b _ce => user_i_in_reg_b_ce,
i_in_reg_rstn => user_i _in_reg_rstn,
i _pipeline_ce => user_i _pi peline_ce,
i _pipeline_rstn => user_i _pipeline_rstn,
i _|oad => user_i _| oad,
o_dout => user_o_dout,
o_status => user_o_status

)

Achronix Proprietary and Confidential 271

Speedcore Component Library User Guide (UG065)

ACX_FP_MULT_PLUS

The ACX_FP_MULT_PLUS module computes AxB+C, with optional accumulation. Internal register stages can
be enabled to allow for higher operating frequencies.

i_load
i_in_reg_rstn
i_in_reg_c_ce
i_in_reg_b_ce
i_in_reg_a_ce

i_din_c[fp_size - 1:0] ACX_Fp_MULT_pLUS o_dout[fp_size - 1:0]

i_din_b[fp_size - 1:0] o_status[1:0]
i_din_a[fp_size - 1:0]
i_pipeline_ce

i_pipeline_rstn

i_clk

51478795-01.2022.15.11

Figure 112: Floating-Point Multiplier Plus Adder With Optional Accumulate

Achronix Proprietary and Confidential 272

Speedcore Component Library User Guide (UG065)

Parameters

Table 207: ACX_FP_MULT_PLUS Parameters

Parameter SRR Default Description
Values
fp_size 16, 24 16 Width of floating-point number. Supports fp24, fp16, and fp16e8.
fp_exp_si ze 58 5 Size of floating-point exponent.
0—computei _din_a x i_din_b + i_din_c.
subtract 0.1 0 1—computei dina xi dinb- i _dinc.
0 — no accumulation: dout =i _din_a x i _din_b + i_din_c.
accumnul at e 0,1 0 1 — accumulation: dout is the accumulated value. The start of
accumulation is signaled by asserting i _| oad=1.
0 — no input registers.
1—i_din_a,i_din_b,andi _di n_c are registered. The input
in_reg_enable |01 0 registers are controlled by thei _in_reg_a_ce,i_in_reg_b_ce,
i _in_reg_c_ce,andi _in_reg_rstninputs. Enabling the input
registers adds one cycle of latency.
pi pel i ne_regs | 0-5 0 The number of pipeline registers, not counting the input register. The

total latency is pi pel i ne_regs + in_reg_enabl e.

Achronix Proprietary and Confidential

273

Speedcore Component Library User Guide (UG065)

Ports

Table 208: ACX_FP_MULT_PLUS Pin Descriptions

Name Direction Description
. Clock input. All inputs are registered on rising edge of i _cl k. All outputs are synchronous
i_clk Input -
toi _cl k.
i _din_a[(fp_size-1):0] Input 'A' data input to multiplier.
i _din_b[(fp_size-1):0] Input 'B' data input to multiplier.
i_din_c[(fp_size-1):0] Input 'C' data input direct to adder.
i inreg a ce Input Ifi n_reg_enabl e=0 — ignored.
~threg_a_ P Ifi n_reg_enabl e=1 — clock enable fori _di n_a.
i inreq b ce Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_b_ pu Ifi n_reg_enabl e=1 — clock enable fori _di n_b.
i inreg c ce Inout Ifi n_reg_enabl e=0 — ignored.
~tn_reg_c_ npu Ifi n_reg_enabl e=1 — clock enable fori _din_c.
i inred rstn Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_ pu Ifi n_reg_enabl e=1 — synchronous active-low reset for input registers.
i oipeline ce Input If pi pel i ne_regs=0 — ignored.
-P'p - pu If pi pel i ne_regs>1 — clock enable for pipeline and accumulator registers.
If pi pel i ne_r egs=0 — ignored.
i _pipeline_rstn Input If pi pel i ne_r egs>1 — synchronous active-low reset for pipeline and accumulator
registers.
If accunul at e=0 — ignored.
If accunmul at e=1 — resets the accumulatortoi _din_a x i _din_b + i _din_c,
i _|oad Input ignoring the previous value.
This signal is internally pipelined to have the same latency as
i_din_a xi_din_b + i_din_c.
o_dout [(fp_size-1):0] Output Result of multiplication and accumulation.
o status[1:0] (D Output Error status of o_dout .

Table Notes

1. See Output Status for details.

Achronix Proprietary and Confidential

274

Speedcore Component Library User Guide (UG065)

Usage and Inference

ACX_FP_MULT_PLUS cannot be inferred and must be directly instantiated. The specified floating point format
applies to the inputs and output but, internally, the operations are performed with fp24. The multiplication result
AxB is rounded (to fp24) before being added to C. Thus, this is not the fusedMultiplyAdd operation defined in the
IEEE-754 standard (which would avoid the intermediate rounding step).

Instantiation Templates

Verilog

/1 Verilog tenplate for ACX_FP_MJLT_PLUS

ACX_FP_MULT_PLUS #(

.fp_size (fp_size
.fp_exp_size (fp_exp_size
.subtract (subtract
.accunul ate (accumul ate

).
)
)
)

.in_reg_enable (in_reg_enable),
.pipeline_regs (pipeline_regs)

) instance_nane (

.i_clk (user_i_clk),
.i_din_a (user_i_din_a),
.i_din_b (user_i_din_b),
.i_din_c (user_i_din_c),
.i_in_reg_a_ce (user_i_in_reg_a_ce),
.i_in_reg_b_ce (user_i_in_reg_b ce),
.i_in_reg_c_ce (user_i_in_reg_c_ce),
.i_in_reg_rstn (user_i_in_reg_rstn),
.i_pipeline_ce (user _i _pipeline_ce),
.i_pipeline_rstn (user_i_pipeline_rstn),
.i_l oad (user_i _| oad),
. 0_dout (user _o_dout),
.0_status (user_o_status)

Achronix Proprietary and Confidential

275

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX_FP_MJLT_PLUS
conponent ACX_FP_MJLT_PLUS is

generic (
fp_size
fp_exp_si ze
subtract
accumul ate
in_reg_enabl e
pi peli ne_regs
)
port (
i_clk
i_din_a
i_din_b
i_din_c
i_in_reg_a ce
i_in_reg_b_ce
i_in_reg_c_ce
i_in_reg_rstn
i _pipeline_ce
i _pipeline_rstn
i _| oad
o_dout
o_status

)

integer := 16

integer :=5;

integer := 0;

integer := 0;

integer := 0;

integer := 0

in std_logic;

in std_logic_vector(fp_size
in std_logic_vector(fp_size
in std_logic_vector(fp_size
in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

out std_l ogic_vector(fp_size
out std_logic_vector(1 downto

end conponent ACX FP_MJLT_PLUS

-- VHDL Instantiation tenplate for ACX_FP_MJLT_PLUS
i nstance_name : ACX_FP_MJLT_PLUS

generic map (
fp_size
fp_exp_si ze
subtract
accumul ate
in_reg_enabl e
pi pel i ne_regs
)
port map (
i_clk
i_din_a
i_din_b
i_din_c
i_in_reg_a ce
i_in_reg_b_ce
i_in_reg_c_ce
i_in_reg_rstn
i _pipeline_ce
i _pipeline_rstn
i _|oad
o_dout
o_status

)

fp_size

f p_exp_si ze,
subtract,
accumul at e,
in_reg_enabl e,
pi pel i ne_regs

user _i _clk,
user i _din_a

user_i _din_b
user _i _din_c,

user i _in_reg_a_ce
user i _in_reg_b_ce
user i _in_reg_c_ce
user_i_in_reg_rstn,
user _i _pipeline_ce
user _i _pipeline_rstn

user _i _| oad
user _o_dout
user_o_status

1 downto
1 downto
1 downto

ownt o

— o

o O o
— — —

0);

Achronix Proprietary and Confidential

276

Speedcore Component Library User Guide (UG065)

ACX_FP_MULT_2X

The ACX_FP_MULT_2X module is similar to ACX_FP_MULT, but uses a single ACX_MLP72 to compute two
products in parallel, with optional accumulations. The two operations are:

® dout _ab =i _din_a xi_din_b

® dout_cd =i _din_c xi_din_d

i_load_od

i_load_ab
i_in_reg_rstn
i_in_reg_d_ce
i_in_reg_c_ce
i_in_reg_b_ce
i_in_reg_a_ce
i_din_d[fp_size - 1:0] o_dout_cd[fp_size - 1:0]
i_din_c[fp_size - 1:0] o_status_cd[1:0]
i_din_b[fp_size - 1:0] o_dout_ab[fp_size - 1:0]
i_din_a[fp_size - 1:0] o_status_ab[1:0]
i_pipeline_ce

i_pipeline_rstn

i_clk

44860205-01.2022.16.11

Figure 113: Twin Floating-Point Multipliers With Optional Accumulate

Achronix Proprietary and Confidential 277

Speedcore Component Library User Guide (UG065)

Parameters

Table 209: ACX_FP_MULT_2X Parameters

Parameter EURECHEd Default Description
Values

fp_size 16, 24 16 Width of floating-point number. Supports fp24, fp16, and fp16e8.

fp_exp_size 58 5 Size of floating-point exponent.
0 — no accumulation: dout _ab = i _din_a x i _din_b,dout_cd =

accumul ate 0,1 0 | _dinc xi_din_d.

’ 1 —accumulation: dout _ab and dout _cd are the accumulated values. The start of

accumulation is signaled by asserting i _| oad_ab=1 ori _| oad_cd=1, respectively
0 — no input registers.
1—i_din_a,i_din_b,i_din_candi_din_d are registered.

in_reg_enable |0,1 0 The input registers are controlled by thei _in_reg_a_ce,i _in_reg_b_ce,
i_in_reg_c_ce,i_in_reg_d_ceandi_in_reg_rstn inputs. Enabling the input
registers adds one cycle of latency.

pi pel i ne_regs | 0-4 0 The number of pipeline registers, not counting the input register. The total latency is

pi peline_regs + in_reg_enable.

Achronix Proprietary and Confidential

278

Speedcore Component Library User Guide (UG065)

Ports

Table 210: ACX_FP_MULT_2X Pin Descriptions

Name Direction Description
i_clk Input Clock input, used for the (optional) registers and accumulator.
i_din_a[(fp_size-1):0] Input 'A' data input to AB multiplier.
i _din_b[(fp_size-1):0] Input 'B' data input to AB multiplier.
i _din_c[(fp_size-1):0] Input 'C' data input to CD multiplier.
i _din_d[(fp_size-1):0] Input 'D' data input to CD multiplier.
i inreg a ce Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_a_ npu Ifi n_reg_enabl e=1 — clock enable fori _di n_a.
i inreg b ce Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_b_ pu Ifi n_reg_enabl e=1 — clock enable fori _di n_b.
i inreqgc ce Inout Ifi n_reg_enabl e=0 — ignored.
~tn_reg_c_ pu Ifi n_reg_enabl e=1 — clock enable fori _din_c.
i inreq d ce Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_d_ P Ifi n_reg_enabl e=1 — clock enable fori _di n_d.
i inred rstn Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_ pu Ifi n_r eg_enabl e=1 — synchronous active-low reset for input registers.
i biveline ce Inout If pi pel i ne_regs=0 — ignored.
-prp - P If pi pel i ne_regs>1 — clock enable for pipeline and accumulator registers.
If pi pel i ne_regs=0 — ignored.
i _pipeline_rstn Input If pi pel i ne_r egs>1 — synchronous active-low reset for pipeline and accumulator
registers.
If accunul at e=0 — ignored.
i 1oad ab | If accunul at e=1 — resets the AB accumulator toi _di n_a x i _di n_b, ignoring the
r_load_a nput previous value.
This signal is internally pipelined to have the same latency asi _din_a x i _din_b.
If accunul at e=0 — ignored.
i 1oad cd | If accunul at e=1 — resets the CD accumulator toi _di n_c x i _di n_d, ignoring the
r_load_c nput previous value.
This signal is internally pipelined to have the same latency asi _din_c x i _din_d.
o_dout _ab[(fp_si ze-1):0] | Output Result of A x B multiplication and accumulation.
o_dout _cd[(fp_size-1):0] | Output Result of C x D multiplication and accumulation.
o_status_ab[1: 0] (" Output Error status of o_dout _ab.
o_status_cd[1: 0] (") Output Error status of o_dout _cd.

Achronix Proprietary and Confidential

279

Speedcore Component Library User Guide (UG065)

Name

Direction

Description

Table Notes

1. See Output Status for details.

Usage and Inference

ACX_FP_MULT_2X cannot be inferred and must be directly instantiated. The specified floating point format
applies to the inputs and outputs but, internally, the operations are performed with fp24.

If f p_si ze=24, the four data inputs require 96 bits total. Since this is more than 72 bits, the ACX_MLP72 that
performs the operation is used in wide input mode. In this mode, the adjacent ACX_BRAM72K site is used as
route-through, meaning it is no longer available for BRAM placement. By contrast, if f p_si ze=16, only 64 input
bits are needed and normal input mode is used.

Achronix Proprietary and Confidential 280

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog

/1 Verilog tenplate for ACX_FP_MJLT_2X
ACX_FP_MULT_2X #(
.fp_size (fp_size

)

)

)
.fp_exp_size (fp_exp_size),
.accunmul ate (accunul ate)

.in_reg_enable (in_reg_enable),
.pipeline_regs (pipeline_regs)

i nstance_nane (
Li_clk
_din_a
_din_b
_din_c
_din_d
_in_reg_a_ce
_in_reg_b_ce
_in_reg_c_ce
_in_reg_d_ce
_in_reg_rstn
_pipeline_ce
_pipeline_rstn
_load_ab
.i_load_cd
. 0_dout _ab
.0_dout _cd
.0_status_ab
.0_status_cd

(user_o_dout _ab
(user _o_dout _cd
(user_o_status_ab

(user _i_clk),
(user_i_din_a),
(user_i _din_b),
(user_i _din_c),
(user_i_din_d),
(user_i_in_reg_a_ce),
(user_i_in_reg_b ce),
(user_i_in_reg_c_ce),
(user_i_in_reg_d_ce),
(user i _in_reg_rstn),
(user_i _pipeline_ce),
(user_i _pipeline_rstn),
(user _i _| oad_ab),
(user_i_l oad_cd),

)

)

)

)

(user_o_status_cd

Achronix Proprietary and Confidential

281

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX_FP_MJLT_2X
conponent ACX_FP_MULT 2X is

generic (
fp_size i nteger := 16;
fp_exp_si ze integer :=5;
accunul at e integer := 0;
in_reg_enabl e i nteger := 0;
pi peli ne_regs integer := 0

)

port (
i_clk in std_logic;
i_din_a in std_logic_vector(fp_size-1 dowmnto 0);
i_din_b in std_logic_vector(fp_size-1 downto 0);
i_din_c in std_logic_vector(fp_size-1 dowmnto 0);
i_din_d in std_logic_vector(fp_size-1 dowmnto 0);
i_in_reg_a_ce in std_logic;
i_in_reg_b_ce :in std_logic;
i_in_reg_c_ce in std_logic;
i_in_reg_d_ce in std_logic;
i_in_reg_rstn in std_logic;
i _pipeline_ce in std_logic;
i _pipeline_rstn in std_logic;
i _|oad_ab in std_logic;
i _|oad_cd in std_logic;
o_dout _ab : out std_logic_vector(fp_size-1 downto 0);
o_dout _cd : out std_logic_vector(fp_size-1 downto 0);
o_status_ab : out std_logic_vector(1 dowmnto 0);
o_status_cd : out std_logic_vector(1 downto O)

)

end conmponent ACX_FP_MJLT_2X

-- VHDL Instantiation tenplate for ACX FP_MILT_2X
i nstance_name : ACX _FP_MILT_2X
generic map (

fp_size => fp_size,
fp_exp_size => fp_exp_size,
accumul at e => accumul at e,
in_reg_enabl e => in_reg_enabl e,
pi pel i ne_regs => pipeline_regs

)

port map (
i_clk => user_i _cl Kk,
i_din_a => user_i _din_a,
i_din_b => user_i _din_b,
i_din_c => user_i _din_c,
i_din_d => user_i _din_d,
i_in_reg_a_ce => user_i _in_reg_a_ce,
i_in_reg_b_ce => user_i_in_reg_b_ce,
i_in_reg_c_ce => user_i _in_reg_c_ce,
i_in_reg_d_ce => user_i _in_reg_d_ce,
i_in_reg_rstn => user_i _in_reg_rstn,
i _pipeline_ce => user_i _pi peline_ce,
i _pipeline_rstn => user_i _pipeline_rstn,
i _|l oad_ab => user_i _| oad_ab,
i _load_cd => user_i _| oad_cd,

Achronix Proprietary and Confidential 282

Speedcore Component Library User Guide (UG065)

o_dout _ab
o_dout _cd
o_status_ab
o_status_cd

user _o_dout _ab,
user _o_dout _cd,
user _o_status_ab,
user _o_status_cd

Achronix Proprietary and Confidential

283

Speedcore Component Library User Guide (UG065)

ACX_FP_MULT_ADD

The ACX_FP_MULT_ADD module computes (AxB) + (CxD), with optional accumulation. Internal register stages
can be enabled to allow for higher operating frequencies.

i_load
i_in_reg_rstn
i_in_reg_bd_ce
i_in_reg_ac_ce
i_din_d[fp_size - 1:0]
o_dout[fp_size - 1:0]
i_din_c[fp_size - 1:0] ACX_FP_MULT_ADD
o_status[1:0]
i_din_b[fp_size - 1:0]
i_din_a[fp_size - 1:0]
i_pipeline_ce

i_pipeline_rstn

i_clk

51478800-01.2022.15.11

Figure 114: Twin Floating-Point Multiplies With Addition and Optional
Accumulation

Achronix Proprietary and Confidential 284

Speedcore Component Library User Guide (UG065)

Parameters

Table 211: ACX_FP_MULT_ADD Parameters

Parameter EURECHEd Default Description
Values

fp_size 16, 24 16 Width of floating-point number. Supports fp24, fp16, and fp16e8.

fp_exp_size 58 5 Size of floating-point exponent.
0—compute (i _din_a x i_din_b) + (i_din_c x i_din_d).

subtract 0.1 0 1—compute (i _dina x i _dinb) - (i dinc xi_din_d).
0 — no accumulation: dout = (i _din_a x i_din_b) + (i_din_c x i_din_d).

accunul ate 0,1 0 1 — accumulation: dout is the accumulated value. The start of accumulation is signaled
by assertingi _| oad=1.
0 — no input registers.

inreq enable |0 1 0 1—i_din_a,i_din_b,i_din_candi_din_d are registered.

in_r

-reg_ ’ The input registers are controlled by thei _in_reg_ac_ce,i _in_reg_bd_ce

and i _i n_reg_r st ninputs. Enabling the input registers adds one cycle of latency.

pi peline_regs | 0-5 0 The number of pipeline registers not counting the input register. The total latency is

pi peline_regs + in_reg_enable.

Achronix Proprietary and Confidential

285

Speedcore Component Library User Guide (UG065)

Ports

Table 212: ACX_FP_MULT_ADD Pin Descriptions

Name Direction Description
i_clk Input Clock input, used for the (optional) registers and accumulator.
i_din_a[(fp_size-1):0] Input 'A' data input to AB multiplier.
i _din_b[(fp_size-1):0] Input 'B' data input to AB multiplier.
i _din_c[(fp_size-1):0] Input 'C' data input to CD multiplier.
i_din_d[(fp_size-1):0] Input 'D' data input to CD multiplier.
i inreq ac ce Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_ac_ npu Ifi n_reg_enabl e=1 — clock enable fori _din_aandi_din_c.
i inrea bd ce Input Ifi n_reg_enabl e=0 — ignored.
~tn_reg_bd_ pu Ifi n_reg_enabl e=1 — clock enable fori _di n_b andi _din_d.
i inreg rstn Inout Ifi n_reg_enabl e=0 — ignored.
~tn_reg_ pu Ifi n_reg_enabl e=1 — synchronous active-low reset for input registers.
i bipeline ce Input If pi pel i ne_regs=0 — ignored.
-P'p - P If pi pel i ne_r egs>1 — clock enable for pipeline and accumulator registers.
If pi pel i ne_regs=0 — ignored.
i _pipeline_rstn Input If pi pel i ne_regs>1 — synchronous active-low reset for pipeline and accumulator
registers.
If accunmul at e=0 — ignored.
If accunul at e=1 — resets the accumulator to:
i | oad Input (i_din_a x i_din_b) + (i_din_c x i_din_d),ignoring the previous value.
This signal is internally pipelined to have the same latency as:
(i_din_a x i_din_b) * (i_din_c x i_din_d).
o_dout [(fp_size-1):0] Output Result of multiplication and accumulation.
o_status[1:0] (D Output Error status of o_dout .

Table Notes

1. See Output Status for details.

Achronix Proprietary and Confidential

286

Speedcore Component Library User Guide (UG065)

Usage and Inference

ACX_FP_MULT_ADD cannot be inferred and must be directly instantiated. The specified floating point format
applies to the inputs and output but, internally, the operations are performed with fp24.

If f p_si ze=24, the four data inputs require 96 bits total. Since this is more than 72 bits, the ACX_MLP72 that
performs the operation is used in wide input mode. In this mode, the adjacent ACX_BRAM72K site is used as
route-through, meaning it is no longer available for BRAM placement. By contrast, if f p_si ze=16, only 64 input
bits are needed, and normal input mode is used.

Instantiation Templates
Verilog

/1 Verilog tenplate for ACX_FP_MJULT_ADD
ACX_FP_MJLT_ADD #(

.fp_size (fp_size),
.fp_exp_size (fp_exp_size),
. subtract (subtract),
.accunul ate (accumul ate),

.in_reg_enable (in_reg_enable),
.pipeline_regs (pipeline_regs)
) instance_nane (

.i_clk (user_i_clk),
.i_din_a (user_i_din_a),
.i_din_b (user_i_din_b),
.i_din_c (user_i_din_c),
.i_din_d (user _i _din_d),
.i_in_reg_ac_ce (user_i_in_reg_ac_ce),
.i_in_reg_bd_ce (user_i_in_reg_bd ce),
.i_in_reg_rstn (user i _in_reg_rstn),
.i_pipeline_ce (user _i _pipeline_ce),
.i_pipeline_rstn (user_i_pipeline_rstn),
.i_l oad (user _i _| oad),
. 0_dout (user _o_dout),
.0_status (user_o_status)

Achronix Proprietary and Confidential 287

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX_FP_MJLT_ADD
conponent ACX_FP_MULT_ADD i s
generic (

fp_size
fp_exp_si ze
subtract
accumul at e
in_reg_enabl e
pi peli ne_regs

)

port (
i_clk
i_din_a
i_din_b
i_din_c
i_din_d
i_in_reg_ac_ce
i_in_reg_bd_ce
i_in_reg_rstn
i _pipeline_ce
i _pipeline_rstn
i _| oad
o_dout
o_status

)

integer := 16

integer :=5;

integer := 0;

integer := 0;

integer := 0;

integer := 0

in std_logic;

in std_logic_vector(fp_size-1 downto
in std_logic_vector(fp_size-1 downto
in std_logic_vector(fp_size-1 downto
in std_logic_vector(fp_size-1 downto
in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

out std_l ogic_vector(fp_size-1 downto
out std_logic_vector(1 downto O)

end conmponent ACX_FP_MJULT_ADD

-- VHDL Instantiation tenplate for ACX_FP_MJLT_ADD

i nstance_nane :

generic map (

fp_size
fp_exp_si ze
subtract
accunul ate
in_reg_enabl e
pi pel i ne_regs

)

port map (
i_clk
i_din_a
i_din_b
i_din_c
i_din_d
i_in_reg_ac_ce
i_in_reg_bd_ce
i_in_reg_rstn
i _pipeline_ce
i _pipeline_rstn
i _|oad
o_dout
o_status

)

ACX_FP_MULT_ADD

fp_size

f p_exp_si ze,
subtract,
accumul at e,
in_reg_enabl e,
pi pel i ne_regs

user _i _clk,
user i _din_a

user_i _din_b
user _i _din_c,
user _i _din_d,

user _i _in_reg_ac_ce
user i _in_reg_bd_ce
user_i_in_reg_rstn,
user _i _pipeline_ce
user _i _pipeline_rstn

user _i _| oad
user _o_dout
user_o_status

Achronix Proprietary and Confidential

288

Speedcore Component Library User Guide (UG065)

Chapter - 6: Memories

ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error
Correction)

wraddr[13:0] rdaddr[13:0]
din[31:0]

dinp[3:0]

dout[31:0]
doutp[3:0]
dinpx[3:0] doutpx[3:0]

we[3:0]

ACX_BRAMSDP

wren rden

rstlatch shit_error
rstreg dbit_error

outregce

wrclk rdclk

5374063-07.20222.11.15

Figure 115: 20-kb Simple Dual-Port Memory With Error Correction

Achronix Proprietary and Confidential 289

Speedcore Component Library User Guide (UG065)

The block RAM (ACX_BRAMSDP) implements a 20kb simple-dual-port (SDP) memory block with one write port
and one read port. Each port can be independently configured as follows:

® 512 x40
® 512 x 36
® 512 x 32
* 1k x 20
* 1k x 18
* 1k x 16
* 2k x10
® 2kx9

® 2kx8

® 4k x5

® 4k x4

® 8kx2

® 16k x 1

The read and write operations are both synchronous. For higher performance operation, an additional output

register can be enabled which causes an additional cycle of read latency. Write enable (we) controls provide 8-
bit, 9-bit, or 10-bit byte enable control for port widths above 16 bits.

The initial value of the memory contents may be specified either with parameters or with a memory initialization
file. The initial/reset values of the output registers may also be specified.

outregce

rstreg

rstlatch

din,
dinp,
dinpx

dout
doutp
doutpx

wrelk Encoder 32-bit
ECC

sbit_error

we

Decoder

wren

dbit_error

rdclk

5374063-08.2022.11.15

Figure 116: ACX_BRAMSDP Block Diagram (Per Port)

Achronix Proprietary and Confidential 290

Speedcore Component Library User Guide (UG065)

Table 213: ACX_BRAMSDP Pin Descriptions

Name Type Description

Write/read clock inputs. Read/write operations are fully synchronous and occur upon the active edge of
wr cl k, rdcl k Input wr ¢l k/r dcl k when the wr en/r den signal is high. The active edge of wr ¢l k/r dcl k is determined by
thewrite_clock_pol arity/read_cl ock_pol arity parameter.

Read port enable. Asserted to perform a read operation. If the r ead_peval parameteris 1' b0, r den

rden Input is active low, otherwise if 1' b1, r den is active high.
r daddr [13: 0] Inout Determines which memory location is being read. When the port width is greater than 1, the address
’ P must be top-justified, meaning that the low order address bits must be tied to 0.
Write port enable. Asserted to perform a write operation. If the w i t e_peval parameteris 1' bO, wr en
wren Input . . e .) ;
is active low, otherwise if 1' b1, wr en is active high.
wr addr [13: 0] Inout Determines which memory location is being written. When the port width is greater than 1, the address
’ P must be top-justified, meaning that the low order address bits must be tied to 0.
Write port byte-wide write enable. Each bit enables a 10-bit byte to be written to the memory block as
follows:
we[3: 0] Input Byte writes are enabled on the write port when both the wr en signal is asserted and the corresponding
bit in the we signal is asserted. For write port widths <= 20, we[3: 2] must be tied to 2' b00. For write
port width <= 10, we[1] must be tied to we[0] .
di n[31: 0], Input Write port data input.
di np[3: 0] Input Write port parity input. May be used for data.
di npx[3: 0] Input Write port extended parity input. May be used for data.
Output latch synchronous reset. When asserted, the value of the r ead_sr val parameter is written to
rstlatch Input

the output latch on the next active edge of r dcl k.

Output register reset. The sr _asserti on_r eg parameter determines whether the reset is
synchronous (default) or asynchronous, and the r eg_r st val parameter determines whether it is
rstreg Input active-high (default) or active-low. When reset is asserted, the output register is assigned the value of
the r ead_srval parameter. The priority of the r st r eg input relative to the clock enable input,

out r egce, is determined by the value of the r egce_pri ori ty parameter.

Output register clock enable (active-high). When the en_out _r eg parameter is 1' b1, de-asserting the
outregce Input out r egce signal causes the BRAM output to retain the dout , dout p, and dout px signals unchanged,
independent of a read operation. When en_out _r eg is 1'b0, the out r egce input is ignored.

Read port data output. For read operations, dout is updated with the memory contents addressed by

dout [31: 0] Output r daddr if the r den port enable is active.
. Read port parity output. Behaves in the same manner as dout and is used when the r ead_wi dt h is
dout p[3: 0] Output | et t0 5,9, 10, 18, 20, 36, or 40 bits.
. Read port extended parity output. Behaves in the same manner as dout and is used when the
dout px[3: 0] Output | ead wi dt his set to 10, 20 or 40 bits.
Single-bit error (active-high). Asserted during a read operation when the decoder _enabl e parameter

) is 1' b1, and a single-bit error is detected. In this case, the corrected word is output on the dout pins.

shit_error Output

The memory contents are not corrected by the error correction circuitry. The sbi t _err or signal is
aligned with the associated read data word.

Achronix Proprietary and Confidential 291

Speedcore Component Library User Guide (UG065)

Name Type Description
Dual-bit error (active-high). Asserted during a read operation when the decoder _enabl e parameter is
dbit error Outout 1' b1, and a dual-bit error is detected. In the case of a dual-bit error condition, the uncorrected read
- P data word is output on the dout pins. The dbi t _error signal is aligned with the associated read data

word.

Achronix Proprietary and Confidential

292

Speedcore Component Library User Guide (UG065)

Table 214: ACX_BRAMSDP Parameters

Parameter DIl el Description
Values Value P
1,2,4,5,8,
read_wi dth 9,10, 16, 18, 40 Sets the width of the read port.
20, 32, 36, 40
1,2,4,5,8, Sets the width of the write port. May vary from the write port width, but it
wite_w dth 9,10, 16,18, |40 must be within the allowable combinations defined in Memory Organization
20, 32, 36, 40 and Data Input/Output Pin Assignments (see page 295).
wri te_cl ock_pol art ty, rise,fall rise Used to set the active edge of the read and write clocks.
read_cl ock_polarity
write_peval 1' b0, 1' bl 1' b1 Deflnesl the active Ie.kvel Qf the wr en port. A value of 1' b0 sets active low,
while 1' b1 sets active-high.
read_peval 1' b0, 1' bl 1' b1 Dleflnes the ac?tlve I'evel of the r den ports. A value of 1' b0 sets active low,
1' b1 sets active-high.
l atch_rstval 1'b0, 1' bl 1' bl Deflnes.the 'actlve level gf thg rstlatch input. A value of 1' b0 sets active
low, while 1' b1 sets active high.
Determines whether the output register is enabled. A value of 1' b0 disables
en_out _reg 1' b0, 1' bl 1' b0 the output register and results in a read latency of one cycle, while 1' b1
enables the output register and results in a read latency of two cycles.
reg_rstval 1' b0, 1' bl 1'b1 Deflnes the agtlve IIeveI of the r.st r feg input. A value of 1' bO sets rstreg
active low, while 1' b1 sets active high.
Defines the priority of the out r egce clock enable input relative to the
rstreg reset.
S rstreg, ® "rstreg" - allows the output register to be reset by asserting r st r eg
regce_priority rstreg . - .
regce without requiring assertion of out r egce.
® "regce" — allows the output register to be reset only by asserting both
rstreg and out r egce together.
When enabled, defines the power-up default value of the data on the output
. f the latch and output register. Assignment is dependent on the
ini () - ' 0 ‘ P! 9 9 p
read_initval 40-bit number | 40" h0 read_wi dt h parameter as shown in Table: initval, srval, and meminit File
Mapping to Output Signals (see page 304).
When enabled, defines the reset value of the data on the output of the latch
) i , and output register, when r st | at ch and/or r st r eg is asserted.
read_srval 40-bit number | 40" h0 Assignment is dependent on the r ead_wi dt h parameter as shown in Table:
initval, srval, and meminit File Mapping to Output Signals (see page 304).
Sets whether the assertion of the output register reset is synchronous or
asynchronous with respect to the r dcl k input. A value of "cl ocked" sets
sr assertion re cl ocked, un cl ocked synchronous reset where the output register is reset at the next rising edge
- -reg cl ocked of the clock if r st r eg is asserted. A value of "uncl ocked" sets
asynchronous reset where the output register is reset immediately following
the assertion of the r st r eg input.
Provides a mechanism to set the initial contents of the ACX_BRAMSDP
memory.

Achronix Proprietary and Confidential

293

Speedcore Component Library User Guide (UG065)

Parameter

Defined
Values

Default
Value

Description

meminit _file

<path to
HEX file>

® |f this parameter is defined, the BRAM is initialized with the values
defined in the file pointed to by the parameter according to the format
defined in Memory Initialization (see page 304).

® |f left at the default value ("), the initial contents are defined by the
values of the i nitd_00-initd_63,initp_O0-initp_7,and
i ni t px_0—i ni t px_7 parameters.

® [f the memory initialization parameters and the mrem init _file
parameters are not defined, the contents of the BRAM remain
uninitialized.

initd_00-initd 63

256-bit
hex value

256' hx

The i ni t d_00 through i ni t d_63 parameters define the initial contents of
the memory associated with dout a[15: 0] and dout b[15: 0] . Each 256~
bit parameter associated with the BRAM memory is defined in Memory
Initialization (see page 304).

initp_O-initp_7

256-bit
hex value

256" hx

The i ni t p_0 through i ni t p_7 parameters define the initial contents of the
memory associated with dout pa[1: 0] and dout pb[1: 0] . Each 256-bit
parameter associated with the BRAM memory is defined in Memory
Initialization (see page 304).

initpx_0—initpx_7

256-bit
hex value

256' hx

The i ni t px_0 through i ni t px_7 parameters define the initial contents of
the memory associated with dout pxa[1: 0] and dout pxb[1: 0] . Each
256-bit parameter associated with the BRAM memory is defined in Memory
Initialization (see page 304).

encoder _enabl e

1' b0, 1' bl

1' bO

Determines if the ECC encoder circuitry is selected or bypassed. A value of
1' b1 enables the ECC encoder for normal operation, while 1' b0 disables
the ECC encoder circuitry and allows the di np and di npx inputs to be
connected directly to the underlying memory array.

decoder _enabl e

1' b0, 1" bl

1' b0

Determines if the ECC decoder circuitry is selected or bypassed. A value of
1' b1 enables the ECC decoder for normal operation while 1’ b0 disables
the ECC decoder circuitry and allows the dout p and dout px memory
outputs to be driven directly from the underlying memory array.

Table Notes

1. Special Case for ECC Mode: This parameter has no effect when the ECC decoder is enabled (decoder _enabl e == 1' b1l),
and the BRAM data output register is disabled (en_out _reg == 1' b0). In this configuration, the BRAM output latch is
bypassed, and the power-up default value of the data output is undefined. To enable read port init values and/or reset values in
ECC mode, the output register must be enabled (en_out _reg == 1' bl).

Note

The ACE BRAM IP Configuration GUI and ACX_BRAM_GEN macros only support a single bit write
© enable (we) for the entire data word. Byte-wise write enables are not supported via the GUI or in Verilog
macros. Access to the full capabilities of the BRAM is available by instantiating the ACX_BRAMSDP

primitive directly.

Achronix Proprietary and Confidential 294

Speedcore Component Library User Guide (UG065)

Memory Organization and Data Input/Output Pin Assignments

The ACX_BRAMSDP block supports memory widths from one to forty bits wide. The width of the di n data input
is determined by the wri t e_wi dt h parameter while the dout data output width is determined by the
read_wi dt h parameter. The read port and write port widths may be different. There are some limitations of the
port width assignments between the read and write width assignments, these limitations and the supported port
width combinations are described in the following table. X' indicates a supported configuration.

Table 215: Supported Width Combinations

"fv‘::fh Write Width
512 x 1k x 2k x 4k x 512 x 1k % 2k x 512 x 1k x 2k x 4k x 8k x 16k x
40 20 10 5 36 18 9 32 16 8 4 2 1
512 x 40 X X X X - — - — — _
1k x 20 X X X X — - - — — —
2k x 10 X X X X - - - - - -
4k x 5 X X X X — - - — — —
512 x 36 - - — - X X X - — — —
1k x 18 - - - - X X X - - - -
2k x 9 - - - - X X X - - - -
512 x 32 - - - - - - X X X X X X
1k x 16 - - — - — — X X X X X X
2k x 8 - - - - - - X X X X X X
4k x 4 - - - - - X X X X X X
8k x 2 - - - - - X X X X X X
16k x 1 - - - — - X X X X X X

Data Widths Using Parity Pins

The ACX_BRAMSDP memory has three buses for both data in and data out; the respective di n and dout

interfaces, along with the di np, di npx, dout p and dout px parity interfaces. When ECC is used, the parity

interfaces are unused, as the ECC encoder and decoder make use of the respective memory pins for ECC

operation. When ECC is disabled, the parity interfaces are assigned to the respective data buses as shown in the

following table.

Achronix Proprietary and Confidential

295

Speedcore Component Library User Guide (UG065)

Table 216: Parity Pins Assignment, (Per Port)

V?I?c:?h dinpx/doutpx dinp/doutp din/dout

e i T
data[3:0]}

36 - g:;z[s?]’f] data[26], data[17], | 1y 1a134:27], data[25:18], data[16:9], data[7:0]}

32 - - data[31:0]

- gz;iaao[gj}datamg], (200, data[14], data4] ga?'ah[g,: (;i]?ta[18:15], data[13:10], data[8:5],

18 - {2'b00, data[17], data[8]} {16'h0, data[16:9], data[7:0]}

16 - - {16'h0, data[15:0]}

10 {3'b000, data[9]} {3'b000, data[4]} {24'h0, data[8:5], data[3:0]}

9 - {3'b000, data[8]} {24'h0, data[7:0]}

8 - - {24'h0, data[7:0]}

5 - {3'b000, data[4]} {28'h0, data[3:0]}

4 - — {28'h0, data[3:0]}

2 - - {300, data[1:0]}

1 - - {31'h0, data[0]}

Ay Caution!

Pay close attention to non power-of-two-sized data widths and how the data bits are assigned.

Achronix Proprietary and Confidential

296

Speedcore Component Library User Guide (UG065)

Address Bus Mapping

When the ACX_BRAMSDP is configured for memory depths of less than 16K entries, the address bus is
assigned left justified, assigning the lower unused address bits to 0 as required. This is shown in the following

table.

Table 217: ACX_BRAMSDP Address Bus Mapping (Per Port)

Memory rdaddr/wraddr | Address Pins
Organization Pins Tied to 0
512 x 40 13:5 4:0
512 x 36 13:5 4:0
512 x 32 13:5 4:0
1k x 20 13:4 3:0
1k x 18 13:4 3:0
1k x 16 13:4 3:0
2k x 10 13:3 2.0
2k x9 13:3 2:0
2k x 8 13:3 2:0
4k x 5 13:2 1:0
4k x 4 13:2 1:0
8k x 2 13:1 0
16k x 1 13:0 -

Warning

—

A common error is to assign the address bus incorrectly justified; it must be assigned left-justified, not

right-justified.

Achronix Proprietary and Confidential

297

Speedcore Component Library User Guide (UG065)

Read and Write Operations

Timing Options
The BRAM has two options for interface timing, controlled by the en_out _r eg parameter:
® | atched mode —when en_out regis1' b0, the portis in latched mode where the read address is

registered and the stored data is latched into the output latches on the following clock cycle, providing a
read operation with one cycle of latency.

® Registered mode —when en_out _regis 1' bl, the port is in registered mode where there is an
additional register after the latch, supporting higher-frequency designs, providing a read operation with two
cycles of latency.

Read Operation

Read operations are signaled by driving the r daddr signal with the address to be read, and asserting the r den
signal. The requested read data arrives on the dout , dout p, and dout px signals on the following clock cycle or
the cycle after, depending on the en_out _r eg parameter value.

Table 218: Latched Mode BRAM Output Function Table (Assumes Rising-Edge Clock and Active-High
Port Enable)

Operation | rdclk | rstlatch | rden dout

Hold X X X Hold previous value.
Reset latch | 1 1 X init_srval

Hold 1 0 0 Hold previous value.
Read 1 0 1 nmeni r daddr]

Table 219: Registered Mode BRAM Output Function Table (Assumes Active-High Clock, Output Register
Clock Enable, and Output Register Reset)

Operation regce_priority rdclk | rstreg | outregce dout
Hold - X X X dout _previ ous
Reset Output "rstreg” 1 1 X read_srval
Reset Output "regce" 1 1 1 read_srval
Hold "regce" 1 X 0 dout _previ ous
Hold "rstreg" or"regce" 1 0 0 dout _previ ous
Update Output | "rstreg" or"regce" 1 0 1 Registered from latch output.

Achronix Proprietary and Confidential 298

Speedcore Component Library User Guide (UG065)

Write Operation

Write operations are signaled by asserting the wr en signal and asserting the write enable (we) signal for the
bytes to be written. The values of the di n, di np, and di npx signals are stored in the memory array at the
indicated address by the wr addr signal on the next active clock edge.

Simultaneous Memory Operations

Memory operations may be performed simultaneously from both sides of the memory; however, there is a
restriction regarding memory collisions. A memory collision is defined as the condition where both of the ports
access the same memory location(s) within the same clock cycle (both ports connected to the same clock), or
within a fixed time window (if each port is connected to a different clock). If one of the ports is writing an address
while the other port is reading the same address (qualified with overlapping write enables per bit), the write
operation takes precedence, but the read data is invalid. The data may be reliably read on the next cycle if there
is no longer a write collision.

Achronix Proprietary and Confidential 299

Speedcore Component Library User Guide (UG065)

Timing Diagrams
This section contains timing diagrams for both values of the en_out _r eg parameter. The first timing diagram
illustrates the behavior of the ACX_BRAMSDP instance with the output register disabled.

