
Achronix Proprietary and Confidential

Speedcore Component
Library User Guide (UG065)

Speedcore eFPGA

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 2

Copyrights, Trademarks and Disclaimers
Copyright © 2023 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedster and VectorPath
are registered trademarks, and Speedcore and Speedchip are trademarks of Achronix Semiconductor
Corporation. All other trademarks are the property of their prospective owners. All specifications subject to
change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 3

Table of Contents

Chapter - 1: Introduction . 10
ACX_ Prefix . 10

Chapter - 2: Fabric Architecture . 11
Introduction . 11

RLB6 for Gen4 Speedcore eFPGAs . 12

Routing Between RLB6s . 13
RLB6 Detail . 16

RLB6 for Gen5 Speedcore eFPGAs . 18

Routing Between RLB6s . 20

Lookup Table (LUT) Functions . 23
Six-Input Lookup Table (ACX_LUT6) . 23

Dual Five-Input Lookup Table (ACX_LUT5x2) . 26

Speedcore Registers . 29
Naming Convention . 29

Register Primitives . 29

Register Macros . 60

Boundary Pin Cells . 72
IPIN (Input Data Pin) . 72

ACX_OPIN (Output Data Pin) . 76

ACX_CLK_IPIN (Input Clock Pin) . 80

ACX_CLK_OPIN (Output Clock Pin) . 82

Chapter - 3: Logic Functions . 84
ACX_SYNCHRONIZER, ACX_SYNCHRONIZER_N . 84

Using ACX_SYNCHRONIZER to Synchronize Reset . 85

Instantiation Templates . 86

ACX_SHIFTREG . 87
Instantiation Templates . 89

Chapter - 4: Clock Functions . 90
ACX_CLKDIV (Clock Divider) . 90

Constraints . 92

Instantiation Templates . 92

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 4

ACX_CLKGATE (Clock Gate) . 93
Constraints . 94

Instantiation Templates . 94

ACX_CLKSWITCH (Clock Switch) . 95
Constraints . 98

Instantiation Templates . 98

Chapter - 5: Arithmetic and DSP Functions . 99
ACX_ALU8 . 99

Description . 99

Parameters . 99

Ports . 100

Functions . 101

Instantiation Template . 101

ACX_DSP_GEN . 102
ACX_DSP_GEN Pins . 105

Parameters . 110

Add/Subtract/Round/Saturate Blocks . 121

ACX_DSP_GEN Rounding . 121

ACX_DSP_GEN Verilog Instantiation Template . 136

ACX_DSP_GEN Verilog Inference Template . 138

Implementing Finite Impulse Response (FIR) Filters . 138

ACX_DSP_MACC_GEN . 151
Timing . 152

ACX_DSP_ACCUMULATOR_GEN . 153
Timing . 154

ACX_DSP_COUNTER_GEN . 155
Timing . 156

ACX_DSP_SUM_SQUARES_GEN . 157
Timing . 158

ACX_MLP72 . 159
Numerical Formats . 162

Parallel Multiplications . 162

Memories . 163

Instantiation . 163

Common Stages . 164

Integer Modes . 173

Integrated LRAM . 186

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 5

Integrated LRAM . 186

Block Floating-Point Modes . 193

Floating-Point Modes . 200

Instantiation Template . 211

MLP72_INT . 214
Parameters . 216

Ports . 217

Input Data Mapping . 218

Output Formatting and Error Conditions . 220

Asynchronous Reset Rules . 220

Inference . 220

Instantiation Template . 221

MLP72_INT8_MULT_4X . 222
Parameters . 223

Ports . 225

Timing Diagrams . 226

Inference . 227

Instantiation Template . 229

MLP72_INT16_MULT_2X . 231
Parameters . 232

Ports . 234

Timing Diagrams . 235

Inference . 236

Instantiation Template . 238

Integer Library . 239
MLP Registers . 239

Accumulation . 240

ACX_INT_MULT . 241

ACX_INT_MULT_N . 247

ACX_INT_MULT_ADD . 253

Floating-Point Library . 259
Introduction . 259

MLP Registers . 259

Accumulation . 259

Floating-Point Format . 260

Output Status . 261

ACX_FP_ADD . 262

ACX_FP_MULT . 267

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 6

ACX_FP_MULT . 267

ACX_FP_MULT_PLUS . 272

ACX_FP_MULT_2X . 277

ACX_FP_MULT_ADD . 284

Chapter - 6: Memories . 289
ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction) 289

Memory Organization and Data Input/Output Pin Assignments . 295

Read and Write Operations . 298

Timing Diagrams . 300

Memory Initialization . 304

ECC Modes of Operation . 307

Using ACX_BRAMSDP as a Read-Only Memory (ROM) . 307

Create an Instance . 308

ACX_BRAMTDP (20-kb True Dual-Port Memory) . 319
Memory Organization and Data I/O Pin Assignments . 325