0 1 2 3 4 5 6 7 8 9 10
wrelk | | | | | | | W
I I] I I I I I
I]] I I I I I
N o |
wren | | \I | | | |
]] ! | | |
I]]]]] |
T o |
we | | \| | | |
|] 1 1 1 1
! ! ! ! ! ! ! !
wraddr | X ‘h0 X ‘h1 X ‘h3 X
l
! ! !] ! ! ! ! ! !
din | X‘hOOOO X ‘h1111 X‘h3333X
L
]
]
|
I
I
I
I

I I I I I I I I
o I A e U
rden I I I |/ I
E i i i i i
rdaddr } X hl X ‘h2 X ‘h3 X
I i i i i i i i
I]] I I
rstlatch : : : :/—L , \ :
5 i i i i i i i
dout } X srval X‘h1111 X srval X ‘h3333

6586703-01.2022.15.11

Figure 117: Latched Mode Read Timing Diagram

Achronix Proprietary and Confidential 300

Speedcore Component Library User Guide (UG065)

The behavior of the ACX_BRAMSDP on each clock cycle of the preceding diagram is described in the following
table, where each row represents a transaction that spans the clock cycles indicated.

Table 220: ACX_BRAMSDP Timing Diagram Clock Cycle Behavior With Output Register Disabled

(T Transaction Description
Cycle
1 No-op wr en is asserted but we is not asserted. Nothing is written to the memory array.
5 Write wr en and we are both asserted. Data on di n is committed to wr addr location in the
memory array.
3 Write wr en and we are both asserted. Data on di n is committed to wr addr location in the
memory array.
4 No-op wr en is not asserted. Asserted we is ignored and nothing is written to the memory array.
4-5 Read reset rstl at ch is asserted, causing the output to be set to srval as provided by the
latch read_srval parameter on the next cycle.
5-6 Read r den is asserted. The memory is read and presented on dout on the following cycle.
Read reset r den is asserted. The memory is read. Since r st | at ch is asserted, the output is reset to
6-7 .
latch the srval as provided by the r ead_sr val parameter.
7-8 Read r den is asserted. The memory is read and presented on dout on the following cycle.
8-9 Hold rden and r st at ch are both de-asserted. dout retains its previous value.

Achronix Proprietary and Confidential

301

Speedcore Component Library User Guide (UG065)

The second timing diagram illustrates the behavior of a ACX_BRAMSDP instance with the output register

enabled.

e / \
wraddrI X 'h0 X h1 X 'h0 X

din Xl'hOOOD X| hiiil Xl'hOOOO XI

°
°
°
°
;
°
o
-

rden

/

I D 0 R
/ L
[-

{ dout X srval X ‘hi111 X srval X‘h3333 X srval
T T T T T T T T T T T
[

rstreg

I | | | | I |
1 1 1 1 I 1 I 1
{ dout X srval

I | I
Il | 1

X ‘hii1l X srval X ‘h3333 X srval
i i i i i

regce

6686703-02.2022.15.11

Figure 118: Registered Mode Read Timing Diagram

Achronix Proprietary and Confidential

302

Speedcore Component Library User Guide (UG065)

The behavior of the ACX_BRAMSDP on each clock cycle of the preceding diagram is described in the following
table, where each row represents a transaction that spans the clock cycles indicated.

Table 221: ACX_BRAMSDP Timing Diagram Clock Cycle Behavior With Output Register Enabled

Clees Transaction Description
Cycle
1 No-op wr en is asserted but we is not asserted. Nothing is written to memory.
2 Write wr en and we are both asserted. Data on di n is committed to wr addr location in memory.
3 Write wr en and we are both asserted. Data on di n is committed to wr addr location in memory.
4 No-op wr en is not asserted. The asserted we is ignored and nothing is written to memory.
35 Read reset rstl at ch is asserted on the second cycle, causing the output to be set to srval on the
latch next cycle as provided by the r ead_srval parameter.
4-6 Hold All of the control signals are de-asserted and the dout signals retain their previous value.
5.7 Hold r den is asserted. Memory is read. Since out r egce is de-asserted on the second cycle,
dout retains its previous value.
r den is asserted. Memory is read. Since out r egce is asserted on the second cycle, dout
6-8 Read . .
provides the data that was just read from the memory array.
7_9 Read reset r den is asserted. Memory is read. Since out r egce and r st r eg are both asserted, dout
register is reset to the r ead_sr val value instead of providing the data that was just read.
r den is asserted. Memory is read. Since out r egce is asserted on the second cycle, dout
8-10 |Read . .
provides the data that was just read.
r den is asserted. Memory is read. On the second cycle, r st r eg is asserted and out r egce
is de-asserted. The output data is either unchanged or is set to the srval as provided by
Register the r ead_srval parameter depending on the value of the r egce_pri ori ty parameter.
9-11 reset without ® |fregce_priorityis"rstreg", assertingrstreg resets the output register
outregce independent of the out r egce signal
® |fregce_priorityis"regce", bothrstreg andoutregce must be asserted to
reset the output register
10-12 | - out regce and r st r eg are both asserted on the second cycle, then dout is reset to the
read_srval value.

Achronix Proprietary and Confidential 303

Speedcore Component Library User Guide (UG065)

Memory Initialization

Initializing With Parameters

The data portion of initial memory contents may be defined by setting the 64 256-bit parameters i ni t d_00
through i ni t d_63. The data memory is organized as little-endian with bit 0 mapped to bit zero of parameter
i nitd_00 and bit 16383 mapped to bit 255 of parameter i ni t d_63.

When a BRAM is configured with port widths of 9 or 18 bits, the parity portion of the initial memory contents may
be defined by setting the eight 256-bit parameters i ni t p_0 through i ni t p_7. The parity memory is also
organized as little-endian with the first parity bit location mapped to bit 0 of i ni t p_0 and the last parity bit
mapped to the bit 255 of i nit p_7.

When a BRAM is configured with port widths of 5, 10 or 20 bits, the parity and extended parity portions of the
initial memory contents may be defined by setting the eight 256-bit parameters i ni t p_0 throughi ni t p_7 and
the eight 256-bit parameters i ni t px_0 through i ni t px_7. The parity and extended parity memories are both
organized as little-endian with the first parity bit location mapped to bit 0 of i ni t p_0/i ni t px_0 and the last
parity bit mapped to bit 255 of i ni t p_7/i ni t px_7.

Initializing With a Memory Initialization File

Alternatively, a BRAM may be initialized with a memory file by setting the nem_i ni t _f i | e parameter to the
path of a memory initialization file. The file format must be hexadecimal entries separated by white space, where
the white space is defined by spaces or line separation. Each entry is a hexadecimal number of width equal to
the maximum of the read_wi dt h and wri t e_wi dt h parameters.

A number entry may contain underscore (_) characters among the digits (i.e., " A234_4567_33"). Commenting
is allowed beginning with a double-slash (/ /). C-like commenting is also allowed with the comment placed
between "/ *" and " */" characters. The memory is initialized starting with the first entry of the file initializing the
memory array starting with address zero and moving upward.

Ifmem.init_fil eis defined, the BRAM is initialized with the values in the file referenced by the

meminit _fileparameter.lfmrem.init_fil e isleftatthe default value of ", the initial contents are defined
by the values of the parameters i ni t d_00 through i ni t d_63,i ni t p_0 throughinitp_7,andinitpx_0
through i ni t px_7. If neither the memory initialization parameters nor the mrem_i nit _fi | e parameters are
defined, the contents of the BRAM remain uninitialized and unknown until the memory locations are written.

The following tables show how the init values in the r ead_i ni t val and read_srval parameters and the
memory initialization file entries map to dout , dout p, and dout px:

Achronix Proprietary and Confidential 304

Speedcore Component Library User Guide (UG065)

Table 222: srval and initval to Output Signals Mapping for datawidth = 1, 2, 4, 8, 16, and 32

initval datawidth

32 16 |8 |4 |12 |1
init[31:16] dout [31: 16] -
init[15:8] dout [15: 8] -
init[7:4] dout [7: 4] -
init[3:2] dout [3: 2] -
init[1] dout [1] -
init[0] dout [0]

Table 223: srval and initval to Output Signals Mapping for datawidth = 9, 18, and 36

initval datawidth
36 18 |9
i nit[35] dout p[3]
init[34:27] dout [31: 24]
init[26] dout p[2])
init[25:18] dout [23: 16]
init[17] dout p[1]
init[16:9] dout [15: 8])
init[8] dout p[0]
init[7:0] dout [7: 0]

Achronix Proprietary and Confidential

305

Speedcore Component Library User Guide (UG065)

Table 224: srval and initval to Output Signals Mapping for datawidth = 5, 10, 20, and 40

initval datawidth
40 20 (10

init[39] dout px][3]
i nit[38:35] dout [31: 28]
i nit[34] dout p[3]
i ni t[33:30] dout [27: 24]
init[29] dout px[2])
i nit[28:25] dout [23: 20]
i nit[24] dout p[2]
init[23:20] dout [19: 16]
init[19] dout px[1]
init[18:15] dout [15: 12]
init[14] dout p[1])
init[13:10] dout [11: 8]
init[9] dout px[0]
init[8:5] dout [7: 4]
init[4] dout p[0]
init[3:0] dout [3: 0]

Achronix Proprietary and Confidential

306

Speedcore Component Library User Guide (UG065)

ECC Modes of Operation

There are four modes of operation for the ACX_BRAMSDP defined by the encoder _enabl e and
decoder _enabl e parameters as shown in the following table. The wi te_wi dt h and read_wi dt h
parameters must both be set to 40 to enable any of these modes.

Table 225: ACX_BRAMSDP ECC Modes of Operation

encoder_enable | decoder_enable ECC Operation Mode
, , ECC encoder and decoder disabled, standard ACX_BRAMSDP operation
1' b0 1' b0 .
available.
1' b0 1' bl ECC decode-only mode.
1' bl 1' b0 ECC encode-only mode.
1' bl 1" bl Normal ECC encode/decode mode.

ECC Encode/Decode Operation Mode

The ECC encode/decode operation mode utilizes both the ECC encoder and the ECC decoder. The 32-bit user
data is written into the ACX_BRAMSDP via the di n[31: 0] inputs. The ECC encoder generates the 7-bit error
correction syndrome and writes it into the memory array alongside the data word via the parity (di np) and
extended parity (di npx) inputs. During read operations, the ECC decoder reads the 32-bit user data and the 7-
bit syndrome data to generate an error correction mask. The ECC decoder corrects any single-bit error and only
detects, but does not correct, any dual-bit error. If the ECC decoder detects a single-bit error, it automatically
corrects the error and places the corrected data on the dout [31: 0] pins and asserts the shit _err or output.
The memory location containing the error is not corrected. If the ECC decoder detects a dual-bit error, it places
the uncorrected data on the dout [31: 0] pins and asserts the dbi t _er ror output one cycle after the the data
word is read.

ECC Encode-Only Operation Mode

The ECC encode-only operation has the ECC encoder enabled and the ECC decoder disabled. This mode

allows writing 32 bits of data while having the 7-bit error correction syndrome automatically written to the ({ di npx
[2: 0], di np[3: 0] }) bits of the memory array during write operations. Read operations provide the 32-bit user
data and the error syndrome without correcting the data. Encode-only mode can be used as a building block to
have error correction for off-chip memories.

ECC Decode-Only Operation Mode

The ECC decode-only operation has the ECC encoder disabled and the ECC decoder enabled. This mode
bypasses the ECC encoder and allows writing 40-bit data directly into the memory array during write operations.
Read operations place the 7-bit error correction syndrome on the ({ dout px[2: 0] , dout p[3: 0}) bits. The ECC
decoder corrects any single-bit error and detects, but does not correct, any dual-bit error. If the ECC decoder
detects a single-bit error, it automatically corrects the error and places the corrected data on the dout [31: 0]
pins and asserts the shi t _error output. The memory location containing the error is not corrected. If the ECC
decoder detects a dual-bit error, it places the uncorrected data on the dout [31: 0] pins and asserts the

dbi t _error output one cycle after the the data word is read. Decode-only mode can be used as a building
block to have error correction for off-chip memories.

Achronix Proprietary and Confidential 307

Speedcore Component Library User Guide (UG065)

Using ACX_BRAMSDP as a Read-Only Memory (ROM)

The ACX_BRAMSDP macro can be used as a read-only memory (ROM) by providing memory initialization data
via a file or parameters (as described in Memory Initialization (see page 304)), and tying the wr en signal to its de-
asserted value. All signals on the read-side of the ACX_BRAMSDP operate as described above. This
configuration allows reading from the memory, but not writing to it.

Create an Instance
To create memories within a design, there are three available methods:
1. Infer the memory — this method provides the greatest code portability and is the recommended approach.
An example follows of an ACX_BRAMSDP inference.

2. Directly instantiated — this method gives access to the full feature set of the memory. However, any code
is less portable to other technology nodes. See Instantiation Template (see page 313).

3. ACE BRAM IP generator — use this tool to create the appropriate memory structure. Refer to the ACE
User Guide (UGO070) for details.

Inference Template

ACX_BRAMSDP Symmetric Inference

/1 Copyright (c) 2022 Achroni x Sem conductor Corp.
/] Al Rights Reserved.

/1 This software constitutes an unpublished work and contai ns
/1 valuable proprietary information and trade secrets bel ongi ng
/1 to Achronix Sem conductor Corp.

/1 This software may not be used, copied, distributed or disclosed
/1 w thout specific prior witten authorization from

/] Achroni x Sem conductor Corp.

/1 The copyright notice above does not evidence any actual or intended
/1 publication of such software.

/] Design: BRAMSDP Synmetric |nference
/1 An exanple to infer a symretric BRAMSDP i n Speedcore designs

“tinmescale 1ps / 1ps

nodul e bram sdp_symmetric

#(
par anet er ADDR_W DTH = 11,
par anmet er DATA W DTH =9,
par anet er INIT_FILE_NAME = ""

/1 Cocks and resets

Achronix Proprietary and Confidential 308

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

Speedcore Component Library User Guide (UG065)

input wre cl k,
/1 Enabl es
input wre we,

/1 Address and data

input wire [ADDR_W DTH 1: 0] wr_addr,
input wire [ADDR_ W DTH 1: 0] rd_addr,
input wre [DATA_WDTH 1: 0] wr _dat a,

/1 CQut put
output reg [DATA WDTH 1:0] rd_data
)

| ocal param DATA_DEPTH = (2 ** ADDR W DTH);

reg [DATA WDTH 1: 0] nmem ran{ DATA DEPTH 1: 0] /* synthesis syn_ranstyle = "bl ock_rant
"no_rw_check" */;

initial begin
if (INNT_FILE_NAME I= "")
$readnmenh(1 NI T_FI LE_NAME, nem.ran;
end

/] synthesis synthesis_off

reg addr_col lision;

assign addr_collision = (rd_addr == w _addr);
/1 synthesis synthesis_on

al ways @ posedge cl k) begin
/'l synthesis synthesis_off
if (addr_collision & we)
rd_data <= {DATA WDTH{1' bx}};
el se
/'l synthesis synthesis_on
rd_data <= memranird_addr];

if(we)
mem ranfw _addr] <= w _dat a;
end

endnodul e : bram sdp_symmetric

ACX BRAMSDRP Inference

/1 Copyright (c) 2022 Achroni x Sem conductor Corp.
/1 Al Rights Reserved.

/1 This software constitutes an unpublished work and contai ns
/1 valuable proprietary information and trade secrets bel ongi ng
/1 to Achronix Sem conductor Corp.

[/l This software may not be used, copied, distributed or disclosed
/1 w thout specific prior witten authorization from
/1 Achroni x Sem conductor Cor p.

Achronix Proprietary and Confidential 309

Speedcore Component Library User Guide (UG065)

/1

/1 The copyright notice above does not evidence any actual or intended
/1 publication of such software.

/1

/1

e e e
/1 Design: BRAMSDP | nference
/1 An exanple to infer a sinple dual-port BRAMin Speedcore designs

“tinescale 1ps / 1ps

nodul e bram sdp

#(
par anet er WRI TE_ADDR W DTH = 9,
par anet er READ_ADDR W DTH = 11,
par anet er WRI TE_DATA W DTH = 32,
par anet er READ DATA WDTH = 8,
par anet er INIT_FILE_ NAME = "
)
(
/1 O ocks and resets
input wire cl k,
/1 Enabl es
input wre we,
/1 Address and data
input wre [WRI TE_ADDR W DTH- 1: 0] wr _addr,
input wire [READ ADDR W DTH 1: 0] rd_addr,
input wre [WRI TE_DATA W DTH- 1: 0] wr _dat a,
/1 CQut put
out put reg [READ DATA W DTH 1: 0] rd_data
)

“define mn(a,b) {(a) <(b) ? (a) : (b)}
“define max(a,b) {(a) > (b) ? (a) : (b)}
“define clanp(a, val, b) {((val) < (a)) ? (a) : (((val) > (b)) ? (b) : (val))}

| ocal param M N_DATA W DTH = " ni n(WRl TE_DATA W DTH, READ_DATA W DTH);
| ocal par am MAX_DATA W DTH = " max(WRl TE_DATA W DTH, READ DATA W DTH);

| ocal param W DTH_RATI O = MAX_DATA W DTH / M N_DATA_ W DTH;

| ocal par am WRI TE_DATA MULT = (WRI TE_DATA W DTH < READ DATA WDTH) ? 1 : WDTH RATI O
| ocal par am READ_DATA MULT = (READ DATA W DTH < WRI TE_DATA WDTH) ? 1 : W DTH_RATI G,

| ocal param WRI TE_DEPTH = (2 ** WRI TE_ADDR W DTH) * WRI TE_DATA MULT;
| ocal param READ_DEPTH = (2 ** READ ADDR W DTH) * READ DATA MULT;

| ocal param MAX_DEPTH = " nmax(WRlI TE_DEPTH, READ DEPTH);

reg [M N _DATA WDTH 1: 0] nemrani MAX_ DEPTH 1:0] /* synthesis syn_ranstyle = "bl ock_rant
"no_rw_check" */;

initial begin
if (INNT_FILE_NAME != "")

Achronix Proprietary and Confidential 310

Speedcore Component Library User Guide (UG065)

$readnenmh(I NI T_FI LE_NAME, nmemran);
end

/1 Generate bitmask for overlapping w_addr bit(s) in the rd_addr word(s). W
/] assign x to colliding bits and O otherw se, then apply the mask with xor.
/] Note that A~ x = x and A~ 0 = A

/1 synthesis synthesis_off
reg [(M N_DATA_W DTH* MAX_DEPTH) - 1: 0] m n_w _bi t _addr;
reg [(M N_DATA W DTH* MAX_DEPTH)-1: 0] max_wr_bit_addr;

reg [(M N_DATA W DTH* MAX_DEPTH)-1: 0] mi n_rd_bit_addr;
reg [(M N_DATA W DTH*MAX_DEPTH) - 1: 0] max_rd_bit_addr;

reg [READ DATA W DTH- 1: 0] read_col |lision_mask;

w_addr * Rl TE_DATA W DTH;
(wr_addr + 1) * WRI TE_DATA WDTH - 1;

assign mn_w _bit_addr
assign nmax_w _bit_addr

assign mn_rd_bit_addr
assi gn max_rd_bit_addr

rd_addr * READ DATA W DTH;
(rd_addr + 1) * READ DATA WDTH - 1;

| ocal par am PADDED_READ DATA W DTH = READ DATA W DTH + 2;

reg [PADDED READ DATA W DTH 1: 0] padded_read_col | i si on_nask;
reg [$cl og2(PADDED _READ_DATA W DTH) - 1: 0] mi n_padded_r ead_col | i si on_mask_bi t _addr;
reg [$cl og2(PADDED_READ DATA W DTH) - 1: 0] nmax_padded_read_col | i si on_mask_bi t _addr;

assi gn m n_padded_read_col lision_mask_bit_addr = “clanmp(m n_rd_bit_addr, mn_w _bit_addr+1,
max_rd_bit_addr+2) - mn_rd_bit_addr;
assi gn max_padded_read_col |ision_mask_bit_addr = “clanmp(m n_rd_bit_addr, max_wr_bit_addr+1,

max_rd_bit_addr+2) - mn_rd_bit_addr;

assi gn padded_read_collision_mask = ((2 ** (max_padded_read_col | ision_mask_bit_addr -

m n_padded_read_col | i sion_nmask_bit_addr + 1))-1) << m n_padded_read_col |ision_nask_bit_addr;
assign read_col lision_mask = { READ DATA WDTH{1' bx}} & (padded_read_collision_mask

[READ_DATA W DTH: 1] & { READ DATA W DTH{we}}):

/1 synthesis synthesis_on

genvar i;
generate
if (WRI TE_DATA_MJULT <= 1) begin
al ways @ posedge cl k)
if(we)
mem raniw _addr] <= w _dat a;
end
el se begin
for (i=0; i < WRITE_DATA MILT,; i=i+1) begin : gen_wite
|l ocal paramwite_stride = M N _DATA W DTH*i ;
al ways @ posedge cl k)
i f(we)
mem ranf {w _addr, i[$clog2(WRI TE_DATA MILT)-1:0]}] <= wr_data[(wite_stride)+:
M N_DATA W DTH] ;
end
end
endgenerate

genvar j;
generate

Achronix Proprietary and Confidential 311

Speedcore Component Library User Guide (UG065)

i f (READ DATA_MULT <= 1) begin
al ways @ posedge cl k)
/'l synthesis synthesis_off
if (1)
rd_data <= (memran{rd_addr] ~ read_collision_nmask);
el se
/'l synthesis synthesis_on
rd_data <= memranird_addr];
end
el se begin
for (j=0; j < READ DATA MULT; j=j+1) begin : gen_read
| ocal param read_stride = M N_DATA W DTH*j ;
al wvays @ posedge cl k)
/1 synthesis synthesis_off
if (1)
rd_data[(read_stride)+: M N_DATA WDTH <= (nem.ran{{rd_addr, j[$clog2
(READ_DATA MULT)-1:0]}] ™ read_collision_mask[(read_stride)+: M N _DATA WDTH])
el se
/] synthesis synthesis_on
rd_data[(read_stride)+: M N _DATA WDTH <= nemranf{rd_addr, j[$clog2
(READ_DATA MULT)-1:0]}]
end
end
endgenerate

endnodul e : bram sdp

Achronix Proprietary and Confidential 312

Speedcore Component Library User Guide (UG065)

Instantiation Template
Verilog

ACX_BRAMSDP #(
.read_wi dt h(40),
.write_wi dth(40),
.write_clock_polarity("rise"),
.en_out _reg(1' b0),
.regce_priority("rstreg"),
.write_peval (1'bl),
.read_peval (1' bl),
.reg_rstval (1' bl),
.latch_rstval (1'bl),
.read_initval (40' h0),
.read_srval (40' h0),
.read_cl ock_polarity("rise"),
. encoder _enabl e(1' b0),
. decoder _enabl e(1' b0),
.meminit_file(""),

ni td_00(256' h0),

ni td_01(256' h0),

ni td_02(256' ho),

ni td_03(256' h0),

ni t d_04(256' h0),

ni td_05(256' ho),

ni td_06(256' h0),

ni td_07(256' h0),

ni td_08(256' ho),

ni td_09(256' h0),

ni td_10(256' h0),
nitd_11(256' h0),
nitd_12(256' ho),

ni td_13(256' h0),

ni td_14(256' h0),

ni td_15(256' h0),

ni td_16(256' h0),
nitd_17(256' h0),

ni td_18(256' h0),

ni td_19(256' h0),

ni td_20(256' h0),
nitd_21(256' h0),

ni td_22(256' h0),

ni td_23(256' h0),

ni td_24(256' h0),

ni td_25(256' h0),

ni td_26(256' h0),
nitd_27(256' h0),

ni td_28(256' h0),

ni td_29(256' h0),

ni td_30(256' h0),

ni td_31(256' h0),

ni td_32(256' h0),

ni td_33(256' h0),

ni td_34(256' ho),

ni td_35(256' h0),

ni td_36(256' h0),

Achronix Proprietary and Confidential 313

Speedcore Component Library User Guide (UG065)

ni td_37(256' h0),
ni td_38(256' h0),
ni td_39(256' h0),
ni td_40(256' h0),
nitd_41(256' ho),
nitd_42(256' ho),
ni td_43(256' h0),
ni td_44(256' ho),
ni td_45(256' ho),
ni td_46(256' h0),
ni td_47(256' h0),
ni td_48(256' h0),
ni td_49(256' h0),
ni td_50(256' h0),
nitd_51(256' h0),
nitd_52(256' ho),
ni td_53(256' h0),
ni td_54(256' h0),
ni td_55(256' h0),
ni td_56(256' h0),
nitd_57(256' h0),
ni td_58(256' h0),
ni td_59(256' h0),
nitd_60(256' h0),
nitd_61(256' h0),
ni td_62(256' h0),
nitd_63(256' h0),
ni t p_0(256' h0),

ni t p_1(256' ho),

nit p_2(256' ho),

ni tp_3(256' ho),

nitp_4(256' h0),

nitp_5(256' h0),

nit p_6(256' ho)

nitp_7(256' ho),

ni t px_0(256' hO),
ni t px_1(256' h0),
ni t px_2(256' ho),
ni t px_3(256' ho),
ni t px_4(256' ho),
ni t px_5(256' h0),
ni t px_6(256' h0),
nitpx_7(256' h0)

)

i nst ance_nane

(

.wr addr (user _wr addr),

.di n(user _din),

. di np(user _di np),

. di npx(user _di npx),
.we(user_we),
.wren(user_wren),
.rstlatch(user_rstlatch),
.rstreg(user_rstreg),
.outregce(user_outregce),
.wrcl k(user _wrcl k),

. dout (user _dout),

. dout p(user _dout p),

. dout px(user _dout px),

Achronix Proprietary and Confidential 314

Speedcore Component Library User Guide (UG065)

.sbit_error(user_shit_error),
.dbit_error(user_dbit_error),
. rdaddr (user _rdaddr),

.rdcl k(user _rdcl k),
.rden(user _rden)

Achronix Proprietary and Confidential 315

Speedcore Component Library User Guide (UG065)

------------- ACHRONI X LI BRARY ------------
library speedster7t;

use speedster7t.core.all;

------------- DONE ACHRONI X LI BRARY ---------
-- Conponent Instantiation

ACX_BRAMSDP_i nst ance_nane : ACX_BRAMSDP
generic map (

read_wi dth => 40,

wite width => 40,

wite_clock_polarity => "rise",
en_out_reg => 0,

regce_priority => "rstreg",

wite_peval => 1,

read_peval => 1,

reg_rstval => 1,

latch_rstval => 1,

read_i nitval => X'0000000000",
read_srval => X"0000000000",

wite clock_polarity => "rise",

encoder _enable => 0,

decoder _enabl e => 0,

meminit_file =>"",

initd_00 => X"00"
nitd_01 => X"00"
nitd_02 => X"00"
nitd_03 => X"00"
nitd_04 => X"'00"
nitd_05 => X"00"
nitd_06 => X"00"
nitd_07 => X"00"
nitd_08 => X"00"
nitd_09 => X"00"
nitd_10 => X"00"
nitd_11 => X"'00"
nitd_12 => X"00"
nitd_13 => X"00"
nitd_14 => X"'00"
nitd_15 => X"00"
nitd_16 => X*'00"
nitd_17 => X"00"
nitd_18 => X"00"
nitd_19 => X*'00"
nitd_20 => X"00"
nitd_21 => X"00"
nitd_22 => X"00"
nitd_23 => X"00"
nitd_24 => X"'00"
nitd_25 => X"00"
nitd_26 => X"00"
nitd_27 => X"'00"
nitd_28 => X"00"
nitd_29 => X"00"
nitd_30 => X"00"
nitd_31 => X"00"
nitd_32 => X"00"

Achronix Proprietary and Confidential

316

Speedcore Component Library User Guide (UG065)

nitd_33 =>
nitd_34 =>
nitd 35 =>
nitd_36 =>
nitd_37 =>
nitd 38 =>
nitd_39 =>
nitd_40 =>
nitd 41 =>
nitd_42 =>
nitd_43 =>
nitd_44 =>
nitd_45 =>
nitd_46 =>
nitd_47 =>
nitd_48 =>
nitd_49 =>
nitd_50 =>
nitd 51 =>
nitd_52 =>
nitd_53 =>
nitd 54 =>
nitd 55 =>
nitd_56 =>
nitd 57 =>
nitd 58 =>
nitd_59 =>
nitd_60 =>
nitd_61 =>
nitd_62 =>
nitd 63 =>
nitp_ 0 =>
nitp_1 =>
nitp_2 =>
nitp_3 =>
nitp_4 =>
nitp_ 5 =>
nitp_6 =>
nitp_7 =>

nitpx_1 =>
nitpx_2 =>
nitpx_3 =>
nitpx_4 =>
nitpx_5 =>
nitpx_6 =>
nitpx_7 =>
port map (

wraddr => u
din => user
di np => use
di npx => us
we => user _
wren => use
rstlatch =>
rstreg =>u
outregce =>
wclk => us
dout => use

X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X"00"
X" 00"
X"00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X"00"
X" 00"
X" 00" ,
X"00" ,
X"00",
X" 00" ,
X"00" ,
X"00",
X" 00" ,
X"00" ,

X" 00"
X"00"
X" 00"
X" 00"
X"00"
X"00"

X"00")

ser _wraddr,

_din,

r_dinp,
er _di npx,
we,
r_wen,
user _rstlatch
ser_rstreg
user_outregce
er_wclk
r_dout,

ni t px_0 => X"00"

Achronix Proprietary and Confidential

317

Speedcore Component Library User Guide (UG065)

dout p => user _dout p,

dout px => user _dout px,
sbit_error => user_sbit_error,
dbit_error => user_dbit_error,
rdaddr => user_rdaddr,

rdcl k => user_rdcl k,

rden => user_rden

)

Achronix Proprietary and Confidential 318

Speedcore Component Library User Guide (UG065)

ACX_BRAMTDP (20-kb True Dual-Port Memory)

addra[13:0]
dina[15:0]
dinpal[t:0]
dinpxa[1:0]
douta[15:0]
doutpa[1:0]
doutpxa[L:0]
wea[1:0]
pea
rstlatcha
rstrega
outregcea

clka

ACX_BRAMTDP

addrb[13:0]
dinb[15:0]
dinpb[1:0]
dinpxb[1:0]
doutb[15:0]
doutpb[1:0]
doutpxb[1:0]
web[1:0]
peb
rstlatchb
rstregb
outregceb

clkb

5374063-01.2022.11.15
Figure 119: 20-kb True Dual-Port Memory

The block RAM (ACX_BRAMTDP) implements a 20-kb true-dual-ported (TDP) memory block where each port
can be independently configured with respect to size and function. The BRAM can be configured as a single-port
(one R/W port), dual-port (two R/W ports with independent clocks), or ROM memory. Each memory port can be
configured as follows:

* 1k x 20
* 1k x 18
* 1k x 16
® 2k x 10
® 2kx9
® 2kx8
® 4k x5
® 4kx4
® 8kx2
® 16k x 1
The read and write operations are both synchronous. For higher performance operation, an additional output

register can be enabled. Enabling the output register requires an additional cycle of read latency. Write Enable (
wea/web) controls provide 8-bit, 9-bit, or 10-bit write granularity for port widths above 16 bits.

Achronix Proprietary and Confidential 319

Speedcore Component Library User Guide (UG065)

The initial value of the memory contents may be user specified from either parameters or a memory initialization
file. The initial/reset values of the output registers may also be user specified. The porta_wite_node/
portb_write_nbde parameters define the behavior of the output data port during a write operation. When
porta wite node/portb wite nodeissetto"wite first",the douta/doutb portgets the value
that was present on the di na/di nb port during each write operation. Setting porta_wri t e_node/
portb_write_nbde to"no_change" keeps the dout a/dout b port unchanged during a write operation.

Note

@ Thewit e _first" mode requires that both the read and write ports of the same side must be set to

the same width.

Conflict arises when the same memory cell is accessed by both ports within a narrow window and one or both
ports are writing to memory. If this condition occurs, the contents of the memory for the colliding address is

undefined, but no damage occurs to the memory.

outregce
rstreg
rstlatch

/ /

addr
din, dinp, dinpx

Register Register

ck
pe

we

Figure 120: ACX_BRAMTDP Block Diagram (Per Port)

dout
doutp
doutpx

5374063-02.2022.11.15

Achronix Proprietary and Confidential

320

Speedcore Component Library User Guide (UG065)

Table 226: ACX_BRAMTDP Pin Descriptions

Name Type Description

Port A (B) clock input. Read and write operations are fully synchronous to the active
cl ka. cl kb Inout edge of cl ka (cl kb) when the pea (peb) signal is high. The active edge of cl ka (

’ pu cl kb) is determined by the porta_cl ock_pol arity (portb_cl ock_pol arity)
parameter.

Port A (B) port enable. The pea (peb) signal must be asserted to perform a read or
pea, peb Input write operation. The port a_peval and portb_peval parameters determine

whether they are active-high (default) or active-low.

Port A (B) address input. The addr a (addr b) signal determines which memory
addra[13: 0], Inout location is being written to or read from. When the port width is greater than 1, the low-
addr b[13: 0] P order address bits must be tied to 0. See Table: BRAM Address Bus Mapping (Per

Port). (see page 327)

Port A (B) write enable. Each bit of a port write enable input enables an 8-bit, 9-bit, or

10-bit byte to be written to memory, depending on the porta_wite_w dth (

portb_write_w dt h) parameter value. A write to memory occurs when both the
_ corresponding wea (web) bit is high and the port enable pea (peb) signal is active. If
wez[1: 01, Input wea (web) is inactive while the pea (peb) is active, a read operation occurs, and the
web[1: 0] output is updated with the contents of the addressed memory cells.

For data widths of 16 or larger, we[1] corresponds to di n[15: 8], di np[1], and

di npx[1] , while we[0] corresponds to di n[7: 0] , di np[0] , and di npx[O] . For

data widths less than 16, we[0] and we[1] must be the same.

di na[15: 0], .

di bl 15: 0] Input Port A (B) data input.

di npa[1: 0], - . . .

di npb 1: 0] Input Port A (B) additional data input. Used to extend di na/di nb.

di npxa[1: 0], . . .

di npxb[1: 0] Input Port A (B) extended data input. Used to further extend di na/di nb.

Port A (B) output register clock enable (active-high). When the porta_en_out _reg (
out regcea, Inout portb_en_out _reg) parameter is set, de-asserting the out r egcea (out r egceb)
out regceb pu signal causes the BRAM output to keep the dout a, dout pa, and dout pxa (dout b,

dout pb, and dout pxb) signals unchanged, independent of a read or write operation.

Port A (B) output latch synchronous reset. When r st | at cha (r st | at chab) is
rstlatcha asserted, the value of { porta_read_w dt h{1' b0}} ({portb_read_wi dth
rstl at chb, Input {1' b0} }) is written to the port A (B) output latch upon the next active edge of cl ka (

cl kb). Theporta_l atch_rstval andportb_l atch_rstval parameters
determine whether they are active-high (default) or active-low.

Port A (B) output register reset. The porta_sr_assertion_reg (
portb_sr_assertion_reg) parameter determines if the reset is synchronous
(default) or asynchronous, and the porta_reg_rstval (portb_reg_rstval)

Achronix Proprietary and Confidential 321

Speedcore Component Library User Guide (UG065)

Name Type Description
rstrega, Input parameter determines if the reset is active-high (default) or active-low. When reset is
rstregb asserted, the port A (B) output register is assigned the value of the porta_srval (
portb_srval) parameter. The priority of r st r ega (r st r egb) relative to the clock
enable input out r egcea (out r egceb) is determined by the value of the
porta_regce_priority (portb_regce_priority)parameter.
Port A (B) data output. During read operations, the dout a (dout b) outputs are
dout a[15: 0] updated with the memory contents addressed by addr a (addr b) if the pea (peb) port
dout b[15: 0] ’ Output | enable is active and wea (web) inputs are low. For write operations, the behavior of
' the dout a (dout b) outputs depends on the porta_write_node (
portb_write_nbpde) parameter.
dout pa[1: 0] Port A (B) addtional data output. The port A (B) dout pa (dout pb) output behaves the
dout pb[1: 0] ’ Output | same as outputs dout a (dout b) and is used when the porta_read_wi dt h (
P ' portb_read_wi dth)issetto5, 9, 10, 18, or 20 bits.
dout pxa[1: 0] Port A (B) extended data output. The port A (B) dout pxa (dout pxb) extended data
P e Output | output behaves the same as outputs dout a (dout b) and is used when the

dout pxb[1: 0]

porta_read_wi dth (portb_read_w dth)is setto 10 or 20 bits.

Achronix Proprietary and Confidential 322

Speedcore Component Library User Guide (UG065)

Table 227: ACX_BRAMTDP Parameters

Parameter Defined Values Default Value Description
porta_read_wi dth, 1,2,4,589, 20 Sets the read width for port A (B)
porth _read width 10, 16, 18, 20 wi P :

’ . Sets the write width for port A (B). The read port width may vary from the write
porta_write_width, 1,2,4,5,8,9, . R . o ; .
portb_write width 10, 16, 18, 20 20 port width, but it must be within the allowable combinations defined in Memory

Organization and Data I/O Pin Assignments (see page 325).

porta_write_node,
portb_write_node

"wite_first",
"read_first "(1),

"write_first"

Defines the response of the port A (B) output to write operations. The output in
a write response appears at the dout a (dout b) output with the same timing as
a read operation. The modes are:

® "wite_first" —the data present on the di na (di nb) input during
the write operation appears on the output of port A (B) for words in
which the write enable bit in wena (wenb) is asserted. The output data
for words in which the write enable bit is de-asserted is undefined. This
mode is only supported when the port a_r ead_wi dt h

portb_srval

"no_change” (portb_read_wi dth)and porta_wite_w dth
(portb_write_w dt h) parameters of the port are the same.
® "read_first" - The data previously stored at the specified write
address appears on the output of port A (B)
® "no_change" —dout a (dout b) remains unchanged during write
operations
porta_cl ock_pol art ty, "rise","fall" "rise" Sets the active edge of the port A (B) clock.
portb_cl ock_polarity
porta_peval , , , , Defines the active level of the pea(peb) port enable input. A value of 1' b0
1' b0, 1' bl 1'bl . s . ;
portb_peval sets active low, while 1' b1 sets active high.
porta_l atch_rstval, 1'b0.1' b1 1 b1 Defines the active level of the r st | at cha (r st at chb) input. A value of 1' b0
portb_l atch_rstval ’ sets active low, while 1' b1 sets active high.
orta en out re Determines whether the port A (B) output register is enabled. A value of 1' b0
port b en out r eg’ 1' b0, 1" bl 1' b0 disables the output register and results in a read latency of one cycle, while
P —en_out_reg 1' b1 enables the output register and results in a read latency of two cycles.
porta_reg_rstval, , , , Defines the active level of the r st r ega (r st r egb) input. A value of 1' b0 sets
1' b0, 1' bl 1' bl . : - T
portb_reg_rstval active low, while a value of 1' b1 sets active high.
Defines the priority of the out r egcea (out r egceb) clock enable input relative
totherstrega (rstregb)reset:
R ® "rstreg" —allows the port A (B) output register to be reset by
porta_regce_priority, N - w i N . ’ -
orth reace oriorit rstreg","regce rstreg asserting r st r ega (r st r egb) without requiring out r egcea
P -regee_p y (out r egceb) to be asserted
® "regce" —allows the port A (B) output register to be reset by only
asserting both r st r ega (r st r egb) and out r egcea (out r egceb)
Defines the power-up default value of the data on the output of port A (B) latch
orta initval and output register, if enabled. The 20-bit parameter assignment is dependent
port b_i ni tval ’ 20-bit hex number 20' hO onthe porta_read_w dth (portb_read_wi dt h) parameter as shown in
P - Table: initval, srval, and meminit File Mapping to Output Signals (see page 337)
Defines the reset value of the data on the output port A (B) latch and output
orta srval register, if enabled, when r st | at cha (rstl at chb)and/orrstrega (rstreg
P - ’ 20-bit hex number 20' ho b) is asserted. The 20-bit parameter assignment is dependent on the porta_r

ead_wi dt h (portb_read_wi dt h) parameter as shown in Table: initval,
srval, and meminit File Mapping to Output Signals (see page 337).

Achronix Proprietary and Confidential

323

Speedcore Component Library User Guide (UG065)

Parameter

Defined Values

Default Value

Description

porta_sr_assertion_reg,
portb_sr_assertion_reg

"cl ocked",
"uncl ocked"

"cl ocked"

Sets whether the assertion of the reset of the port A (B) output register is
synchronous or asynchronous with respect to the cl ka (cl kb) input. A value
of "cl ocked" corresponds to a synchronous reset where the port A (B) output
register is reset on the next rising edge of the clock if r st rega (r st regb) is
asserted. A value of " uncl ocked" corresponds to an asynchronous reset
where the port A (B) output register is reset immediately following the assertion
of the rstrega (rstregb) input.

meminit_file

<path to HEX file>

Provides a mechanism to set the initial contents of the BRAM memory. If
defined, the BRAM is initialized with the values defined in the file pointed to by
the parameter according to the format defined in Memory Initialization (see
page 336). If left at the default value, the initial contents are defined by the
values of the i ni t d_00—i ni td_63,i nitp_O-initp_7,and the

i ni t px_0—i ni t px_7 parameters. If the memory initialization parameters and
the mem_i ni t _fi| e parameters are not defined, the contents of the BRAM
remain uninitialized.

initd 00-initd 63

256-bit hex number

256" hx

Define the initial contents of the memory associated with dout a[15: 0] and
dout b[15: 0] . Each 256-bit parameter is associated with the BRAM as
defined in Memory Initialization (see page 336).

initp_ O-initp_7

256 bit hex number

256’ hx

Define the initial contents of the memory associated with dout pa[1: 0] and
dout pb[1: 0] . Each 256-bit parameter is associated with the BRAM is as
defined in Memory Initialization (see page 336).

i nitpx_0—initpx_7

256 bit hex number

256' hx

Define the initial contents of the memory associated with dout pxa[1: 0] and
dout pxb[1: 0] . Each 256-bit parameter is associated with the BRAM is
defined in Memory Initialization (see page 336).

Table Notes

1. ACX_BRAMTDP supports " r ead- fi rst" mode only when directly instantiating the ACX_BRAMTDP primitive. Synthesis is not able to infer a
"read-first" mode from RTL, and this mode is not supported through the IP configuration GUI. If a memory with this behavior is described by
behavioral RTL, a warning is issued during synthesis, and a register file is synthesized.