Read and Write Operations . 328

Timing Diagrams . 332

Memory Initialization . 336

Create an Instance . 338

ACX_BRAMFIFO (20-kb FIFO Memory with Optional Error Correction) . 350
Memory Organization and Data Pin Assignments . 357

FIFO Operation . 360

FIFO Resets . 380

Error Detection and Correction . 383

Instantiation Template . 385

ACX_BRAM72K_SDP (72-kb Simple Dual-Port Memory with Error Correction) 387
Parameters . 389

Ports . 391

Memory Organization and Data Input/Output Pin Assignments . 393

Read and Write Operations . 396

Timing Diagrams . 398

Memory Initialization . 399

ECC Modes of Operation . 401

Using ACX_BRAM72K_SDP as a Read-Only Memory (ROM) . 405

Advanced Modes . 405

Inference . 407

Instantiation Template . 411

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 7

ACX_BRAM72K_FIFO (72-kb FIFO Memory with Optional Error Correction) 414
Parameters . 415

Ports . 417

Read and Write Operations . 418

Inference . 421

Instantiation Template . 421

ACX_LRAM (4096-bit (128x32) Simple-Dual-Port Memory) . 424
Simultaneous Memory Operations . 427

Timing Diagram . 427

ACX_LRAM Memory Initialization . 428

Using ACX_LRAM as a Read-Only Memory (ROM) . 428

Create an Instance . 428

ACX_LRAMFIFO (LRAM-Based 128-Word FIFO Memory) . 431
Parameters . 433

Instantiation Template . 447

ACX_LRAM2K_FIFO . 449
Parameters . 450

Ports . 451

Read and Write Operations . 452

Inference . 454

Instantiation Templates . 455

Chapter - 7: JTAG TAP Controller Functions . 457
ACX_JTAP_INTERFACE . 459

Ports . 460

Connection to the JTAP Bus . 461

ACX_JTAP_REG_UNIT . 462
Parameters . 462

Ports . 463

ACX_JTAP_UNIT . 465
Parameters . 466

Ports . 467

ACX_JTAP_SHIFT_REG . 469
Parameters . 469

Ports . 470

Communication . 471
Selecting a JTAP Unit . 471

JTAG Reset . 472

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 8

JTAG Reset . 472

Address Action . 472

Data Action . 473

Revision History . 474

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 9

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 10

Chapter - 1: Introduction
The Achronix Speedcore component library lists the programmable fabric silicon elements which may be
instantiated into a user design. These components provide access to low-level fabric primitives or, in some
cases, macros which configure complex elements into advanced functions. Each entry describes the operation of
the component as well as any parameters that must be initialized. Verilog and VHDL templates are also provided
to aide in the implementation of user designs.

The Speedcore family includes multiple devices which not only have a different quantity of logic for each device
but also different components, primarily, but not limited to, memory and arithmetic. To better understand which
components a particular Speedcore device has, consult with the which lists all Speedcore Device Catalog
available devices and contains tables of available resources for each core.

This guide contains the following sections:

Speedcore Fabric Architecture (see page 11)

Speedcore Logic Functions (see page 84)

Speedcore Clock Functions (see page 90)

Arithmetic and DSP Functions (see page 99)

Memories (see page 289)

JTAG TAP Controller Functions (see page 457)

Speedcore Component Library User Guide Revision History (see page 474)

ACX_ Prefix
All Achronix silicon components start with as their formal name. Therefore, when directly instantiating any ACX_
component, the name must be used. This prefix provides protection against inadvertently instantiating ACX_xxx
one of the Synplify Pro built-in primitives (primarily DFF and LUT), and distinguishes Achronix silicon
components from any other library components. In addition the wrapper exposes only the parameters ACX_xxx
and ports needed/available for a user configuration. It allows for silicon only, or test only, ports and parameters to
be masked off, reducing the scope for error when directly instantiating.

When viewing Synplify Pro resource utilization reports, Synplify Pro may list multiple forms of the same
component; e.g., and . The former indicates a directly instantiated component using the ACX_BRAM72K BRAM72K
required prefix. The latter indicates an inferred component created by Synplify Pro. Both forms of the ACX_
component are identical in function; the differences are only in the instantiation level. The total number of silicon
components required will be the sum of these instances.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 11

Chapter - 2: Fabric Architecture

Introduction
The Speedcore fabric architecture floorplan consists of 6-input LUTs, each with two flops, arranged as logic
groups within a reconfigurable logic block (RLB6). The RLB6s are arranged in a grid, interleaved with columns of
memory and arithmetic blocks. The block functions are connected by a uniform global interconnect, which
enables the routing of signals between core elements. Switch boxes make the connection points between vertical
and horizontal routing tracks. Inputs to and outputs from each of the functions connect to the global interconnect.

This floorplan of functional blocks and global interconnects is shown in the following figure.

Figure 1: Speedcore Fabric Floorplan

The fabric logic capabilities and functions are defined by the structure of the RLB6.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 12

RLB6 for Gen4 Speedcore eFPGAs
The 6-input LUT-based reconfigurable logic block (RLB6) is composed of three parallel logic groups as shown in
the following diagram.

Figure 2: RLB6 Block Diagram

Each logic group in a Gen4 RLB6 contains four 6-input look-up-tables (LUT6), each with two optional registers
and an 8-bit fast arithmetic logic unit (ALU8) to implement logic functionality. Each logic group receives a carry-in
input from the corresponding logic group in the RLB6 to the north and can propagate a carry-out output to the
corresponding logic group in the RLB6 to the south.

The following table provides information on the resource counts inside an RLB6 for Gen4.

Table 1: RLB6 Gen4 Resource Counts

RLB6 Resource Count

Logic Groups 3

LUT6 12

Registers 24

8-bit ALU8 3

The following features are available using the resources in the RLB:

8-bit ALU for adders, counters, and comparators

8-to-1 MUX with single-level delay (can be inferred)

Support for LUT chaining within the same RLB and between RLBs

Dedicated connections for high-efficiency shift registers

Multiplier LUT (MLUT) mode for efficient multipliers (for Speedster7t devices only)

Ability to fan-out a clock enable or reset signal to multiple tiles without using general routing resources

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 13

6-input LUT configurable to function as two 5-input LUTs using shared inputs and two outputs

Support for combining two 6-input LUTs with a dynamic select to provide 7-input LUT functionality

The following figure provides a simplified view of the circuitry inside a single logic group.

Figure 3: Logic Group Details

Routing Between RLB6s
There are special considerations when routing ALU carry chains and shift registers. The Achronix Gen4 fabric
has hard-wired connections on the signals of each ALU. As previously mentioned, each carry_in/carry_out
logic group routes to the corresponding logic group in the RLB6 above or below. In other words, the ALU

 does not route to the next ALU within the same RLB, but rather the same logic group of carry_in/carry_out
the next RLB6. The following figure shows the routing of an ALU.carry_in/carry_out

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 14

Figure 4: ALU Carry Chain Routing

As true for , the same is true for the signals in the registers of a carry_in/carry_out shift_in/shift_out
logic group. When creating a shift register, the registers within a logic group route to each other, but the

 of each logic group routes to the same logic group in the next RLB6.shift_in/shift_out

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 15

The following figure shows details of the routing in the Gen4 fabric.

Figure 5: Shift Register Routing

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 16

RLB6 Detail
Within each RLB6 are the three logic groups, each containing four 6-input LUTs (LUT6s), one ALU8, and eight
registers. The logic group has ALU and flip-flop cascade paths between its associated RLB6 logic groups. The
following figure shows the routing detail of one fourth of a logic group (one LUT6 and two registers).

Figure 6: One-Fourth of a Logic Group (Connection Detail)

The diagram shows the following:

Certain LUT6 inputs are shared with ALU8 inputs

The LUT6 can be operated as dual 5-input LUTs (LUT5s)

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 17

The input to each register can be selected from the following:

Local LUT6 output, or the LUT6 above

LUT5 output

ALU8 output (sum output)

LUT6 input (load input)

Register output (feedback path)

Register cascade from register below (shift register cascade)

Some of the above inputs are statically configured by the bitstream, and other inputs can be dynamically
selected. The dynamic selection is performed by the signal which is an input to the logic group. The F7 F7
allows for dynamic selection of the following:

Lower register – first mux: ALU sum output, or register load input (shared with LUT6 input)

Lower register – second mux: local LUT6 output or LUT6 above output

Upper register – ALU sum output, or register load input (shared with LUT6 input)

Mutually Exclusive Operations
The shared connections result in a number of mutually exclusive operations that can be achieved by a single
logic group. When using all the LUT6s, the ALU8 is not available, nor is register load.

When using the ALU8:

When ALU8 is used for A[7:0]+B[7:0]+Cin, one independent LUT6 is available.

When ALU8 is used for A[7:0]+B[7:0], one independent LUT6 and one independent LUT2 is available.

When ALU8 is used for A[7:0]+’Const’, two independent LUT6 and one independent LUT4 are available.

When ALU8 is used for A[3:0]+B[3:0]+Cin, two independent LUT4 are available.

When using dynamic register load, or the ALU8 sum, no LUT6s are available. When using static register load,
four independent LUT4 are available.

When using F7 mux function, forming an 8:1 multiplexer (MUX8), no LUT6 or ALU8 are available.