Note

The ACE BRAM IP Configuration GUI and ACX_BRAM_GEN macros only support a single-bit write

@ enable (we) for the entire data word. Byte-wise write enables are not supported via the GUI or in Verilog
macros. Non-zero reset values are similarly not supported. Access to the full capabilities of the BRAM is
available by instantiating the ACX_BRAMTDP primitive directly.

Achronix Proprietary and Confidential 324

Speedcore Component Library User Guide (UG065)

Memory Organization and Data I/0 Pin Assignments

The BRAM supports memory widths from one bit to twenty bits. The width of the di na (di nb) data input is
determined by the porta_write_wi dth (portb_wite_ w dth)parameter while the width of the dout a (
dout b) data output is determined by the porta_read_wi dt h (portb_read_ w dt h) parameter. Port A width
may be different than the port B width, and the width of each read port may be set differently from the width of
each write port. The supported port width combinations are as described in the following table. "X" indicates a

supported configuration.

Table 228: Supported Port Width Combinations

P°"‘tN‘? d'f:ad Port A Write Width, Port B Read Width, Port B Write Width
1kx | 2kx | 4kx | 1kx | 2kx | 1kx | 2kx | 4kx | 8kx | 16k x
20 10 5 18 9 16 8 4 2 1
1k x 20 X X X - - - - -
2k x 10 X X X - - _ _ _
4k x 5 X X X - _ _ _ _
1k x 18 - - - X _ _ _ _
2k x 9 - - - X - - - -
1k x 16 - - - - X X X X
2k x 8 - - - - X X X X
4k x 4 - - - - X X X X
8k x 2 - - - - X X X X
16k x 1 - - - - X X X X
Achronix Proprietary and Confidential 325

Speedcore Component Library User Guide (UG065)

Data Widths Using Extended Data Interfaces
The ACX_BRAMTDP memory has three buses for both data in and data out:

1. The di n and dout interfaces.

2. The di np and di npx extended data interfaces.

3. The dout p and dout px extended data interfaces

The extended interfaces are used to support the wide range of data bus widths shown in Supported Port Width
Combinations (see page 325). The extended interfaces are assigned to the respective data buses as shown in
the following table.

Table 229: Extended Data Interface Assignment, (Per Port)

- dinpx/doutpx dinp/doutp din/dout
20 {data[19], data[9]} |{data[14], data[4]} |{data[18:15], data[13:10], data[8:5], data[3:0]}
18 - {data[17], data[8]} |{data[16:9], data[7:0]}

16 - - {data[15: 0]}
10 {1'b0, data[9]} {1'b0, data[4]} (8 ho, data[8:5], data[3:0]}
9 - {1'b0, data[8]} (8 ho, data[7:0]}
8 - - (8 ho, data[7:0]}
5 - {1'b0, data[4]} {12' ho, data[3:0]}
4 _ - {12'ho, data[3:0]}
2 - - (14" ho, data[1:0]}
1 _ - {15' ho, data[0]}
Caution!

Pay close attention to non power-of-two sized data widths and how the data bits are assigned.

Achronix Proprietary and Confidential

326

Speedcore Component Library User Guide (UG065)

Address Bus Mapping

When the port width is greater than 1, the memory address must be left-justified to the most-significant bit (MSB)
of the addr a (addr b) input, meaning that the low-order address bits must be tied to 0. The following table shows

the address bits that must be tied to zero for the various memory organization options.

Table 230: ACX_BRAMTDP Address Bus Mapping (Per Port)

Memory Organization | Used Address bits Tied to 0 Address bits
1k x 20 13:4 3:0
1k x 18 13:4 3:0
1k x 16 13:4 3:0
2k x 10 13:3 2:0
2k x9 13:3 2:0
2k x 8 13:3 2:0
4k x 5 13:2 1:0
4k x 4 13:2 1:0
8k x 2 13:1 0
16k x 1 13:0 -
Warning

%

A common error is to assign the address bus incorrectly justified. It must be assigned left-justified, not

right-justified.

Achronix Proprietary and Confidential

327

Speedcore Component Library User Guide (UG065)

Read and Write Operations

Timing Options

The BRAM has two options for interface timing, controlled by the porta_en_out _reg (portb_en_out reg)
parameter:

® | atched mode —when porta_en_out _reg (porth_en_out reg)is1' b0, the portis in latched mode.
In this mode, the read address is registered, and the stored data is latched into the output latches on the
following clock cycle, providing a read operation with one cycle of latency.

® Registered mode —when porta_en_out _reg (portb_en_out _reg)is1' bl, the portis in registered
mode. In this mode, there is an additional register after the latch, supporting higher-frequency designs and
providing a read operation with two cycles of latency.

Read Operation

Read operations are signaled by driving the addr a (addr b) signal with the address to be read, asserting the pea
(peb) port enable signal and not asserting the wea (web) write enable signal. The requested read data arrives on
the dout a (dout b), dout pa (dout pb), and dout pxa (dout pxb) signals on the following clock cycle or the
cycle after, depending on the porta_en_out _reg (portb_en_out _reg) parameter.

Write Operation

Write operations are signaled by driving the di na (di nb), di npa (di npb), and di npxa (di npxb) signals with
the data to be written, addr a (addr b) with the address to write to, asserting the pea (peb) port enable signal,
and asserting the wea (web) write enable signal. The input data is stored in the memory array at the indicated
address on the next active clock edge.

There are two options for the behavior of the data output signals during a write operation, as controlled by the
porta wite node (portb_wite node)parameter:

* "wite_first" —the write data is reflected on the dout a (dout b), dout pa (dout pb), and dout pxa
(dout pxb) signals.

® "no_change" —the dout a (dout b), dout pa (dout pb), and dout pxa (dout pxb) signals remain
unchanged during a write operation on port A (B).

Achronix Proprietary and Confidential 328

Speedcore Component Library User Guide (UG065)

Table 231: Latched Mode BRAM Output Function (Rising-Edge Clock and Active-High Port Enable)

Operation porta_write_mode clka rstlatcha pea wea douta (doutb)
P (portb_write_mode) (clkb) (rstlatchb) (peb) | (web)
Hold ,,W” tefi rft or X X X X Hold previous value.
no_change
Reset "wite first" or 1 X X porta_srval
Latch "no_change" 1 (portb_srval)
"wite_first" or .
Hold N - . 1 0 0 X Hold previous value.
no_change
"wite first" or men{ addr a]
Read "no_change" 1 0 ! 0 (menf addr b])
Write "wite first” 1 0 1 1 di na (di nb)
Write "no_change” 1 0 1 1 Hold previous value.

Achronix Proprietary and Confidential

329

Speedcore Component Library User Guide (UG065)

Table 232: Registered Mode BRAM Output Function (Rising-Edge Clock and Active-high Port Enable)

Operation regce_priority rdclk | rstreg | outregce dout
Hold - X X X dout a_previ ous (dout b_previ ous)
Reset Output |"rstreg" 1 1 X porta_srval (portb_srval)
Reset Output | "regce" 1 1 1 porta_srval (portb_srval)
Hold "regce" 1 X 0 dout a_previ ous (dout b_previ ous)
Hold "rstreg" or"regce" 1 0 0 dout a_previ ous (dout b_previ ous)
(L;E?;Sf "rstreg" or"regce" 1 0 1 Latch output.

Table 233: Port a/b Registered Mode BRAM Output Function (Rising-Edge Clock and Active-high Port

Enable)
Overation porta_regce_priority rstrega outregcea clka douta
P (portb_regce_priority) | (rstregb) | (outregceb) | (clkb) (doutb)
Hold X X X dout a_previ ous
(dout b_pr evi ous)
Hold rstre 0 0 dout a_previ ous
g (dout b_pr evi ous)
| at cha_out put
Update output | rstreg 0 1 (I at chb_out put)
Reset output rstreg 1 X porta_srval (portb_srval)
Hold reqce X 0 dout a_previ ous
9 (dout b_pr evi ous)
| at cha_out put
Update output |regce 0 1 (I at chb_out put)
Reset output regce 1 1 porta_srval (portb_srval)

Achronix Proprietary and Confidential

330

Speedcore Component Library User Guide (UG065)

Simultaneous Memory Operations

Memory operations may be performed simultaneously from both sides of the memory; however, there is a
restriction with memory collisions. A memory collision is defined as the condition where both of the ports access
the same memory location within the same clock cycle (both ports connected to the same clock), or within a fixed
time window (if each port is connected to a different clock). Simultaneous read operations to the same memory
location by both ports is allowed and produces valid data on each of the ports. If one of the ports is writing an
address while the other port is reading the same address, the write operation occurs, but the read data is invalid.
The data may be reliably read on the next cycle if there is no longer a write collision. If both ports write the same
memory location(s) at the same time, the memory contents for that memory address are invalid. While
simultaneously writing the same address from both ports invalidate the data, no damage to the hardware occurs.

Note

For the special case of the BRAM having both ports configured for "write first" mode, a write-

(1) write collision corrupts the memory contents, but the correct data is seen at both output ports. In this
case, the data corruption is not noticed by the circuit until the the corrupted memory location is later
reread.

Achronix Proprietary and Confidential 331

Speedcore Component Library User Guide (UG065)

Timing Diagrams

The timing diagrams for the two port a_en_out _reg (portb_en_out _r eg) parameter values follow. The first

timing diagram illustrates the behavior of a ACX_BRAMTDP port with the output register disabled.

Q 1 2 3 4 5 6 7 8 9 10
clka (clkb) I
| I]] |]]] 1 |
| I I I | T T T |
SO S S S B N A
]]] |
| |]] |
| |]] |
wea (web) : : : '/—’—_i_'
i i | | i
I

hl X ‘h2 X ‘h3 :X ‘h4 :X
\

addra (addrb)

\
[
\
‘ I

dina (dinb) | ‘h3333 X ‘h4444

|

I

| |

o
rstlatcha (rstlatchb) !]
I
I

-S> ————=

srval Xmem[Z] X ‘h3333
|
I
I
I

srval

| { douta (doutb)

write_first

\
|
|
| srval

f
|
|
|
|
|
|
L
[
|
|
|
|
|
[l

)
)

|
]
srval X mem[2]

{ douta (doutb)

no_change

6586699-03.2022.15.11

Figure 121: Latched Mode Timing Diagram

Achronix Proprietary and Confidential

332

Speedcore Component Library User Guide (UG065)

The following table describes the behavior of the ACX_BRAMTDP on each clock cycle of the diagram, where
each row represents a transaction that spans the two indicated clock cycles.

Table 234: ACX_BRAMTDP Timing Diagram Clock Cycle Behavior With Output Register Disabled

Clees Transaction Description
Cycle
01 Hold None of the control signals are asserted. The output remains unchanged.
Therstl at cha (rstl at chb) signal is asserted. dout a (dout b) is set to the srval as
1-2 Reset latch .
provided by the port a_srval (portb_srval) parameter.
o3 Read pea (peb) is asserted and wea (web) is de-asserted. The memory is read and dout a
(dout b) is set to the data read from the addressed location.
34 Hold None of the control signals are asserted. The output remains unchanged.
4-5 Read with Read operation, with the except thatr st | at cha (r st | at chb) is asserted, causing the
reset latch output to be set to the value provided by the port a_srval (portb_srval) parameter.
5.6 Read pea (peb) is asserted and wea (web) is de-asserted. The memory is read and dout a
(dout b) is set to the data read from the addressed location.
pea (peb) and wea (web) are both asserted. The data on the di na (di nb) pins is
67 Write committed to memory. If porta_write_npde (porth_wite_node)is"wite first",
the output data reflects the data provided on the di na (di nb) port. If " no_change", the
output data remains unchanged.
. . pea (peb) and wea (web) are both asserted. the data on the di na (di nb) pins is committed
Write with
7-8 to memory. Since r st | at cha (r st at chb) is asserted, the output register is set to the
reset latch .
value provided by the porta_srval (portb_srval) parameter.
8-9 Hold None of the control signals are asserted. The output remains unchanged.

Achronix Proprietary and Confidential 333

Speedcore Component Library User Guide (UG065)

The second timing diagram illustrates the behavior of a ACX_BRAMTDP port with the output register enabled.

write_first

no_change

clka (clkb)

pea (peb)

wea (web)

addra (addrb)

dina (dinb)

rstlatcha (rstlatchb)

outregcea (outregceb)

rstrega (rstregb)

rstreg

{ douta (doutb)

douta (doutb)

regce

rstreg

douta (doutb)

regce

{ douta (doutb)

- O

T

—

N

L

3

10

1 12

S

'h0

hi

B, .

.

Figure 122: Registered Mode Timing Diagram

I |

| |

| |

! |

] | | !

| | \ |

I] I I |
|] I I |
|] | | |
! ! ! ! ! ! ! !
I]] |]] | | |
I]] I I I I
: I] 1 | | 1 ! !
! X srval X mem][0] (srval X (srval X mem([5] X srval |
: ! | | : | | | ! | !
[}]]]]] | [} [}] [}
:] I] i | I | |] !
: X srval X mem[0] (srval X X ‘h3333 (srval X mem(5] |
i i) I i | | i i i i
I I] I I I | I I I I
:]]] i | |] | i ! !
: y srval X mem[0] (srval X mem|[2] (srval X mem([5] X srval |
i i | i | i | i | !
I]] I I I I I] I
:]] i | I | | I !
! x srval X mem][0] (srval X mem|[2] (srval mem([5] |

6586699-04.2022.16.11

Achronix Proprietary and Confidential

334

Speedcore Component Library User Guide (UG065)

The following table describes the behavior of the ACX_BRAMTDP on each clock cycle, where each line
represents a single transaction that spans the three indicated clock cycles.

Table 235: ACX_BRAMTDP Timing Diagram Clock Cycle Behavior With Output Register Enabled

Clock

Cycle Transaction Description

None of the control signals are asserted. This is neither a read nor a write. On cycle 1,
0-2 Reset latch rstl at ch is asserted and the output is set to the value provided by the port a_srval
(port b_srval) parameter.

pea (peb) is asserted and wea (web) is de-asserted. The memory is read and dout a

1-3 Read (dout b) is set two cycles later to the data read from the addressed location.
2-4 Hold None of the control signals are asserted. The output remains unchanged.
. Read operation, with the exception that r st | at cha (r st | at chb) is asserted on the
Read with

3-5 second cycle of the transaction, causing the output to be set to the value provided by the
reset latch
porta_srval (portb_srval) parameter.

pea (peb) is asserted and wea (web) is de-asserted. The memory is read and dout a

4-6 Read (dout b) is set to the data read from the addressed location.
pea (peb) and wea (web) are both asserted. The data on the di na (di nb) pins is
5.7 Write committed to memory. If porta_write_node (portb_wite_node)is"wite_first",
the output data (cycle 7) reflects the data provided on the di na (di nb) port. If
"no_change", the output data remains unchanged.
Write with pea (peb) and wea (web) are both asserted. the data on the di na (di nb) pins is committed

6-8 to memory. Since r st | at cha (r st | at chb) is asserted, on the second cycle the output
reset latch . . .
register is set to the value provided by the porta_srval (portb_srval) parameter.

pea (peb) is asserted and wea (web) is de-asserted. The memory is read and dout a

-9 Read (dout b) is set to the data read from the addressed location.

pea (peb) is asserted and wea (web) is de-asserted. The memory is read. On the second
8-10 | Hold cycle (cycle 9), out r egcea (out r egceb) is de-asserted. The output data is unchanged
from the previous cycle.

pea (peb) is asserted and wea (web) is de-asserted. the memory is read. On the second
cycle (cycle 9), rstrega (r est r egb) is asserted, and out r egcea (out r egceb) is de-
asserted. The output data is either unchanged, or is set to the value provided by the

porta_srval (portb_srval) parameter, depending on whether the r st r ega (r st r egb)
9-11 Reget signal has priority over the out r egcea (out r egceb) signal, as determined by the the

register Lo S

value of the porta_regce_priority (portb_regce_priority)parameter. If
"rstreg", asserting r st rega (r st r egb) resets the output register independent of the
out regcea (outregceb) signal. If "regce", both r st rega (r st regb) and out r egcea
(out r egceb) must be asserted to reset the output register.

Achronix Proprietary and Confidential 335

Speedcore Component Library User Guide (UG065)

Memory Initialization

The contents of the memory array can be initialized at power-up with one of the following two methods. This
initialization is only performed when the FPGA is configured after power-up. The memory is not re-initialized
when user logic is reset.

Initializing With Parameters

The data portion of initial memory contents may be defined by setting the 64 256-bit parameters, i ni t d_00
through i ni t d_63. The data memory is organized as little-endian with bit 0 mapped to bit zero of parameter
i nitd_00 and bit 16383 mapped to bit 255 of parameter i ni t d_63.

When the BRAM is configured with port widths of 9 or 18 bits, the parity portion of the initial memory contents
may be defined by setting the eight 256-bit parameters, i ni t p_0 through i ni t p_7. The parity memory is also
organized as little-endian with the first parity bit location mapped to bit 0 of i ni t p_0 and the last parity bit
mapped to the bit 255 of i nit p_7.

When the BRAM is configured with port widths of 5, 10 or 20 bits, the parity and extended parity portions of the
initial memory contents may be defined by setting the eight 256-bit parameters i ni t p_0 throughi ni t p_7 and
the eight 256-bit parameters i ni t px_0 through i ni t px_7. The parity and extended parity memories are both
organized as little-endian with the first parity bit location mapped to bit 0 of i ni t p_0/i ni t px_0 and the last
parity bit mapped to bit 255 of i ni t p_7/i ni t px_7.

Initializing With a Memory Initialization File

Alternatively, the BRAM may be initialized with a memory file by setting the mem_i ni t _fi | e parameter to the
path of a memory initialization file. The file format must be hexadecimal entries separated by white space, where
the white space is defined by spaces or line separation. Each entry is a hexadecimal number of width equal to
the maximum of the porta_read_wi dth,porta_wite_w dth, portb_read_wi dth, and
portb_write_ w dth parameters.

A number entry may contain underscore (_) characters within the digits (i.e., " A234_4567_33"). Commenting is
allowed beginning with a double-slash (/ /). C-like commenting is also allowed with the comment placed between
"/*" and " */" characters. The memory is initialized starting with the first entry of the file initializing the memory
array starting with address zero and moving upward.

Ifmem.init_fil eisdefined, the BRAM is initialized with the values in the file referenced by the
mem.init_fil e parameter. If mem_i nit_fil e is left at the default value of ", the initial contents are defined
by the values of the parameters i ni t d_00 throughinitd_63,initp_0thoughinitp_7andinitpx_0
through i ni t px_7. If neither the memory initialization parameters nor the nrem i nit _fi | e parameters are
defined, the contents of the BRAM remain uninitialized and unknown until the memory locations are written.

Achronix Proprietary and Confidential 336

Speedcore Component Library User Guide (UG065)

The following tables show how the init values in the porta_i ni tval (portb_initval), porta_srval

(portb_srval) parameters and the memory initialization file entries map to dout a (dout b), dout pa (dout pb),
and dout px (dout pxb):

Table 236: srval and initval to Output Signals Mapping for datawidth = 1, 2, 4, 8, and 16

initval datawidth
16 81412 |1
init[15:8] dout [15: 8] -
init[7:4] dout [7: 4] -
init[3:2] dout [3: 2] -
init[1] dout [1] -
init[0] dout [0]

Table 237: srval and initval to Output Signals Mapping for datawidth = 9 and 18

initval datawidth
18 9
init[17] dout p[1]
init[16:9] dout [15: 8])
init[8] dout p[0]
init[7:0] dout[7: 0]

Achronix Proprietary and Confidential

337

Speedcore Component Library User Guide (UG065)

Table 238: srval and initval to Output Signals Mapping for datawidth = 5, 10, and 20

initval datawidth
20 10
init[19] dout px[1]
i nit[18:15] dout [15: 12]
init[14] dout p[1])
init[13:10] dout [11: 8]
init[9] dout px[0]
init[8:5] dout [7: 4]
init[4] dout p[0]
init[3:0] dout [3: 0]

Create an Instance

To create memories within a design, there are three available methods:

1. Infer the memory — this method provides the greatest code portability and is the recommended approach.
The following are examples of ACX_BRAMTDP (single port) and ACX_BRAMTDP (dual port) inference.

2. Directly instantiated — this method gives access to the full feature set of the memory. However, any code

is less portable to other technology nodes. See Instantiation Templates (see page 344)

3. Use the ACE BRAM IP generator to create the appropriate memory structure — Refer to ACE User Guide
(UGO70) for details.

Achronix Proprietary and Confidential

338

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

Speedcore Component Library User Guide (UG065)

Inference Templates

ACX_BRAMTDRP Single-Port Inference

/] Copyright (c) 2022 Achronix Sem conductor Corp.
/1 Al Rights Reserved.

/1 This software constitutes an unpublished work and contai ns
/1 valuable proprietary information and trade secrets bel ongi ng
/1 to Achronix Sem conductor Corp.

/1 This software nmay not be used, copied, distributed or disclosed
/1 w thout specific prior witten authorization from

/1 Achroni x Sem conductor Corp.

/1 The copyright notice above does not evidence any actual or intended
/] publication of such software.

/1 Design: BRAMIDP Single-Port I|nference
/1 An exanple to infer a single-ported BRAMIDP (1 shared R/'Wport)
/1 in Speedcore designs

“timescale 1ps / 1ps

nmodul e bram tdp_singl e_port

#(

par anet er ADDR_W DTH = 10,

par anet er DATA_ W DTH = 8,

par anet er INI T_FILE_NAME = "",

par anet er READ_MODE = "NO_CHANGE"
)
(

/1 docks and resets

input wre cl k,

/1 Enabl es

input wre we,

/1 Address and data

input wire [ADDR_W DTH 1: 0] addr,

input wre [DATA_WDTH 1: 0] wr _dat a,

/1 CQut put

output reg [DATA WDTH 1:0] rd_data
)

| ocal param DATA_DEPTH = (2 ** ADDR W DTH);

reg [DATA WDTH 1: 0] nem.ran{ DATA DEPTH 1: 0] /* synthesis syn_ranstyle = "bl ock_rant
"no_rw_check" */;

Achronix Proprietary and Confidential 339

Speedcore Component Library User Guide (UG065)

initial begin
if (INCT_FILE_NAME != "")
$readnmenh(1 NI T_FI LE_NAME, nem.ran;
end

al ways @ posedge cl k) begin

if(we) begin
mem ranf addr] <= wr_dat a;
i f (READ_MODE == "W\RI TE_FI RST") begin
rd_data <= w_dat a;
end
end

el se begin
rd_data <= memranfaddr];
end
end

endnodul e : bram tdp_singl e_port

Achronix Proprietary and Confidential 340

Speedcore Component Library User Guide (UG065)

ACX_BRAMTDP Symmetric Dual-Port Inference

/1 Copyright (c) 2022 Achroni x Sem conductor Corp.
// Al Rights Reserved.

/] This software constitutes an unpublished work and contains
/1 valuable proprietary information and trade secrets bel ongi ng
/1 to Achronix Sem conductor Corp.

/1 This software may not be used, copied, distributed or disclosed
/1 w thout specific prior witten authorization from

/] Achroni x Sem conductor Corp.

/1 The copyright notice above does not evidence any actual or intended
/1 publication of such software.

/] Design: BRAMIDP Synmetric |nference

/1 An exanple to infer a symmetric true dual-port BRAMin Speedcore designs

“tinmescale 1ps / 1ps

nodul e bram tdp_symetric

#(
par anet er ADDR_W DTH = 10,
par anet er DATA_ W DTH = 16,
par anet er INIT_FILE_NAME = "",
par anet er READ_MODE = "WRI TE_FI RST"
)
(
/1 Cocks and resets
input wre clk_a,
input wre cl k_b,
/1 Enabl es
input wre we_a,
input wre we_b,
/1 Address and data
input wire [ADDR_W DTH 1: 0] addr _a,
input wre [ADDR_ W DTH 1: 0] addr _b,
input wre [DATA_WDTH 1: 0] w_data_a,
input wire [DATA W DTH 1: 0] w_data_b,
/1 Qut put
output reg [DATA W DTH- 1: 0] rd_data_a,
output reg [DATA WDTH 1:0] rd_data_b
)

| ocal param DATA_DEPTH = (2 ** ADDR W DTH);

Achronix Proprietary and Confidential 341

Speedcore Component Library User Guide (UG065)

reg [DATAWDTH 1: 0] nmem ran{ DATA DEPTH 1: 0] /* synthesis syn_ranstyle = "bl ock_rant
"no_rw_check" */;

initial begin
if (INNT_FILE_NAME I= "")
$readnmenh(1 NI T_FI LE_NAME, nem.ran;
end

/] synthesis synthesis_off

reg addr_col lision;

assign addr_collision = (addr_a == addr_b);
/1 synthesis synthesis_on

al ways @ posedge cl k_a) begin
if(we_a) begin
/] synthesis synthesis_off
if (addr_collision & we_b)
mem ranf addr _a] <= {DATA W DTH{1' bx}};
el se
/] synthesis synthesis_on
mem ranf addr_a] <= w _data_a;

i f (READ_MODE == "WRI TE_FI RST") begin
rd_data_a <= w _data_a;
end
end
el se begin
/1 synthesis synthesis_off
if (addr_collision & we_b)
rd_data_a <= {DATA_ WDTH{1' bx}};
el se
/'l synthesis synthesis_on
rd_data_a <= nemranfaddr_a];
end
end

al ways @ posedge cl k_b) begin
i f(we_b) begin
/1 synthesis synthesis_off
if (addr_collision & we_a)
mem ranf addr _b] <= {DATA WDTH{1' bx}};
el se
/'l synthesis synthesis_on
mem ranf addr _b] <= w _data_b;

i f (READ_MODE == "W\RI TE_FI RST") begin
rd_data_b <= w _data_b;
end
end
el se begin
/'l synthesis synthesis_off
if (addr_collision & we_a)
rd_data_b <= {DATA_ W DTH{1' bx}};
el se
/] synthesis synthesis_on
rd_data_b <= mem.ranf{addr_b];
end
end

Achronix Proprietary and Confidential 342

Speedcore Component Library User Guide (UG065)

endnodul e : bramtdp_symmetric

Achronix Proprietary and Confidential 343

Speedcore Component Library User Guide (UG065)

Instantiation Templates
Verilog

ACX_BRAMTDP #(

.porta_read_w dt h(20),
.porta_write_w dth(20),
.porta_wite_node("wite first"),
.porta_clock_polarity("rise"),
.porta_en_out_reg(1' b0),
.porta_regce_priority("rstreg"),
. porta_peval (1'bl),
.porta_reg_rstval (1'bl),
.porta_latch_rstval (1'bl),
.porta_initval (20' h0),

. porta_srval (20' h0),
.portb_read_w dt h(20),
.portb_write_w dth(20),
.portb_wite_node("wite_first"),
.portb_clock_polarity("rise"),
.portb_en_out_reg(1' b0),
.portb_regce_priority("rstreg"),
. portb_peval (1' bl),
.portb_reg_rstval (1'bl),
.portb_latch_rstval (1'bl),
.portb_initval (20' hO),
.portb_srval (20' h0),
.meminit_file(""),

ni td_00(256' hO),

ni td_01(256' h0),

ni td_02(256' h0),

ni td_03(256' h0),

ni td_04(256' h0),

ni td_05(256' h0),

ni td_06(256' h0),

ni td_07(256' h0),

ni td_08(256' h0),

ni td_09(256' h0),

ni td_10(256' hO),

nitd_11(256' h0),

ni td_12(256' h0),

ni td_13(256' ho),

ni td_14(256' h0),

ni td_15(256' h0),

nitd_16(256' hO),

nitd_17(256' h0),

ni td_18(256' h0),

ni td_19(256' ho),

ni td_20(256' h0),

ni td_21(256' h0),

ni td_22(256' h0),

ni td_23(256' h0),

ni td_24(256' h0),

ni td_25(256' h0),

ni td_26(256' h0),

ni td_27(256' h0),

ni td_28(256' h0),

Achronix Proprietary and Confidential 344

Speedcore Component Library User Guide (UG065)

ni td_29(256' h0),
ni td_30(256' h0),
ni td_31(256' h0),
ni td_32(256' h0),
ni td_33(256' h0),
ni td_34(256' h0),
ni td_35(256' h0),
ni td_36(256' h0),
ni td_37(256' h0),
ni td_38(256' h0),
ni td_39(256' h0),
ni td_40(256' h0),
ni td_41(256' h0),
ni td_42(256' ho),
ni td_43(256' h0),
ni t d_44(256' h0),
ni td_45(256' h0),
ni td_46(256' h0),
ni td_47(256' h0),
ni td_48(256' h0),
ni td_49(256' h0),
ni td_50(256' h0),
ni td_51(256' h0),
ni td_52(256' h0),
ni td_53(256' h0),
ni td_54(256' h0),
ni td_55(256' h0),
ni td_56(256' h0),
nitd_57(256' h0),
ni td_58(256' h0),
ni td_59(256' h0),
ni td_60(256' h0),
ni td_61(256' ho),
ni td_62(256' h0),
ni td_63(256' h0),
ni tp_0(256' h0),
ni tp_1(256' h0),
ni tp_2(256' ho),
nitp_3(256' h0),
ni t p_4(256' ho),
ni t p_5(256' h0),
nitp_6(256'h0),
ni tp_7(256' h0),
ni t px_0(256' h0),
ni t px_1(256' h0),
ni t px_2(256' ho),
ni t px_3(256' h0),
ni t px_4(256' h0),
ni t px_5(256' h0),
ni t px_6(256' h0),
ni t px_7(256' h0))
nstance_nane (.addra(user_addra),
.di na(user_di na),

. di npa(user _di npa),
. di npxa(user _di npxa),
.wea(user_wea),

. pea(user_pea),
.rstlatcha(user_rstlatcha),
.rstrega(user_rstrega),

Achronix Proprietary and Confidential 345

Speedcore Component Library User Guide (UG065)

.outregcea(user_outregcea),
. cl ka(user_cl ka) ,

. dout a(user _dout a),

. dout pa(user _dout pa),

. dout pxa(user _dout pxa),

. addr b(user _addr b),

. di nb(user _di nb),

. di npb(user _di npb),

. di npxb(user _di npxb),
.web(user_web),

. peb(user_peb),
.rstlatchb(user_rstlatchb),
.rstregb(user_rstregb),
.outregceb(user_outregceb),
. cl kb(user _cl kb),

. dout b(user _dout b),

. dout pb(user _dout pb),

. dout pxb(user _dout pxb));

Achronix Proprietary and Confidential 346

Speedcore Component Library User Guide (UG065)

------------- ACHRONI X LI BRARY - ---=-=---

library speedster7t;
use speedster7t.core.all;

............. DONE ACHRONI X LI BRARY

-- Conponent Instantiation

ACX_BRAMIDP_i nst ance_nane : ACX_BRAMIDP

generic map (

porta_read_w dth => 20,
porta_wite w dth => 20,

porta wite node => "wite first",
porta_cl ock_polarity => "rise",
porta_en_out_reg => 0,
porta_regce_priority =>
porta_peval => 1,
porta_reg_rstval => 1,
porta_latch_rstval => 1,
porta_initval => X"00000",
porta_srval => X"00000",
portb_read_w dth => 20,

portb wite w dth => 20,
portb_wite_node => "wite_first",
portb_clock _polarity => "rise",
portb_en_out_reg => 0,
portb_regce_priority => "rstreg",
portb_peval => 1,

portb reg rstval => 1,
portb_latch_rstval => 1,
portb_initval => X'00000",
portb_srval => X"00000",
meminit file =>"",

rstreg”,

nitd_00 => X"00"
nitd_01 => X"00"
nitd_02 => X"00"
nitd_03 => X"00"
nitd_04 => X"00"
nitd_05 => X"00"
nitd_06 => X"'00"
nitd_07 => X"00"
nitd_08 => X"00"
nitd_09 => X"'00"
nitd_10 => X"00"
nitd_11 => X"00"
nitd_12 => X"'00"
nitd_13 => X"'00"
nitd_14 => X"00"
nitd_15 => X"00"
nitd_16 => X"'00"
nitd_17 => X"00"
nitd_18 => X"00"
nitd_19 => X"'00"
nitd_20 => X"00"
nitd_21 => X"00"
nitd_22 => X"'00"
nitd_23 => X"00"
nitd_24 => X"00"

Achronix Proprietary and Confidential

347

Speedcore Component Library User Guide (UG065)

nitd_25 =>
nitd_26 =>
nitd 27 =>
nitd_28 =>
nitd_29 =>
nitd _30 =>
nitd_31 =>
nitd_32 =>
nitd 33 =>
nitd_34 =>
nitd_35 =>
nitd_36 =>
nitd_37 =>
nitd_38 =>
nitd_39 =>
nitd_40 =>
nitd_41 =>
nitd_42 =>
nitd 43 =>
nitd_44 =>
nitd_45 =>
nitd 46 =>
nitd_47 =>
nitd_48 =>
nitd_49 =>
nitd 50 =>
nitd 51 =>
nitd 52 =>
nitd_53 =>
nitd_54 =>
nitd_55 =>
nitd_56 =>
nitd 57 =>
nitd_58 =>
nitd 59 =>
nitd_60 =>
nitd_61 =>
nitd 62 =>
nitd_63 =>
nitp_0 =>

X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X"00"
X" 00"
X"00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"
X"00"
X" 00"
X"00"
X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X"00"

X"00",

nitp_1
nitp_2
nitp_3
nitp_4
nitp_5

X" 00" ,
X"00" ,
X" 00" ,
X" 00" ,
X"00" ,
nitp_6 X"00" ,
nitp_7 => X*00" ,
ni tpx_0 => X"00"

nitpx_1 =>
nitpx_2 =>
nitpx_3 =>
ni tpx_4 =>
nitpx_5 =>
nitpx_6 =>
ni tpx_7 =>
port map (

X"00"
X" 00"
X" 00"
X"00"
X" 00"
X" 00"
X" 00")

addra => user_addra
di na => user_dina
di npa => user _di npa

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

di npxa => user_di npxa ,

wea => user_wea ,

pea => user_pea ,

rstlatcha => user_rstlatcha ,
rstrega => user_rstrega ,
outregcea => user_outregcea ,
cl ka => user_cl ka ,

douta => user_douta ,

dout pa => user_dout pa ,

dout pxa => user_dout pxa ,
addrb => user_addrb ,

dinb => user_dinb ,

di npb => user _di npb ,

di npxb => user _di npxb ,

web => user_web ,

peb => user_peb ,

rstlatchb => user_rstlatchb ,
rstregb => user_rstregb ,
outregceb => user_outregceb ,
cl kb => user_cl kb ,

doutb => user_doutb ,

dout pb => user _dout pb ,

dout pxb => user _dout pxb);

Achronix Proprietary and Confidential 349

Speedcore Component Library User Guide (UG065)

ACX_BRAMFIFO (20-kb FIFO Memory with Optional Error
Correction)

din[31:0] dout[31:0]
dinp[3:0] doutp[3:0]
dinpx[3:0] doutpx[3:0]
wren — rden
outregce
rstreg
full ACX_BRAMFIFO empty
almost_full almost_empty
write_err read_err
— sbit_error
— dbit_error
wrrst rdrst
wrclk rdclk

5374063-11.2022.11.15
Figure 123: 20Kb FIFO Memory With Optional Error Correction

The BRAMFIFO component implements a 20Kb FIFO memory block using the embedded BRAM blocks with
dedicated pointer and flag logic. The BRAMFIFO can be configured to support a variety of widths and depths,
ranging from 512-word depth with 40-bit data to 16k depth with 1-bit data. Additionally, the read and write ports
may be set to different widths. The read and write clocks may be either synchronous or asynchronous with
respect to each other. If the user read and write clocks are the same, the sync_node parameter may be set to
1' b1 to enable faster and synchronous generation of the status flags and FIFO pointer outputs.

When the write_ w dt h and r ead_wi dt h parameters are both set to 40, the error correction code (ECC) logic
may be enabled to allow single-bit error correction with single and double-bit error detection on 32 bits of data.
The embedded error correction encoder generates seven parity bits and stores them alongside each 32-bit word
written into the memory. During the read operations, the error correction decoder reads the seven parity bits and
the 32 data bits to provide error correction for all single-bit errors and error detection without correction for all two-
bit errors.

An optional output register, complete with reset and clock enable inputs, is available to increase the speed of
memory accesses. The use of the output register incurs a single additional cycle of read latency.

Achronix Proprietary and Confidential 350

Speedcore Component Library User Guide (UG065)

din[31:0]
dinp[3:0]

dinpx[3:0]

encoder_enable

rstreg
outregce
rdclk

Table 239: BRAMFIFO Pin Description

Write
Pointer
Logic

dinpx
doutpx
20-kbit
Dual-Port
Memory

waddr raddr

en_out_reg

decoder_

enable

sbit_error

dbit_error

Read
Pointer
Logic

wren
wrrst
wrelk
rden
rdrst
rdclk

Memory Control/

Flag Generation
Logic

full

empty
almost_full
almost_empty
write_err

read_err

Figure 124: BRAMFIFO Block Diagram

dout[31:0]

doutp([3:0]

doutpx[3:0]

sbit_error

dbit_error

5374063-12.2022.11.15

Clock oy
Name Type Domain Description
Write Interface
Write port FIFO reset (programmable, default active-high). Resets the FIFO to
W r st Input prog clear the read-side and/or write-side logic. The contents of the output register,
if enabled, are not affected by the wr r st signal.
wr cl k Input |wclk Write clock (rising edge).
Write enable signal. When asserted, data is written to the next unused
wren | ¢ wr el k memory location in the FIFO, at the next active edge of the write clock, as
npu long as ful | is not also asserted. The wren_pol arity_sel parameter
determines whether wr en is active-high (default) or active-low.

Achronix Proprietary and Confidential

351

Speedcore Component Library User Guide (UG065)

Clock o
Name Type Domain Description
di n[31: 0] Input wr cl k Write port data input.
. . Write port parity input (may be used for data). Used if the write data width is 9,
di np[3: 0] Input wr cl k 10, 18, 20, 36, or 40.
.) Write port extended parity input (may be used for data). Used if the write data
dinpx[3:0] | Input wrelk | s 10, 20, or 40.
full Output | wrcl k _FuII flag (active-high). Asserted when no more memory locations are available
in the FIFO.
al most ful | Outout | wr el k Almost full flag (active-high). Asserted when fewer memory locations are
- utpu available in the FIFO than the value of the af ul | _of f set parameter.
wite_ err Output | wrcl k Write error flag (active-high). Asserted after attempting to write to a full FIFO.
Read Interface
Read port FIFO reset (programmable, default active-high). Asserting r dr st
rdrst Input pr og resets the FIFO to clear the read-side and/or write-side logic. The contents of
the output register, if enabled, are not affected by the wr r st signal.
rdcl k Input rdcl k Read clock (rising edge).
Read enable. Causes the the next data element to be read from the FIFO at
the next active edge of the clock, if the empty signal is not asserted. The
rden Input rdcl k : . . : :
rden_pol arity_sel parameter determines whether r den is active-high
(default) or active-low.
Output register clock enable (active-high). When the output register is
enabled, controls when the output data from the FIFO is presented on the
outregce Input rdcl k dout, dout p, and dout px ports. In most cases, this input should be held
high. When the output register is enabled, the out r egce signal should
always be asserted during a read operation.
Output register reset. The sr _asserti on_r eg parameter determines
whether the reset is synchronous (default) or asynchronous, and the
rstreg Input rdcl k reg_rstval parameter determines whether r st r eg is active-high (default)
or active-low. When reset is asserted, the output register is assigned the value
of thereg_srval parameter.
dout [31: 0] Output | rdcl k Read port dout output.
. Read port parity output (used for data). Used if the read data width is 9, 10,
dout p[3: 0] Output | rdcl k 18. 20, 36, or 40.
dout px[3: 0] Output | r del k Read port extended parity output (used for data). Used if the read data width

is 10, 20, or 40.

Achronix Proprietary and Confidential 352

Speedcore Component Library User Guide (UG065)

Clock o
Name Type Domain Description
Empty flag (active-high). Asserted whenever there is less than one word of
enpty Output | rdcl k data available to be read.
Almost-empty flag (active-high). Asserted when there are fewer words to be
al nost_enpty | Output | rdclk read than the value of the aenpt y_of f set parameter.
read_err Output | rdcl k Eﬁ:acc)j-error flag (active-high). Asserted after attempting to read from an empty
Single-bit error (active-high). The sbi t _error signal is asserted during a
read operation when a single-bit error is detected and the corrected word is
shit_error Output | rdcl k output on the dout pins. Memory contents are not corrected by the error
correction logic. The shi t _error signal is aligned with the associated read
data word.
Dual-bit error (active-high). Asserted during a read operation when a dual-bit
. error is detected. In the case of a dual-bit error condition, the uncorrected read
dbit_error Output | rdcl k

data word is output on the dout pins. The dbi t _err or signal is asserted
one cycle after the associated read data word.

Achronix Proprietary and Confidential 353

Speedcore Component Library User Guide (UG065)

Table 240: BRAMFIFO Parameters

Defined Default e
Parameter Description
Values Value
Bypasses the synchronization logic between the read and
write ports. For use when the wr cl k and r dcl k clock inputs
are connected to the same clock. Reduces the latency
sync_node 1'b0,1'b1l |[1'bO through the FIFO and provides faster de-assertion of the
status flags (empty, full, etc.). If the read and write clocks are
connected to different clock sources, the synchronization logic
must be used, and sync_node must be setto 1' bO0.
1,2,5,4,8, Defines the width of the data input bus. The Width Versus
Wite width 9,10, 40 FIFO Depth (see page 359) table shows the maximum depth
- 16, 18, 20, of the FIFO for each valid value of the wri t e_wi dt h
32, 36, 40 parameter.
Defines the width of the data output bus. The allowed value is
1,2,5,4,8, subject to the combinations defined in the Valid Read Width
read width 9,10, 40 Versus Write Width Combinations per Port (see page 357)
- 16, 18, 20, table. The Width Versus FIFO Depth (see page 359) table
32, 36, 40 shows the depth of the FIFO for each value of the
write_wi dt h parameter.
Defines whether the FIFO is in first-word-fall-through mode.
Only effects the availability of the first word written to the
FIFO when empty. Operation of the two modes is the same
after the first read operation. May only be setto 1' b1 when
the sync_node parameter is setto 1' b0. The two settings
operate as follows:
fuft 1'b0,1"b1 11" b0 ® 1' bl - the first value written to the FIFO appears at
the dout (and dout p, dout xp if applicable) output
without the need to perform a read operation.
® 1' b0 - the first data word written to the FIFO is
available at the FIFO output one r dcl k clock cycle
after the first read operation.
Enables the FIFO output register. A value of 1' b0 disables
the output register. When enabled, there is an additional cycle
en_out _reg 1'b0,1'b1l [1'bl of latency for each read operation. The en_out _r eg signal
may only be 1' b0 when the FIFO is in single clock mode
(sync_mode = 1' bl).
40-bit Defines the power-up default value of the output register data
reg_initval hexadecimal |40' hO enabled P P putreg ’
number I enabled.
40-bit . .)
) . , If the output register is enabled, defines the reset value of the
reg_srval hexadecimal | 40' hO outout register data wh . rted
number put register data when r st r eg is asserted.