Control Signals
Within a logic group there are eight registers, numbered reg[7:0]. These registers share control signals with each
logic group having two clock, clock enable and reset inputs. The control signals are subsequently divided
between the registers, with one set for registers[3:0], and the other set for registers[7:4].

Note

For designs with high utilization, ensure that as many registers as possible have common control signal
sets to allow for optimum packing of the registers into logic groups.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 18

RLB6 for Gen5 Speedcore eFPGAs
The 6-input LUT-based reconfigurable logic block (RLB6) is composed of three parallel logic groups as shown in
the following diagram.

Figure 7: RLB6 Block Diagram

Each logic group in a Gen5 RLB6 contains four 6-input lookup tables (LUT6), each with two optional registers to
implement logic functionality. Additionally, each Gen5 RLB6 includes a single 8-bit fast arithmetic logic unit
(ALU8). Each ALU8 receives a carry-in input from the corresponding ALU8 in the RLB6 to the north and can
propagate a carry-out output to the corresponding ALU8 in the RLB6 to the south.

The following table provides details on the resource counts inside an RLB6 for Gen5.

Table 2: RLB6 Gen5 Resource Counts

RLB6 Resource Count

Logic Groups 3

LUT6 12

Registers 24

8-bit ALU8 1

The following features are available using the resources in the RLB:

8-bit ALU for adders, counters, and comparators

8-to-1 MUX with single-level delay (can be inferred)

Support for LUT chaining within the same RLB and between RLBs

Dedicated connections for high-efficiency shift registers

Ability to fan-out a clock enable or reset signal to multiple tiles without using general routing resources

6-input LUT configurable to function as two 5-input LUTs using shared inputs and two outputs

Support for combining two 6-input LUTs with a dynamic select to provide 7-input LUT functionality

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 19

The following figure provides a simplified view of the circuitry inside a single logic group.

Figure 8: Logic Group Details

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 20

The following figure provides a simplified view of the logic groups with circuitry for the ALU inside the RLB6.

Figure 9: Logic Groups With ALU Details

Routing Between RLB6s
There are special considerations when routing ALU carry chains and shift registers. The Achronix Gen5 fabric
has hard-wired connections on the signals of each ALU. As previously mentioned, each carry_in/carry_out
logic group routes to the corresponding logic group in the RLB6 above or below, and the same is true for the
ALUs. In other words, the ALU does not route to the next ALU to the east/west of the carry_in/carry_out
RLB6, but rather the ALU of the next RLB6 to the north.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 21

The following figure shows the routing of an ALU.carry_in/carry_out

Figure 10: ALU Carry Chain Routing

As for , the same is true for the signals in the registers of a logic carry_in/carry_out shift_in/shift_out
group. When creating a shift register, the registers within a logic group route to each other, but the shift_in

 of each logic group routes to the same logic group in the next RLB6./shift_out

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 22

The following figure shows details of the routing in the Gen5 fabric.

Figure 11: Shift Register Routing

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 23

Lookup Table (LUT) Functions
Six-Input Lookup Table (ACX_LUT6)
ACX_LUT6 implements a six-input lookup table with data inputs (–) and data output (), whose din0 din5 dout
function is defined by the 64-bit parameter .lut_function

Figure 12: Logic Symbol

Parameters

Table 3: Parameters

Parameter Defined Values Default
Value Description

lut_function 64-bit hexadecimal value 64’h0
The parameter defines the value on lut_function
the output of the LUT6 as detailed in the dout function

.table (see page 24)

Ports

Table 4: Pin Descriptions

Name Type Description

din0–din5 Input Data inputs.

dout Output Data output. The value on is the part of the parameter indexed by the dout lut_function
inputs .{din5, din4, din3, din2, din1, din0}

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 24

Function

Table 5: Function Table

din5 din4 din3 din2 din1 din0 dout

0 0 0 0 0 0 lut_function[0]

0 0 0 0 0 1 lut_function[1]

0 0 0 0 1 0 lut_function[2]

0 0 0 0 1 1 lut_function[3]

0 0 0 1 0 0 lut_function[4]

...

1 1 1 1 0 1 lut_function[61]

1 1 1 1 1 0 lut_function[62]

1 1 1 1 1 1 lut_function[63]

Instantiation Templates

Verilog

ACX_LUT6
#(

 .lut_function (64'h012345678abcdef)
) instance_name (

 .dout (user_out),
 .din0 (user_in0),

 .din1 (user_in1),
 .din2 (user_in2),
 .din3 (user_in3),
 .din4 (user_in4),
 .din5 (user_in5)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 25

VHDL

-- VHDL Component template for ACX_LUT6

component ACX_LUT6 is

generic (
 lut_function : std_logic_vector(63 downto 0) := X"0000000000000000"

);
port (

 din0 : in std_logic;
 din1 : in std_logic;

 din2 : in std_logic;
 din3 : in std_logic;

 din4 : in std_logic;
 din5 : in std_logic;

 dout : out std_logic
);

end component ACX_LUT6

-- VHDL Instantiation template for ACX_LUT6

instance_name : ACX_LUT6
generic map (
 lut_function => lut_function
)
port map (
 din0 => user_din0,
 din1 => user_din1,
 din2 => user_din2,
 din3 => user_din3,
 din4 => user_din4,
 din5 => user_din5,
 dout => user_dout
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 26

Dual Five-Input Lookup Table (ACX_LUT5x2)
ACX_LUT5x2 implements dual LUT5 lookup tables with data inputs (–) and data output (din0 din5 lut5ldout
and). Each of the outputs is determined by a function which is defined by the 64-bit parameter lut5hdout

.lut_function

Figure 13: Dual LUT5 Lookup Tables

Parameters

Table 6: Parameters

Parameter Defined Values Default
Value Description

lut_function 64-bit hexadecimal value 64’h0
The parameter defines the value on lut_function
both the and outputs of the lut5ldout lut5hdout
LUT5x2 as detailed in .function table (see page 27)

Ports

Table 7: Pin Descriptions

Name Type Description

din0-din4 Input Data inputs.

lut5hdout Output Data output. The value on is the part of the parameter indexed lut5hdout lut_function
by the inputs .{1'b1, din4, din3, din2, din1, din0}

lut5ldout Output Data output. The value on is the part of the parameter indexed lut5ldout lut_function
by the inputs .{1'b0, din4, din3, din2, din1, din0}

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 27

Functions

Table 8: lut5ldout Function Table

1'b0 din4 din3 din2 din1 din0 dout

0 0 0 0 0 0 lut_function[0]

0 0 0 0 0 1 lut_function[1]

0 0 0 0 1 0 lut_function[2]

0 0 0 0 1 1 lut_function[3]

0 0 0 1 0 0 lut_function[4]

...

0 1 1 1 0 1 lut_function[29]

0 1 1 1 1 0 lut_function[30]

0 1 1 1 1 1 lut_function[31]

Table 9: lut5hdout Function Table

1'b1 din4 din3 din2 din1 din0 dout

1 0 0 0 0 0 lut_function[32]

1 0 0 0 0 1 lut_function[33]

1 0 0 0 1 0 lut_function[34]

1 0 0 0 1 1 lut_function[35]

1 0 0 1 0 0 lut_function[36]

...

1 1 1 1 0 1 lut_function[61]

1 1 1 1 1 0 lut_function[62]

1 1 1 1 1 1 lut_function[63]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 28

Instantiation Templates

Verilog

// Verilog template for ACX_LUT5x2

ACX_LUT5x2 #(
 .lut_function (lut_function)

) instance_name (
 .din0 (user_din0),

 .din1 (user_din1),
 .din2 (user_din2),

 .din3 (user_din3),
 .din4 (user_din4),

 .lut5ldout (user_lut5ldout),
 .lut5hdout (user_lut5hdout)

);

VHDL

-- VHDL Component template for ACX_LUT5x2

component ACX_LUT5x2 is
generic (

 lut_function : std_logic_vector(63 downto 0) := X"0000000000000000"
);

port (
 din0 : in std_logic;

 din1 : in std_logic;
 din2 : in std_logic;

 din3 : in std_logic;
 din4 : in std_logic;

 lut5ldout : out std_logic;
 lut5hdout : out std_logic

);
end component ACX_LUT5x2

-- VHDL Instantiation template for ACX_LUT5x2

instance_name : ACX_LUT5x2

generic map (

 lut_function => lut_function
)

port map (
 din0 => user_din0,

 din1 => user_din1,
 din2 => user_din2,

 din3 => user_din3,
 din4 => user_din4,

 lut5ldout => user_lut5ldout,
 lut5hdout => user_lut5hdout

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 29

Speedcore Registers
Naming Convention
These macros are named based upon their characteristics and behavior. In each case, the name begins with
DFF for D-type flip-flop. In addition to DFF, each has one or more modifiers which indicate its unique properties.

Figure 14: Register Naming Convention

Register Primitives

ACX_DFF (Positive Clock Edge D-Type Register)

Figure 15: Positive Clock Edge D-Type Register

ACX_DFF is a single D-type register with data input () and clock () inputs and data () output. The data d ck q
output is set to the value on the data input upon the next rising edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 30

Table 10: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The parameter defines the initial value of the output of the DFF init
register. This is the value the register takes upon the initial application of
power to the FPGA.

Table 11: Pin Descriptions

Name Type Description

d Input Data input.

ck Input Positive-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the rising edge q
of the clock.