Achronix Proprietary and Confidential

354

Speedcore Component Library User Guide (UG065)

Defined Default e
Parameter Description
Values Value
Defines the active level of the r st r eg input:
reg_rstval 1'b0,1'b1 [1'bl ® 1' b0 - sets active low.
® 1' bl - sets active high.
Sets whether the assertion of the output register reset is
synchronous or asynchronous with respect to r dcl k. A value
of cl ocked corresponds to a synchronous reset where the
. cl ocked, ; . .
Sr_assertion_reg cl ocked | output register is reset upon the next rising edge of the clock
uncl ocked : ;
if r st r eg is asserted. A value of uncl ocked corresponds to
an asynchronous reset where the output register is reset
immediately following the assertion of r st r eg.
2' b00,
,) | 2" bO1, .) . : .
wrrst_i nput_rmode(@ 2 b10 2' b10 Defines how the write pointer is reset.
2' b1l
2' b00,
) @) 2' b01, ,)))
rdrst_input _node 2 b10 2' b10 Defines how the read pointer is reset.
2' b11
wrst_rstval ® 1'b0,1'bl |1'bl Defines the active level of the wr r st input.
rdrst_rstval © 1'b0,1' bl |1'bl Defines the active level of the r dr st input.
Defines the word depth at which the al nost _f ul | output
changes. al nost _ful | may be used to determine the
number of FIFO blind writes that can be made without
. monitoring the f ul | flag. For example, if the af ul | _of f set
15-bit arameter is set to 15' h0004 and the al nost _f ul | signal
aful | _of f set hexadecimal | 15' h0004 | P . —r i s
number is de-asserted, there are at least five empty FIFO locations.
All five words may be written without overflowing the FIFO
and causing assertion of wri t e_err. The almost_full Flag
Assertion Based on afull_offset Parameter (see page 362)
table provides details.
Defines the word depth at which al nbst _enpt y changes.
al nost _enpt y may be used to determine the number of
blind FIFO reads that can be performed without monitoring
. the enpt y flag. For example, if the aenpt y_of f set
15-bit parameter is set to 15' h0004 and al nbst _enpty is de
aenpty_of f set hexadecimal | 15' h0004 - k
Pty ni)rfr?b:rmma asserted, there are at least five words in the FIFO. All five
words may be read without FIFO underflow, causing
read_err to be asserted. Refer to the almost_empty Flag
Assertion Based on afull_offset Parameter (see page 362)
table.

Achronix Proprietary and Confidential

355

Speedcore Component Library User Guide (UG065)

Parameter Lrilree Ll Description
Values Value P

Determines the active level of wr en. When set to 1' b0, the

wren_pol arity_sel 1'b0,1"b1 |1"b1 wr en input is active-low. When set to 1' b1 it is active-high.

Determines the active level of r den. When set to 1' b0 the

rden_polarity_sel 1'b0,1"b1 117b1 r den input is active-low. When setto 1' b1 it is active-high.

Defines whether the ECC encoder logic is enabled or
bypassed. When set to 1' b1, enables the ECC encoder for
encoder _enabl e 1'b0,1'b1 |1'bl normal operation. When set to 1' b0, disables the ECC
encoder logic and allows the di n, di np, and di npx inputs to
be connected directly to the memory write port.

Defines whether the ECC decoder logic is enabled or
bypassed. When set to 1' b1, enables the ECC decoder for
normal operation. When set to 1' b0, disables the ECC

I 1 1'bl |[1'b1 .
decoder_enabl e b0, 1"b b decoder logic and allows the dout , dout p, and dout px
memory outputs to be routed to the output ports without error
correction.
Table Notes

1. This 40-bit parameter assignment is dependent on the r ead_wi dt h parameter as shown in the srval &
initval to Output Signals Mapping (see page 366) table.

2. The reset may be synchronized outside the FIFO or internal to the FIFO, and can be reset by the wr r st
input or the r dr st input. Refer to FIFO Reset (see page 360) for details.

3. Avalue of 1' b0 sets active low, 1' b1l sets active high.

Achronix Proprietary and Confidential 356

Speedcore Component Library User Guide (UG065)

Memory Organization and Data Pin Assignments

The BRAMFIFO block supports port widths from one to forty bits. The widths of the di n, di np, and di npx inputs
are determined by the wri t e_wi dt h parameter while the widths of the dout , dout p, and dout px outputs are

determined by the r ead_wi dt h parameter. The width of the read port may differ from the width of the write port.
The Valid Read Width Versus Write Width Combinations per Port (see page 357) table shows the legal
combinations of read and write widths. "X" indicates a supported configuration.

Table 241: Valid Read Width Versus Write Width Combinations Per Port

Write Width
Read 512 x 1k % 2kx | 4kx | 512x 1kx | 2kx | 512x 1kx | 2kx | 4kx | 8kx | 16k x
Width 40 20 10 5 36 18 9 32 16 8 4 2 1
512x40 | X X X X - - - - - - - -
1k x 20 X X X X - - - - - - - -
2k x 10 X X X X - - - - - - - -
4k x5 X X X X - - - - - - - -
512x36 |- - - X X X - - - - -
1k x 18 - - - X X X - - - - -
2k x 9 - - - X X X - - - _ _
512x32 |- - - - - - X X X X X X
1k x 16 - -~ - - - X X X X X X
2k x 8 - - - - - X X X X X X
4k x 4 - - - - - X X X X X
8k x 2 - - - - - X X X X X X
16k x 1 - - - - - X X X X X
Achronix Proprietary and Confidential 357

Speedcore Component Library User Guide (UG065)

Data Widths Using Parity Pins

The ACX_BRAMFIFO memory has three buses for both data in and data out consisting of the respective di n
and dout interfaces, along with the di np, di npx, dout p and dout px parity interfaces. When ECC is used, the
parity interfaces are unused, allowing the ECC encoder and decoder to make use of the respective memory pins
for ECC operation. When ECC is disabled, the parity interfaces are assigned to the respective data buses as
shown in the following table.

Table 242: Parity Pins Assignment Per Port

Dat
V\a;id dinpx/doutpx dinp/doutp din/dout
th
40 {data[39], data[29], |{data[34], data[24], |{data[38:35], data[33:30],data[?28:25], data[?23:20],

data[19], data[9]} data[14], data[4]} data[18: 15], data[13:10],data[8:5], data[3:0]}

3% |- ngg?[l?f]dgf‘;?g]zf] {data[34:27], data[25: 18], data[16: 9], data[7:0]}

32 - - dat a[31: 0]

{2' b00, data[19], {2' b00, data[14],

20 | data[9]} dat a[4] }

{16' h0, data[18:15], data[13:10], data[8:5],data[3:0]}

{2' b00, data[17],

18 |- data[8]) {16' h0, data[16:9], data[7:0]}
16 |- - {16' ho, data[15:0]}

10 | {3'b000, data[9]} {3'b000, data[4]} {24' ho, data[8:5], data[3:0]}
9 |- {3'b000, data[8]} {24' ho, data[7:0]}

8 |- - {24' ho, data[7:0]}

5 |- {3'b000, data[4]} {28 ho, data[3:0]}

4 |- - {28 ho, data[3:0]}

2 |- - {30' ho, data[1:0]}

1 - - {31' ho, data[0]}

Caution!

Pay close attention to non power-of-two sized data widths and how the data bits are assigned.

Achronix Proprietary and Confidential 358

Speedcore Component Library User Guide (UG065)

Read and Write Depth

The FIFO write depth is the number of elements that can be written to the input side of an empty FIFO before the
FIFO is full. Similarly, the FIFO read depth is the number of elements that can be read from a full FIFO before the

FIFO is empty. The effective FIFO depth for the read or write port is determined by the width of each port. The
following table shows the effective read depth and write depth as determined by the r ead_wi dt h and
write_ w dth parameters.

Table 243: Port Width Versus FIFO Depth

write_width/read_width | Write/Read Depth | Write/Read Depth
Parameter Value fwft = 1'b0 fwft = 1'b1

40 512 513

36 512 513

32 512 513

20 1024 1025

18 1024 1025

16 1024 1025

10 2048 2049

9 2048 2049

8 2048 2049

5 4096 4097

4 4096 4097

2 8192 8193

1 16384 16385

Achronix Proprietary and Confidential

359

Speedcore Component Library User Guide (UG065)

FIFO Operation

The BRAMFIFO operations are described in detail in this section.

FIFO Reset

A FIFO reset is performed by asserting the r dr st and/or wr r st inputs as described in FIFO Resets (see page
380), causing the internal FIFO state to be reset such that the FIFO is empty. After a reset, it is not possible to
retrieve any data contained in the FIFO prior to the reset. The entire FIFO is available to be accept new data.

FIFO Write

A FIFO write is performed by asserting the wr en input when the FIFO is not full. Asserting wr en causes the data
present on the di n, di np, and di npx inputs (depending on the data width) to be stored in the FIFO for later
retrieval with a read operation. If a write operation fills the last remaining location in the FIFO, the f ul | signal is
asserted on the following clock cycle. If wr en is asserted when the FIFO is full, the write fails, and wite_error
is asserted on the next clock cycle.

FIFO Read

A FIFO read is performed by asserting the r den input when the FIFO is not empty. Asserting the r den presents
the next data word from the FIFO memory array on the dout , dout p and dout px outputs (depending on the
data width). Data is always read in the same order as it was written and is no longer stored in the FIFO after it
has been read. If the last remaining location in the FIFO is read, the enpt y signal is asserted on the following
clock cycle. If r den is asserted when the FIFO is empty, the read fails, and r ead_er r or is asserted on the next
clock cycle.

Achronix Proprietary and Confidential 360

Speedcore Component Library User Guide (UG065)

FIFO Status Signals
The following table describes the FIFO status signals output by the BRAMFIFO component.

Table 244: FIFO Pointers and Status Flag Clock Domain Assignments

Status Signal

Clock
Domain

Description

enpty

rdecl k

Asserted when either the FIFO is reset or all data has been read from the FIFO. This
flag is synchronous to the r dcl k domain. Asserting r den when enpt y is asserted
does not change the contents of the FIFO nor does it affect the data output, but does
cause the r ead_er r output to be asserted in the following r dcl k cycle. When
sync_node is 1' b0, meaning that read and write ports are not in the same clock
domain, a few clock cycles are required after writing data to the FIFO before enpt y is
de-asserted. The enpt y signal is always asserted immediately when the FIFO
becomes empty.

al nost _enpty

rdecl k

Asserted when there are aenpt y_of f set or fewer words remaining in the FIFO (refer
to the almost_empty Flag Assertion Based on afull_offset Parameter (see page 362)
table). The al nost _enpty flag may be used to determine the number of reads that
can be performed without causing FIFO underflow and assertion of r d_err . For
example, if the aenpt y_of f set parameteris 15' h0004, and the al nost _enpt y flag
is not asserted, at least five words remain in the FIFO. When sync_node is 1' b0,
meaning that the read and write ports are not in the same clock domain, a few clock
cycles are required after writing data to the FIFO before al nost _enpty is de-
asserted. al nost _enpt y is always asserted immediately when aenpty_of f set
words remain in the FIFO.

read_err

rdcl k

Asserted in the cycle following assertion of r den while the FIFO is empty.

full

wr cl k

Asserted whenever all FIFO locations are in use. Asserting w en when f ul | is
asserted does not change the FIFO contents and causes the wri t e_err output to be
asserted in the following wr cl k clock cycle. The di n inputs are ignored in this case.
When sync_node is 1' b0, meaning that read and write ports are not in the same
clock domain, a few clock cycles are required after reading FIFO data before f ul | is
de-asserted. f ul | is always asserted immediately when the FIFO becomes full.

al nost _full

wr cl k

Asserted when af ul | _of f set or fewer unused FIFO locations remain. al nost _f ul |
may be used to determine the number of writes that can be performed without causing
FIFO overflow and assertion of wi t e_err. For example, if af ul | _of f set is

15' h00004, and al nost _f ul | is not asserted, there are at least five empty FIFO
locations. When sync_node is 1' b0, meaning that the read and write ports are not in
the same clock domain, a few clock cycles are required after reading from the FIFO
before al nost _ful | is de-asserted. al nost _f ul | is always asserted immediately
when af ul | _of f set locations remain in the FIFO.

wite_ err

wr cl k

Asserted in the cycle following wr en assertion while the FIFO is full.

Achronix Proprietary and Confidential 361

Speedcore Component Library User Guide (UG065)

The following two tables describe the conditions for asserting and de-asserting al nost _ful | and

al nost _enpty.

Table 245: almost_full Flag Assertion Based on afull_offset Parameter

sync_mode | fwft almost_full Assertion Condition almost_full De-assertion Condition

1' bO 1' bO

1' b0 1' b1 aful | _of f set or fewer empty FIFO Atleast (af ul | _of f set + 1) empty FIFO
locations remain. locations remain.

1'bl 1' b0

1' bl 1' b1 | lllegal combination.

Table 246: almost_empty Flag Assertion Based on afull_offset Parameter

sync_mode | fwft almost_empty.Assertlon almost_empty De-assertion Condition
Condition

1' b0 1’ b0 aenpt y_of.f set orfewer FIFO At least (aenpt y_of f set + 1) FIFO words present.
words remain.

1' b0 1' b1 (aenpty_of fset + 1)orfewer |Atleast(aenpty_of fset + 1) FIFO words present, plus
FIFO words remain. the word fallen through to output.

1' bl 1' b0 aenpt y_of.f set orfewer FIFO At least (aenpt y_of f set + 1) FIFO words present.
words remain.

1' bl 1' b1 | lllegal combination.

Before flag calculations can be made, the flag logic must ensure that both pointers are in the same clock domain
as the flag for which the calculation is performed. The write pointer and read pointer synchronizers transfer each
of the pointers into the other clock domain. A given pointer is synchronized to the opposite clock domain using a
series of registers. The transfer of a pointer through these registers adds additional delay to the flag calculation.

The following table shows the versions of the pointers used for flag calculations.

Table 247: Pointers Used for FIFO Flag Calculations

Flag

Flag Calculation
Write Pointer

Flag Calculation
Read Pointer

enpty

Synchronized

al nost _enpty

Write Pointer

Read Pointer

full

al nost _full

Write Pointer

Synchronized
Read Pointer

Achronix Proprietary and Confidential

Speedcore Component Library User Guide (UG065)

The enpt y flag is computed from the synchronized write and read pointers. The write pointer incurs an additional
delay of two r dcl k cyles before being used to calculate the enpt y flag. Therefore, the enpt y flag does not
transition from empty to non-empty state for a minimum of two r dcl k cycles after the first write to the FIFO
occurs. A similar delay occurs for the al nost _enpty flag. Also, for the ful | and al nost _ful | flags, there are
two wr cl k cycles of delay in the actual FIFO status due to the synchronized read pointer. For an asynchronous
FIFO, the calculation of the flags does not immediately reflect the state of the FIFO (not typical behavior for an
asynchronous FIFO). A synchronous FIFO has only a single clock, so no clock domain crossing is required. A
synchronous FIFO has the advantage that the flag calculation is immediate and precise.

FIFO Operational Modes

The BRAMFIFO is a highly configurable IP component supporting a number of modes of operation, including
either synchronous or asynchronous (dual-clock) operation:

® Synchronous — the same clock must be connected to the wr ¢l k and r dcl k inputs, and there cannot be a
phase offset between them.

® Asynchronous — two different clocks can be connected to the wr cl k and r dcl k inputs. The BRAMFIFO
does not require any phase or frequency relationship between the two clocks. The two clock inputs are
treated as being completely asynchronous to one another. There is no requirement regarding the relative
frequencies of the two clocks. Either clock can be faster or slower than the other.

Synchronous Operation

The synchronous FIFO mode is selected by setting the sync_node parameter to 1' b1. In synchronous mode,
there is no latency in updating the enpt y and al nost _enpt y signals after a write operation, or updating the
full and al most _ful | signals after a read operation. This lack of latency means that the status outputs
always represent the exact state of the FIFO.

In this mode, first-word-fall-through (fwft, described in Asynchronous Operation (see page 372)) is not supported,
and the f wf t parameter must be 1' bO0.

Optional Output Register

An optional output register may be enabled at the output of the FIFO to improve the clock-to-out timing when in
single clock mode (sync_node = 1' b1). Enabling the output register adds an a additional cycle of latency to the
output data for each read operation. It should be considered as an optional pipeline stage at the data output of
the FIFO. The timing of the enpt y, al nost _enpty, ful | , and al nost _f ul | signals are not changed when
the output register is enabled.

The output register is enabled by setting the en_out _r eg parameter to 1' b1. The output register has
independent clock enable (out r egce) and synchronous reset (r st r eg) inputs. The output register may be
configured to have an active-high or active-low reset input as determined by the r eg_r st val parameter. When
rstreg is asserted, the value of the r eg_sr val is placed on the output of the register at the next active edge of
rdcl k. The initial power-up value of the output register is defined by the r eg_i ni t val parameter. The
following table shows the functions of the optional output register and assumes the following:

® Active-high r dcl k
® Active-high out r egce

® Active-high rstreg

Achronix Proprietary and Confidential 363

Speedcore Component Library User Guide (UG065)

Table 248: Optional Output Register Function Table

Operation rstreg | outregce | rdclk dout
Hold X X X dout _previ ous
Reset output 1 X 0 reg_srval
Hold 0 0 1 dout _previ ous
Update output | 0 1 0 fifo_output

When the output register is enabled, the dout , dout p, and dout px signals take on the value specified in the
reg_ini t val parameter when the FPGA is first configured. When the input r st r eg is asserted, the dout ,

dout p, and dout px signals take on the value specified in the r eg_sr val parameter. The following tables show

howthereg init andreg_srval parameters map to dout, dout p, and dout px.

Table 249: srval and initval to Output Signals Mapping for datawidth = 1, 2, 4, 8, 16, and 32

initval datawidth

32 16 |8 |4 |2 |1
init[31:16] dout [31: 16] -
init[15:8] dout [15: 8] -
init[7:4] dout [7: 4] -
init[3:2] dout [3: 2] -
init[1] dout [1] -
init[O0] dout [0]

Achronix Proprietary and Confidential

364

Speedcore Component Library User Guide (UG065)

Table 250: srval and initval to Output Signals Mapping for datawidth = 9, 18, and 36

initval datawidth
36 18 |9
i nit[35] dout p[3]
init[34:27] dout [31: 24]
init[26] dout p[2])
init[25:18] dout [23: 16]
init[17] dout p[1]
init[16:9] dout [15: 8])
init[8] dout p[0]
init[7:0] dout [7: 0]

Achronix Proprietary and Confidential

365

Speedcore Component Library User Guide (UG065)

Table 251: srval and initval to Output Signals Mapping for datawidth = 5, 10, 20, and 40

initval datawidth
40 20 (10

init[39] dout px|[3]
i nit[38:35] dout [31: 28]
i nit[34] dout p[3]
i nit[33:30] dout [27: 24]
init[29] dout px[2])
init[28:25] dout [23: 20]
i nit[24] dout p[2]
init[23:20] dout [19: 16]
init[19] dout px[1]
init[18:15] dout [15: 12]
init[14] dout p[1])
init[13:10] dout [11: 8]
init[9] dout px[0]
init[8:5] dout [7: 4]
init[4] dout p[0]
init[3:0] dout [3: 0]

Achronix Proprietary and Confidential

366

Speedcore Component Library User Guide (UG065)

Timing Diagrams

The following diagram shows the operation of the FIFO in synchronous mode when the FIFO is empty, and the
aenpty_of f set parameter is 3. This diagram assumes that all signals not shown, such as r dr st and wr r st ,
are not asserted.

wrclk, rdelk
wren

din

rden
outregce
rstreg
rd_error
empty

almost_empty

{ dout
{ dout

en_out_reg=1 en_out_reg=0

0

1L

1

1

2

1

1

IN
o
[
~
[«
©
5
B

12

—

13 14 15

L L L L L L L

1

1L

16 17

1L

1L

18

‘h00

‘h1l

‘h22

‘h33 ‘h44 ‘hb5 ‘h66

‘h00 X ‘hi1 X‘h22 X ‘h33

=<
=
o
o

=<

‘h66

X ‘h66

Figure 125: Synchronous Mode Empty FIFO Timing Diagram

6586706-02.2022.15.11

Achronix Proprietary and Confidential

367

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding diagram are described in the following table.

Table 252: Synchronous Mode Empty FIFO Timing Diagram Events

Event

Description

The wr en signal is asserted, writing the first data word to the FIFO, causing enpt y to be de-asserted on the
following clock cycle (FIFO is no longer empty). Simultaneously, r den is asserted, indicating a read attempt
from the FIFO. Since the FIFO is still empty, r d_er r is asserted on the following clock cycle, and the dout
output does not change.

The wr en signal is asserted, writing the second data word to the FIFO. Simultaneously, r den is asserted,
reading the first data word from the FIFO. The data arrives on the dout output on the following cycle or the
one after, depending on the en_out _r eg parameter.

The wr en signal is asserted, writing the third data word to the FIFO. The r den signal is not asserted in this
cycle, so nothing is read from the FIFO. Asserting out r egce when r den is de-asserted has no effect.

The wr en signal is asserted, writing the fourth data word to the FIFO.

The wr en signal is asserted, writing the fifth data word to the FIFO, leaving four words in the FIFO (the first
word has already been read). The number of words is greater than the aenpt y_of f set value of 3, so

al nost _enpt y is de-asserted on the following clock cycle. Simultaneously, r st r eg is asserted, resetting
the value of the output register on the following clock cycle to the value provided by the r eg_sr val
parameter, if enabled. Enabling the output register has no effect on aenpt y_of f set timing. If the output
register is not enabled, r st r eg has no effect.

The wr en signal is asserted, writing the sixth data word to the FIFO.

The wr en signal is asserted, writing the seventh data word to the FIFO.

No control signals are asserted.

The r den signal is asserted, reading the second data word from the FIFO. The data arrives on dout on the
following cycle or the one after, depending on the en_out _r eg parameter.

10

The r den signal is asserted, reading the third data word from the FIFO. The data arrives on dout on the
following cycle or the one after, depending on the en_out _r eg parameter.

11

The r den signal is asserted, reading the fourth data word from the FIFO, out r egce is de-asserted on the
following cycle. Since this leaves only three words in the FIFO, the al nost _f ul | signal is asserted on the
next clock cycle.

® |fthe en_out _reg parameteris 1' b0, data arrives on dout on the following cycle, and de-asserting
out r egce has no effect.

® |fthe en_out _reg parameteris 1' b1, de-asserting out r egce causes the output register to hold
the previous value instead of the data just read from the FIFO. Even though the data was not present
on the dout pins, it has been read from the FIFO, and it can not be read again.

The r den signal is asserted, reading the fifth data word from the FIFO. r st r eg is asserted on the following
cycle.

Achronix Proprietary and Confidential 368

Speedcore Component Library User Guide (UG065)

Event

Description

12

® |fthe en_out _reg parameteris 1' b0, the data arrives on dout on the following cycle, and the
assertion of r st r eg has no effect.

® |fthe en_out _reg parameteris 1' b1, asserting r st r eg causes the output register to receive the
value provided in the r eg_sr val parameter. Even though the data was not presented on dout , it
was read from the FIFO, and it can not be read again.

13

The r den signal is asserted, reading the sixth data word from the FIFO. The signals out r egce and r st r eg
are both asserted on the following cycle.
® [fthe en_out _reg parameteris 1' b0, the data arrives on dout on the following cycle, and
out regce and r st r eg have no effect.
® [fthe en_out _reg parameteris 1' b1, asserting r st r eg causes the output register to receive the
value provided in the r eg_sr val parameter regardless of the out r egce value. Even though the
data was not presented on dout , it was read from the FIFO, and it can not be read again.

14

The r den signal is asserted, reading the seventh and last data word from the FIFO. The data arrives on
dout on the following cycle or the one after, depending on the en_out _r eg parameter. Since the FIFO is
empty, the enpt y signal is asserted on the next cycle.

® |fen_out _regis1' b0, the data arrives on dout on the following cycle, and out r egce and r st reg
have no effect.

® [fen_out _reg parameteris 1' bl, asserting r st r eg causes the output register to receive the value
provided in the r eg_srval parameter, regardless of the out r egce value. Even though the data
was not presented on dout , it was read from the FIFO, and it can not be read again.

15

The r den signal is asserted even though the FIFO is empty. r ead_err or is asserted on the following
clock edge, and the FIFO contents are unchanged.

Achronix Proprietary and Confidential 369

Speedcore Component Library User Guide (UG065)

The following diagram shows the operation of the FIFO in synchronous mode, starting when there are 5 locations
remaining in the FIFO, and the af ul | _of f set parameter is 3. This diagram assumes that all signals not shown,
such asrdrst and wrr st , are de-asserted, and that the en_out _r eg parameteris 1' b0. If en_out _r eg was
1' b1, the dout signal would be delayed by one cycle.

wrclk, rdclk

wren

0 1 2 3 4 5 6 7 8 9 10 1n 12

gigligligigligEgligl

|

14 15 16

-
-
r

:
|
din X ‘h3fb X ‘h3fc X ‘h3fd X ‘h3fe K ‘h3ff X ‘hee0 X ‘heel ‘h400 X
| | | | [} | | [} | | I
il R A I B | ' |
: : | : |
almost_full y i i i i
| | ——1
| | |
write_error i ‘I i
| | |
rden I I I
dout ‘h00 X ‘h01 ‘h02 ‘h03 X ‘h04 i
Figure 126: Synchronous Mode Full FIFO Timing Diagram
Achronix Proprietary and Confidential 370

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding diagram are described in the following table.

Table 253: Synchronous Mode Full FIFO Timing Diagram Events

Event Description

The wr en signal is asserted, writing a data word to the FIFO. After the second write, only three locations are
1-5 free, so al nost _ful | is asserted on the next clock cycle. The fifth write fills the last FIFO element, and the
ful | signal is asserted on the following clock cycle.

The wr en signal is asserted. Since the FIFO is already full, the write operation does not take place, and
write_error is asserted on the following clock cycle.

7-8 No operation.

The wr en and r den signals are both asserted at the same time as both a read and a write operation is
9 desired. Since the f ul | signal is asserted, the write fails, and wri t e_err or is asserted on the following
cycle. The read is successful, and the output data is presented on dout on the following cycle.

The wr en and r den signals are both asserted at the same time, and the input word is written to the FIFO
10 while the next output word is read and presented on dout . Since f ul | is not asserted, both operations are
successful.

The r den signal is asserted, and the next output data is read from the FIFO and presented on dout . After
11-13 | the third read, there are more than three unused locations in the FIFO, so al nost _f ul | is de-asserted on
the next cycle.

14 The r den signal is not asserted, so the output remains constant.

Achronix Proprietary and Confidential 371

Speedcore Component Library User Guide (UG065)

Asynchronous Operation

When the FIFO is configured for asynchronous operation (sync_node = 1' b0), no phase or frequency
relationship is assumed between between the write and the read clocks. The two clock inputs are treated as
being completely asynchronous to one another. There is no requirement regarding the relative frequencies of the
two clocks. Either clock can be faster or slower than the other.

Compared to synchronous mode, asynchronous mode causes an additional delay when updating enpt y and
al nost _enpty after a write operation, or updating f ul | and al nost _ful | after a read operation, as it takes
time for the status to cross safely from one clock domain to the other. All status signals are asserted without
delay having only their de-assertion requiring additional time. For asynchronous operation, the en_out _r eg
parameter must be setto 1' b1l.

When using the FIFO with two clocks, the first-word-fall-through (fwft) parameter controls when data is made
available on the output signals:

* fwft =1' b0 (request mode) — when in request mode, asserting r den requests that the data be
presented on the dout pins on the following cycle. This mode is identical to when sync_node =1' b1,
and the clocks are synchronous to one another. In this mode, the output of the FIFO remains unchanged
after the first write in the empty state. After the first write operation, the enpt y flag is de-asserted,
indicating that data is available. The FIFO is read by asserting r den and the first word written is then
available at the outputs on the next r dcl k cycle. Each subsequent read operation updates the FIFO
outputs with the next stored data word if it is available (enpty = 0).

* fwft = 1'b1 (acknowledge mode) — when in acknowledge mode, the FIFO behaves as a first-word-fall-
through FIFO, meaning that when empty, the first data word written to the FIFO is presented on the output
pins as soon as possible, without waiting for wr en to be asserted. After a reset (or after the last word has
been read), the FIFO is in an empty state as indicated by assertion of enpt y. The output of the FIFO is
updated after the next write and enpt y is de-asserted indicating that data is available to be read.
Asserting r den effectively acknowledges the output data currently on the dout pins, allowing the FIFO to
move to the next data word if not empty. Each subsequent read operation updates the outputs with the
next stored data word if available (enpt y flag = 1' b0). First-word-fall-through mode has the effect of
making the FIFO one element deeper.

Achronix Proprietary and Confidential 372

Speedcore Component Library User Guide (UG065)

Timing Diagrams

The following diagram shows the operation of the FIFO in asynchronous mode when the FIFO is empty, and the
aenpty_of f set parameter is 3. This diagram assumes that all signals not shown, such as r dr st and wr r st ,
are de-asserted.

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

S apSpipipipipipipipipinipipinipSpin
- |

23 £ €2) 0 K8 |
nipigipipipSniginipinEnSninininEnEnE

| | | |
| | | |
rdrst ! ! ! !

din

=

rden

\ / \
. / \

empty

\ i

—
—Z

=0

{ almost_empty /

dout K ‘h00 srval ‘hi1 ‘h22 ‘h33 srval

fwft

1

fwft

almost_empty
dout X ‘h00 X ‘h1l srval ‘h22 ‘h33 ‘h44 srval
1 |

6586706:01.2022.15.11

Figure 127: Asynchronous Mode Empty FIFO Timing Diagram

Achronix Proprietary and Confidential 373

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding digram are described in the following table.

Table 254: Asynchronous Mode Empty FIFO Timing Diagram Events

Event Description

The wr en signal is asserted synchronous to wr ¢l k, writing seven data words to the FIFO.

® Two or three clock cycles after the first write, enpt y is de-asserted synchronous to rdcl k. Iffwft =
1' b1, the first data word is presented on dout when enpty is de-asserted.
® After the fifth write, the FIFO has four words (since the first word has already been read). The amount

of words is greater than the aempty_offset value of 3, so almost_empty is asserted two or three clock
cycles later, synchronous to r dcl k.

The r den signal is asserted indicating that a read from the FIFO is desired. Since the enpt y output
2 remains asserted, the read fails, and r d_err is asserted on the following clock cycle. The data on dout
does not change.

The r den signal is also asserted, reading the first data word from the FIFO.

3 * [ffwft =1' b0, the data arrives on dout on the following clock cycle.
* [ffwft =1'bl, the first data word on dout is replaced by the second data word.

The r den signal is not asserted in this cycle. Nothing is read from the FIFO. Asserting out r egce when

4 r den is de-asserted has no effect.
6 The r st r eg signal is asserted, resetting the value of the output register to that provided by the reg_sr val
parameter. The effect of r st r eg is not dependent on the f wf t parameter.
7-8 No control signals are asserted.
The r den signal is asserted, reading the second data word from the FIFO.
9 * [ffwft =1' b0, the data arrives on dout on the following cycle.
* |ffwft =1' bl, the previous data word on dout is replaced by the next data word.
The r den signal is asserted, reading the third data word from the FIFO.
10 * |ffwft =1' b0, the data arrives on dout on the following cycle.
* |ffwft =1' bl, the previous data word on dout is replaced by the next data word, leaving only four
more words in the FIFO. al nost _enpt y is de-asserted.
The r den signal is asserted, reading the fourth data word from the FIFO.
11 * |ffwft =1' b0, the data arrives on dout on the following cycle, leaving only four more words in the

FIFO. al nost _enpt y is de-asserted.
* |ffwft =1' bl, the previous data word on dout is replaced by the next data word.

The r den signal is asserted, reading the fifth data word from the FIFO. The out r egce signal is de-
12 asserted, causing the output register to hold the previous value instead of providing the data just read. Even
though the data is not presented on dout , it has been read from the FIFO and cannot be read again.

Achronix Proprietary and Confidential 374

Speedcore Component Library User Guide (UG065)

Event

Description

13

The r den signal is asserted, reading the sixth data word from the FIFO. asserting r st r eg causes the
output register to receive the value provided in the r eg_srval parameter. Even though the data is not
presented on dout , it has been read from the FIFO and cannot be read again.

14

The r den signal is asserted, reading the seventh and last data word from the FIFO. The out r egce and

r st r eg signals are both asserted. asserting r st r eg causes the output register to receive the value
provided in the r eg_srval parameter, regardless of the out r egce value. Since the FIFO is empty, the
enpt y signal is asserted on the next r dcl k cycle. Even though the data was not presented on dout , it has
been read from the FIFO, and it can not be read again.

15

The r den signal is asserted even though the FIFO is empty. The r d_er r or signal is asserted on the
following clock edge, and the FIFO contents are unchanged.

Achronix Proprietary and Confidential 375

Speedcore Component Library User Guide (UG065)

The following diagram shows the operation of the FIFO in asynchronous mode, starting when there are five
locations remaining in the FIFO where the af ul | _of f set parameter is 3. This diagram assumes that all signals

not shown, such as r dr st and wr r st , are de-asserted, and the en_out _r eg parameteris 1' b1l.

wrelk

wren

din

full
almost_full
write_error
rdclk

rden

{ dout
{ dout

fwft=0

fwft=1

3 4 5 6 7 8 9 10 1

EREREEEpEEEEEEERERENEN

12 13 14 15

\ /

\

L L

16 17 18

fd X ‘h3fe X ‘h3ff X ‘hee0 X X ‘heel X‘h400 X

\

-

-

‘h00 ‘h01

‘h04

‘h05

Figure 128: Asynchronous Mode Full FIFO Timing Diagram

6586706-04.2022.11.22

Achronix Proprietary and Confidential

376

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding diagram are described in the following table.

Table 255: Asynchronous Mode Full FIFO Timing Diagram Events

Event Description
The wr en signal is asserted, writing five data words to the FIFO.
® After the second write, the FIFO has only three locations free, so al nost _f ul | is asserted on the
1-5 next clock cycle.
® After the fifth write, the last FIFO element has been used, and f ul | is asserted on the following
clock cycle.

6 The wr en signal is asserted. Since the FIFO is already full, the write operation does not take place, and
write_error is asserted on the following clock cycle.

7-8 No operation.

The r den signal is asserted, and the next output data is read from the FIFO and presented on dout . Two
or three cycles later, f ul | is de-asserted synchronously to wr cl k.

9 * |ffwft =1' b0, the first data arrives on dout on the following cycle.

* |[ffwft =1'bl, the first data word remains present on the output since it was first written. This data
word is replaced by the next data word being read from the FIFO.

10 The r den signal is asserted, and the next output data is read from the FIFO and presented on dout .

The r den signal is asserted synchronously to r dcl k and wr en is asserted synchronously to wr cl k,

11 meaning that the both a read and write operation is desired. Since f ul | is asserted, the write fails, and
write_error is asserted on the following wr cl k cycle. The read is successful, and the output data is
updated on the following r dcl k cycle.

The r den signal is asserted synchronously to r dcl k and wr en is asserted synchronously to wr cl k. The

12 input word is written to the FIFO while the next output word is read from the FIFO and presented on dout .
Since f ul | is not asserted, both operations are successful. Now there are more than three unused
locations in the FIFO, so al nost _f ul | is de-asserted two or three cycles later, synchronously to wr cl k.

13 The r den signal is asserted, and the next output data is read from the FIFO and presented on dout .

Achronix Proprietary and Confidential 377

Speedcore Component Library User Guide (UG065)

Mixed-Width Modes

The BRAMFIFO allows the read port width to be different than the write port width. The port widths affect how the
signals enpt y, al nost _enpty, al nost_full,and ful | are asserted. The signals enpt y and

al nost _enpty are relative to the read data width and are only de-asserted when one or more aenpt y_of f set
read operations can be performed at the read data width. Similarly, the f ul | and al nost _f ul | signals are
relative to the write data width and are only de-asserted when one or more af ul | _of f set write operations can
be performed at the write data width.

To illustrate, the following diagram shows the operation of the FIFO in synchronous mode, starting when the
FIFO is empty, and the aenpt y_of f set parameter is 3. The write data width is 4 bits, and the read data width
is 8 bits. This diagram assumes that all signals not shown, such as r dr st and wr r st , are de-asserted, and the

en_out _reg parameteris 1' b0. If the en_out _r eg parameter had been setto 1' b1, dout would be delayed
by one cycle.

ipipipipipipipipipipipinipinipipiaininl

wren

din K ‘h0 K ‘hl K ‘h2 ‘h3 ‘h4 K ‘hs K ‘h6 ‘h7 ‘h8 ‘h9 ‘hA ‘hB ‘hC ‘hD ‘hE ‘hF

rden

empty

almost_empty

rd_err

dout ‘hIOX ‘h32 ‘h54K ‘h76 ‘h78 ‘hBA (‘hDC ‘hFE
1 1

] ! ! ! ! ' ! ! ! ! ! ! ! ! ' ! !

6586706-05.2022.1511

Figure 129: Synchronous Mode Mixed-Width FIFO Operation Timing Diagram

Achronix Proprietary and Confidential 378

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding diagram are described in the following table.

Table 256: Synchronous Mode Mixed-Width FIFO Operation Timing Diagram Events

Event Description

1-8 The wr en signal is asserted, writing a total of eight 4-bit words to the FIFO.

The enpt y signal is de-asserted after two 4-bit writes have been completed, providing enough data for a

3 single 8-bit read.

9 The al nost _enpt y signal is de-asserted after eight 4-bit writes to the FIFO since there are now four 8-bit
words available to the read side of the FIFO, which is larger than the aenpt y_of f set value of 3.

9-17 The r den signal is asserted, causing the data to be read from the FIFO in 8-bit words. Each read returns
data that was written in two write operations.

10 The al nost _enpt y signal is asserted again since there are no longer four 8-bit words available to be read

from the FIFO.

10-17 | The wr en signal is asserted, writing a total of eight 4-bit words to the FIFO.

The enpt y signal is asserted since at this time the FIFO contains only 4 bits of data, and there is no longer

16 enough data for a complete 8-bit read operation.
17 The rd_err signal is asserted as a result of r den assertion while empty on the previous clock cycle.
18 The enpt y signal is asserted as a result of the last data word being read from the FIFO.

Achronix Proprietary and Confidential 379

Speedcore Component Library User Guide (UG065)

FIFO Resets

Several FIFO reset options are available. The basic option allows the FIFO to be reset without the need to
synchronize the reset signals externally. The reset synchronization performed within the component requires two
clock cycles. A lower-latency reset can be achieved using one of the following advanced reset modes.

For the basic FIFO reset, do the following:

1. Setboththe wrst input_node andrdrst _input_ node parameters to 2' b11, the default setting.
2. Connect the user reset signal to both the wr r st and r dr st input pins.

3. Toreset the FIFO, assert the reset signal for a minimum of three cycles of the slower of wr ¢l k and r dcl k
which performs the following:

® Resets the internal write and read pointers
® Sets the enpty and al nost _enpt y flags
® Clearstheful |l andal nost _full flags

4. Do not attempt to read or write the FIFO while the reset is asserted or before three cycles after the de-
assertion of the reset signal

For basic FIFO operation, the parameters associated with reset should remain at their default settings as shown
in the Reset Parameter Mapping (see page 382) table.

Advanced FIFO Reset Modes

The BRAMFIFO provides several reset options from either the read or write clock domains. The reset may be
either sychronous with respect to the read and/or write clock domains or the internal reset synchronization logic
may be enabled to synchronize the reset inputs. The capability for synchronous resets is provided to allow the
fastest response between the reset assertion and when the FIFO is ready to be written. Internal to the FPGA, the
read and write pointers have synchronous reset inputs. The BRAMFIFO macro provides the necessary logic to
perform the synchronization of pointer resets without requiring the implementation of synchronization logic
external to the FIFO.

The write pointer reset logic is configured via the wr r st _i nput _node parameter while reset logic for the read
pointer is configured via the r dr st _i nput _nbde parameter. The reset operation of the read and write pointers
is configured independently so that in addition to optionally synchronizing the reset inputs, each side of the FIFO
can be configured to respond to one or both of the wr r st or r dr st input signals.

Achronix Proprietary and Confidential 380

Speedcore Component Library User Guide (UG065)

It is important to ensure that the resets are synchronized to the proper clock domain. If the read or write pointer
synchronizers are bypassed, synchronization of r dr st and wr r st must be performed external to the FIFO. The
following figure shows the block diagram of the FIFO reset selection logic, with a table that describes the
behavior of each mode. The logic to configure the read and write pointer resets is identical.

wrrst_input_mode

00
01 Write

— Pointer
11

-~

wrrst

Write Reset Synchronizer

rdclk

rdrst

00
01 Read

f ; — Pointer
10 Reset
/1]1/

rdrst_input_mode

Read Reset Synchronizer

wrcelk

5374063-13.2022.11.15

Figure 130: Read and Write Pointer Reset Input Selection Block Diagram

Achronix Proprietary and Confidential 381

Speedcore Component Library User Guide (UG065)

Table 257: wrrst_input_mode (rdrst_input_mode) Parameter Mapping

wrrst_input_mode Write-side (Read-side) Reset

(rdrst_input_mode) Selected Input

2" boO wr r st (rdrst)resets the write (read) interface logic. The wr r st (r dr st) signal must be
synchronized to the wr cl k (r dcl k) clock external to the FIFO.