Table 12: Function Table

Inputs Output

d ck q

0 ↑ 0

1 ↑ 1

Instantiation Templates

Verilog

ACX_DFF #(
 .init (1'b0)
) instance_name (
 .q (user_out),
 .d (user_din),
 .ck (user_clock)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 31

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation
instance_name : ACX_DFF

generic map (
 init => '0'

)
port map (

 q => user_out,
 d => user_din,

 ck => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 32

ACX_DFFE (Positive Clock Edge D-Type Register With Clock Enable)

Figure 16: Positive Clock Edge D-Type Register With Clock Enable

ACX_DFFE is a single D-type register with data input (), clock enable (), and clock () inputs and data () d ce ck q
output. The data output is set to the value on the data input upon the next rising edge of the clock if the active-
high clock enable input is asserted.

Table 13: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The parameter defines the initial value of the output of the DFFE init
register. This is the value the register takes upon the initial application of
power to the FPGA.

Table 14: Pin Descriptions

Name Type Description

d Input Data input.

ce Input Active-high clock enable input.

ck Input Positive-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the rising edge q
of the clock if the clock enable input is high.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 33

Table 15: Function Table

Inputs Output

ce d ck q

0 X X Hold

1 0 ↑ 0

1 1 ↑ 1

Instantiation Templates

Verilog

ACX_DFFE #(
 .init (1'b0)
) instance_name (
 .q (user_out),
 .d (user_din),
 .ce (user_clock_enable),
 .ck (user_clock)
);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFE
generic map (

 init => '0'
)

port map (
 q => user_out,

 d => user_din,
 ce => user_clock_enable,

 ck => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 34

ACX_DFFER (Positive Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Reset)

Figure 17: Positive Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Reset

ACX_DFFER is a single D-type register with data input (), clock enable (), clock (), and active-low reset (d ce ck rn
) inputs and data () output. The active-low reset input overrides all other inputs when it is asserted low and sets q
the data output low. The response of the output in response to the asserted reset depends on the value of the q

 parameter and is detailed in sr_assertion See ACX_DFFER Function Table with sr_assertion = "unclocked"
 and . If the reset (see page 35) See ACX_DFFER Function Table with sr_assertion = "clocked" (see page 35)

input is not asserted, the data output is set to the value on the data input upon the next rising edge of the clock if
the active-high clock enable input is asserted.

Table 16: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The parameter defines the initial value of the output of the init
DFFER register. This is the value the register takes upon the initial
application of power to the FPGA.

sr_assertion
"unclocked",
"clocked" "unclocked"

The parameter defines the behavior of the output sr_assertion
when the reset input is asserted. Assigning the rn sr_assertion
to "unclocked" results in an asynchronous assertion of the reset
signal, where the output is set to zero upon assertion of the active-q
low reset signal. Assigning the to "clocked" results sr_assertion
in a synchronous assertion of the reset signal, where the output is q
set to zero at the next rising edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 35

Table 17: Pin Descriptions

Name Type Description

d Input Data input.

rn Input
Active-low asynchronous/synchronous reset input. A low on sets the output low independent rn q
of the other inputs if the parameter is set to "unclocked". If the sr_assertion sr_assertion
parameter is set to "clocked", a low on sets the output low at the next rising edge of the clock.rn q

ce Input Active-high clock enable input.

ck Input Positive-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the rising edge q
of the clock if the clock enable input is high and the reset input is high.

Table 18: ACX_DFFER Function Table With sr_assertion = "unclocked"

Inputs Output

rn ce d ck q

0 X X X 0

1 0 X X Hold

1 1 0 ↑ 0

1 1 1 ↑ 1

Table 19: ACX_DFFER Function Table With sr_assertion = "clocked"

Inputs Output

rn ce d ck q

0 X X ↑ 0

1 0 X X Hold

1 1 0 ↑ 0

1 1 1 ↑ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 36

Instantiation Templates

Verilog

ACX_DFFER #(

 .init (1'b0),
 .sr_assertion ("unclocked")

) instance_name (
 .q (user_out),

 .d (user_din),
 .rn (user_reset),

 .ce (user_clock_enable),
 .ck (user_clock)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFER
generic map (

 init => '0',
 sr_assertion => "unclocked")

port map (
 q => user_out,

 d => user_din,
 rn => user_reset,

 ce => user_clock_enable,
 ck => user_clock

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 37

ACX_DFFES (Positive Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Set)

Figure 18: Positive Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Set

ACX_DFFES is a single D-type register with data input (), clock enable (), clock (), and active-low set () d ce ck sn
inputs and data () output. The active-low set input overrides all other inputs when it is asserted low and sets the q
data output high. The response of the output in response to the asserted set depends on the value of the q

 parameter and is detailed in sr_assertion Table: ACX_DFFES Function Table with sr_assertion = "unclocked"
 and . If the set (see page 35) Table: ACX_DFFES Function Table with sr_assertion = "clocked" (see page 35)

input is not asserted, the data output is set to the value on the data input upon the next rising edge of the clock if
the active-high clock enable input is asserted.