2 bol rdrst (wrst)resets the write (read) interface logic. The r dr st (wr r st) signal must be

synchronized to the wr cl k (r dcl k) clock external to the FIFO.

wrrst (rdrst)is ORed with the internally synchronized r dr st (wr r st) input to reset the
2' b10 write (read) interface logic. wr r st and r dr st must be synchronous to wr cl k and r dcl k,
respectively.

rdrst (wrrst)isinternally synchronized and is then used to reset the write (read) interface

2' bl1 .
logic.

Table Notes

1. For a synchronous (single clock) FIFO, the lowest reset latency is achieved by selecting reset input mode
2' b0O0 on both interfaces and connecting the same reset wire to both the wrrst and rdrst inputs.

2. For an asynchronous FIFO, the lowest reset latency is achieved by using a reset input that is
synchronous to wr ¢l k. The write pointer should be configured with a synchronous reset (
wrrst_input_node = 2' b00), and the read pointer should be configured to synchronize the wr r st
input (rdr st _sync_node = 2' b11). The user reset signal should be connected to wr r st , and r dr st
should be de-asserted.

3. When resetting the FIFO, the reset input(s) should be held asserted for at least three clock cycles of the
slowest clock domain.

Achronix Proprietary and Confidential 382

Speedcore Component Library User Guide (UG065)

The following table describes some example reset mode use cases.

Table 258: Reset Usage Model for wrrst and rdrst Inputs

wrrst_input_mode

rdrst_input_mode

Description

2' b1l

2' b0O

For an asynchronous FIFO, a single reset in the r dcl k domain resets
both read and write pointers, with the FIFO synchronizing the write
pointer logic. The user reset should be connected to the r dr st input.
The wr r st signal should be de-asserted.

2' b0O

2' b1l

For an asynchronous FIFO, a single reset in the wr cl k domain resets
both read and write pointers, with the FIFO synchronizing the read
pointer logic. The user reset should be connected to the wr r st input.
The r dr st signal should be de-asserted.

2' b1l

2' bl1

For an asynchronous FIFO, a single asynchronous reset resets both
the read and write pointers. The user reset should be connected to
both the wr r st and r dr st inputs.

2' b10

2' b10

For an asynchronous FIFO, wr r st or r dr st resets both the read and
write pointers. Each reset input must be synchronous to its own clock
domain, and is synchronized by the FIFO for the other clock domain.

2' b0O

2' b0O

For a synchronous FIFO, wr r st resets the write pointer, and r dr st
resets the read pointer. Both reset inputs must be synchronized
externally to the FIFO single clock domain.

Error Detection and Correction

There are four modes of operation for the BRAMFIFO defined by the encoder _enabl e and decoder _enabl e
parameters described in the following table. The ECC encoder and decoder can only be used if both the read
width and the write width are 40.

Table 259: BRAMFIFO ECC Modes of Operation

encoder_enable | decoder_enable BRAMECC Operation Mode

1' b0 1' b0 ECC mode disabled, standard BRAMSDP operation is available.
1' b0 1'bl ECC decode-only mode.

1' bl 1' b0 ECC encode-only mode.

1' bl 1' bl Normal ECC encode/decode mode

Achronix Proprietary and Confidential

383

Speedcore Component Library User Guide (UG065)

ECC Encode/Decode Mode

The ECC encode/decode mode uses both the ECC encoder and the ECC decoder. 32-bit user data is written
into the memory via the di n[31: 0] inputs. The ECC encoder generates the 7-bit error correction syndrome and
writes it into the memory alongside the data word, using the parity (di np) and extended parity (di npx) bit
positions. During read operations, the ECC decoder reads the 32-bit user data and the 7-bit syndrome to
generate an error correction mask.

The ECC decoder corrects any single-bit error and detects, but does not correct, any dual-bit error. If the ECC
decoder detects a single-bit error, it automatically corrects the error, places the corrected data on the dout [31:
0] pins, and asserts the shi t _error flag. The memory location containing the error is not corrected. If the ECC
decoder detects a dual-bit error, it places the uncorrected data on the dout [31: 0] pins and asserts the

dbi t _error flag one cycle after the the data word is read.

ECC Encode-Only Mode

In the ECC encode-only mode, the ECC encoder is enabled and the ECC decoder is disabled. This mode allows
writing the user 32-bit data while the 7-bit error correction syndrome is calculated by the FIFO. The syndrome is
presented on dout px[2: 0] and dout p[3: 0] . Read operations allow the 32-bit user data and the error
syndrome to be read directly out of the memory without correcting the data. The encode-only mode can be used
as a building block to provide error correction for off-chip memories.

ECC Decode-Only Mode

In the ECC decode-only mode, the ECC encoder is disabled and the ECC decoder enabled. This mode
bypasses the ECC encoder and allows writing 40-bit data directly into the FIFO during write operations. Read
operations use the memory dout p[3: 0] and dout px[2: 0] locations as a 7-bit syndrome for error correction.
The ECC decoder corrects any single-bit error and detects, but does not correct, any dual-bit error.

If the ECC decoder detects a single-bit error, it automatically corrects the error and places the corrected data on
the dout [31: 0] pins as well as asserts the shit _error flag. The memory location containing the error is not
corrected. If the ECC decoder detects a dual-bit error, it places the uncorrected data on the dout [31: 0] pins
and assert the dbi t _err or flag one clock cycle after the the data word is read. The decode-only mode can be
used as a building block to provide error correction for off-chip memories.

Achronix Proprietary and Confidential 384

Speedcore Component Library User Guide (UG065)

Instantiation Template
Verilog

BRAMFI FO #(

.sync_node(1' b0),

.read_wi dt h(40),

.write_w dth(40),

fwft (1" bO),

.en_out _reg(1l' b0),
.reg_initval (40' h0),
.reg_srval (40' h0),
.reg_rstval (1'bl),
.wrrst_input_nmode(2' b1l),
.rdrst_i nput _node(2' b1l),
.wrrst_rstval (1'bl),
.rdrst_rstval (1'bl),

.afull _of fset (15 h4),
.aenpty_of fset (15" h4),
.wren_polarity_sel (1'bl),
.rden_polarity_sel (1'bl),

. encoder _enabl e(1' b0),

. decoder _enabl e(1' b0)

) instance_nane (

.wrcl k(user _wrcl k),
.wrrst(user_wrst),
.wren(user_wren),

.din(user _din),

. di np(user_di np),

. di npx(user _di npx),

full (user_full),

.alnmost _full (user_almost_full),
.write_err(user_wite_err),
.rdcl k(user _rdcl k),
.rdrst(user_rdrst),
.rden(user_rden),
.rstreg(user_rstreg),
.outregce(user_outregce),

. dout (user _dout),

. dout p(user _dout p),

. dout px(user _dout px),
.enpty(user_enpty),

. al nost _enpty(user_al nost _enpty),
.read_err(user_read_err),
.sbhit_error(user_sbhit_error),
.dbit_error(user_dbit_error)

)

Achronix Proprietary and Confidential

385

Speedcore Component Library User Guide (UG065)

------------- ACHRONI X LI BRARY ------------
library speedster7t;
use speedster7t.core.all;
------------- DONE ACHRONI X LI BRARY ---------
-- Conponent Instantiation
i nstance_nanme : BRAMFI FO
generic map (
sync_node => 0,
read_ width => 40,
wite width => 40,

fwit => 0,
en_out_reg => 0,
reg_initval => 0,
reg_srval => 0,
reg_rstval => 1,

wrrst_input_npde => 11,
rdrst_i nput_node => 11,
wrst_rstval => 1,
rdrst_rstval => 1,

aful | _offset => 4,
aenpty_offset => 4,
wren_polarity_select => 1,
rden_pol arity_select => 1,
encoder _enable => 0,

decoder _enable => 0)

port map (

wrcl k => user_wrcl k,

wrst => user_wrrst,

wen => user_wren,

din => user_din,

di np => user_di np,

di npx => user _di npx,

full => user_full,

al nost _full => user_alnost_full,
wite err => user_wite_ err,
rdcl k => user_rdcl k,

rdrst => user_rdrst,

rden => user_rden,

rstreg => user_rstreg,
outregce => user_outregce,
dout => user_dout,

dout p => user_dout p,

dout px => user _dout px,

enpty => user_enpty,

al nost _enpty => user_al npost_enpty,
read_err => user_read_err,
shit_error => user_shit_error,
dbit_error => user_dbit_error

)

Achronix Proprietary and Confidential

386

Speedcore Component Library User Guide (UG065)

ACX_BRAM72K_SDP (72-kb Simple Dual-Port Memory with
Error Correction)

wrclk

wren
we[17:0]
wraddr[13:0]
wrmsel

din[143:0]

ACX_BRAM72K_SDP

rdclk
rdaddr[13:0]
rdmsel
outlatch_rstn shit_error[1:0]
dbit_error[1:0]

dout[143:0]

outreg_rstn

outreg_ce

43550680-01.2023.03.16

Figure 131: ACX_BRAM?72K_SDP Logic Symbol

The ACX_BRAM72K_SDP block RAM primitive implements a 72-Kb simple dual-port (SDP) memory block with
one write port and one read port. Each port can be independently configured with respect to bit-width. Both ports
can be configured as any one of 512 x 144, 512 x 128, 1024 x 72, 1024 x 64, 2048 x 36, 2048 x 32, 4096 x 18,
4096 x 16, 8192 x 9, 8192 x 8, or 16384 x 4, (depth x data width). The read and write operations are both
synchronous.

For higher performance operation, an additional output register can be enabled at the cost of an additional cycle
of read latency.

When writing, there is one write enable bit (we[]) for each 8 or 9 bits of input data, depending on the byte_width
parameter.

The initial value of the memory contents may be user-specified from either parameters or a memory initialization
file.

Achronix Proprietary and Confidential 387

Speedcore Component Library User Guide (UG065)

The following block diagram shows the data flow through the ECC modules, memories, and optional output

registers.

wrelk

din[143:0]

wren
wel[17:0]
wraddr[13:0]
wrmsel

rdmsel

rdelk

rden

rdaddr[13:0]

Memory Array

outlatch_rstn
outreg_rstn

outreg_ce

dout[143:0]

sbit_error[1:0]

Control

TR

dbit_error[1:0]

Figure 132: ACX_BRAM72K_SDP Block Diagram

Y Yy

43550680-02.2022.12.18

Achronix Proprietary and Confidential

388

Speedcore Component Library User Guide (UG065)

Parameters

Table 260: ACX_BRAM72K_SDP Parameters

Parameter

Supported Values

Default
Value

Description

read_wi dt h(")

4,8,9,16, 18, 32,
36, 64,72, 128, 144

72

Data width of read port. Read port widths of 36 or narrower are not supported for
write_w dt h settings of 72 or 144.

wite width®

4,8,9, 16,18, 32,
36, 64,72, 128, 144

72

Data width of write port.

rdcl k_pol arity

"rise", "fall"

"rise

Determines whether the r dcl k signal uses the falling or rising edge:
"rise" — rising edge.
"fall" — falling edge.

wclk_polarity

"rise", "fall"

"rise

Determines whether the wr cl k signal uses the falling or rising edge:
"rise" — rising edge.
"fall" — falling edge.

outreg_enabl e

0,1

Determines whether the output register is enabled:

0 — disables the output register and results in a read latency of one cycle.
1 — enables the output register and results in a read latency of two cycles.

outreg_sr_assertion

"clocked",
"unclocked"

"clocked"

Determines whether the assertion of the output register reset is synchronous or
asynchronous with respect to the r dcl k input.

"clocked" — synchronous reset. The output register is reset upon the next rising edge of the
clock when out r eg_r st n is asserted.

"unclocked" — asynchronous reset. The output register is reset immediately following the
assertion of the out r eg_r st n input.

byt e_wi dt h(®

8,9

Determines whether the the we[] signal applies as 8-bit bytes or 9-bit bytes:

® The byt e_wi dt h=8 setting is required for r ead_wi dt h and wri t e_wi dt h settings
of 4, 8, 16, 32, 64 or 128. The 144-bit di n[] signal should be viewed as eighteen 8-
bit bytes. During a write operation, we[17: 0] selects which of the 8-bit bytes to be
written, where we[O] implies that di n[7: 0] is written to memory, and we[17]
implies that di n[143: 136] is written.

® The byt e_wi dt h=9 setting is required for r ead_wi dt h and wri t e_w dt h settings
of 9, 18 or 36. The 144-bit di n[] signal should be viewed as sixteen 9-bit bytes.
During a write operation, we[7: 0] selects which of the lower 9-bit bytes to be written
and we[16: 9] selects which of the higher 9-bit bytes to be written, where we[0]
implies that di n[8: 0] is written to memory, and we[16] implies that
di n[143: 135] is written. In this mode, we[8] and we[17] are ignored.

meminit_file

Path to HEX file

Provides a mechanism to set the initial contents of the ACX_BRAM72K_SDP memory:

® |fthe mem. i ni t _fi | e parameter is defined, the BRAM is initialized with the values
defined in the file pointed to by the nem_i ni t _fi | e parameter according to the
format defined in Memory Initialization (see page 399).

® [fthemem.init_fil e is left at the default value of ", the initial contents are defined
by the values of the i ni t d_0 through i ni t d_1023 parameters.

® |f the memory initialization parameters and the mem_i ni t _f i | e parameters are not
defined, the contents of the BRAM remain uninitialized.

initd_0-initd_1023

72 bit hex number

72' hX

The i ni td_0 throughi ni t d_1023 parameters define the initial contents of the memory
associated with dout [71: 0] as defined in Memory Initialization (see page 399).

ecc_encoder _enabl e

0,1

Determines if the ECC encoder circuitry is enabled. A value of 1 is only supported for a write
width of 64 or 128:

0 — disables the ECC encoder.

1 — enables the ECC encoder such that di n[71: 64] and di n[143: 136] are ignored and
bits [71:64] and [143:136] of the memory array are populated with ECC bits.

Achronix Proprietary and Confidential

389

Speedcore Component Library User Guide (UG065)

Default

Parameter Supported Values Value

Description

Determines if the ECC decoder circuitry is enabled. A value of 1 is only supported for a read
width of 64 or 128:

0 — disables the ECC decoder.

1 — enables the ECC decoder.

ecc_decoder _enabl e 0,1 0

Enable read port to be remapped:

0 - disable remap. In byt e_npde=8, the port presents up to 1024 locations.

1 - enable remap. With read_wi dt h=4, 8, 16, 32 or 64, whenrdnsel =1' bl and
rdaddr [11] =1' b0, the port presents up to 1152 locations, reading the higher order data
bits as extended memory address locations.

Refer to Advanced Modes (see page 405) for full details.

read_r emap 0,1 0

Enable write port to be remapped:

0 - disable remap. In byt e_node=8, the port presents up to 1024 locations.

1 - enable remap. Withw i te_wi dt h=4, 8, 16, 32 or 64, whenw nsel =1' b1l and
wr addr [11] =1' b0, the port presents up to 1152 locations, writing the extended memory
address locations to the higher order data bits.

Refer to Advanced Modes (see page 405) for full details.

wite_remap 0,1 0

Table Notes

1. Settingread_wi dt h orwrite_w dt hto 128 or 144 consumes the adjacent MLP site by using it as a route-through to accommodate the transfer
of wide data.

2. Write and read port widths of 72 or 144 are allowed to use either byt e_wi dt h 8 or 9.

Achronix Proprietary and Confidential 390

Speedcore Component Library User Guide (UG065)

Ports

Table 261: ACX_BRAM72K_SDP Pin Descriptions

Name

Direction

Description

wr cl k

Input

Write clock input. Write operations are fully synchronous and occur upon the active edge of the
wr ¢l k clock input when wr en is asserted. The active edge of wr cl k is determined by the
wr cl k_pol ari ty parameter.

wren

Input

Write port enable. Assert wr en high to perform a write operation.

we[17: 0]

Input

Write enable mask. There is one bit of we[] for each byte of di n (byte width can be set to either 8 or
9 bits). Asserting each we[] bit causes the corresponding byte of di n to be written to memory.
When using 72-bit width or smaller, only the lower 9 bits must be connected.

wr addr [13: 0]

Input

The wr addr signal determines which memory location is being written to. See the following write
port address and data bus mapping tables for details.

wr nsel

Input

Write support for advanced modes. Used in conjunction with wr addr [11] to set the following
modes, {wr nsel , w addr [11] }:

1' b0, 1' bx — normal mode. BRAM write-side operation.

1' b1, 1' bO — remap depth mode. 9-bit bytes remapped to 8-bit bytes.

1' b1, 1' bl —reserved.

Refer to Advanced Modes (see page 405) for full details of the operation.

di n[143: 0]

Input

The di n signal determines the data to write to the memory array during a write operation. See the
following write port address and data bus mapping tables for details.

rdcl k

Input

Read clock input. Read operations are fully synchronous and occur upon the active edge of the
rdcl k input when the r den signal is asserted. The active edge of r dcl k is determined by the
rdcl k_pol ari ty parameter.

rden

Input

Read port enable. Assert r den high to perform a read operation.

rdaddr[13: 0]

Input

The r daddr signal determines which memory location to read from. See the following read port
address and data bus mapping tables for details.

rdnsel

Input

Read support for advanced modes. Used in conjunction with r daddr [11] to set the following
modes, {r dnsel , rdaddr [11] }:

1' b0, 1' bx — normal mode. BRAM read-side operation.

1' b1, 1' bO — remap mode. 9-bit bytes remapped to 8-bit bytes.

1' b1, 1" bl - reserved.

Refer to Advanced Modes (see page 405) for full details of the operation.

outlatch_rstn

Input

Output latch synchronous reset. When out | at ch_r st n is asserted low, the value of the output
latches are reset to 0.

outreg_rstn

Input

Output register synchronous reset. When out r eg_r st n is asserted low, the value of the output
registers are reset to 0.

outreg_ce

Input

Output register clock enable (active high). When out r eg_enabl e=1, de-asserting out r eg_ce
causes the BRAM to keep the dout signal unchanged, independent of a read operation. When
out reg_enabl e=0, out r eg_ce input is ignored.

dout [143: 0]

Output

Read port data output. For read operations, the dout output is updated with the memory contents
addressed by r daddr if the r den port enable is active. See the following read port address and data
bus mapping tables for details.

Achronix Proprietary and Confidential 391

Speedcore Component Library User Guide (UG065)

Name

Direction

Description

shit_error[1:01 ("M

Output

Single-bit error (active high). The sbi t _err or signal is asserted during a read operation when
ecc_decoder _enabl e=1 and a single-bit error is detected. In this case, the corrected word is
output on the dout pins. The memory contents are not corrected by the error correction circuitry. The
sbhit _error signal is aligned with the associated read data word. When using 64-bit width, only
shit_error[0] should be used. shit_error[1] isunused.

dbit_error[1:0] M

Output

Dual-bit error (active high). The dbi t _err or signal is asserted during a read operation when
ecc_decoder _enabl e=1 and two or more bit errors are detected. In the case of two or more bit
errors, the uncorrected read data word is output on the dout pins. The dbi t _err or signal is
aligned with the associated read data word. When using 64-bit width, only dbi t _error[0] should
be used.

dbi t_error[1] is unused.

Table Notes

1. ECC modes are only applicable with read and write widths of 64 and 128 bits. In these modes, bits [71:64] and [143:136] of the
memory array are used to store the ECC parity bits. If ECC is enabled with other r ead_wi dt h settings, the respective data
input and output on these memory array bits are ignored. Refer to ECC Modes of Operation (see page 401) for full details of
ECC operation and configuration.

Achronix Proprietary and Confidential 392

Speedcore Component Library User Guide (UG065)

Memory Organization and Data Input/Output Pin Assignments

Supported Width Combinations

The ACX_BRAM72K_SDP block supports a variety of memory width combinations, as shown in the following
table.

Table 262: ACX_BRAM72K_SDP Supported Data Widths

Write Data Width

Read Data
Width

144 v
72 v

36

144 72 36 18 9 128 64 32 (16 | 8 | 4

v (W)
v ()

N

AN

18

NIENEENIENEEN
ENEENHENE AN

128

64 NG R A OB R A OB R (O OB R A (510

32

16

NIENEN RN ENIEN
SNENENENENR
NNNENRNR
NNNENNR
NNENENRNR

Table Notes
1. Requires remap mode:
(w)—write_ remap=1'bl.
(r)—read_remap=1' bl.

Achronix Proprietary and Confidential 393

Speedcore Component Library User Guide (UG065)

Write Data Port Usage

Table 263: ACX_BRAM72K_SDP Write Port Address and Data Bus Mapping

Write Port Configuration Data Input Assignment Write Word Address Assignment
. . _ . . wraddr [13: 5] <= user_wr addr [8: 0]

144 x 512 din[143: 0] <= user_din[143: 0] wraddr[4: 0] <= 5' b
din[143: 136] <= 8' b0

128 x 512 din[135: 72] <= user_di n[127: 64] wraddr [13: 5] <= user_wr addr[8: 0]
din[71:64] <= 8' b0 wraddr[4:0] <= 5'b0
din[63: 0] <= user_din[63:0]

72 x 1024 din[143:72] <= 72' b0 wraddr [13: 4] <= user_wraddr[9: 0]
din[71: 0] <= user_din[71: 0] wraddr[3:0] <= 4'b0

64 x 1024 di n[143: 64] <= 80' b0 wraddr [13: 4] <= user_wr addr[9: 0]
din[63: 0] <= user_din[63:0] wraddr[3: 0] <= 4'b0

36 x 2048 din[143: 36] <= 108' b0 wraddr [13: 3] <= user_wraddr[10: 0]
di n[35: 0] <= user_din[35: 0] wraddr[2:0] <= 3'b0

32 x 2048 din[143:32] <= 112' b0 wraddr [13: 3] <= user_wr addr[10: 0]
din[31: 0] <= user_din[31:0] wraddr[2: 0] <= 3'b0

18 x 4096 din[143: 18] <= 126' b0 wraddr [13: 2] <= user_wraddr[11: 0]
din[17: 0] <= user_din[17:0] wraddr[1: 0] <= 2'b0

16 x 4096 din[143:16] <= 128' b0 wraddr [13: 2] <= user_wraddr[11: 0]
di n[15: 0] <= user _di n[15: 0] wraddr[1:0] <= 2'b0

9 x 8192 din[143: 9] <= 135' b0 wraddr [13: 1] <= user_w addr[12: 0]
din[8:0] <= user_din[8:0] raddr[0] <= 1'b0

8 x 8192 din[143: 8] <= 136' b0 wraddr [13: 1] <= user_wraddr[12: 0]
din[7:0] <= user_din[7:0] wraddr[0] <= 1'bO
din[143: 4] <= 140' b0 . _ .

4 x 16384 din[3:0] <= user_din[3:0] wraddr [13: 0] <= user_wraddr[13: 0]

Achronix Proprietary and Confidential

394

Speedcore Component Library User Guide (UG065)

Table 264: ACX_BRAM72K_SDP Read Port Address and Data Bus Mapping

Read Port Configuration Data Output Assignment Read Word Address Assignment
. _ . rdaddr[13: 5] <= user_rdaddr[8:0]
144 x 512 user _dout [143: 0] <= dout [143: 0] rdaddr[4:0] <= 5' b0
128 x 512 user _dout[127: 64] <= dout[135:72] rdaddr[13: 5] <= user_rdaddr[8:0]
user _dout [63: 0] <= dout[63:0] rdaddr[4: 0] <= 5'b0
. _ . rdaddr[13: 4] <= user_rdaddr[9:0]
72 x 1024 user_dout [72: 0] <= dout[72:0] rdaddr[3:0] <= 4' bo
. _ . rdaddr[13: 4] <= user_rdaddr[9:0]
64 x 1024 user _dout [63: 0] <= dout [63: 0] rdaddr[3:0] <= 4' b0
rdaddr[13: 3] <= user_rdaddr[10: 0]
1 : = : -
36 x 2048 (1) user_dout [35: 0] <= dout[35: 0] rdaddr[2:0] <= 3' b0
1 . _ . rdaddr[13: 3] <= user_rdaddr[10: 0]
32 x 2048 (1) user _dout[31:0] <= dout[31:0] rdaddr[2:0] <= 3' b0
rdaddr[13: 2] <= user_rdaddr[11: 0]
1 . - . —
18 x 4096 (1) user _dout[17:0] <= dout[17:0] rdaddr[1:0] <= 2' bo
1 . _ . rdaddr[13: 2] <= user_rdaddr[11:0]
16 x 4096 (1) user _dout[15:0] <= dout[15:0] rdaddr[1:0] <= 2' bO
1 . _ . rdaddr[13: 1] <= user_rdaddr[12:0]
9x 8192 (1) user_dout[8: 0] <= dout[8:0] rdaddr[0] <= 1' b0
rdaddr[13: 1] <= user_rdaddr[12: 0]
1 . - . —
8 x 8192 (1) user _dout[7:0] <= dout[7:0] rdaddr[0] <= 1'bO
4 x 16384 (1) user_dout[3:0] <= dout[3:0] rdaddr[13: 0] <= user_rdaddr[13: 0]
Table Notes
1. Not supported for wri t e_wi dt h setting of 72 or 144 because r ead_wi dt h is 36 bits or less.

Achronix Proprietary and Confidential

395

Speedcore Component Library User Guide (UG065)

Read and Write Operations

Timing Options
The ACX_BRAM72K_SDP has two options for interface timing, controlled by the outreg_enable parameter:

® Latched mode — when out r eg_enabl e=0, the port is in latched mode. In latched mode, the read
address is registered and the stored data is latched into the output latches on the following clock cycle
providing a read operation with one cycle of latency.

® Registered mode — when out r eg_enabl e=1, the port is in registered mode. In registered mode, there is
an additional register after the latch to support higher-frequency designs providing a read operation with
two cycles of latency.

Read Operation

Read operations are signaled by driving the r daddr [] signal with the address to be read and asserting the r den
signal. The requested read data arrives on the dout [] signal on the following clock cycle or the cycle after
depending on the out r eg_enabl e parameter value.

Table 265: ACX_BRAM72K_SDP Latched Mode Output Function Table

Operation rdel k outlatch_rstn rden dout []
Reset latch 1 0 X 0
Hold 0 1 0 Hold previous value
Read 0 1 1 meni r daddr]
Table Notes
® Operation assumes rising-edge clock and active-high port enable, otherwise previous value is held.

Table 266: ACX_BRAM?72K_SDP Registered Mode Output Function Table

Operation rdcl k outreg_rstn out regce dout []
Reset Output 1 0 1 0
Hold i 1 0 Previous dout []
Update Output 1 1 1 Registered from latch output
Table Notes
® QOperation assumes active-high clock, output register clock enable, and output register reset, otherwise
previous dout [] is held.

Achronix Proprietary and Confidential 396

Speedcore Component Library User Guide (UG065)

Write Operation

Write operations are signaled by asserting the wr en signal. The value of the di n[] signal is stored in the
memory array at the address indicated by the wr addr [] signal on the next active clock edge.

Simultaneous Memory Operations

Memory operations may be performed simultaneously from both sides of the memory. However, there is a
restriction regarding memory collisions. A memory collision is defined as the condition where both ports access
the same memory location(s) within the same clock cycle (both ports connected to the same clock), or within a
fixed time window (if each port is connected to a different clock). If one of the ports is writing an address while the
other port is reading the same address (qualified with overlapping write enables per bit), the write operation takes
precedence, but the read data is invalid. The data may be reliably read on the next cycle if there is no longer a
write collision.

Achronix Proprietary and Confidential 397

Speedcore Component Library User Guide (UG065)

Timing Diagrams

The following timing diagram illustrates the behavior of a ACX_BRAM72K_SDP instance with the output register
both disabled and enabled via the out r eg_enabl e parameter.

wee L L L L L[L LI LI LI 1
wren ! \
we [ono Y g'h1fib \

waddr 7m0 Xt X_ w2 X W3 X777 /7777777777777
din 7__woa Xt X_woe X h0d X777 7777777777777,

o aere [L [L L L] L L [/7 7 LI I
% rden / \
5 rdaddr 7777272777777777777777777777777277777772% ™ X X 'n8 X77777777777777777777777
j'_,;’ outlatch_rstn \ / \ /
° dout 7777777777777 'h0 J__hoa Y ho X 'hoc
aere [L [L L L] L L [/7 7 LI I
- rden / \
2 rdaddr 7777272777777777777777777777777277777772% ™ X X 'n8 X77777777777777777777777
gl outlatch_rstn \ /
g outreg_rstn \ /
° outreg_ce /—\—/ \
dout 7777727777777/ 'h0 J__hoa X ho X 'hoc

Figure 133: ACX_BRAM72K_SDP Timing Diagram

Achronix Proprietary and Confidential 398

Speedcore Component Library User Guide (UG065)

The behavior of the ACX_BRAM72K_SDP on each clock cycle of the preceding diagram is described in the
following table.

Table 267: ACX_BRAM72K_SDP Timing Diagram Events

Event | Transaction Description

Write Clock

1 No-Op wr en is asserted but we is not asserted. Nothing is written to the memory array.

2-4 Write wr en and we are both asserted. Data on di n[] is committed to the wr addr [] location.

Read clock
out | at ch_r st n is asserted, causing the output of the latch to be set to 0.

Read out reg_enabl e = 0 —the data is reset to zero on the following cycle.
4 out reg_enabl e = 1 — the output of the latch is reset to zero on the following cycle. The
Reset latch el .
value is visible at the output of the memory on the second cycle because out r eg_ce is
asserted.
r den is asserted. The memory is read from the memory array.
out reg_enabl e = 0 - the value is output on the following cycle.

6 Read . .
outreg_enabl e = 1 —the value is output two cycles later, because out r eg_ce is
asserted on the next cycle.

. r den is asserted. The memory is read from the memory array.
Read with _ . . .
. outreg_enable = 0—dout[] issetto 0since outl at ch_r st n is asserted.

7 latch/register _ . - .

reset outreg_enable = 1 —dout[] is setto 0 after two cycles since outreg_rstnis
asserted on the following cycle.
r den is asserted. The memory is read from the memory array.
out reg_enabl e = 0 - the value is output on the following cycle.

8 Read . .
outreg_enabl e = 1 - the value is output two cycles later, because outreg_ce is
asserted on the next cycle.

r den is asserted. The memory is read from the memory array and presented on dout [] on

7-8 Read .
the following cycle.

8-9 Hold rden and out | at ch_r st n are both de-asserted. dout [] retains its previous value.

Memory Initialization

Initializing with Parameters

The data portion of initial memory contents may be defined by setting the 1024 72-bit parameters i nitd_0
through i ni t d_1023. The data memory is organized as little-endian with bit zero mapped to bit zero of
parameter i ni t d_0 and bit 73727 mapped to bit 71 of parameter i ni t d_1023.

Achronix Proprietary and Confidential 399

Speedcore Component Library User Guide (UG065)

Initializing with Memory Initialization File

A ACX_BRAM72K_SDP may alternatively be initialized with a memory file by settingthe nem init _file
parameter to the path of a memory initialization file. The file format must be hexadecimal entries separated by
white space where the white space is defined by spaces or line separation. Each number is a hexadecimal

number of width equal to 72 bits.

The ACX_BRAM72K_SDP memory organization is configured with the byt e_wi dt h parameter as either
byt e wi dt h=8 or byt e_wi dt h=9. For read and write data widths, the nem_i nit_fi | e contains 1024 lines
with 72 bits of init data per line, organized as follows:

Table 268: 9-bit Byte Mode (byte_width == 9)

Bits
Line in Corresponding 71:63 62:54 53:45 44:36 35:27 26:18 17:9 8:0
meminit_file initd_* Parameter) : : : : . .)
1st line initd_0 9byte7 9byte6 9byte5 9byted 9byte3 9byte2 9byte1 9byte0
2nd line initd_1 9byte15 9byte14 9byte13 9byte12 9byte11 9byte10 9byte9 9byte8
1024th line initd_1023 9byte8191 | 9byte8190 | 9byte8189 | 9byte8188 | 9byte8187 | 9byte8186 | 9byte8185 | 9byte8184
Table 269: 8-bit Byte Mode (byte_width == 8)
Bits
7 70:63 62 61:54 53 52:45 44 43:36
Line in Corresponding
meminit_file initd_* Parameter
35 34:27 26 25:18 17 16:9 8 7:0

1'b0 | byte7 1'b0 | byte6 1'b0 | bytes "b0 | byted
1st line initd_0

1'b0 | byte3 1'b0 | byte2 1'b0 | bytet "b0 | byte0

1'b0 | byte15 1'b0 | byte14 1'b0 | byte13 "b0 | byte12
2nd line initd_1

1' b0 byte11 1' b0 byte10 1' b0 byte9 ' b0 byte8

1' b0 byte8191 | 1' b0 byte8190 | 1' bO byte8189 ' b0 byte8188
1024th line initd_1023

1' b0 byte8187 | 1' b0 byte8186 | 1' b0 byte8185 ' b0 byte8184

Achronix Proprietary and Confidential

400

Speedcore Component Library User Guide (UG065)

Table 270: 8-bit Byte Mode (byte_width == 8, write_width is 72 or 144)

Bits
L . 71 70:63 62 61:54 53 52:45 44 43:36
Line in Corresponding
meminit_file initd_* Parameter
35 34:27 26 25:18 17 16:9 8 7:0

byte8[7] byte7 byte8[6] byte6 byte8[5] byte5 byte8[4] byte4
1st line initd_0

byte8[3] byte3 byte8[2] byte2 byte8[1] byte1 byte8[0] byte0

byte17[7] byte16 byte17[6] byte15 byte17[5] byte14 byte17[4] byte13
2nd line initd_1

byte17[3] byte12 byte17[2] byte11 byte17[1] byte10 byte17[0] byte9

byte9215[7] | byte9214 | byte9215[6] | byte9213 | byte9215[5] | byte9212 | byte9215[4] | byte9211
1024th line initd_1023

byte9215[3] | byte9210 | byte9215[2] | byte9209 | byte9215[1] | byte9208 | byte9215[0] | byte9207

A number entry can contain underscore (_) characters among the digits, for example, A234_4567_33.
Commenting is allowed following a double-slash (//) through to the end of the line. C-like commenting is also
allowed where the characters between the /* and */ are ignored. The memory is initialized starting with the first
entry of the file initializing the memory array starting with address zero, moving upward.

Ifrem.init_fil eisdefined, the ACX_BRAM72K_SDP is initialized with the values in the file referenced by the
nmeminit _fileparameter.Ifthemem.init fil e paramteris left at the default value of ", the initial contents
are defined by the values of the i ni t d_0 through i ni t d_1023 parameters. If neither the memory initialization
parameters nor the nem i nit _fil e parameters are defined, the contents of a BRAM remain uninitialized and
the contents are unknown until the memory locations are written.

ECC Modes of Operation

There are four modes of operation for a ACX_BRAM72K_SDP defined by the enabl e_ecc_encoder and
enabl e_ecc_decoder parameters shown in the table below.

Table 271: ACX_BRAM72K_SDP ECC Modes of Operation

enabl e_ecc_encoder | enabl e_ecc_decoder ECC Operation Mode

0 0 ECC encoder and decoder disabled. Standard
ACX_BRAM72K_SDP operation available.

0 1 ECC decode-only mode. Applies only to r ead_wi dt h of 64
or 128.

1 0 ECC encode-only mode. Applies only towri t e_wi dt h of 64
or 128.

1 1 Normal ECC encode/decode mode. Applies only to
read_w dthandwite_w dth of 64 or 128.

Achronix Proprietary and Confidential 401

Speedcore Component Library User Guide (UG065)

ECC Encode/Decode Operation Mode

The ECC encode/decode operation mode utilizes both the ECC encoder and the ECC decoder. The 64-bit user
data is written into a ACX_BRAM72K_SDP via the di n[63: 0] inputs. The ECC encoder generates the 8-bit
error correction syndrome and writes it into the memory array bits [71: 64] . During read operations, the ECC
decoder reads the 64-bit user data and the 8-bit syndrome data to generate an error correction mask. The ECC
decoder corrects any single-bit error and only detects, but does not correct, any dual-bit error.

If the ECC decoder detects a single-bit error, it corrects the error and places the corrected data on the dout [63:
0] pins and asserts the shi t _err or output. The memory location containing the error is not corrected.

If the ECC decoder detects a dual-bit error, it places the uncorrected data on the dout [63: 0] pins and asserts
the dbi t _error output. The shit_error and dbi t _error outputs are asserted aligned with the output data.

ECC Encode-Only Operation Mode

The ECC encode-only operation has the ECC encoder enabled and the ECC decoder disabled. This mode
allows writing 64 bits of data with the 8-bit error correction syndrome automatically written to bits [71: 64] of the
memory array during write operations. Read operations provide the 64-bit user data and the error syndrome
without correcting the data. Encode-only mode can be used as a building block to provide error correction for off-
chip memories.

ECC Decode-Only Operation Mode

The ECC decode-only operation has the ECC encoder disabled and the ECC decoder enabled. This mode
bypasses the ECC encoder and allows writing 72-bit data directly into the memory array during write operations.
If the ECC decoder detects a single-bit error, it corrects the error and places the corrected data on the dout [63:
0] pins and asserts the shit _error output. The memory location containing the error is not corrected. If the
ECC decoder detects a dual-bit error, it places the uncorrected data on the dout [63: 0] pins and asserts the
dbi t _error output one cycle after the the data word is read. For read operations in this mode, dout [71: 64]
is unknown. Decode-only mode can be used as a building block to provide error correction for off-chip memories.

Achronix Proprietary and Confidential 402

Speedcore Component Library User Guide (UG065)

Additional Requirements for ECC Mode With ACE GUI Memory Generator

When initializing memory with the ACE GUI Memory Generator, there are additional requirements when ECC
mode is enabled:

1.

If the Enable ECC Encoder box is checked, the wi t e _wi dt h/read_wi dt h parameters must be 64 or
128.

If the Enable ECC Encoder box is checked and the Memory Initialization File is defined, each line of the
memory initialization file must be:

® 72 bitsifthew i te_wi dt his 64 (8 bits of parity and bits [63: 0] of data)

® 144 bits if the wri t e_wi dt h is 128 (8 bits of parity and bits [127: 64] of data, or 8 bits of parity
and bits [63: 0] of data)

If it is chosen to initialize the memory, not only must the data bits be initialized, but the parity bits must
also be assigned. The parity information is required in the memory initialization file so that if the initialized
values are read from memory, the error flags are not set. Eight parity bits are required to be generated for
each 64 bits of user data, and must be placed in the top eight bits of each 72-bit segment of the
initialization words.

® |fwrite_w dth =64, eight parity bits are assigned to nem i nit _wor d bits [71: 64] , generated
fromuser _initializationbits[63:0]

® |fwrite_ w dth =128, eight parity bits are assigned to mem i nit _word bits [71: 64] ,
generated from user _i nitial i zati on bits [63: 0] , and eight parity bits are assigned to
mem i ni t _word bits [143: 136] , generated fromuser _initializati on bits[127: 64]

The parity bits are generated according to the following Verilog equations.

Note

The same parity equations are used for each segment of 64 user i niti ali zati on bits. Thei _din
[1 references are with respect to the index into each 64-bit data segment.

Achronix Proprietary and Confidential 403

Speedcore Component Library User Guide (UG065)

ECC Parity Equati ons

assign parity[0] =i _din[0] ~i_din[1] ~i_din[3] ~i_din[4 ~i_din[6] ~i_din[8 ~ i_din
[10] ~ i_din[11] ~ i_din[13] ~ i_din[15] ~ i_din[17] ~ i_din[19] ~ i_din[21] ~ i_din[23] ~ i_din
[25] ~ i_din[26] ~ i_din[28] ~ i_din[30] ~i_din[32] ~i_din[34] ~ i_din[36] "~ i_din[38] ™ i_din
[40] ~ i_din[42] ~ i_din[44] ~ i_din[46] "~ i_din[48] ~ i_din[50] ~ i_din[52] ~i_din[54] ~ i_din
[56] ~ i_din[57] ~ i_din[59] ~ i_din[61] ~ i_din[63];
assign parity[1] =i _din[0] ~i_din[2] ~i_din[3] ~i_din[5] ~i_din[6] ~i_din[9] ~i_din
[10] ~ i_din[12] ~ i_din[13] ~ i_din[16] ~ i_din[17] ~ i_din[20] ~ i_din[21] ~ i_din[24] ~ i_din
[25] ~ i_din[27] ~ i_din[28] ~ i_din[31] ~i_din[32] ~i_din[35] ~i_din[36] "~ i_din[39] ™~ i_din
[40] ~ i_din[43] ~ i_din[44] ~ i_din[47] ~ i_din[48] ~ i_din[51] ~ i_din[52] ~ i_din[55] ~ i_din
[56] ™ i_din[58] ~ i_din[59] "~ i_din[62] ™ i_din[63];
assign parity[2] =i_din[1] ~i_din[2] ~i_din[3] ~i_din[7] ~i_din[8 ~i_din[99 "~ i_din
[10] ~ i_din[14] ~ i_din[15] ~ i_din[16] ~ i_din[17] ~ i_din[22] ~ i_din[23] ~i_din[24] ~ i_din
[25] ~i_din[29] ~ i_din[30] ~ i_din[31] ~ i_din[32] ~ i_din[37] ~ i_din[38] ~ i_din[39] ~ i_din
[40] ~ i_din[45] ~ i_din[46] ~ i_din[47] ~ i_din[48] ~ i_din[53] ~ i_din[54] ~ i_din[55] ~ i_din
[56] ~ i_din[60] ~ i_din[61] "~ i_din[62] ™ i_din[63];
assign parity[3] =i_din[4 ~i_din[5] ~i_din[6] ~i_din[7] ~i_din[8 ~i_din[9] ~i_din
[10] ~ i_din[18] ~ i_din[19] ~ i_din[20] ~ i_din[21] ~ i_din[22] ~ i_din[23] ~i_din[24] ~ i_din
[25] ~i_din[33] ~i_din[34] ~ i_din[35] ~ i_din[36] ~ i_din[37] ~ i_din[38] ~ i_din[39] ~ i_din
[40] ~ i_din[49] ~ i_din[50] ~ i_din[51] ~ i_din[52] ~ i_din[53] ~ i_din[54] ~ i_din[55] ~ i_din
[56];
assign parity[4] =i _din[11] ~ i_din[12] ~ i_din[13] ~ i _din[14] ~ i _din[15] ~ i_din[16] ~ i_din
[17] ~ i_din[18] ~ i_din[19] ~ i_din[20] ™~ i_din[21] ~ i_din[22] ~ i_din[23] ~i_din[24] ~ i_din
[25] ~ i_din[41] ~ i_din[42] ~ i_din[43] ~ i_din[44] ~ i_din[45] ~ i_din[46] ~ i_din[47] ~ i_din
[48] ~ i_din[49] ~ i_din[50] ~ i_din[51] ~ i_din[52] ~ i_din[53] ~ i_din[54] ~ i_din[55] ~ i_din
[56];
assign parity[5] =i _din[26] N i_din[27] ~ i_din[28] i _din[29] ~i_din[30] ~i_din[31] ~ i_din
[32] ~i_din[33] ~i_din[34] ~i_din[35] ~i_din[36] ™~ i_din[37] ~i_din[38] ~i_din[39] ™~ i_din
[40] ~ i_din[41] ~ i_din[42] ~ i_din[43] ~ i_din[44] ~ i_din[45] ~ i_din[46] ~ i_din[47] ~ i_din
[48] ~ i_din[49] ~ i_din[50] ~ i_din[51] ~i_din[52] ~ i_din[53] ~ i_din[54] ~ i_din[55] ™~ i_din
[56];
assign parity[6] =i _din[57] ~ i_din[58] ~ i_din[59] ~i_din[60] ~i_din[61] ~ i_din[62] ~ i_din
[63];
assign parity[7] =i_din[0] ~i_din[1] ~i_din[2] ~i_din[3] ~i_din[4 7~ i_din[5] ~i_din[
6] ~i_din[7] ~i_din[8 ~i_din[9] ~i_din[10] N i_din[11] ~ i_din[12] ~ i_din[13] ~ i_din
[14] ~ i_din[15] ~ i_din[16] ~ i_din[17] ~ i_din[18] ~ i_din[19] ~ i_din[20] ~ i_din[21] ~ i_din
[22] ~ i_din[23] ~i_din[24] ~i_din[25] ~i_din[26] ~ i_din[27] ~ i_din[28] ~ i_din[29] ~ i_din
[30] ~i_din[31] ~ i_din[32] ~ i_din[33] ~ i_din[34] ~ i_din[35] ~ i_din[36] ~ i_din[37] ~ i_din
[38] ~i_din[39] ~ i_din[40] ~ i_din[41] ~ i_din[42] ~ i_din[43] ~ i_din[44] ~ i_din[45] ~ i_din
[46] ~ i_din[47] ~ i_din[48] ~ i_din[49] ~ i_din[50] ~ i_din[51] ~ i_din[52] ~ i_din[53] ~i_din
[54] ~ i_din[55] ~ i_din[56] ~ i_din[57] ~i_din[58] ~ i_din[59] ~ i_din[60] ~ i_din[61] ~ i_din
[62] ™~ i_din[63] ™ parity[0] ~ parity[1l] " parity[2] " parity[3] ~ parity[4] ~ parity[5] " parity
[6];

Achronix Proprietary and Confidential 404

Speedcore Component Library User Guide (UG065)

Parity [7: 0] is user-assigned to either mem i ni t _wor d[143: 136] ormem_i nit _word[71: 64] depending
on the specific 64-bit group of user _i niti al i zati on bits.

Note

The byt e_en inputs are ignored when the Enable ECC Encoder box is checked.

Using ACX_BRAM72K_SDP as a Read-0nly Memory (ROM)

The ACX_BRAM72K_SDP macro can be used as a read-only memory (ROM) by providing memory initialization
data via a file or parameters (as described in Memory Initialization (see page 399)) and tying the wr en signal to
its de-asserted value. All signals on the read-side of the ACX_BRAM72K_SDP operate as described above. This
configuration allows the reading from the memory, but not writing to it.

Advanced Modes

The ACX_BRAM72K_SDP supports two advanced modes that allow for remapping of the address space within
the memory to be accessed when in 8-bit byte mode and, additionally, for control of the tightly-coupled LRAM
within the ACX_MLP72, (refer to ACX_MLP72 LRAM).

The advanced modes are enabled in the read and write sides by asserting the wr nsel and r dnsel inputs
respectively. When asserted, w nsel and r dnsel are combined with wr addr [11] and r daddr [11]
respectively to configure the write and read side advanced mode.

Achronix Proprietary and Confidential 405

Speedcore Component Library User Guide (UG065)

Remap Mode
(wnsel / rdnsel =1' b1, w addr [11] /rdaddr[11] =1' b0)

The ACX_BRAM72K_SDP is natively configured as a 72x1024 bit memory, with 9-bit bytes. However, access to
the memory using traditional 8-bit byte access might be required, for example, when transferring data to and from
the NAPs or directly with the interface IP, the majority of which is configured for 8-bit bytes. In order to assist with
the conversion between these two formats, the ACX_BRAM72K_SDP uniquely offers a remap mode which
allows either of the two ports to operate in an 8-bit byte mode, but with the ability to still access the full memory
contents. This is achieved by the memory presenting an extended addressing depth, the extra 128 addresses
contain the memory content from the higher bits of the 72 bit memory array. In this mode, the memory supports
1024 + 128 = 1152 addresses at 64-bit width.

Note

T If 8-bit byte mode is required for both ports, the memory can be conventionally configured using the
read widthandwite w dth parameters set to either 4, 8, 16, 32 or 64. However, in this mode, the
extended addresses are not available and the memory only supports a maximum depth of 1024 words.

To enable the remap mode for either port, the respective parameter, wi t e_r emap and r ead_r emap must be
setto1' bl.

With the appropriate parameter enabled, wr nsel / rdnsel =1' b1, and wr addr [11] / rdaddr [11] =1' bO, the
relevant ACX_BRAM72K_SDP port operates as a 1152 x 64-bit memory. This mode remaps the extra data bits
between the full width of 72 bits and the reduced width of 64 bits, and arranging them as extended memory
locations. With wr addr [11]/ rdaddr [11] setto 1' b0, the further address bits wr addr [10: 4] / r daddr [10:
4] are used to access the additional 128 words of memory.

Note

@ (w nmsel / rdnsel =1' b1, wr addr/ rdaddr [11] =1' b1) is a reserved mode and not supported by
ACX_BRAM72K_SDP.

Achronix Proprietary and Confidential 406

Speedcore Component Library User Guide (UG065)

Inference

The ACX_BRAM72K_SDP is inferrable using RTL constructs commonly used to infer synchronous and RAMs
and ROMs, with a variety of clock enable and reset schemes and polarities. The ECC functionality is not
inferrable. All control inputs can be inferred as active low by placing an inverter in the netlist before the control
input.

To ensure a BRAM is inferred, as opposed to an LRAM, use the following synthesis attributes in the memory
declaration.

Verilog

/1 Infer BRAM nenory array. WI|l create menory using ACX BRAM/2K_SDP set to a maxi mum wi dth of 72-
bi t
| ogic [DATAWDTH 1: 0] nmem [(2**ADDR WDTH)-1: 0] /* synthesis syn_ranstyle = "block_ram' */;

/1 Aternatively infer wide BRAM nenory array with ACX BRAM/2K SDP primtives set to 144-bit width
| ogi c [DATA WDTH- 1: 0] nem [(2**ADDR_ WDTH)-1:0] /* synthesis syn_ranstyle = "large_ran */;

Example Template

/1 Copyright (c) 2021 Achroni x Seni conductor Corp.
/1 Al Rights Reserved.

/1 This Software constitutes an unpublished work and contai ns
/1 valuable proprietary information and trade secrets bel ongi ng
/] to Achronix Sem conductor Corp.

/1 Permission is hereby granted to use this Software including
/1 without limtation the right to copy, nodify, merge or distribute
/] copies of the software subject to the follow ng condition:

/1 The above copyright notice and this perm ssion notice shall
/] be included in in all copies of the Software.

/1 The Software is provided “as is” w thout warranty of any kind

/] expressed or inplied, including but not limted to the warranties

/1 of nmerchantability fitness for a particular purpose and non-infringenent,
/1 in no event shall the copyright holder be liable for any claim

/1 damages, or other liability for any damages or other liability,

/1 whether an action of contract, tort or otherw se, arising from

/] out of or in connection with the Software

/] Design: SDP nmenory inference
I Deci des between BRAM and LRAM based on the requested size
/1 Restriction that read and wite ports nmust be of the sanme di nensions

“timescale 1lps / 1ps

Achronix Proprietary and Confidential 407

Speedcore Component Library User Guide (UG065)

nodul e sdpram. i nfer

#(
par anet er ADDR_W DTH =0,
par anet er DATA_ W DTH = 0,
par anet er OQUT_REG_EN =0,
par anet er INIT_FILE_ NAME = ""
)
(
/1 O ocks and resets
input wre wr_cl k,
input wre rd_cl k,
/1 Enabl es
input wre we,
input wre rd_en,
input wre rstreg,
/1 Address and data
input wre [ADDR_ W DTH 1: 0] wr _addr,
input wire [ADDR_W DTH 1: 0] rd_addr,
input wire [DATA W DTH 1: 0] wr _dat a,
/1 Qut put
output reg [DATA W DTH- 1: 0] rd_data
)

/!l Determine if size is small enough for an LRAM

| ocal param MEM LRAM = (((DATA_WDTH <= 36) && (ADDR WDTH <= 6)) ||
((DATA_WDTH <= 72) && (ADDR WDTH <= 5)) ||
((DATA_WDTH <= 144) &&% (ADDR WDTH <= 4))) ? 1 : 0;

| ocal param W DE_BRAM = (DATA WDTH > 72) ? 1 : O;

/1 Define conmbinatorial and registered outputs fromnenory array
| ogic [DATA WDTH 1: 0] rd_data_int;
| ogi c [DATA_ WDTH-1: 0] rd_data_reg;

| ogi c read_col | i si on;
al ways @ posedge rd_cl k)
if (~rstreg)
rd_data_reg <= { DATA WDTH{1' b0} };
el se

rd_data reg <= rd_data_int;
/1 Need a generate block to apply the appropriate syn_ranstyle to the nenory array
/1 Rest of the the code has to be within the generate bl ock to access that variable
generate if (MEMLRAM == 1) begin : gb_Iram
| ogi c [DATA WDTH- 1: 0] nem [(2**ADDR WDTH)-1:0] /* synthesis syn_ranmstyle = "logic" */;

/1 1If an initialisation file exists, then initialise the menory

if (INT_FILENAME !'= "") begin : gb_init
initial
$readnenmh(| NI T_FI LE_NAME, nmem);
end
// Witing. Inference does not currently support byte enables

/1 Also generate the signals to detect if there is a menory collision
|l ogic [ADDR W DTH 1: 0] w _addr_d;
al ways @ posedge w _cl k)

Achronix Proprietary and Confidential 408

Speedcore Component Library User Guide (UG065)

if(we) begin
men{ w _addr] <= wr_dat a;
wr_addr _d <= wr_addr;
end

/1 LRAM only supports the WRITE_FIRST node. So if rd_addr = w_addr then

I/l wite takes priority and read value is invalid

/] The value fromthe array is conbinatorial, (this is different than for BRAM

/'l Wite address is effective on the cycle it is witing to the nenory, (i.e. it is
regi st ered)

assign read_collision = (w_addr_d == rd_addr);

assign rd_data_int = (read_collision) ? {DATA WDTH{1' bx}} : nenird_addr];

end
else if (WDE_BRAM == 1) begin : gb_w de_bram

| ogi c [DATA_ WDTH 1:0] mem [(2**ADDR WDTH)-1:0] /* synthesis syn_ramstyle = "|arge_rant
*/;
/1 1f an initialisation file exists, then initialise the menory
if (INNT_FILE_NAME !'="") begin : gb_init
initial
$readnemh(| NI T_FILE_NAME, nem);
end
/1 Witing. Inference does not currently support byte enables
al ways @ posedge w _cl k)
if(we)
begi n
men{ w _addr] <= wr_dat a;
end
/] BRAM supports WRI TE_FI RST node only, (wite takes precedence over read)
/] Calculate if there will be a collision
I/l wite takes priority and read value is invalid
/] Both w _addr and rd_addr have registered operations on the nenory array
assign read_collision = (w_addr == rd_addr) && we;
al ways @ posedge rd_cl k)
if(rd_en)
begi n
/] Read collisions cannot be nodelled in synthesis, so use solely in sinmulation
/1 synthesis synthesis_off
if(read_collision)
rd_data_int <= {ADDR W DTH{1' bx}};
el se
/'l synthesis synthesis_on
rd_data_int <= nen{rd_addr];
end
end
el se
begin : gb_bram
| ogic [DATAWDTH 1: 0] mem [(2**ADDR WDTH)-1:0] /* synthesis syn_ranstyle = "bl ock_rant
*/,

/1 If an initialisation file exists, then initialise the nenory
if (INNT_FILE_NAME !="") begin : gb_init

Achronix Proprietary and Confidential 409

Speedcore Component Library User Guide (UG065)

initial
$readnemh(| NI T_FI LE_NAME, nmem);
end
/1 Witing. |Inference does not currently support byte enables
al ways @ posedge w _cl k)
if(we)
begi n

men{ w _addr] <= wr_dat a;
end

/1 BRAM supports WRI TE_FI RST node only, (wite takes precedence over read)
/] Calculate if there will be a collision

/1l wite takes priority and read value is invalid

/1 Both wr_addr and rd_addr have regi stered operations on the nenory array
assign read_collision = (w_addr == rd_addr) && we;

al ways @ posedge rd_cl k)
if(rd_en)
begi n
/! Read collisions cannot be nodelled in synthesis, so use solely in simulation
/] synthesis synthesis_off
if(read_collision)
rd_data_int <= {ADDR WDTH{1' bx}};
el se
/] synthesis synthesis_on
rd_data_int <= nen{rd_addr];
end
end
endgenerat e

/1 Sel ect output based on whether output register is enabled
assign rd_data = (QUT_REG EN) ? rd_data reg : rd_data_int;

endnodul e : sdpram.infer

Achronix Proprietary and Confidential 410

Speedcore Component Library User Guide (UG065)

Instantiation Template

Verilog

ACX_BRAM72K_SDP #(

)

.byte_width
.read_w dth
.write_wdth
.rdclk_polarity
.wrclk_polarity
.read_renap
.write_remap
.outreg_enabl e
.outreg_sr_assertion
.ecc_encoder _enabl e
.ecc_decoder _enabl e
.meminit_file
.initd_0

<, ..>

.initd_1023

i nstance_nane (

.wrclk

.din

.we

.wren

. W addr

.wr nsel
.rdclk

.rden

. rdaddr
.rdnse
.outlatch_rstn
.outreg_rstn
.outreg_ce

. dout
.sbit_error
.dbit_error

9).

72),

72),
"rise")
"rise")
0),

0).

1),

"cl ocked"),

e e e e e e e N N N e N NN

(user_wrclk

(user _din
(user_we
(user_wren
(user _w addr
(user_wrnse
(user_rdcl k
(user_rden

(user _rdaddr
(user_rdnse
(user_outlatch_rstn
(user_outreg_rstn
(user_outreg_ce
(user _dout

(user _sbit_error
(user _dbit_error

Achronix Proprietary and Confidential

411

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX_BRAM/2K_SDP
conponent ACX_BRAM72K SDP i s
generic (

)

port

)

byte_w dth
ecc_decoder _enabl e
ecc_encoder _enabl e
initd_0

<, ..>

initd_1023
meminit_file
outreg_enabl e
outreg_sr_assertion
rdcl k_polarity
read_remap

read_wi dth

wcl k_polarity
wite_remap

wite width

(

wr cl k

rdcl k

din

we

W en

wr addr

wr nsel

rden

r daddr
rdnsel
outreg_rstn
outlatch_rstn
outreg_ce
shit_error
dbit_error
dout

end component ACX_BRAM72K_ SDP

integer :=9;

integer := 0;

integer := 0;

integer := X'x";
integer := X'x";
string :="";

integer := 0;

string := "cl ocked";
string := "rise";
integer := 0;

integer := 72;

string := "rise";
integer := 0;

integer := 72

in std_|logic;

in std_logic;

in std_|logic_vector(
in std_logic_vector(
in std_logic;

in std_logic_vector(
in std_|logic;

in std_logic;

in std_logic_vector(
in std_|logic;

in std_logic;

in std_logic;

in std_logic;

out std_logic_vector(
out std_logic_vector(
out std_|l ogic_vector(

-- VHDL Instantiation tenplate for ACX BRAM/2K SDP
i nstance_nane : ACX_BRAM/2K_SDP
generic map (

byte_w dth =
ecc_decoder _enabl e =
ecc_encoder _enabl e =
initd_0 =>
<, ..>

initd_1023 =>
meminit _file =
outreg_enabl e =>
outreg_sr_assertion =>
rdcl k_polarity =
read_remap =>
read_wi dth =
wclk_polarity =

byte_wi dt h,
ecc_decoder _enabl e,
ecc_encoder _enabl e,
initd_O,

i nitd_1023,
meminit_file,
outreg_enabl e,
outreg_sr_assertion,
rdcl k_polarity,
read_r emap,

read_wi dt h,

wrcl k_polarity,

143 downto 0);

17 downto 0);

13 downto 0);

13 downto 0);

1 downto 0);
1 downto 0);

143 downto 0)

Achronix Proprietary and Confidential

412

Speedcore Component Library User Guide (UG065)

)

wite_remap
wite_wdth

port map (

wr cl k

rdcl k

din

we

W en

wr addr

wr nsel

rden

r daddr
rdnsel
outreg_rstn
outlatch_rstn
outreg_ce
shit_error
dbit_error
dout

write_renap,
wite_width

user _wrcl k,
user _rdcl k,
user _din,
user _we,
user _wren,
user _wr addr,
user _wrnsel ,
user _rden,
user _rdaddr,
user _rdnsel ,

user_outreg_rstn,
user _outlatch_rstn,

user_outreg_ce,

user _shit_error,
user _dbit_error,

user _dout

Achronix Proprietary and Confidential

413

Speedcore Component Library User Guide (UG065)

ACX_BRAM72K_FIFO (72-kb FIFO Memory with Optional Error

Correction)
The ACX_BRAM72K_FIFO implements a 72kb FIFO. Each port width can be independently configured and each

port can use different clock domains. For higher performance operation, an additional output register can be

enabled.

wrclk | rdclk
I
I

wrclk rdclk
rstn
e FIFO Controller rden
full - = empty
almost_full <= » almost_empty
write_error - - read_error

72 kBit
Memory

din[143:0]

II ECC II

Encoder Encoder

——» dout[143:0]

— sbit_error[1:0]

—— dbit_error[1:0]

glgle]

38371818-01.2022.12.18

Figure 134: ACX_BRAM72K_FIFO Block Diagram

Achronix Proprietary and Confidential

414

Speedcore Component Library User Guide (UG065)

Parameters

Table 272: ACX_BRAM72K_FIFO Parameters

Parameter

Supported Values

Default
Value

Description

read_wi dt h(")

4,8,9,16, 18, 32,
36, 64,72, 128, 144

72

Controls the width of the read port.

wite width®

4,8,9,16, 18, 32,
36, 64,72, 128, 144

72

Controls the width of the write port.

rdcl k_polarity

"rise" "fall"

"rise"

Detemines the clock edge used by the r dcl k signal:
"rise" — rising edge.
"fall" — falling edge.

wrcl k_polarity

"rise", "fall"

"rise"

Determines the clock edge used by the wr cl k signal:
"rise" — rising edge.
"fall" — falling edge.

outreg_enabl e

Controls whether the output register is enabled:

0 — disables the output register and results in a read latency of one cycle.
1 — enables the output register and results in a read latency of two cycles.

sync_node

0,1

Controls whether the FIFO operates in synchronous or asynchronous mode. In synchronous
mode, the two input clocks must be driven by the same clock input, and the pointer
synchronization logic is bypassed, leading to lower latency for flag assertion.

0 — asynchronous mode.

1 — synchronous mode.

aful | _threshold

0-14' h3FFF

14' h10

Defines the word depth at which the al nost _f ul | output changes. The al nost _ful |
signal may be used to determine the number of blind writes to the FIFO made without
monitoring the f ul | flag. For example, if the af ul | _t hr eshol d parameter is set to 14’
h0004 and the al nost _f ul | signal is de-asserted, at least five empty locations exist in the
FIFO. All five words may be written without overflowing the FIFO and causing assertion of wr
ite_error.

aenpty_t hreshol d@

0-14' h3FFF

14' h10

Defines the word depth at which the al nost _enpt y output changes. May be used to
determine the number of blind reads from the FIFO performed without monitoring the enpt y
flag. For example, if the aenpt y_t hr eshol d parameter is set to 14’ h0004 and the al nos
t _enpty flag is de-asserted, at least five words exist in the FIFO which may be read
without underflowing the FIFO and causing assertion of r ead_err or .

fwft _erde(S)

First-word fall through (FWFT). Controls the behavior of data at the output of the FIFO
relative to r den:

0 — data is presented at the output of the FIFO after r den is asserted when
outreg_enable = 1.

1 — data is presented at the output of the FIFO as soon as it is available and coincident with
the de-assertion of enpty (outreg_enabl e = 0). Data is held until r den is asserted. If
outreg_enabl e = 1, an additional one r dcl k cycle of latency results causing the enpt y
flag to precede the output data by one r dcl k cycle and should be externally delayed if flag
alignment is required.

ecc_encoder _enabl e

0,1

Enables the ECC encoder which calculates the ECC syndrome and stores it in memory in
data bits [71:64]. When enabled, di n[71: 64] is ignored:

0 — ECC encoder is disabled.
1 — ECC encoder is enabled.

ecc_decoder _enabl e®

0,1

Enables the ECC decoder which uses the ECC syndrome in bits [71:64] to correct any
single-bit error and detect any 2-bit error:

0 — ECC decoder is disabled.

1 — ECC decoder is enabled.

Achronix Proprietary and Confidential

415

Speedcore Component Library User Guide (UG065)

Default

Value Description

Parameter Supported Values

. FWFT mode is not supported when the FIFO is in synchronous mode (sync_node = 1) while the output register is enabled (out r eg_enabl e =

Table Notes
1.

Parameters r ead_wi dt h/ wri t e_wi dt h settings of 128 and 144 consume the adjacent MLP site by using it as a route through for the higher
order bits of the respective data buses.

. aenpty_t hreshol d does not consider the f wf t _npde or out r eg_enabl e. If out reg_enabl e = 1, then there are aenpty_t hreshold + 1

entries available when al nbst _enpt y is deasserted. If f wf t _npde = 1, there are aenpt y_t hr eshol d- 1 entries available when al nost _enp
ty is asserted.

1).

. ECC encoding is only supported whenwrite_wi dth = 64orwite_wi dth = 128.
. ECC decoding is only supported when read_wi dth = 64 orread_wi dth = 128.

Achronix Proprietary and Confidential

416

Speedcore Component Library User Guide (UG065)

Ports

Table 273: ACX_BRAM72K_FIFO Pin Descriptions

Name Direction Description
rstn Input Asynchronous reset input. Resets the entire FIFO.
wr el k Inout Write clock input. Write operations are fully synchronous and occur upon the active edge of the wr cl k
P input when wr en is asserted. The active edge of wr cl k is determined by wr cl k_pol arity.
wren Input Write port enable. Assert wr en high to write data to the FIFO.
Write port data input. Input data (dat a_i n) should be aligned as follows:
wite width = 144:din = data_in.

di n[143: 0] Input wite width = 128:din = {8 h0, data_in[127:64], 8 hO, data_in[63:0]}.
wite width < 128:din[wite_w dth-1:0] = data_in (remaining di n upper bits should be
tied to 1' b0).

full Output Asserted high when the FIFO is full.

al most _full Output Asserted high when remaining space in the FIFO is equal to or less than af ul | _t hr eshol d.

write_error Output Asserted the cycle after a write to the FIFO when the FIFO is already full.

Read clock input. Read operations are fully synchronous and occur upon the active edge of the r dcl k
rdcl k Input input when the r den signal is asserted.
The active edge of r dcl k is determined by rdcl k_pol arity.

rden Input Read port enable. Assert r den high to perform a read operation.

enpt y(! Output Asserted high when the FIFO is empty.

al nost _enpt y(2) Output Asserted high when the FIFO has less than, or equal to aenpt y_t hr eshol d words remaining.

read_error Output Asserted the cycle after a FIFO read when the FIFO is already empty.

shit_error[1:0] | Output Asserted high when the data on dout includes a single-bit error that was corrected.

dbit_error[1:0] | Output Asserted high when the data on dout includes an error or errors that were not corrected.

Read port data output. The output data, dat a_out , is aligned as follows (the organization is the same
asdinanddata_in):

dout [143: 0] @) Output read_wi dth = 144:dout = data_out.

read_wi dth = 128:dout = {8' hX, data_out[127:64], 8' hX, data_out[63:0]}.
read_wi dth < 128:dout[read_wi dth-1:0] = data_out (remaining dout upper bits present
as 1' bX.

Table Notes

1. When operating in synchronous mode (sync_node = 1), the falling transition of enpt y is delayed by one cycle. enpt y remains
asserted for the cycle after the last entry in the FIFO is read.

2. When operating in synchronous mode (sync_node = 1), the falling transition of al nost _enpt y is delayed by one cycle.
al nost _enpt y remains asserted for a cycle after aenpt y_t hr eshol d is reached.

3. Fordat a_out bits marked X, these present as X in simulation and on silicon the values are undefined.

Achronix Proprietary and Confidential 417

Speedcore Component Library User Guide (UG065)

Read and Write Operations

Write Operation

Write operations are signaled by asserting the wr en signal. The value of di n is stored to the next available FIFO
location on the rising edge of wr cl k whenever wr en is asserted, and f ul | is de-asserted.

Read Operation

Read operations are signaled by asserting the r den signal. The next FIFO location contents are transferred to
the output latches on the rising edge of r dcl k whenever r den is asserted and enpt y is de-asserted. If
outreg_enabl e = 1, the FIFO contents are available on dout on the following rising edge of r dcl k.

First Word Fall Through (FWFT)

The FIFO operates in a first word fall through mode, where the first word written to the FIFO is presented on the
output before r den is asserted, for the following configurations:

* fwft_node = 0 - FIFO operates as FWFT when outreg_enabl e = 0. With outreg_enable = 1,
the first word is output on the rising edge after r den is asserted.

* fwft_node = 1 - FIFO always operates as FWFT, with the first word output either on the following
rising edge of rdcl k (out r eg_enabl e = 0) or the third rising edge of r dcl k (out put _enable = 1)
after the first word is written to the FIFO.

Achronix Proprietary and Confidential 418

Speedcore Component Library User Guide (UG065)

Output Latch and Register

Table 274: ACX_BRAM?72K_FIFO Output Function Table for Latched Mode

Operation (1) rdcl k outlatch rstn rden dout
Reset latch 1 0 X 0
Hold 1 1 0 Hold previous value.
Read 1 1 1 Next FIFO value.
Table Notes
1. This function assumes rising-edge clock and active-high port enable, otherwise the previous value is
held.

Table 275: ACX_BRAM72K_FIFO Output Function Table for Registered Mode

Operation (1) rdcl k outreg rstn out regce dout

Reset Output 1 0 1 0

Hold 1 1 0 Previous dout [] .

Update Output 1 1 1 Registered from latch output.
Table Notes

1. This function assumes active-high clock, output register clock enable, and output register reset, otherwise
the previous dout [] is held.

Achronix Proprietary and Confidential 419

Speedcore Component Library User Guide (UG065)

Timing Diagrams

Synchronous Mode

Data output, dout , timing for all combinations of out r eg_enabl e and f Wf t _node is shown in the following
waveform.

L T e e e e ([s v s B

wr_en / \ / \

rd_en / \ /

din 1 j2 o8 ¥ o4 7 8 W
dout outreg=0, fwit=0 1) s W 1 |\ 8 W

[ESEERIE I L] i Rl

s X X

3 4 X

doutoutreg=1, Wit=0 2 N 2z X 3 X« X' s X 7 Y777
dout outreg=0, wft=1 7 i 1 X E 4 X 6 X 1 X 8 Yo7

doutoutreg=1, Mit=1 2

Figure 135: Output Timing with sync_node = 1

Asynchronous Mode

Data output, dout , timing for all combinations of out r eg_enabl e and f wft _node is shown in the following
waveform.

wrelk

raclk | \

wr_en f \ / \
an 7777z 1 X2 X 3 X 4 X 5 X 6 X 7T ¥

rd_en / \—/
dout outreg=0, fwft=0 /////////////////////j 1

deut eureg=1, fwfi=0
dout outreg=0, fwft=1 1
deut oureg=1, fifi=1 i X

(77727777,
G
(77727777,
X277

= e oS P
wl || M |w

= e oS P

4
3
4
4

[SIRISI RIS
= e oS P
ol |@| [~ |=
= e oS P
~| |~ e |~

Figure 136: Output Timing with sync_node = 0

Achronix Proprietary and Confidential 420

Speedcore Component Library User Guide (UG065)

Inference

The ACX_BRAM72K_FIFO is not inferrable.

Instantiation Template

Verilog

ACX_BRAM72K_FI FO #(
.aenpty_t hreshol d
.afull _threshol d
.ecc_decoder _enabl e
.ecc_encoder _enabl e

.fwft_node

.outreg_enabl e
.rdclk_polarity

.read_wdth
.sync_node

.wrclk_polarity

.write_wdth
) instance_nanme (

.din

.wrcl k

.rdcl k

.wren

.rden

.rstn

. dout

.sbit_error

.dbit_error

.almost _full

Lfull

.al nost _enpty

.enmpty

.write_error

.read_error

(aenpty_t hreshol d),
(afull _threshol d),
(ecc_decoder _enabl e),
(ecc_encoder _enabl e),
(fwft_node),
(outreg_enabl e),
(rdcl k_polarity),
(read_wi dth),
(sync_node),
(wrclk_polarity),
(wite_wdth)

(din),
(wrclk),
(rdcl k),

(wren),

(rden),

(rstn),

(dout),
(sbit_error),
(dbit_error),

(al most _full),

(full),

(al nost _enpty),

(empty),
(wite_error),
(read_error)

Achronix Proprietary and Confidential

421

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Conponent tenplate for ACX BRAM/2K_FI FO
conponent ACX BRAM/2K FIFO i s
generic (

)s

aenpty_t hreshol d
afull _threshold
ecc_decoder _enabl e
ecc_encoder _enabl e
fwft_node
outreg_enabl e

rdcl k_pol arity
read_wi dth
sync_node

wrcl k_polarity
wite_ width

port (

)

din

wrcl k
rdcl k

wren

rden

rstn

dout
shit_error
dbit_error
al nost _full
ful

al nost _enpty
enpty
wite_error
read_error

std_|l ogi c_vector(14 downto O)
std_l ogic_vector(14 downto O)

integer := 0;

integer := 0;

integer := 0;

integer := 0;

string := "rise";
integer := 72;
integer := 0;

string := "rise";
integer := 72

in std_|l ogic_vector(
in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

out std_logic_vector(
out std_logic_vector(
out std_l ogic_vector(
out std_l ogic;

out std_Il ogic;

out std_Il ogic;

out std_l ogic;

out std_Il ogic;

out std_logic

end conponent ACX_BRAM72K_FI FG,

-- VHDL Instantiation tenplate for

i nstance_nane :

generic map (

)

aenpty_t hreshol d
afull _threshold
ecc_decoder _enabl e
ecc_encoder _enabl e
fwft_node
outreg_enabl e

rdcl k_polarity
read_wi dth
sync_node

wrcl k_polarity
wite width

port map (

din
wr cl k
rdcl k

ACX_BRAM72K_FI FO

ACX_BRAM/2K_FI FO

=> aenpty_threshol d,
=> afull _threshol d,

=> ecc_decoder _enabl e,
=> ecc_encoder _enabl e,
=> fwft_node,

=> outreg_enabl e,

=> rdcl k_pol arity,

=> read_wi dth,

=> sync_node,

=> wrclk_polarity,

= wite_width

=> user _din,
=> user_wrclk,
=> user _rdcl k,

143 downto O);

143 downto 0);
1 downto 0);
1 downto 0);

X'0010";
X'0010";

Achronix Proprietary and Confidential

422

Speedcore Component Library User Guide (UG065)

wren
rden

rstn

dout
sbit_error
dbit_error

al nost _full
ful

al nost _enpty
enpty
wite_error
read_error

user_wren,
user _rden,
user_rstn

user _dout

user _shit_error
user _dbit_error
user _al nost_full
user _full,

user _al nost _enpty,
user _enpty,
user_write_error,
user _read_error

Achronix Proprietary and Confidential

423

Speedcore Component Library User Guide (UG065)

ACX_LRAM (4096-bit (128x32) Simple-Dual-Port Memory)

wraddr[6:0]
din[31:0] dout[31:0]
wren

welk

rdaddr[6:0]
rstregn

outregce

rdclk

5374063-22.2022.11.15
Figure 137: 4096-bit (128 x 32) Simple-Dual-Port Memory

The Logic RAM (ACX_LRAM) implements a 4096-bit memory block with one write port and one read port. The
ACX_LRAM can be configured as either a 128 x 32 simple dual-port (1 write port, 1 read port) RAM or a 128 x
32 single port (1 read/write port) RAM. The ACX_LRAM has a synchronous write port. The read port is
asynchronous and has an optional output register. This memory block is distributed in the FPGA fabric.

outregce
rstregn

/ Y

dout[31:0]
wraddr[6:0] . Register
din[31:0] Reg-I Ster
File

wren A

wrclk

rdaddr[6:0]

rdclk

5374063-23.2022.11.15

Figure 138: ACX_LRAM Block Diagram

Achronix Proprietary and Confidential 424

Speedcore Component Library User Guide (UG065)

Table 276: ACX_LRAM Pin Descriptions

Name Type Description
wr addr [6: 0] | Input Write port address input.
di n[31: 0] Input Write port data input.
wren Inout Write port enable (active-high). When asserted, the data present on di n[31: 0] is
P written to the location addressed by wr addr [6: 0] at the next active edge of wr cl k.
wr cl k Input Write port clock (programmable, default rising edge).
rdaddr[6: 0] | Input Read port address input.
Read port output register reset (active-low). The sr _asserti on parameter determines
whether the reset is synchronous (default) or asynchronous. When asserted, the read
rstrean Inout port output register is assigned the value of the r eg_r st val parameter. The priority of
9 P the r st r egn input relative to the read port output register clock enable (out r egce) input
is determined by the value of the regce_pri ority parameter. The r st r egn signal
only resets the read port output register. It does not reset the memory contents.
outregce Input Read port output register clock enable (active-high).
rdcl k Input Read port clock (programmable, default rising edge).
Read port data output. Configured to be either synchronous or asynchronous as
determined by the r eg_dout parameter. If r eg_dout is 1' b0, dout [31: 0] reads the
dout [31: 0] Output contents of the memory addressed by r addr [6: 0] onto its pins. If the r eg_dout

parameteris 1' b1, the dout [31: 0] output is driven by the contents of the memory
addressed by r addr [6: 0] at the next active edge of r cl k if the read port output clock
enable input is high.

Table 277: ACX_LRAM Parameters

Defined Default L
Parameter Description
Values Value
Sets the active edge of wr ¢l k. A value of ri se corresponds
wite clock_polarity|rise,fall rise to an active rising edge assignment while f al | corresponds
to an active falling edge assignment.
Sets the active edge of r dcl k. A value of ri se corresponds
read_cl ock_polarity |rise,fall |rise to an active rising edge assignment while f al | corresponds
to an active falling edge assignment.
Defines whether the read port output register is used or
, , , bypassed. 1' b0 bypasses the register while 1' b1 enables
reg_dout 1700, 1"b1 11°b0 the register. Enabling the output register incurs an additional
cycle of latency for the read operation.

Achronix Proprietary and Confidential 425

Speedcore Component Library User Guide (UG065)

Defined

Default

Parameter Values Value Description
32-bit binary
reg_initval or . 32' ho Def_lnes the power-up default value of the read port output
hexadecimal register.
value
32-bit binary Defines the value assigned to the read port output register
reg_rstval or . 32' h0 when the r st r egn input is asserted low and there is an
hexadecimal)
active edge on rdcl k.
value
Defines the priority of the out r egce clock enable input
relative to the r st r egn reset input during its assertion on the
read port output register. Setting r egce_priority to
r st reg allows set/reset of the read port output register to
N rstreg, . . o
regce_priority rstreg | occur atthe next active edge of r dcl k without requiring the
regce . . .
out r egce clock enable input to be active. Setting
regce_priority toregce requires the r egce clock
enable input to be high for the reset operation to occur at the
next active edge of rdcl k.
Sets whether the assertion of the output register reset is
synchronous or asynchronous with respect to the r dcl k
input. A value of cl ocked sets synchronous reset where the
. cl ocked,
Sr_assertion cl ocked | output register is reset on the next rising edge of the clock if
uncl ocked .
rstregn is asserted. A value of uncl ocked sets
asynchronous reset where the output register is reset
immediately following the assertion of the r st r egn input.
256-bit The mem_i ni t _00 through nem_i ni t _15 parameters
mem.i ni t _00- hexadecimal | 256 hx | d€fine the initial contents of the memory. Each of the 16 256-
mem.init_15 value bit parameters is associated with the 4096-bit LRAM memory
as defined in LRAM Memory Initialization (see page 428).
Provides a mechanism to set the initial contents of the LRAM
memory. If defined, the LRAM is initialized with the values
defined in the file specified by the mem_init _file
<path t parameter according to the format defined in LRAM Memory
meminit_file HFI)EaX fi|2> Initialization (see page 428). If mem_init _fil eisthe

default value ("), the initial contents are defined by the value
of the nem_i ni t parameter. If the nem i nit _nn and
mem_init_fil e parameters are not defined, the contents
of the LRAM are also undefined.

Achronix Proprietary and Confidential

426

Speedcore Component Library User Guide (UG065)

Simultaneous Memory Operations

Memory operations may be performed simultaneously from both sides of the memory, however there is a
restriction with memory collisions. A memory collision is defined as the condition where both of the ports access
the same memory address within the same clock cycle (with both ports connected to the same clock), or a
window less than one clock cycle of the faster clock (with each port connected to a different clock). The definition
of a memory collision depends on whether or not the read port output register is enabled.

If the read port output register in not enabled (r eg_dout =1' b0), a memory collision is defined by reading the
same address the cycle after a write command has occurred. If the read port output register is enabled (
reg_dout =1'bl), a memory collision is defined by reading the same address two cycles after a write
command has occurred. If a memory collision occurs, the write to memory is valid, but the read data might be
incorrect.

Timing Diagram

wek N[\ N T\
wren / \ / \
wraddr 7o X__mt Y777 e\ h3 V7
din 'h0000) ‘h1111 W77 'h2222 | 'h3333 WA

rdck [y ¥ N A T AT A
outregce / \ f _._.__
rdaddr 2777 0 XM Y h2 X s 77

1

g[dout o 'hooo0 . M W7 'h2222 { 'h3333

(=]

[1F]

-
o

EI[dout 777 'hooo0 X hin W77 he222 {3333 V777777

Figure 139: LRAM4K SDP Timing Diagram

Achronix Proprietary and Confidential 427

Speedcore Component Library User Guide (UG065)

ACX_LRAM Memory Initialization

By default, the contents of the LRAM memory are undefined. If the initial contents are to be defined, they may be
assigned from either a file specified to by the nem_i ni t _fi | e parameter or assigned from the values of the
mem_i ni t _00 through nem_i nit _15 parameters.

The memory is organized as little-endian with bit zero mapped to bit zero of the mem_i ni t _00 parameter and bit
4095 mapped to bit 255 of the nem i ni t _15 parameter.

The ACX_LRAM memory block may alternatively be initialized with a memory file by setting the mem_init _file
parameter to the path of a memory initialization file. The file format in the latter case is defined by hexadecimal
entries separated by white space, where the white space can be spaces or line separation. Each number is
written as a 32-bit hexadecimal number. Commenting is allowed with text following a double-slash ("//") through
to the end of the line. C-like commenting is also allowed where the characters between "/*" and "*/" are ignored.
The memory is initialized starting with the first entry of the file initializing the memory array at address zero,
moving upward. Each line consists of a hexadecimal number representing the entry itself.

Using ACX_LRAM as a Read-Only Memory (ROM)

The ACX_LRAM memory can be used as a read-only memory (ROM) by providing memory initialization data
with a file or via parameters (as described LRAM Memory Initialization (see page 428)), and tying the wr en
signal to its de-asserted value. All signals on the read-side of the ACX_LRAM operate as described above. This
configuration allows reading from the memory, but not writing to it.

Create an Instance
To create an ACX_LRAM instance within a design, there are three available methods:
1. Infer the memory — this method provides the greatest code portability and is the recommended approach.
Examples follow of how to infer an ACX_LRAM with an output register.

2. Directly instantiated — this method gives access to the full feature set of the memory. However, any code
is less portable to other technology nodes. See Instantiation Template (see page 430)

3. ACE LRAM IP generator — Refer to the ACE User Guide (UG070) for details.

Achronix Proprietary and Confidential 428

https://www.achronix.com/documentation/ace-user-guide-ug070

Speedcore Component Library User Guide (UG065)

Inference Template
The following examples show how to infer an ACX_LRAM with an output register.