Table 20: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b1
The parameter defines the initial value of the output of the init
DFFES register. This is the value the register takes upon the initial
application of power to the FPGA.

sr_assertion
"unclocked",
"clocked" "unclocked"

The parameter defines the behavior of the output sr_assertion
when the set input is asserted. Assigning the to sn sr_assertion
"unclocked" results in an asychronous assertion of the reset signal,
where the output is set to one upon assertion of the active-low q
reset signal. Assigning the to "clocked" results in a sr_assertion
synchronous assertion of the reset signal, where the output is set q
to one at the next rising edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 38

Table 21: Pin Descriptions

Name Type Description

d Input Data input.

sn Input

Active-low asynchronous/synchronous set input. A low on sets the output high independent sn q
of the other inputs if the parameter is set to "unclocked". If the sr_assertion sr_assertion
parameter is set to "clocked", a low on sets the output high at the next rising edge of the rn q
clock.

ce Input Active-high clock enable input.

ck Input Positive-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the rising edge q
of the clock if the clock enable input is high and the reset input is high.

Table 22: ACX_DFFES Function Table With sr_assertion = "unclocked"

Inputs Output

sn ce d ck q

0 X X X 1

1 0 X X Hold

1 1 0 ↑ 0

1 1 1 ↑ 1

Table 23: ACX_DFFES Function Table With sr_assertion = "clocked"

Inputs Output

sn ce d ck q

0 X X ↑ 1

1 0 X X Hold

1 1 0 ↑ 0

1 1 1 ↑ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 39

Instantiation Templates

Verilog

ACX_DFFES #(

 .init (1'b1),
 .sr_assertion ("unclocked")

) instance_name (
 .q (user_out),

 .d (user_din),
 .sn (user_set),

 .ce (user_clock_enable),
 .ck (user_clock)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFES
generic map (

 init => '1',
 sr_assertion => "unclocked"

)
port map (

 q => user_out,
 d => user_din,

 sn => user_set,
 ce => user_clock_enable,

 ck => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 40

ACX_DFFN (Negative Clock Edge D-Type Register)

Figure 19: Negative Clock Edge D-Type Register

ACX_DFFN is a single D-type register with data input () and clock () inputs and data () output. The data d ckn q
output is set to the value on the data input upon the next falling edge of the clock.

Table 24: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The init parameter defines the initial value of the output of the DFFN
register. This is the value the register takes upon the initial application of
power to the FPGA.

Table 25: Pin Descriptions

Name Type Description

d Input Data input.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the falling q
edge of the clock.

Table 26: Function Table

Inputs Output

d ck q

0 ↓ 0

1 ↓ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 41

Instantiation Templates

Verilog

ACX_DFFN #(

 .init (1'b0)
) instance_name (

 .q (user_out),
 .d (user_din),

 .ckn (user_clock)
);

VHDL

------------- ACHRONIX LIBRARY ------------
library speedster7t;

use speedster7t.core.all;
----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation
instance_name : ACX_DFFN

generic map (
 init => '0'

)
port map (

 q => user_out,
 d => user_din,

 ckn => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 42

ACX_DFFNER (Negative Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Reset)

Figure 20: Negative Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Reset

ACX_DFFNER is a single D-type register with data input (), clock enable (), clock (), and active-low reset d ce ckn
() inputs and data () output. The active-low reset input overrides all other inputs when it is asserted low and rn q
sets the data output low. The response of the output in response to the asserted reset depends on the value of q
the parameter and is detailed in sr_assertion Table: ACX_DFFNER Function Table with sr_assertion =

 and "unclocked" (see page 38) Table: ACX_DFFNER Function Table with sr_assertion = "clocked" (see page
. If the reset input is not asserted, the data output is set to the value on the data input upon the next falling 38)

edge of the clock if the active-high clock enable input is asserted.

Table 27: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The parameter defines the initial value of the output of the init
DFFNER register. This is the value the register takes upon the initial
application of power to the FPGA.

sr_assertion
"unclocked",
"clocked" "unclocked"

The parameter defines the behavior of the output sr_assertion
when the reset input is asserted. Assigning the rn sr_assertion
to "unclocked" results in an asychronous assertion of the reset
signal, where the output is set to zero upon assertion of the active-q
low reset signal. Assigning the to "clocked" results sr_assertion
in a synchronous assertion of the reset signal, where the output is q
set to zero at the next falling edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 43

Table 28: Pin Descriptions

Name Type Description

d Input Data input.

rn Input

Active-low asynchronous/synchronous reset input. A low on sets the output low independent rn q
of the other inputs if the parameter is set to "unclocked". If the sr_assertion sr_assertion
parameter is set to "clocked", a low on sets the output low at the next falling edge of the rn q
clock.

ce Input Active-high clock enable input.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the falling q
edge of the clock if the clock enable input is high and the reset input is high.