ACX_LRAM with Output Register

“timescale 1 ps / 1 ps
modul e ACX_LRAM i nfer_meminitfile_16t (rdaddr, outregce, rstregn, rdclk, dout,
wraddr, din, wen, wclk);

/] read port inputs & outputs
input [6:0] rdaddr;

i nput outregce;
i nput rstregn;
i nput rdcl k;

out put [31:0] dout;

// wite port inputs & outputs
input [6:0] waddr;

input [31:0] din;

i nput Wr en,;

i nput wrcl k;

/1 read port |ocal variables
reg [31: 0] dout_reg;

/1 128x32 menory array
reg [31: 0] memarray [0:127] /* synthesis syn_ranstyle="logic_ran */;
initial begin
$readnenb("/ <absol ute_path>/nmenfile.txt", nmem.array);
end
/] read port
al ways @ posedge rdcl k)
if (outregce)
if (~rstregn)
dout _reg <= 10' bO;
el se
dout _reg <= nem array[rdaddr];
el se
dout _reg <= dout _reg;
assign dout = dout_reg;
/] wite port
al ways @ posedge w cl k)
if (wen)
mem array[waddr] <= din;
endnodul e

Achronix Proprietary and Confidential 429

Speedcore Component Library User Guide (UG065)

Instantiation Template

Verilog

ACX_LRAM #(

)

.write_clock polarity
.read_cl ock_polarity
. reg_dout
.reg_initval
.reg_rstval
.regce_priority
.sr_assertion
.mem.init_00
.meminit_01
.mem.init_02
.mem.init_03
.mem.init_04
.mem.init_05
.mem.init_06
.mem.init_07
.mem.init_08
.mem.init_09
.mem.init_10
.meminit_11
.meminit_12
.meminit_13
.meminit_14
.meminit_15
.meminit_file
i nstance_nane (
.wrelk
.wren
. wr addr
.din
.rdcl k
. rdaddr
.outregce
.rstregn
. dout

("rise"),
("rise"),
(1" b1),
(32' h0oo),
(32' hoo),
("rstreg"),
("cl ocked"),
(256' ho),
(256' ho),
(256' h0),
(256' ho),
(256' hO),
(256' ho),
(256' ho),
(256' ho),
(256' ho),
(256' h0),
(256' ho),
(256' h0),
(256' ho),
(256' ho),
(256' hO),
(256' h0),
("l ram.init. hex")

(lramwcl k),

(I ramwen),

(I ramw addr),
(lramwdata),
(I ramrdcl k),

(I ramrdaddr),
(I ram_rdenabl e),
(lramrstregn),
(I ramrddata)

Achronix Proprietary and Confidential

430

Speedcore Component Library User Guide (UG065)

ACX_LRAMFIFO (LRAM-Based 128-Word FIFO Memory)

The ACX_LRAMFIFO implements a 128-word deep by n-bit wide FIFO memory block utilizing embedded LRAM
blocks and LUTs. The ACX_LRAMFIFO can be configured to support a variety of widths in increments of one bit.

The read and write clocks may be either synchronous or asynchronous with respect to each other. If the user

read and write clocks are from the same source, the ptr _sync_node parameter may be setto 1' b1 to enable

lower-latency synchronous generation of the status flags.

din[write_width-1:0]

wren rden
full empty
almost_empty
almost_ful ACX_LRAMFIFO
write_err read_err
rstn
wrclk rden

dout[read_width-1:0]

6586724-03.2022.11.14

Figure 140: ACX_LRAMFIFO Symbol

Output
Register

write_err -#—— L e
wren —————————————p l———————
full ~————— Memory Control/ 1
Flag Generation
almost_full <——— . E——
Logic
rstn ————
wrelk ——————=> <f———

dout

read_err
rden
empty

almost_empty

rdclk

6586724-02.2022.11.14

Figure 141: ACX_LRAMFIFO Block Diagram

Achronix Proprietary and Confidential

431

Speedcore Component Library User Guide (UG065)

Table 278: ACX_LRAMFIFO Pin Description

Name Type Dcol:)ncakin Description

rstn Input programmable FIFO reset (_activg-low). Asserted low resets the FIFO to clga_r both the
read and write pointers and set the FIFO to the empty condition.

Write Interface

wr cl k Input wr cl k Write clock (rising edge based).
Write enable (active-high). Data is written into the FIFO at the next

wren Input wr cl k activewrite clock edge when wr en is driven high, if the f ul | flag is not
asserted.

(;I 8][wi dth- Input |[wrclk Write port data input.

full Output | wrcl k Full flag (active-high).

al nost _ful | Output | wrcl k Almost-full flag (active-high).

wite_err Output | wrcl k Write error flag (active-high).

Read Interface

rdcl k Input rdcl k Read clock (rising edge based).
Read enable (active-high). Data is read from the FIFO at the next active

rden Input rdcl k edge of the read clock when r den is driven high, if the enpt y flag is not
asserted.

cleg; [wi dth- Output | rdcl k Read port data output.

enpty Output | rdcl k Empty flag (active-high).

al nost _enpty | Output | rdcl k Almost-empty flag (active-high).

read_err Output | rdcl k Read error flag (active-high).

Achronix Proprietary and Confidential

432

Speedcore Component Library User Guide (UG065)

Parameters

Table 279: ACX_LRAMFIFO Parameters

Parameter

Defined Values

Default
Value

Description

read_width,wite_w dth

32, 64, 96, 128,
160, 192, 224,
256

32

Define the width of the FIFO data input and output buses. Must have the
same value and must be a multiple of 32 bits.

read_depth,wite_depth

4, 8,16, 32, 64,
128

128

Define the depth of the FIFO, which may be up to 128 locations.
Choosing a depth less than 128 locations allows a smaller
implementation of the FIFO controller logic. Must have the same value,
and must be a power of 2.

ptr_sync_node

1' b0, 1' bl

Bypasses the synchronization circuitry between the read and write ports,
for use when the wr cl k and r dcl k inputs are connected to the same
source. Reduces the latency through the FIFO and provides faster de-
assertion of the status flags (enpt y, ful I , etc.). If the read and write
clocks are connected to different sources, the synchronization circuitry
must be used, and pt r _sync_node must be setto 1' b0.

rst_sync_node

1' b0, 1" bl

Bypasses the reset synchronization circuit. When the r st _sync_node
parameter is set to 1' b0, both the read and write pointer resets utilize
the reset synchronizer logic. When the r st _sync_node parameter is
setto 1' b1, the r st n input must be synchronous to the wr cl k/r dcl k
driving the FIFO. If the read and write clocks are connected to different
sources, the synchronization logic must be used, and r st _sync_node
must be setto 1' b0.

aful | _of f set

8-bit hexadecimal
number

8' ho4

Defines the word depth at which the al nost _f ul | output changes.

The al nost _ful | signal may be used to determine the number of

blind writes to the FIFO that can occur without monitoring the f ul | flag.
For example, if af ul | _of f set is setto 8' h04 and the al nost _f ul |
signal is de-asserted, there are at least five empty locations in the FIFO.
All five words may be written without overflowing the FIFO and causing w
rite_err tobe asserted. af ul | _of f set must be smaller than the wr
it e_dept h value.

aenpty_of f set

8-bit hexadecimal
number

8' ho4

Defines the word depth at which the al nbst _enpt y output changes.
The al nost _enpt y signal may be used to determine the number of
blind reads from the FIFO that can occur without monitoring the empty
flag. For example, if aenpt y_of f set is set to 8' h04 and the
almost_empty flag is de-asserted, there are at least five words in the
FIFO. All five words may be read without underflowing the FIFO and
causing the r ead_err flag to be asserted. aenpt y_of f set must be
smaller than the r ead_dept h value.

fwft_node

1' b0, 1' bl

1' bO

Defines whether the FIFO is in first-word-fall-through mode. This
parameter only effects the availability of the first word written to the
FIFO when empty. Operation of the two modes is the same after the first
read operation. f wf t _npde may only be setto 1' b1 when ptr_sync_
node is set to 1' bO.

* [ffwft_nodeis1' bl, the first value written to the FIFO appears
at dout (and dout p, dout xp if applicable) without having to
perform a read operation. hol d_out put mustbe 1' b1 when f w
ft_nodeis1' bl.

* [ffwft_nodeis1' b0, the first data word written to the FIFO is
available at the FIFO output one r dcl k cycle after the first read
operation.

Achronix Proprietary and Confidential

433

Speedcore Component Library User Guide (UG065)

Parameter Defined Values LT Description
Value

Controls the read output value. When hol d_out put is setto 1' b1, the
read output holds its value until the next read. When hol d_out put is
set to 1' b0, the read output data is valid for one clock cycle after the
hol d_out put 1'b0,1' bl 1'bl read and then becomes invalid, giving a slight performance advantage
in the circuit. Only disable this option if the user design can reliably pull
the data from the output within one clock cycle after the read. hol d_out
put mustbe 1' bl whenfwft_nodeis1' bl.

Enabling this option prevents data/pointer corruption caused by reading
or writing the FIFO when empty or full, respectively. Disabling this safety
check allows the FIFO to run faster, but results in data corruption if
reading from the FIFO when empty or writing to the FIFO when full.

prevent _overunderfl ow 1'b0,1' bl 1'bl

FIFO Operation
This section describes the operations of ACX_LRAMFIFO.

FIFO Reset

A FIFO reset is performed by asserting the r st n input signal for a minimum of four clock cycles of the slower of
either wr cl k or r dcl k, causing the FIFO internal state to be reset such that the FIFO is empty. After a reset, it
is not possible to retrieve any of the data contained in the FIFO before the reset occurred. The entire FIFO is
available to be written with new data.

FIFO Write

A FIFO write is performed by asserting the wr en input when the FIFO is not full. Asserting wr en causes the data
present on the di n inputs to be stored in the FIFO to be retrieved later with a read operation. If a write operation
fills the last remaining location in the FIFO, the f ul | signal is asserted on the following clock cycle. If wr en is
asserted when the FIFO is full, the write fails, and wri t e_err or is asserted on the next clock cycle.

FIFO Read

A FIFO read is performed by asserting the r den input when the FIFO is not empty. Asserting r den causes the
next data word from the FIFO memory array to be presented on the dout output. Data is always read in the
same order in which it was written and is no longer stored in the FIFO when it has been read. If a read operation
empties the last remaining FIFO location, the enpt y signal is asserted on the following clock cycle. If r den is
asserted when the FIFO is empty, the read fails, and r ead_er r or is asserted on the next clock cycle.

Achronix Proprietary and Confidential 434

Speedcore Component Library User Guide (UG065)

FIFO Status Signals

The following table describes the signals output by the ACX_LRAMFIFO component to communicate the status
of the FIFO.

Table 280: FIFO Pointers and Status Flag Clock Domain Assignments

Status Signal Cloclf Description
Domain
Asserted whenever the FIFO does not have data available to read. Asserted when
either the FIFO is reset or all data has been read from the FIFO. The enpt y flag is
synchronous to the r dcl k domain. Asserting r den when enpt y is asserted does not
ety rdel k change the contents of the FIFO in any way and does not affect the data output, but

does cause the r ead_er r output to be asserted in the following r dcl k cycle. When
ptr_sync_node is 1' b0, meaning that the read and write ports are not on the same
clock domain, it takes a few clock cycles after writing data into the FIFO before enpt y
is de-asserted. enpt y is always asserted immediately when the FIFO becomes empty.

Asserted when there are aenpt y_of f set or fewer words remaining in the FIFO. May
be used to determine the number of reads that can be performed without causing the
FIFO to underflow and r d_er r to be asserted. For example, if aenpty_of f set is

8' h04, and al nost _enpty is not asserted, at least five words remain in the FIFO.
When ptr _sync_node is 1' b0, meaning the read and write ports are not in the same
clock domain, it takes a few clock cycles after writing data into the FIFO before

al nost _enpty is de-asserted. This signal is always asserted immediately when
aenpty_of f set words remain.

al nost _enpty [rdcl k

read_err rdcl k Asserted in the cycle following assertion of r den while the FIFO is empty.

Asserted whenever all of the locations of the FIFO are in use. Asserting w en when
full is asserted does not change the contents of the FIFO in any way and causes the
wri t e_err output to be asserted in the following wr cl k cycle. The di n inputs are
full wr cl k ignored in this case. When ptr _sync_node is 1' b0, meaning the read and write ports
are not in the same clock domain, it takes a few clock cycles after reading data from the
FIFO before f ul | is de-asserted. f ul | is always asserted immediately when the FIFO
becomes full.

Asserted when af ul | _of f set or fewer unused locations remain in the FIFO. May be
used to determine the number of writes that can be performed without causing the FIFO
to overflow and wri t e_err to be asserted. For example, if af ul | _of f set is 8' h04,
and al nost _ful | is not asserted, at least five empty locations remain in the FIFO.

almost_full wrelk When ptr _sync_node is 1' b0, meaning the read and write ports are not in the same
clock domain, it takes a few clock cycles after reading data from the FIFO before
al nost _ful | is de-asserted. This signal is always asserted immediately when
af ul | _of f set locations remain.

wite_err wrcl k Asserted in the cycle following assertion of wr en while the FIFO is full.

Achronix Proprietary and Confidential 435

Speedcore Component Library User Guide (UG065)

Status Signals in Asynchronous mode

Before flag calculations can be made, the status signal generation logic ensures that both pointers are in the
same clock domain as the status signal for which the calculation is performed. Write and read pointer
synchronizers are used to transfer each of the pointers into the other clock domain. In order to synchronize a
given pointer to the opposite clock domain, a series of registers are used, adding additional delay to the flag
calculation. The status signal generation logic ensures that f ul | and al nost _f ul | are asserted on the write
clock domain immediately after the write that causes their assertion. The read that causes their de-assertion
takes a few clock cycles to propagate. Likewise, enpt y and al nost _enpt y are asserted on the read clock
domain immediately after the read that causes their assertion, while the write that causes their de-assertion
requires a few cycles to propagate across the synchronization logic.

The versions of the pointers used for flag calculations are shown in the following table.

Table 281: Pointers Used for FIFO Flag Calculations

Flag Write Read

enpty

Synchronized write pointer. | Read pointer.
al nost _enpty

full

Write pointer. Synchronized read pointer.

al nost _full

Status Signals in First-Word Fall Through Mode

First-word fall through (fwft) mode is implemented by placing an additional register at the output of the FIFO to
present data to the user before r den is asserted. The ACX_LRAMFIFO can be thought of as popping data from
the underlying FIFO into the output register whenever the output register is not occupied. This final register stage
effectively adds one additional storage element to the FIFO and affects the generation of the status signals, as
described in the following sections.

full and almost_full

Theful | and al nost _ful | signals serve to prevent the user from overflowing the FIFO, by both indicating
when the FIFO cannot accept additional data and when there is only a user-configurable number of spaces
remaining, respectively.

In the case of a small FIFO and/or with a write clock frequency faster than the read frequency, it is possible to fill
the FIFO to the almost full threshold, or even completely full, before the read-side logic has moved the first
element of data from the underlying FIFO into the output register. In this case, al nost _ful | orful | may be
asserted as the underlying FIFO fills, and then automatically de-asserted as the first element is moved to the
output register, without ever having performed a read. This behavior is intentional and guarantees that a user
design adhering to the f ul | and/or al nost _f ul | signals overflows the FIFO, even while the first data element
is moving to the output. This behavior also implies that in the absence of transient effects, al nost _ful | is
asserted when there are af ul | _of f set + 1 empty spaces in the ACX_LRAMFIFO.

empty and almost_empty

The purpose of the enpt y and al nost _enpt y signals are to prevent underflowing the FIFO, by indicating when
the FIFO is truly empty and when there is only a user-configurable number of data elements remaining,
respectively.

Achronix Proprietary and Confidential 436

Speedcore Component Library User Guide (UG065)

The generation of the enpt y signal is based on whether or not valid data is being presented to the user design
by the output register and can always be used to indicate when the output data is valid. The implementation of
the al nost _enpty flag uses the underlying FIFO fill level to determine its status. As a result, al nost _enpty is
asserted when there are less than aenpt y_of f set data elements in the underlying FIFO, or less than (
aenpty_of f set + 1) elements in the ACX_LRAMFIFO (including the output register).

If the system is designed so that the FIFO is only drained when the fill level is over a given threshold,
aenpty_of f set must be set to one less than the desired threshold, to account for the output register not being
included in the al nost _enpt y calculation.

FIFO Operational Modes

The ACX_LRAMFIFO is a highly configurable IP component that supports a number of modes of operation,
including either synchronous or asynchronous (dual-clock) operation:

® Synchronous — the same clock must be connected to the wr ¢l k and r dcl k inputs, and there cannot be a
phase offset between them.

® Asynchronous — two different clocks can be connected to the wr cl k and r dcl k inputs. The LRAM FIFO
does not require any phase or frequency relationship between the two clocks whatsoever; it treats the two
clock inputs as being completely asynchronous to one another. There is no requirement regarding the
relative frequencies of the two clocks. Either clock can be faster or slower than the other.

Synchronous Operation

The synchronous FIFO mode is selected by setting the pt r _sync_node parameter to 1' b1. In synchronous
mode, there is no latency in updating the enpt y and al nost _enpt y signals after a write operation, or updating
theful | and al nost _ful | signals after a read operation. This lack of latency means that the status outputs
always represent the exact state of the FIFO.

In this mode, first-word-fall-through (described below) is not supported, and the f wf t parameter must be 1' bO0.

Achronix Proprietary and Confidential 437

Speedcore Component Library User Guide (UG065)

Timing Diagrams

The following diagram shows the operation of the FIFO in asynchronous mode when the FIFO is empty, where
aenpty_of f set = 3. This diagram assumes that all signals not shown, such as r st n, are de-asserted.

wrclk, rdelk

wren

din

rden

rd_error

empty

almost_empty

dout

0

.

1

1L

2

1L

3

1L

4

1L

5 6 7

LI L

1L

8

5 I O R I A

\

9 10 1 12 13 14 15 16

17

‘h00

‘hil

‘h22

‘h33

‘h44 ‘h55

‘h66

/

‘h66

IX ‘hil IX ‘h22 lX ‘h33 |X ‘h44 |X ‘h55 IX

Figure 142: Synchronous Mode Empty FIFO Timing Diagram

6586724-12.2022.15.11

Achronix Proprietary and Confidential

438

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding diagram are described in the following table.

Table 282: Synchronous Mode Empty FIFO Timing Diagram Events

Event Description

wr en is asserted, writing the first data word to the FIFO, causing enpt y to be de-asserted on the following
clock cycle since the FIFO is no longer empty. At the same time, r den is asserted, indicating an attempt to
read from the FIFO. Since the FIFO remains empty, r d_er r is asserted on the following clock cycle, and
the data output dout does not change.

wr en is asserted, writing the second data word into the FIFO. At the same time, r den is asserted, reading

2 the first data word from the FIFO. The data arrives on dout on the following cycle.

3 wr en is asserted, writing the third data word into the FIFO. r den is not asserted in this cycle, so nothing is
read from the FIFO.

4 wr en is asserted, writing the fourth data word to the FIFO.

wr en is asserted, writing the fifth data word to the FIFO, leaving four words in the FIFO (since the first word
5 has already been read). The number of words is greater than the aenpt y_of f set value of 3, so
al nost _enpty is de-asserted on the following clock cycle.

6 wr en is asserted, writing the sixth data word to the FIFO.

7 wr en is asserted, writing the seventh data word to the FIFO.

8 No control signals are asserted.

9 r den is asserted, reading the second data word from the FIFO. The data arrives on dout on the following
cycle.

10 r den is asserted, reading the third data word from the FIFO. The data arrives on dout on the following
cycle.
r den is asserted, reading the fourth data word from the FIFO. Since only three words remain in the FIFO,

11 the al nost _ful | signal is asserted on the next clock cycle. The data arrives on dout on the following
cycle.

12 r den is asserted, reading the fifth data word from the FIFO. The data arrives on dout on the following
cycle.

13 r den is asserted, reading the sixth data word from the FIFO. The data arrives on dout on the following
cycle.

14 r den is asserted, reading the seventh and last data word from the FIFO. The data arrives on dout on the
following cycle. Since the FIFO is empty, the enpt y signal is asserted on the next cycle.

15 r den is asserted, even though the FIFO is empty. r ead_err or is asserted on the following clock edge,

and the FIFO contents are unchanged.

Achronix Proprietary and Confidential 439

Speedcore Component Library User Guide (UG065)

The following diagram shows the operation of the FIFO in synchronous mode, starting when there are five
locations remaining in the FIFO, where the af ul | _of f set parameter is 3. This diagram assumes that all
signals not shown, such as r st n, are de-asserted, and that the pt r _sync_node parameteris 1' b1. If the
ptr_sync_node was 1' b0, dout would be delayed by one cycle.

0 1 2 3 4 5 6 7 8 9 10 1u 12 13 14 15 16

wrelk, rdclk | l l | ' ' l
! !

wren | | \
| | |
| |
| |

din X ‘hfb X ‘hfc X ‘hfd X ‘hfe ‘hff X ‘h100 X X ‘h101 X ‘h103 X

full

|
almost_full |~ |
— i
write_error |
|

rden 1 | i [

1 1 1 1 1 1 1 1 1 —'—l

| | | |] | | | | 1 [

| | | |) | | | | | |

dout ‘h00 X ‘h01 ‘h02 X ‘h03 ‘h04

T
|

|
i
6586724-13.2022.15.11

Figure 143: Synchronous Mode Full FIFO Timing Diagram

Achronix Proprietary and Confidential 440

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding diagram are described in the following table.

Table 283: Synchronous Mode Full FIFO Timing Diagram Events

Event

Description

wr en is asserted, writing a data word to the FIFO. After the second write, only thee locations are free, so

1-5 al nost _ful | is asserted on the next clock cycle. The fifth write fills up the last element and the f ul |
signal is asserted on the following clock cycle.

6 wr en is asserted. Since the FIFO is already full, the write operation does not take place, and wri te_error
is asserted on the following clock cycle.

7-8 No operation.
wr en and r den are both asserted at the same time as both a read and a write operation are to be

9 performed. Since f ul | is asserted, the write fails, and wri t e_err or is asserted on the following cycle.
The read is successful, and the output data is presented on dout on the following cycle.
wr en and r den are both asserted at the same time, and the input word is written while the next output word

10
is read and presented on dout . Since f ul | is not asserted, both operations are successful.

11-13 r den is asserted, and the next output data is read and presented on dout . After the third read, more than
three unused locations remain in the FIFO, so al nbst _f ul | is de-asserted on the next cycle.

14 r den is not asserted, so the output remains constant.

Achronix Proprietary and Confidential 441

Speedcore Component Library User Guide (UG065)

Asynchronous Operation

When the FIFO is configured as an asynchronous FIFO (pt r _sync_node = 1' b0), no phase or frequency
relationship is assumed between the write and the read clocks; the ACX_LRAMFIFO treats the two clock inputs
as being completely asynchronous to one another. There is no requirement regarding the relative frequencies of
the two clocks. Either clock can be faster or slower than the other.

Compared to synchronous mode, asynchronous mode causes additional delay when updating enpt y and

al nost _enpty after a write operation, or updating f ul | and al nost _ful | after a read operation, as it takes
time for the status to cross safely from one clock domain to the other. All status signals are asserted without
delay; only their de-assertion requires additional time. For asynchronous operation, the ptr _sync_node
parameter must be setto 1' bO0.

When using the FIFO with two clocks, the first-word fall-through (f wf t) parameter controls when data is made
available on the output signals:

® fwft =1'b0 (request mode) — When the f wf t parameteris 1' b0, the FIFO is in request mode. Asserting
r den requests that the data be presented on the dout pins on the following cycle. This mode is identical
to when the FIFO has ptr _sync_node = 1' b1, and the clocks are synchronous to one another. In this
mode, the output of the FIFO remains unchanged after the first write to a FIFO in the empty state. After
the first write operation, the enpt y flag is de-asserted, indicating that data is present in the FIFO and may
be read. The FIFO must be read by asserting r den, and the first word written into the FIFO is available at
the FIFO outputs on the next r dcl k clock cycle. Each subsequent read operation updates the FIFO
outputs with the next stored data word if it is available (enpt y = 0).

® fwft =1'b1 (acknowledge mode) - When the f wi t parameteris 1' b1, the FIFO behaves as a first-word-
fall-through FIFO, meaning that when the FIFO is empty, the first data word written to the FIFO is
presented on the output pins as soon as possible, without waiting for r den to be asserted. After a reset
(or after the last word has been read from the FIFO) the FIFO is in an empty state as indicated by
assertion of enpt y. The output of the FIFO is updated after the next write to the FIFO, and enpty is de-
asserted indicating that there is data in the FIFO that may be read. Asserting r den effectively
acknowledges the output data currently on the dout pins, allowing the FIFO to move to the next data
word if not empty. Each subsequent read operation updates the FIFO outputs with the next stored data
word if it is available (enpty = 1' b0). First-word fall-through mode effectively makes the FIFO one
element deeper.

Achronix Proprietary and Confidential 442

Speedcore Component Library User Guide (UG065)

Timing Diagrams

The following diagram shows the operation of the FIFO in asynchronous mode when the FIFO is empty, where
aenpty_of f set = 3. This diagram assumes that all signals not shown, such as r st n, are de-asserted.

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

SREREREREEEREEERE RN

wrelk

v \
X

din

7
7
7
7
7
7
7
7

rden

empty \ /
rd_error ’ \ ’
° almost_empty /
Z
dout ‘h00 ‘h1l ‘h22 ‘h33 ‘had ‘h55 ‘h66
- almost_empty
2
dout X 'h00 ‘hil X ‘h22 ‘h33 ‘ha4 ‘h65 X
T T d T T T T T | { { { 4
1 1 | 1 i | |

6586724-14.2022.15.11

Figure 144: Asynchronous Mode Empty FIFO Timing Diagram

Achronix Proprietary and Confidential 443

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding diagram are described in the following table.

Table 284: Asynchronous Mode Empty FIFO Timing Diagram Events

Event Description
wr en is asserted synchronous to wr cl k, writing seven data words to the FIFO.
® Two or three clock cycles after the first write, enpt y is de-asserted synchronous to rdcl k. Iffwft =
0-6 1' b1, the first data is presented on dout when enpty is de-asserted.
® After the fifth write, four words remain in the FIFO (since the first word has already been read). The
amount of words is greater than aenpt y_of f set (3), so al nost _enpt y is asserted two or three
clock cycles later, synchronous to r dcl k.
° r den is asserted indicating an attempt to read from the FIFO. Since the enpt y output remains asserted,
the read fails, and r d_er r is asserted on the following clock cycle. The data on dout does not change.
r den is also asserted, reading the first data word from the FIFO.
3 ® fwft =1' b0 - the data arrives on dout on the following cycle.
® fwft =1' bl - the first data word on dout is replaced by the second data word.
4 r den is not asserted in this cycle. Nothing is read from the FIFO.
6-8 No control signals are asserted.
r den is asserted, reading the second data word from the FIFO.
9 ® fwft =1' b0 - the data arrives on dout on the following cycle.
® fwft =1' bl - the previous data word on dout is replaced by the next data word.
r den is asserted, reading the third data word from the FIFO.
10 ® fwft =1' b0 — the data arrives on dout on the following cycle.
® fwft =1' bl - the previous data word on dout is replaced by the next data word, with only four
more words remaining in the FIFO. al nost _enpt y is de-asserted.
r den is asserted, reading the fourth data word from the FIFO.
® fwft =1' b0 - the data arrives on dout on the following cycle, with only four more words remaining
11 . .
in the FIFO. al nost _enpty is de-asserted.
® fwft =1' bl - the previous data word on dout is replaced by the next data word.
12 r den is asserted, reading the fifth data word from the FIFO.
13 r den is asserted, reading the sixth data word from the FIFO.
14 r den is asserted, reading the seventh and last data word from the FIFO. Since the FIFO is empty, enpty is
asserted on the next r dcl k cycle.
15 r den is asserted even though the FIFO is empty. r d_er r or is asserted on the following clock edge, and
the FIFO contents are unchanged.

Achronix Proprietary and Confidential 444

Speedcore Component Library User Guide (UG065)

The following diagram shows the operation of the FIFO in asynchronous mode, starting when there are five
locations remaining in the FIFO where af ul | _of f set is 3. This diagram assumes that all signals not shown,

such as r st n, are de-asserted, and pt r _sync_node is 1' bO0.

0 1 2 3 4 5 6 7 8 9 10 1n 12 13 14 15 16 17 18

o] \ I

din :X ‘hfb X ‘hfc X ‘hfd X ‘hfe X ‘hff X‘thO X X ‘h101 X‘h103 X
full / \

almost_full ' \
write_error [\ , \

o
%{dout X ‘h00 X ‘h01 X ‘h02 X ‘h03 X ‘h04
Z

—
il
g{dout ‘h00 X ‘h01 X ‘h02 X ‘h03 X ‘ho4 X ‘h05

6586724-15.2022.15.11

Figure 145: Asynchronous Mode Full FIFO Timing Diagram

Achronix Proprietary and Confidential 445

Speedcore Component Library User Guide (UG065)

The events of each clock cycle in the preceding diagram are described in the following table.

Table 285: Asynchronous Mode Full FIFO Timing Diagram Events

Event Description
wr en is asserted, writing five data words to the FIFO.
® After the second write, only three locations remain, so al nost _f ul | is asserted on the next clock
1-5 cycle.
® After the fifth write, the last element in the FIFO has been used, and f ul | is asserted on the
following clock cycle.
6 wr en is asserted. Since the FIFO is already full, the write operation does not take place, and write_error
is asserted on the following clock cycle.
7-8 No operation.
r den is asserted, and the next output data is read and presented on dout . Two or Three cycles later, f ul |
is de-asserted synchronous to wr cl k.
9 * fwft =1' b0 — the first data arrives on dout on the following cycle.
* fwft =1' bl - the first data has been present on the output since it was first written. This data is
replaced by the next data being read from the FIFO.
10 r den is asserted, and the next output data is read from the FIFO and presented on dout .
r den is asserted synchronous to r dcl k and wr en is asserted synchronous to wr cl k, meaning that both a
11 read and write are to be performed. Since f ul | is asserted, the write fails, and wi t e_error is asserted
on the following wr cl k cycle. The read is successful, and the output data is updated on the following r dcl k
cycle.
r den is asserted synchronous to r dcl k and wr en is asserted synchronous to wr cl k, The input word is
12 written to the FIFO while the next output word is read from the FIFO and presented on dout . Since ful | is
not asserted, both operations are successful. Now more than three unused locations remain in the FIFO, so
al nost _ful | is de-asserted two or three cycles later, synchronous to wr cl k.
13 r den is asserted, and the next output data is read and presented on dout .

Achronix Proprietary and Confidential 446

Speedcore Component Library User Guide (UG065)

Instantiation Template

Verilog

ACX_LRAMFI FO #(
. ptr_sync_node
.read_w dth
.write_wdth
.read_depth
.write_depth
.fwft_node
.afull _of fset
.aenpty_of fset
. hol d_out put

) instance_nane (
.rstn
.wrelk
.wren
.din
Lfull
.alnost _full
.Wite_err
.rdcl k
.rden
. dout
.enmpty
.al nost _enpty

(1" b0),
(32),
(32),
(128),
(128),
(1" b0),
(8 h4),
(8" h4),
(1' bo)

(user_rstn),
(user_wrcl k),
(user_wren),
(user_din),
(user _full),
(user_al nost _full),
(user_wite_err),
(user _rdcl k),
(user _rden),
(user_dout),
(user_enpty),
(user _al nost _enpty)

Achronix Proprietary and Confidential

447

Speedcore Component Library User Guide (UG065)

------------- ACHRONI X LI BRARY ------------
library speedster7t;
use speedster7t.core.all;

-- Conponent

i nstance_nane :

generic map

(

DONE ACHRONI X LI BRARY
I nstantiation
ACX_LRAMFI FO

ptr_sync_node = 0,
read_wi dth = 32,
wite_ wdth => 32,
read_depth => 128,
wite_depth => 128,
fwft _node => 0,
aful | _of f set = 4,
aenpty_offset => 4,
hol d_out put =0
)
port map
(
rstn => user_rstn,
wr cl k => user_wrclk,
wren => user_wen,
din => user _din,
full => user_full,
al most _full => user_al nost _full,
wite_err => user_wite_err,
rdcl k => user _rdcl k,
rden => user _rden,
dout => user _dout,
enpty => user_enpty,
al nost _enpty => user _al nost _enpty,
read_err => user_read_err
)

Achronix Proprietary and Confidential

448

Speedcore Component Library User Guide (UG065)

ACX_LRAMZ2K_FIFO

The ACX_LRAM2K_FIFO implements a 2Kb FIFO, configured as either 72 bits wide by 32 words deep, or 36 bits
wide by 64 words deep. Each port width can be independently configured and on different clock domains. For
higher performance operation, an additional output register can be enabled. Enabling the output register causes
an additional cycle of read latency.

wrcelk : rdclk
1

rdclk

wrcelk

rstn

wren

rden

FIFO Controller

empty

full -

» almost_empty

almost_full -

write_error & - read_error

wradder rdaddr

we ————— outreg_ce
2304-Bit

outreg_rstn
Memory

din[71:0] dout[71:0]

38371816-01.2022.11.14

Figure 146: ACX_LRAM2K_FIFO Block Diagram

Achronix Proprietary and Confidential 449

Speedcore Component Library User Guide (UG065)

Parameters

Table 286: ACX_LRAMZ2K_FIFO Parameters

Parameter

Supported Values

Default
Value

Description

read_wi dth

36, 72

72

Controls the width of the read port. Can be different from wri t e_wi dt h:

read_w dt h =72 — depth = 32 words.
read_w dt h = 36 — depth = 64 words.

wite_width

36, 72

72

Controls the width of the write port. Can be different from r ead_wi dt h:
write_wi dt h =72 - depth = 32 words.
write_w dth =36 - depth =64 words.

rdcl k_pol arity

"rise", "fall"

"rise"

Controls whether the r dcl k signal uses the falling or the rising edge:
"rise" — rising edge.
"fall" — falling edge.

wrcl k_polarity

"rise", "fall"

"rise"

Controls whether the wr ¢l k signal uses the falling or the rising edge:
"rise" — rising edge.
"fall" — falling edge.

outreg_enabl e

Controls whether the output register is enabled:

0 — disables the output register and results in a read latency of one cycle.

1 — enables the output register and results in a read latency of two cycles. Only effective when
fwft_node =0. When f wf t _node = 1, the output defaults to out r eg_enabl e = 0.

sync_node

Controls whether the FIFO operates in synchronous or asynchronous mode:

0 — asynchronous mode.

1 — synchronous mode.

In synchronous mode, the two input clocks must be driven by the same clock input and
pointer synchronization logic is bypassed resulting in lower latency for flag assertion.

aful | _threshold

0-6' h3F

6' h4

The af ul | _t hr eshol d parameter defines the word depth at which the al nost _f ul |
output changes. The al nost _f ul | signal may be used to determine the number of blind
writes to the FIFO that can be issued without monitoring the f ul | flag. For example, if the
aful | _t hreshol d parameter is set to 6' h04 and the al nost _f ul | signal is de-asserted,
there are at least five empty locations in the FIFO. All five words may be written without
overflowing the FIFO and causing wri t e_err or to be asserted.

aenpty_threshol d

0-6' h3F

The aenpt y_t hr eshol d parameter defines the word depth at which the al nost _enpty
output changes. The al npst _enpt y signal may be used to determine the number of blind
reads from the FIFO that can be performed without monitoring the enpt y flag. For example, if
the aenpt y_t hr eshol d parameter is set to 6' h04 and the al nost _enpty flag is de-
asserted, there are at least five words in the FIFO. All five words may be read without
underflowing the FIFO and causing the r ead_er r or flag to be asserted.

fwft_node

First-word fall through. Controls the behavior of data at the output of the FIFO relative to r den:

0 — first word data is presented at the output of the FIFO on the rising edge of wr cl k except
for sync_node = 0 and out put _enabl e =1. For sync_npde = 1 and out put _enabl e =
1, data is present one cycle later.

1 — first word data is presented at the output of the FIFO on the rising edge of wr cl k in all
modes. out r eg_enabl e has no effect when f wf t _npde = 1.

Achronix Proprietary and Confidential 450

Speedcore Component Library User Guide (UG065)

Ports

Table 287: ACX_LRAM2K_FIFO Pin Descriptions

Name Direction Description
rstn Input Asynchronous reset input. This signal resets the entire FIFO.
Write clock input. Write operations are fully synchronous and occur upon the active edge of the wr cl k
wr cl k Input input when wr en is asserted. The active edge of wr cl k is determined by the wr cl k_pol arity
parameter.
wren Input Write port enable. Assert wr en high to write data to the FIFO.
di n[71: 0] Inout Write port data input. When wr i t e_wi dt h is less than 72, the input data must be assigned from
' pu di n[0] upwards (right justified).
full Output Asserted high when the FIFO is full.
al nost _full Output Asserted high when remaining space in the FIFO is less than, or equal to, af ul | _t hr eshol d.
write_error Output Asserted the cycle after a write to the FIFO when the FIFO is already full.
Read clock input. Read operations are fully synchronous and occur upon the active edge of the r dcl k
rdcl k Input input when the wr en signal is asserted. The active edge of r dcl k is determined by rdcl k_pol arity
parameter.
rden Input Read port enable. Assert r den high to perform a read operation.
Output register synchronous reset. When out r eg_r st n is asserted low, the value of the output
outreg_rstn Input . .
register is reset to 0.
Active-high output register clock enable. When out r eg_enabl e = 1, de-asserting out r eg_ce
outreg_ce Input causes the LRAM to hold the dout [] signal unchanged, independent of a read operation. When
outreg_enabl e =0, the out r eg_ce input is ignored.
enpty Output Asserted high when the FIFO is empty.
al nost _enpty Output Asserted high when the FIFO contains less than, or equal to, aenpt y_t hr eshol d words.
read_error Output Asserted on the cycle after a read request to the FIFO when the FIFO is already empty.
dout [71: 0] Output Read port data output. If r ead_wi dt h is less than 72, the output data is assigned from dout [0]

upwards, (right justified).

Achronix Proprietary and Confidential 451

Speedcore Component Library User Guide (UG065)

Read and Write Operations

Write Operation

Write operations are signaled by asserting the wr en signal. The value of di n is stored to the next available FIFO
location on the rising edge of wr cl k whenever wr en is asserted, and f ul | is deasserted.

Read Operation

Read operations are signaled by asserting the r den signal. The next FIFO location contents are latched to the
output latches on the rising edge of r dcl k whenever r den is asserted and enpt y is deasserted. If
outreg_enabl e =1and fwft_node =0, the FIFO contents are available on dout on the following rising edge
of rdcl k.

First Word Fall Through (FWFT)

The FIFO operates in a first-word fall-through mode (where the first word written to the FIFO is presented on the
output before r den is asserted) for the following configurations:

® fwft_npbde =0and sync_node = 1 — FIFO natively operates as FWFT. With out r eg_enabl e = 1, the
first word takes an additional cycle of r dcl k to be present on the output.

* fwft node =0andsync_node =0 - FIFO operates as FWFT when out r eg_enabl e = 0.

* fwft_ node =1-FIFO operates as FWFT. out r eg_enabl e has no effect and the next data is output on
the rising edge of r dcl k when r den is asserted.

Output Timing
The ACX_LRAM2K_FIFO has two options for interface timing controlled by the out r eg_enabl e parameter:

¢ Latched mode — out r eg_enabl e = 0. In latched mode, when the FIFO contents are read, the data is
latched into the output latches on the rising edge of r dcl k, providing a read operation with one cycle of
latency.

® Registered mode — out r eg_enabl e = 1. In registered mode, there is an additional register after the latch
supporting higher-frequency designs and providing a read operation with two cycles of latency.

Table 288: ACX_LRAM2K_FIFO Output Function Table for Latched Mode

Operation (1) rdclk | outlatch_rstn rden dout[]
Hold X X X Hold previous value
Reset latch 1 0 X 0
Hold 1 1 0 Hold previous value
Read i 1 1 Next FIFO entry

Table Notes

1. Operation assumes rising-edge clock and active-high port enable.

Achronix Proprietary and Confidential 452

Speedcore Component Library User Guide (UG065)

Table 289: ACX_LRAM2K_FIFO Output Function Table for Registered Mode

Operation (1) rdclk outreg_rstn outregce dout[]
Hold X X Previous dout []
Reset Output 1 1 0
Hold 1 0 Previous dout []
Update Output 1 1 Registered from latch output
Table Notes

1. Operation assumes active-high clock, output register clock enable, and output register reset.

Achronix Proprietary and Confidential

453

Speedcore Component Library User Guide (UG065)

Timing Diagrams

Synchronous Mode

Data output, dout , timing for all combinations of out r eg_enabl e and f Wf t _node is shown in the following
waveform.

L e rrrL

wren / \ / \
rden f \ /
din 1 X 2 X 3 X 4 X 5 X 8 X 7T X 8 YW
dout outreg=0, fwft=0 1 D 4 X 8 X 7 X & Y7 Z777/;;
dout outreg=1, fwft=0 1 2 3 | 4 s 7 s VT
dout outreg=0, fwft="1 1 D 4 X 8 X 7 X & Y7 Z777/;;
dout outreg=1, fwit=1 Ziiiiiiiiiii iy 1 X 2 X 3 X 4 6 7 X = G

Figure 147: Output Timing With sync_mode = 1

Asynchronous Mode

Data output, dout , timing for all combinations of out r eg_enabl e and f wft _node is shown in the following
waveform.

% e T e e e e Y e e I Y s Y e e I e s Y s I e
raclk | | I | I | I | I | I | I | I | I | I | I | I |

wren

an 77z 1 X2 X 3 X 4 X 5 X 6 X T N

rden / ;’[
dout outreg=0, fwft=0 1 X
dout outreg=1, ft=0
dout outreg=0, fwft=1 1 X
dout outreg=1, fwft=1 1 X

7777,
X 7

7777,
7777777

nf R (=] |~
et
w| |w| o] e
et
ENRESRITEES
et
ol |@| [~ |=
et
~[|~ o |~

Figure 148: Output Timing With sync_mode = 0

Inference
The ACX_LRAM2K_FIFO is not inferrable.

Achronix Proprietary and Confidential 454

Speedcore Component Library User Guide (UG065)

Instantiation Templates

Verilog

ACX_LRAMRK_FI FO #(
.aenmpty_threshold
.afull _threshol d
.fwft_node
.outreg_enabl e
.rdclk_polarity
.read_width
. sync_node
.wrclk_polarity
.write_wdth

) instance_nane (

(aenpty_t hreshol d),
(afull _threshol d),
(fwft_node),
(outreg_enabl e),
(rdcl k_pol arity),
(read_w dth),
(sync_node),
(wclk_polarity),
(wite_wi dth)

.din (din),

.rstn (rstn),

.wrel k (wrclk),

.rdcl k (rdcl k),

.wren (wren),

.rden (rden),
.outreg_rstn (outreg_rstn),
.outreg_ce (outreg_ce),

. dout (dout),
.almost _full (al nost _full),
Lfull (full),

.al nost _enpty (al most _enpty),
.enpty (enmpty),

.write_error
.read_error

(wite_error),
(read_error)

Achronix Proprietary and Confidential

455

Speedcore Component Library User Guide (UG065)

VHDL

-- VHDL Instantiation tenplate for ACX_LRAMZK_FI FO

i nstance_nane :

ACX_LRAMRK_FI FO

generic map (

aenpty_t hreshol d
afull _threshold

fwft_node
outreg_enabl e

aenpty_t hreshol d,
aful | _threshol d,
fwft_node,

out reg_enabl e,

rdcl k_polarity => rdcl k_pol arity,
read_wi dth => read_wi dth,
sync_node => sync_node,

wrcl k_polarity => wclk_polarity,

wite_wdth => wite_width

)

port map (
din => user _din,
rstn => user_rstn,
wrcl k => user_wrcl Kk,
rdcl k => user_rdcl k,
wren => user_wren,
rden => user_rden,
outreg_rstn => user_outreg_rstn,
outreg_ce => user_outreg_ce,
dout => user_dout,
al nost _full => user_al nost _full,
full => user_full,
al nost _enpty => user_al nost _enpty,
enpty => user_enpty,

wite_ error
read_error

user_wite_error,
user _read_error

Achronix Proprietary and Confidential

456

Speedcore Component Library User Guide (UG065)

Chapter - 7: JTAG TAP Controller Functions

The JTAG interface (IEEE Standard 1149.1) is a serial interface commonly used for device testing. This interface
is much simpler than others such as PCle or Ethernet but has a significantly lower bandwidth. However, for
applications with low-throughput requirements, this simplicity is an advantage as it greatly reduces the time
needed for bring-up.

Achronix devices have a built in JTAG interface with the following uses:
® Traditional device testing, such as with boundary scan
® Programming the device with a configuration bitstream

® A generic communication interface to a user design mapped to a Speedcore instance.

This section focuses on the latter application.

The built in JTAG controller is called a TAP controller, which is defined by the JTAG standard. The interface
between a TAP controller and a Speedcore instance is referred to as the JTAP interface. While the core has only
one JTAP interface in a Speedcore instance, the JTAP library enables multiplexing this interface between
different parts of the user design.

The following figure shows the components of a system using the JTAP interface.

Off-Chip Environment Host ASIC

JTAP bus

JTAG JTAP

or acx_stapl_player Interface

User logic User logic User logic

Figure 149: JTAG System Overview

A common way of communicating over a JTAG interface is with the STAPL language. ACE includes a STAPL
interpreter, acx_st apl _pl ayer, accessible as a stand-alone program or with the run_st apl _acti on ACE
command. The ACE STAPL player accesses the JTAG interface through a Bitporter device, or through an FTDI
FT2232H interface cable. Other JTAG-compliant software and hardware may be substituted for the off-chip
environment.

In the Speedcore case, there are two types of instances:

1. One JTAP interface instance (ACX_JTAP_INTERFACE).
2. Any number of JTAP units.

Achronix Proprietary and Confidential 457

Speedcore Component Library User Guide (UG065)

The Speedcore library has two variants of JTAP unit:

1. The ACX_JTAP_REG_UNIT with a parallel user interface.
2. The ACX_JTAP_UNIT with a serial user interface.

These JTAP units are independent of each other and share the JTAP interface as described in the following
section.

To access the macros described in this section, the JTAP library must be included:

“include "speedster<technol ogy>/ conmon/ speedst er <t echnol ogy>_j t ap. v"

<t echnol ogy> is replaced with the target technology library name (i.e., 16t).

Achronix Proprietary and Confidential 458

Speedcore Component Library User Guide (UG065)

ACX_JTAP_INTERFACE

The ACX_JTAP_INTERFACE includes the hard TAP controller and must be connected directly to the top-level
JTAG ports without IPIN or OPIN instances. The macro also includes a 6-bit unit ID register used to select
between multiple connected JTAP units, each having a unique identifying ID. To use the JTAP interface, a

design must have one (and only one) ACX_JTAP_INTERFACE instance.

To top-level
ports

ACX_JTAP_INTERFACE

S s i_trstn o_jtap_bus
e i_tms [[TVES
e o i _tdi

o_tdo

W ey 0_tdo_oen

Figure 150: ACX_JTAP_INTERFACE Pins

} To JTAP units

11798174-03.2022.11.14

Achronix Proprietary and Confidential

459

Speedcore Component Library User Guide (UG065)

Ports

Table 290: ACX_JTAP_INTERFACE Pins

Pin Name Direction Description

JTAG Pins
i_tck Input JTAG test clock.
i _trstn Input JTAG test active-low reset.
i_tdi Input JTAG test data in.
i _tms Input JTAG test mode select.
o_tdo Output JTAG test data out.
o_tdo_oen™ Output Active-low output enable for o_t do
JTAP Bus Pins
o_jtap_bus Output Output to JTAP units. Abstract type named j t ap_bus_t p.
i _tdo_bus Input Input from o_t do_bus of JTAP units.

Table Notes

1. The o_t do_oen signal only exists in Speedcore products to be combined with o_t do to drive a tri-state
pad. Achronix stand-alone FPGAs already include the tri-state pad to drive o_t do.

Achronix Proprietary and Confidential

460

Speedcore Component Library User Guide (UG065)

Connection to the JTAP Bus

The o_j t ap_bus output is a Verilog struct of type j t ap_bus_t p combining several wires (as defined in
speedst er <t echnol ogy>_j tap. v). The structo_j t ap_bus fans out to all JTAP units. Simply use the struct
by name as illustrated in the following code snippet (no need for concern with the contents).

jtap_bus_tp jtap_bus;

ACX_JTAP_I NTERFACE x_jtap_interface (

.0_j tap_bus(jtap_bus)
)i

ACX_JTAP_REG UNIT x_jtap_unit (
.i_jtap_bus(jtap_bus)

Each JTAP unit has a single-bit signal, o_t do_bus, that must be connected to the inputi _t do_bus of the
ACX_JTAP_INTERFACE. There are two methods to make this connection:

1. Multiple units can be chained together by connecting the o_t do_bus of one unitto the i _t do_bus of
another.

2. Multiple o_t do_bus signals can be ORed together.

The following figure illustrates both methods.

ACX_JTAP_INTERFACE

\j

o_jtap_bus

JTAP Unit

i_jtap_bus

JTAP Unit

i_jtap_bus

o_tdo_bus i_tdo_bus 0

o_tdo_bus i_tdo_bus

i_tdo_bus

i_jtap_bus

JTAP Unit

o_tdo_bus i_tdo_bus 0

11798174-01.2022.11.14

Figure 151: JTAP Bus Example

Achronix Proprietary and Confidential 461

Speedcore Component Library User Guide (UG065)

ACX_JTAP_REG_UNIT

ACX_JTAP_REG_UNIT connects to the JTAP bus and presents a parallel interface to the user design. Each
JTAP unit (ACX_JTAP_REG_UNIT or ACX_JTAP_UNIT) has a unique, user-selected unit ID. The off-chip

environment specifies the ID of the unit to be selected. The unit control outputs are only asserted when the unit is

selected.

Parameters

ACX_JTAP_REG_UNIT

o_tck_core

o_jtag_reset_n

o_unit_select

i_jtap_bus o_address

JTAP bus o_tdo_bus o_write
i_tdo_bus o_capture_dr

o_update_dr

o_data

i_data

Table 291: ACX_JTAP_REG_UNIT Parameters

User

[Design

11798174-07.2022.11.14

Figure 152: ACX_JTAP_REG_UNIT Pins

Parameter Default Value Description
UNI T_I D] 5: 0] 1 Unique unit ID. ID 0 is reserved for Snapshot.
ADDR_W DTH 0 Number of address bits, if any.
ADDR | NC 0 Address increment amount, if any.
| NPUT_DELAY 0 Extra delay between o_capt ur e_dr and sampling of i _dat a.
DATA_W DTH 32 Number of data bits.

Achronix Proprietary and Confidential

462

Speedcore Component Library User Guide (UG065)

Ports
Table 292: ACX_JTAP_REG_UNIT Pins

Signal Direction Description
JTAP Bus
. JTAP bus input, driven by the ACX_JTAP_INTERFACE. Abstract type named
i _jtap_bus Input

jtap_bus_tp.

Input from o_t do_bus of another JTAP unit; used to chain units. Tie to 1' b0 if

i _tdo_bus Input unused.

Output to i _t do_bus of another JTAP unit (in a chain) or of the

o_tdo_bus Output | A\CX_JTAP_INTERFACE.

User Design Interface

JTAG clock. The frequency of this clock is typically <= 10 MHz and the clock

o_tck_core Output may stop between transactions.

Active-low reset for user logic. This signal is asserted when the TAP controller
enters the reset state, but only if the ACX_JTAP_REG_UNIT instance was
selected at the time of reset. An effect of the reset is to deselect the unit
(because the JTAG instruction register is reset to JTAG_| DCODE).

o_jtag_reset_n Output

High when this unit has been selected and can receive transactions. This signal
usually can be ignored because the other control signals (o_j tag_r eset _n,

o_unit_sel ect Output o_capture_dr, and o_updat e_dr) are only asserted when this unit is
selected.

0_address . . .

[ADDR W DTH- 1: 0] Output Address for the transaction (valid when o_capt ur e_dr is asserted).

o wite Output High when the write bit is set (valid when o_capt ur e_dr is asserted).

o_capture_dr Output Asserted high to indicate the start of a transaction.

Asserted high to indicate that o_dat a is valid. This signal is only asserted for

o_updat e_dr . . " .
-up - Output write transactions. Transitions on the falling clock edge.

Input (read) value. This signal is registered | NPUT_DELAY + 0.5 cycles after
assertion of o_capt ure_dr.

i _data

[DATA W DTH- 1: 0] | Pt

Output (write) value. This signal is valid when o_updat e_dr is asserted and
stable until assertion of o_capt ure_dr.

o_data

[DATA W DTH-1: 0] | QutPut

Achronix Proprietary and Confidential 463

Speedcore Component Library User Guide (UG065)

Each transaction has an address plus a write bit. Regardless of whether the write bit is set, all transactions return
data to the off-chip environment. The environment can choose to ignore this data during write operations.

Every transaction starts with assertion of o_capt ur e_dr ("capture data register"). By defaulti _dat a is
sampled one half cycle after o_capt ur e_dr is asserted (t = 0.5 in the diagram). To allow more time for data to
appear, a non-zero | NPUT _DELAY can be specified (data capture is delayed by | NPUT_DELAY cycles). The
following diagram illustrates | NPUT_DELAY =S = 1.

The o_updat e_dr signal is only asserted for a write. Typically, the write data, o_dat a , is sampled while
o_updat e_dr is high (at t=7 or t=7.5 in the diagram), though it remains valid until the next assertion of
o_capture_dr.

The o_wri t e signal is valid at the same time as o_addr ess.
The following timing diagram illustrates the control and data signals, where D = DATA_W DTH, S = | NPUT_DELAY

S >=D , >=15
i~ > g "
o | 1 ! 2 3 4 5 6 1 7 | =8

o_tck_core

IO
Q
o)
o
=3
c
=
I(D
o
=

|
i_data D
] I
I I
I I |]
o_update_dr : : , !
L L I
I I I |
I I i i
o_data X
T T T T
I I I I
I I I |
o_address (stable during transaction) X
]
1

11798174-08.2022.14.11

Figure 153: ACX_JTAP_REG_UNIT Signal Timing.

Achronix Proprietary and Confidential 464

Speedcore Component Library User Guide (UG065)

ACX_JTAP_UNIT

ACX_JTAP_UNIT connects to the JTAP bus and presents a serial interface to the user design. The serial
interface closely matches a traditional JTAG interface — the user design must implement a shift register
connected betweenthe o_tdi _coreandi _tdo_cor e pins of the ACX_JTAP_UNIT. During a transaction, read
data is shifted from the shift register to the off-chip environment, while simultaneously, write data is shifted from
the off-chip environment into the shift register. For convenience, the library provides a shift register module,
ACX_JTAP_SHIFT_REG, but other shift register designs may be used as well.

While this shift register interface is slightly more complex than the parallel interface of the

ACX _JTAP_REG_UNIT, the advantage of the serial interface is that it allows changing the data width on a per-
transaction basis. For instance, the user design can have two shift registers of different sizes and use the
address to select the appropriate register. The following figure provides an example of such an arrangement.

Note

@ The shift direction is from MSB to LSB, with the LSB of the shift register tied to the input i _t do_cor e
of the ACX_JTAP_UNIT.

ACX_JTAP_UNIT

o_tdi_core o_address i_tdo_core

MSB

8-bit shift register

MSB LSB

11798174-11.2022.11.14

Figure 154: Example: ACX_JTAP_UNIT With Two Shift Registers of Different
Width

Each JTAP unit (ACX_JTAP_REG_UNIT or ACX_JTAP_UNIT) has a unique, user-selected unit ID. The off-chip
environment specifies the ID of the unit to be selected. The unit control outputs are only asserted when the unit is
selected.

Achronix Proprietary and Confidential 465

Speedcore Component Library User Guide (UG065)

Parameters

JTAP bus

ACX_JTAP_UNIT

o_tck_core

o_jtag_reset_n

o_unit_select

i_jtap_bus o_address
o_tdo_bus o_write User

i_tdo_bus o_capture_dr DeSign

o_shift_dr

o_update_dr

i_tdo_core

o_tdi_core

11798174-10.2017.11.12

Figure 155: ACX_JTAP_UNIT Pins

Table 293: ACX_JTAP_UNIT Parameters

Parameter Default Value Description
UNI T_I DO 5: 0] 1 Unique unit ID. ID 0 is reserved for Snapshot.
ADDR_W DTH 0 Number of address bits, if any.
ADDR | NC 0 Address increment amount, if any.
SHI FT_DELAY 0 Extra delay between o_capt ure_dr and o_shi ft_dr.

Achronix Proprietary and Confidential

466

Speedcore Component Library User Guide (UG065)

Ports
Table 294: ACX_JTAP_UNIT Pins

Signal Direction Description
JTAP Bus
o JTAP bus input, driven by the ACX_JTAP_INTERFACE. Abstract type named
i _jtap_bus Input

jtap_bus_tp.

Input from o_t do_bus of another JTAP unit; used to chain units. Tie to 1' b0 if

i tdo b
[_bus Input unused.

Outputtoi _t do_bus of another JTAP unit (in a chain) or of the

o_tdo_bus Output | A\CX_JTAP_INTERFACE.

User Design Interface

JTAG clock. The frequency of this clock is typically <= 10 MHz and the clock

o_tck_core Output may stop between transactions.

Active-low reset for user logic. This signal is asserted when the TAP controller
enters the reset state, but only if the ACX_JTAP_UNIT instance was selected at
the time of reset. An effect of the reset is to deselect the unit (because the
JTAG instruction register is reset to JTAG_| DCODE).

o_jtag_reset_n Output

High when this unit has been selected and can receive transactions. This signal
usually can be ignored because the other control signals (o_j t ag_r eset _n,

o_unit_sel ect Output o_capture_dr,o_shift_dr,and o_update_dr) are only asserted when
this unit is selected.

0_address . . .

[ADDR W DTH- 1: 0] Output Address for the transaction (valid when o_capt ur e_dr is asserted).

o wite Output High when the write bit is set (valid when o_capt ur e_dr is asserted).

o_capture_dr Output Asserted high to indicate the start of a transaction.

Asserted high when the user shift register must shift. Asserted SHI FT_DELAY +

o_shift_dr Output 1 cycles after assertion of o_capt ure_dr.

Asserted high to indicate that data was shifted into the user shift register, and is
0_updat e_dr Output now valid. This signal is only asserted for write transactions with transitions
occurring on falling clock edges.

Serial data, tied to the LSB of the user shift register. Sampled at the falling clock

| _tdo_core Input edge when o_shi ft_dr is high.

o_tdi_core Output Serial data, input to the MSB of the user shift register.

Achronix Proprietary and Confidential 467

Speedcore Component Library User Guide (UG065)

Each transaction has an address plus a write bit. Regardless of whether the write bit is set, all transactions return
data to the off-chip environment. The off-chip environment can choose to ignore this data during write operations.

The o_capt ur e_dr signal indicates when the shift register should be initialized. The initial value of the register
is returned to the off-chip environment as read data. The shift register must be initialized before the first shift. If
SHI FT_DELAY = 0, initialization must take place on or before t = 1. Increasing SHI FT_DELAY postpones the first
shift and, thus, provides more time to initialize the register. The following diagram shows SHI FT_DELAY =S = 1.

While o_shi ft _dr is high, the shift register must shift in the direction of the LSB. The LSB of the shift register
must be connected to i _t do_cor e. This input is sampled at the negative edge of the clock while o_shi ft _dr
is high. In the diagram, with SHI FT_DELAY = 1, the LSB of the read data, r 0, is sampled at t = 2.5. While

i _tdo_cor e is always sampled on the negative edge of the clock, the register itself may be either a negative-
edge or positive-edge shift register.

The shift register must have D bits, where D is the data width for this transaction. However, the actual number of
shifts may well be larger than D (for example, multiple hardware devices may be combined in a single JTAG
chain, which increases the number of shifts). Rather than counting shifts, the user design should rely on the
o_updat e_dr signal to determine when the shift register contains valid data. o_updat e_dr is only asserted for
a write. The o_wri t e signalis valid at the same time as the address.

The timing following diagram illustrates the control and data signals, where S = SHI FT_DELAY, and D is the data
width for this transaction.

] S ' >D ! ' 215 '
>

0 i 2 3 n n+1 n+2 | n+3 n+4 5

o_tck_core I_X&I

| | |
— | | i A
o_capture_dr : 2 :
| i T i
: | a \ | | :
|
o_shift_dr : 1 ((\ | ! !
. . | ! !
I i : | I
| | | | |
! | /g [\ |
o_update_dr i | | I
T T N | | T
| |] | |
1] 1 1 1
COEEN
) | ‘ | |]
! ! \ ! ! !
o_address (stable during/({ransaction) X X
I {
| \

11798174-12.2022.14.11

Figure 156: ACX_JTAP_UNIT Signal Timing

Achronix Proprietary and Confidential 468

Speedcore Component Library User Guide (UG065)

ACX_JTAP_SHIFT_REG

ACX_JTAP_SHIFT_REG is a negative-edge shift register suitable for use with ACX_JTAP_UNIT.

i_capture

Parameters

i_data[WIDTH-1:0]

ACX_JTAP_SHIFT_REG

o_tdo

o_data[WIDTH-1:0]

11798174-09.2022.11.14

Figure 157: ACX_JTAP_SHIFT_REG

Table 295: ACX_JTAP_SHIFT_REG Parameters

Parameter

Default Value

Description

W DTH

32

Number of data bits

| NI T[W DTH- 1: 0]

Startup register value, if specified.

Achronix Proprietary and Confidential

469

Speedcore Component Library User Guide (UG065)

Ports
Table 296: ACX_JTAP_SHIFT_REG Pins

1. i _captureandi _shift are mutually exclusive

Signal Direction Description
i _ckn Input Register clock (negative edge).
i _data[WDTH 1: 0] | Input Data to be stored in shift register when i _capt ur e is asserted.
o_data[WDTH- 1: 0] | Output Shift register value (changes on negative clock edges).
. Register select. The signalsi _capture andi _shi ft are ignored if
i _sel ect Input . .
i _sel ect islow.
.) Inout When asserted high during i _sel ect, the i _dat a value is stored in the shift
| _capture P register.
i _shift (1) Input When asserted high during i _sel ect, causes the register to shift.
. . Serial data in, sampled at the negative edge of the clock when i _sel ect &&
i_tdi Input . .
i_shift.
o_tdi Output Serial data out, i.e., the value of the Isb.
Table Notes

Achronix Proprietary and Confidential 470

Speedcore Component Library User Guide (UG065)

Communication
All interaction with the JTAP units is initiated by the off-chip environment by communicating through the JTAG

interface. JTAG communication consists of two parts:
1. Setting the JTAG instruction register.
2. One or more data transactions.
All JTAG transactions are shifts, shifting the same number of bits in and out, logically corresponding to a read

followed by a write. When only a read is needed, the input data consists of don't-care bits. When only a write is
needed, the output data is simply ignored.

To communicate with a JTAP unit, it must be selected using its unit ID. Following selection, any number of data
transactions can be performed. A data transaction has two parts:

1. An address action to specify the address.

2. A data action to transfer data.
Normally these actions alternate, but for efficiency, the address action can be skipped in some cases. The details
are described as follows.

Achronix devices have a 23-bit JTAG instruction register. The following instructions are used in this section.

Table 297: Achronix JTAG Instruction Codes

Name Value Function

JTAG | DCODE | 23' h7f _fffe Selects the device identification register.

JTAG_JUSR1 23' h02_013a | Sets the JTAP unit ID.

JTAG JUSR2 23' h02_003a For communication with JTAP units.

Selecting a JTAP Unit

A JTAP unit is selected when the following two conditions are both true:

1. The current unit ID matches the UNI T_| D parameter.
2. The JTAG instruction register is set to JTAG JUSR2.

To write the unit ID:

1. Set the JTAG instruction register to JTAG_JUSRL.
2. Write 7 bits of data (a dummy LSB followed by the 6-bit unit ID).
3. The previous unit ID is returned.

After setting the unit ID, the instruction register must be set to JTAG_JUSR2 to finish the selection. All
communication with the JTAP unit uses the JTAG_JUSR2 instruction.

Achronix Proprietary and Confidential 471

Speedcore Component Library User Guide (UG065)

Table 298: Setting the Unit ID (7 Bits)

Number of Bits |6 1 (LSB)
Write unit_id x ()
Read prevunit_id x (M

Table Notes
1. "X" indicates don't care.

JTAG Reset

The JTAG interface supports two methods to apply reset:

1. A hard reset with a reset wire (the JTAG standard specifies that the reset wire is optional).

2. A soft reset where the TAP state machine is given a control sequence that puts it in a reset state.

When asserted, reset stays asserted until the TAP state machine is explicitly moved to a different state, typically
by setting the instruction register.

Other than the method of application, both types of reset behave identically. If a JTAP unit was selected when
reset is applied, the unit o_j t ag_r eset _n output is asserted. A reset always changes the JTAG instruction
register to JTAG_| DCODE. As a result, a reset causes the unit to be de-selected (without affecting the duration of
the o_j t ag_r eset _n signal). Before the unit can be accessed again, the instruction register must be set back
to JTAG _JUSR2.

A reset does not change the current unit ID.

Address Action

An address action specifies an address, a write bit, and an inc bit. The returned data can be ignored. The
address width, A, must match the JTAP unit ADDR_W DTH parameter. The address and write values are passed
to the designas 0_address ando_write.

Table 299: Address action (A+2 bits)

Number of Bits | 1 1 A

Write inc write | address

When set, the inc bit causes the address to be incremented following a data action. The increment amount is the
JTAP unit ADDR_| NC parameter (even if ADDR_| NC = 0, the inc bit must be specified).

When a unit has been selected, the first action must be an address action. Following an address action, the next
action must be a data action (unless the unit is de-selected by changing the instruction register).

Achronix Proprietary and Confidential 472

Speedcore Component Library User Guide (UG065)

ADDR_WIDTH =0

In the special case where ADDR_W DTH = 0, both the address and the inc bit must be omitted. In that case, the
address action consists of just one bit, write.

Data Action

A data action transfers D bits. For an ACX_JTAP_REG_UNIT, D must equal the DATA W DTH parameter. For an
ACX_JTAP_UNIT, D must equal the width of the user shift register.

Note

Due to internal pipelining, the LSB is always a dummy bit. The user design only sees the D data bits.

The value S is the | NPUT_DELAY or SHI FT_DELAY parameter of the unit; S may be 0.

Table 300: Data Action (D + S + 2 Bits)

Number bits 1 D S 1
Write ski p_addr data SxX X
Read X data SxX X

If ski p_addr is 0, the next action must be an address action. If ski p_addr is 1, the next action must be a data
action. In this case, the next action uses the existing address and write bit, except that the previously specified
inc bit determines whether the address is incremented first.

If the JTAG instruction register is changed to something other than JTAG_JUSR2 (possibly as the effect of a
JTAG reset), the unit is de-selected. If it is selected again, the next action must be an address action, regardless
of any previous ski p_addr .

Achronix Proprietary and Confidential 473

Speedcore Component Library User Guide (UG065)

Revision History

Version Date Description

1.0 02 Aug 2016 ® Initial Achronix release.

® Added in sections for the DSP64 FIR filter implementation and the
1.1 19 Aug 2016 LRAMFIFO.
® Corrected tables for the BRAMSDP macro.

1.2 13 Oct 2016 ¢ Added in new clock enable and reset pins for IPIN/OPIN.

¢ Updated the title of the document.

® Updates to ACX_BRAMTDP (20-kb True Dual-Port Memory) (see page 319)
1.3 04 Nov 2016 , ACX_BRAMFIFO (20-kb FIFO Memory with Optional Error Correction)
(see page 350) and ACX_LRAM (4096-bit (128x32) Simple-Dual-Port
Memory) (see page 424).

® Memories (see page 289): Cleaned up BRAMTDP, BRAMSDP, and
BRAMFIFO timing diagrams, improved explanations of parameters and
functionality.

14 04 Dec 2016 ®* Memories: (see page 289) Added read_peval parameter to the BRAMSDP
macro.

®* Memories: (see page 289) Added ROM description to LRAM and
BRAMSDP macros.

® Logic Functions to be deleted: Added documentation for
ACX_SYNCHRONIZER, ACX_SYNCHRONIZER_N, and ACX_SHIFTREG.

®* Memories (see page 289): Cleaned up LRAMFIFO parameters, timing
diagrams, and improved explanations of parameters and functionality.

1.5 01 Feb 2017

® Speedcore Component Library User Guide (see page 9): Re-named the
1.6 31 Mar 2017 user guide and re-arranged sections to provide for a better organization.

®* Memories (see page 289): Updated figure, 20-kb True Dual-Port Memory.

® Clock Functions TO BE DELETED: Added descriptions, waveforms and
1.7 16 Jul 2017 instantiation templates for the CLKSWITCH, CLKDIV, and CLKGATE
macros.

® Clock Functions TO BE DELETED:

* Modified CLKDIV waveform to highlight that it's always 50% duty
1.8 19 Jul 2017 cycle.

® Corrected some of the waveforms, figure titles and descriptions in the
CLKSWITCH section.

Achronix Proprietary and Confidential 474

Speedcore Component Library User Guide (UG065)

Version Date Description

® ACX _DSP_GEN (see page 102): Updated defaults value of addsub_bypass
parameter in Table: DSP64 Parameters (see page 110).

1.9 14 Nov 2017 ® JTAG TAP Controller Functions (see page 457): New chapter added.

®* ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction)
(see page 289): Changed tie-off requirements for we[3:0] port.

® JTAG TAP Controller Functions (see page 457): Corrected timing shown in

1.10 15 Nov 2017 Figure: ACX_JTAP_UNIT Signal Timing (see page 468).
® Clock Functions TO BE DELETED: Added CLKGATE timing diagram.
1.11 02 Jan 2018 ®* ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction)

(see page 289): Updated dbit_error to reflect that it's updated at the same
time as the output data.

® Clock Functions TO BE DELETED: Corrected CLKSWITCH
1.12 04 Apr 2018 SYNCHRONIZE_SEL description, added warning about simulating
CLKSWITCH and CLKGATE.

®* Memories: (see page 289) Noted that BRAM GUI & Wrapper don't support

1.13 17 May 2018 multi-bit we.

®* |RAMFIFO: (see page 431)

® Added hold_output, rst_sync_mode and, prevent_overunderflow
parameter descriptions.

® Updated FIFO reset description.
® ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction)
(see page 289):

® Added special note for BRAMSDP ECC Mode's limitation on
read_initval when the output register is disabled.

®* BRAMFIFO (see page 350)
® Updated Outregce Input signal description.

1.14 19 Aug 2018

® [ogic Functions to be deleted: Highlighted that the use of
ACX_SYNCHRONIZER is strongly recommended and added the
advantages of using the macro versus constructing a synchronizer from two

115 05 Sep 2018 flops.
®* LRAMFIFO (see page 431):

® Added fwft_mode restriction.
® Added afull_offset and aempty_offset parameter value restriction.

® ACX_DSP_GEN (see page 102): Updated description for sel _addsub_a, s
el _addsub_b, sel _48_dout, sat _node and use_natch_in

1.16 05 Apr 2019 parameters to indicate restriction.

® LRAMFIFO (see page 431): Added explanation of how fwft mode affects
status signals.

Achronix Proprietary and Confidential 475

Speedcore Component Library User Guide (UG065)

Version

Date

Description

2.0

08 Aug 2023

ACX_DSP_GEN (see page 102) Added inference templates, (moved from

Synthesis UG). Added sel_48 dout to instantiation template
ACX_BRAMTDP (see page 319),

ACX_BRAMSDP (see page 289) and

ACX_LRAM (see page 424)

Added inference templates (moved from Synthesis UG)
ACX_LRAM2K_SDP,

ACX_LRAM2K_FIFO (see page 449),

ACX_BRAM72K_SDP (see page 387) and
ACX_BRAM72K_FIFO (see page 414) Added sections
Speedcore MLP72 (see page 159) Added sections

Clock Functions (see page 90) Updated constraint information
Speedcore Fabric Architecture (see page 11) Updated details for Gen4
and Gen5 Speedcore devices

Remove "IP" from document name

Add ACE Soft IP GUI flow details for generating DSP macros

Achronix Proprietary and Confidential

476

	Introduction
	ACX_ Prefix

	Fabric Architecture
	Introduction
	RLB6 for Gen4 Speedcore eFPGAs
	Routing Between RLB6s
	RLB6 Detail
	Mutually Exclusive Operations
	Control Signals

	RLB6 for Gen5 Speedcore eFPGAs
	Routing Between RLB6s
	Lookup Table (LUT) Functions
	Six-Input Lookup Table (ACX_LUT6)
	Parameters
	Ports
	Function
	Instantiation Templates
	Verilog
	VHDL

	Dual Five-Input Lookup Table (ACX_LUT5x2)
	Parameters
	Ports
	Functions
	Instantiation Templates
	Verilog
	VHDL

	Speedcore Registers
	Naming Convention
	Register Primitives
	ACX_DFF (Positive Clock Edge D-Type Register)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFE (Positive Clock Edge D-Type Register With Clock Enable)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFER (Positive Clock Edge D-Type Register With Clock Enable and Asynchronous/Synchronous Reset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFES (Positive Clock Edge D-Type Register With Clock Enable and Asynchronous/Synchronous Set)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFN (Negative Clock Edge D-Type Register)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNER (Negative Clock Edge D-Type Register With Clock Enable and Asynchronous/Synchronous Reset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNES (Negative Clock Edge D-Type Register With Clock Enable and Asynchronous/Synchronous Set)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNR (Negative Clock Edge D-Type Register With Asynchronous Reset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNS (Negative Clock Edge D-Type Register With Asynchronous Set)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFR (Positive Clock Edge D-Type Register With Asynchronous Reset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFS (Positive Clock Edge D-Type Register With Asynchronous Set)
	Instantiation Template
	Verilog
	VHDL

	Register Macros
	ACX_DFFNEP (Negative Clock Edge D-Type Register With Clock Enable and Synchronous Preset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFEC (Positive Clock Edge D-Type Register With Clock Enable and Synchronous Clear)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFEP (Positive Clock Edge D-Type Register With Clock Enable and Synchronous Preset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNEC (Negative Clock Edge D-Type Register With Clock Enable and Synchronous Clear)
	Instantiation Templates
	Verilog
	VHDL

	Boundary Pin Cells
	IPIN (Input Data Pin)
	Instantiation Templates
	Verilog – Combinational Mode
	Verilog – Flopped Mode
	VHDL – Combinational Mode
	VHDL – Flopped Mode

	ACX_OPIN (Output Data Pin)
	Instantiation Templates
	Verilog – Combinational Mode
	Verilog – Flopped Mode
	VHDL – Combinational Mode
	VHDL – Flopped Mode

	ACX_CLK_IPIN (Input Clock Pin)
	Instantiation Templates
	Verilog
	VHDL

	ACX_CLK_OPIN (Output Clock Pin)
	Instantiation Templates
	Verilog
	VHDL

	Logic Functions
	ACX_SYNCHRONIZER, ACX_SYNCHRONIZER_N
	Using ACX_SYNCHRONIZER to Synchronize Reset
	Instantiation Templates
	Verilog

	ACX_SHIFTREG
	Instantiation Templates
	Verilog

	Clock Functions
	ACX_CLKDIV (Clock Divider)
	Constraints
	Instantiation Templates
	Verilog
	VHDL

	ACX_CLKGATE (Clock Gate)
	Constraints
	Instantiation Templates
	Verilog
	VHDL

	ACX_CLKSWITCH (Clock Switch)
	Constraints
	Instantiation Templates
	Verilog
	VHDL

	Arithmetic and DSP Functions
	ACX_ALU8
	Description
	Parameters
	Ports
	Functions
	Instantiation Template
	Verilog

	ACX_DSP_GEN
	ACX_DSP_GEN Pins
	Parameters
	Add/Subtract/Round/Saturate Blocks
	ACX_DSP_GEN Rounding
	Round Towards Zero
	Rounding Towards Infinity
	Round Towards Plus Infinity
	Round Towards Minus Infinity
	Round Towards Nearest Integer
	Round Towards Nearest Even
	Round Towards Nearest Odd
	Round Half Up
	Round Half Down
	Round Half Away From Zero
	Round Half Towards Zero
	Saturation
	Pre-Adder Block

	ACX_DSP_GEN Verilog Instantiation Template
	ACX_DSP_GEN Verilog Inference Template
	Inferred Multiplier Example

	Implementing Finite Impulse Response (FIR) Filters
	Parallel Filter Implementation
	Symmetric FIR Filter Implementation
	Odd-Length Symmetric Impulse Response FIR Filters
	Odd-Length, Anti-Symmetric Impulse Response FIR Filters
	Even-Length Symmetric Impulse Response FIR Filters
	Even-Length, Anti-Symmetric Impulse Response FIR Filters

	ACX_DSP_MACC_GEN
	Timing

	ACX_DSP_ACCUMULATOR_GEN
	Timing

	ACX_DSP_COUNTER_GEN
	Timing

	ACX_DSP_SUM_SQUARES_GEN
	Timing

	ACX_MLP72
	Numerical Formats
	Parallel Multiplications
	Memories
	Instantiation
	Common Stages
	Stages
	Symmetrical Structure

	Modes
	Common Signals
	Parameters
	Ports

	Input Selection
	Parameters
	Ports

	Integer Modes
	Byte Selection
	Int8
	Int7
	Int6
	Int4
	Int3
	Int16
	Parameters

	Multiplier Stage
	Parallel Multiplications
	Number Formats
	Sign - No ADD (SNOADD)

	Format Consistency
	Parameters

	Output Stage
	Parameters
	Ports

	Integrated LRAM
	Standalone LRAM
	LRAM Operational Modes
	LRAM Virtual Ports
	Interconnection Diagram
	FIFO Address Generators
	Length Adjustment
	Mode 2 Pointer Reset
	Ignore Flags

	Parameters
	Ports

	Block Floating-Point Modes
	Input Selection
	Multiplication Operation

	Byte Selection
	BFP Int8
	BFP Int7
	BFP Int6
	BFP Int4 and Int3
	BFP Int16

	Ports
	Parameters

	Floating-Point Modes
	Byte Selection
	BFLOAT16
	FP16
	FP24
	Parameters

	Multiplication Stage
	Parameters

	Output Stage
	OUT_REG
	Parameters

	Instantiation Template
	Verilog

	MLP72_INT
	Parameters
	Ports
	Input Data Mapping
	Output Formatting and Error Conditions
	Asynchronous Reset Rules
	Inference
	Examples
	inreg_enable=0, outreg_enable=0, 4 inputs
	inreg_enable=0, outreg_enable=1
	inreg_enable=0, outreg_enable=1, Asynchronous Reset

	Instantiation Template
	Verilog

	MLP72_INT8_MULT_4X
	Parameters
	Ports
	Timing Diagrams
	Inference
	Examples
	inreg_enable = 0, outreg_enable=0
	inreg_enable = 0, outreg_enable=1
	inreg_enable = 0, outreg_enable=1, with reset
	inreg_enable=1, outreg_enable=1, with input clock enable and output clock enable

	Instantiation Template
	Verilog

	MLP72_INT16_MULT_2X
	Parameters
	Ports
	Timing Diagrams
	Inference
	Examples
	inreg_enable=0, outreg0_enable=0
	inreg_enable=0, outreg_enable=1
	inreg_enable=0, outreg0_enable=1, synchronous reset
	inreg_enable=1, outreg_enable=1, asynchronous resets

	Instantiation Template
	Verilog

	Integer Library
	MLP Registers
	Clock Enable and Reset

	Accumulation
	ACX_INT_MULT
	Parameters
	Ports
	Usage and Inference
	Architecture
	Output
	Instantiation Templates
	Verilog
	VHDL

	ACX_INT_MULT_N
	Parameters
	Ports
	Data Packing
	Clock Enables
	Maximum Parallel Multiplications

	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_INT_MULT_ADD
	Parameters
	Ports
	Input Packing
	Maximum Parallel Multiplications

	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	Floating-Point Library
	Introduction
	MLP Registers
	Clock Enable and Reset

	Accumulation
	Floating-Point Format
	Output Status
	ACX_FP_ADD
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_FP_MULT
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_FP_MULT_PLUS
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_FP_MULT_2X
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_FP_MULT_ADD
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	Memories
	ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction)
	Memory Organization and Data Input/Output Pin Assignments
	Data Widths Using Parity Pins
	Address Bus Mapping

	Read and Write Operations
	Timing Options
	Read Operation
	Write Operation
	Simultaneous Memory Operations

	Timing Diagrams
	Memory Initialization
	Initializing With Parameters
	Initializing With a Memory Initialization File

	ECC Modes of Operation
	ECC Encode/Decode Operation Mode
	ECC Encode-Only Operation Mode
	ECC Decode-Only Operation Mode

	Using ACX_BRAMSDP as a Read-Only Memory (ROM)
	Create an Instance
	Inference Template
	ACX_BRAMSDP Symmetric Inference
	ACX_BRAMSDP Inference

	Instantiation Template
	Verilog
	VHDL

	ACX_BRAMTDP (20-kb True Dual-Port Memory)
	Memory Organization and Data I/O Pin Assignments
	Data Widths Using Extended Data Interfaces
	Address Bus Mapping

	Read and Write Operations
	Timing Options
	Read Operation
	Write Operation
	Simultaneous Memory Operations

	Timing Diagrams
	Memory Initialization
	Initializing With Parameters
	Initializing With a Memory Initialization File

	Create an Instance
	Inference Templates
	ACX_BRAMTDP Single-Port Inference
	ACX_BRAMTDP Symmetric Dual-Port Inference

	Instantiation Templates
	Verilog
	VHDL

	ACX_BRAMFIFO (20-kb FIFO Memory with Optional Error Correction)
	Memory Organization and Data Pin Assignments
	Data Widths Using Parity Pins
	Read and Write Depth

	FIFO Operation
	FIFO Reset
	FIFO Write
	FIFO Read
	FIFO Status Signals
	FIFO Operational Modes
	Synchronous Operation
	Optional Output Register
	Timing Diagrams

	Asynchronous Operation
	Timing Diagrams

	Mixed-Width Modes

	FIFO Resets
	Advanced FIFO Reset Modes

	Error Detection and Correction
	ECC Encode/Decode Mode
	ECC Encode-Only Mode
	ECC Decode-Only Mode

	Instantiation Template
	Verilog
	VHDL

	ACX_BRAM72K_SDP (72-kb Simple Dual-Port Memory with Error Correction)
	Parameters
	Ports
	Memory Organization and Data Input/Output Pin Assignments
	Supported Width Combinations
	Write Data Port Usage

	Read and Write Operations
	Timing Options
	Read Operation
	Write Operation
	Simultaneous Memory Operations

	Timing Diagrams
	Memory Initialization
	Initializing with Parameters
	Initializing with Memory Initialization File

	ECC Modes of Operation
	ECC Encode/Decode Operation Mode
	ECC Encode-Only Operation Mode
	ECC Decode-Only Operation Mode
	Additional Requirements for ECC Mode With ACE GUI Memory Generator

	Using ACX_BRAM72K_SDP as a Read-Only Memory (ROM)
	Advanced Modes
	Remap Mode

	Inference
	Verilog
	Example Template

	Instantiation Template
	Verilog
	VHDL

	ACX_BRAM72K_FIFO (72-kb FIFO Memory with Optional Error Correction)
	Parameters
	Ports
	Read and Write Operations
	Write Operation
	Read Operation
	First Word Fall Through (FWFT)
	Output Latch and Register

	Timing Diagrams
	Synchronous Mode
	Asynchronous Mode

	Inference
	Instantiation Template
	Verilog
	VHDL

	ACX_LRAM (4096-bit (128x32) Simple-Dual-Port Memory)
	Simultaneous Memory Operations
	Timing Diagram
	ACX_LRAM Memory Initialization
	Using ACX_LRAM as a Read-Only Memory (ROM)
	Create an Instance
	Inference Template
	ACX_LRAM with Output Register

	Instantiation Template
	Verilog

	ACX_LRAMFIFO (LRAM-Based 128-Word FIFO Memory)
	Parameters
	FIFO Operation
	FIFO Reset
	FIFO Write
	FIFO Read

	FIFO Status Signals
	Status Signals in Asynchronous mode
	Status Signals in First-Word Fall Through Mode
	full and almost_full
	empty and almost_empty

	FIFO Operational Modes
	Synchronous Operation
	Timing Diagrams

	Asynchronous Operation
	Timing Diagrams

	Instantiation Template
	Verilog
	VHDL

	ACX_LRAM2K_FIFO
	Parameters
	Ports
	Read and Write Operations
	Write Operation
	Read Operation
	First Word Fall Through (FWFT)
	Output Timing

	Timing Diagrams
	Synchronous Mode
	Asynchronous Mode

	Inference
	Instantiation Templates
	Verilog
	VHDL

	JTAG TAP Controller Functions
	ACX_JTAP_INTERFACE
	Ports
	Connection to the JTAP Bus

	ACX_JTAP_REG_UNIT
	Parameters
	Ports

	ACX_JTAP_UNIT
	Parameters
	Ports

	ACX_JTAP_SHIFT_REG
	Parameters
	Ports

	Communication
	Selecting a JTAP Unit
	JTAG Reset
	Address Action
	ADDR_WIDTH = 0

	Data Action

	Revision History