Table 29: ACX_DFFNER Function Table With sr_assertion = "unclocked"

Inputs Output

rn ce d ckn q

0 X X X 0

1 0 X X Hold

1 1 0 ↓ 0

1 1 1 ↓ 1

Table 30: ACX_DFFNER Function Table With sr_assertion = "clocked"

Inputs Output

rn ce d ckn q

0 X X ↓ 0

1 0 X X Hold

1 1 0 ↓ 0

1 1 1 ↓ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 44

Instantiation Templates

Verilog

ACX_DFFNER #(

 .init (1'b0),
 .sr_assertion ("unclocked")

) instance_name (
 .q (user_out),

 .d (user_din),
 .rn (user_reset),

 .ce (user_clock_enable),
 .ckn (user_clock)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFNER
generic map (

 init => '0',
 sr_assertion => "unclocked"

)
port map (

 q => user_out,
 d => user_din,

 rn => user_reset,
 ce => user_clock_enable,

 ckn => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 45

ACX_DFFNES (Negative Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Set)

Figure 21: Negative Clock Edge D-Type Register With Clock Enable and
Asynchronous/Synchronous Set

ACX_DFFNES is a single D-type register with data input (), clock enable (), clock (), and active-low set (d ce ckn
) inputs and data () output. The active-low set input overrides all other inputs when it is asserted low and sets sn q

the data output high. The response of the output in response to the asserted set depends on the value of the q
 parameter and is detailed in sr_assertion Table: ACX_DFFNES Function Table with sr_assertion =

 and "unclocked" (see page 42) Table: ACX_DFFNES Function Table with sr_assertion = "clocked" (see page
. If the set input is not asserted, the data output is set to the value on the data input upon the next falling 43)

edge of the clock if the active-high clock enable input is asserted.

Table 31: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b1
The parameter defines the initial value of the output of the init
DFFNES register. This is the value the register takes upon the initial
application of power to the FPGA.

sr_assertion
"unclocked",
"clocked" "unclocked"

The parameter defines the behavior of the output sr_assertion
when the set input is asserted. Assigning the to sn sr_assertion
"unclocked" results in an asychronous assertion of the set signal,
where the output is set to one upon assertion of the active-low set q
signal. Assigning the to "clocked" results in a sr_assertion
synchronous assertion of the set signal, where the output is set to q
one at the next falling edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 46

Table 32: Pin Descriptions

Name Type Description

d Input Data input.

sn Input

Active-low asynchronous/synchronous set input. A low on sets the output high independent sn q
of the other inputs if the parameter is set to "unclocked". If the sr_assertion sr_assertion
parameter is set to "clocked", a low on sets the output high at the next falling edge of the sn q
clock.

ce Input Active-high clock enable input.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the falling q
edge of the clock if the clock enable input is high and the set input is high.

Table 33: ACX_DFFNES Function Table With sr_assertion = "unclocked"

Inputs Output

sn ce d ckn q

0 X X X 1

1 0 X X Hold

1 1 0 ↓ 0

1 1 1 ↓ 1

Table 34: ACX_DFFNES Function Table With sr_assertion = "clocked"

Inputs Output

sn ce d ckn q

0 X X ↓ 1

1 0 X X Hold

1 1 0 ↓ 0

1 1 1 ↓ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 47

Instantiation Templates

Verilog

ACX_DFFNES #(

 .init (1'b1),
 .sr_assertion ("unclocked")

) instance_name (
 .q (user_out),

 .d (user_din),
 .sn (user_set),

 .ce (user_clock_enable),
 .ckn (user_clock)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFNES
generic map (

 init => '1',
 sr_assertion => "unclocked"

)
port map (

 q => user_out,
 d => user_din,

 sn => user_set,
 ce => user_clock_enable,

 ckn => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 48

ACX_DFFNR (Negative Clock Edge D-Type Register With Asynchronous Reset)

Figure 22: Negative Clock Edge D-Type Register With Asynchronous Reset

ACX_DFFNR is a single D-type register with data input (), clock (), and active-low reset () inputs and d ckn rn
data () output. The active-low reset input overrides the other inputs when it is asserted low and sets the data q
output low. The response of the output in response to the asserted reset is described under the q

 parameter. If the reset input is not asserted, the data output is set to the value on the data input sr_assertion
upon the next falling edge of the clock.

Table 35: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The parameter defines the initial value of the output of the init
DFFNR register. This is the value the register takes upon the initial
application of power to the FPGA.

sr_assertion
"unclocked",
"clocked" "unclocked"

The parameter defines the behavior of the output sr_assertion
when the reset input is asserted. Assigning the rn sr_assertion
to "unclocked" results in an asychronous assertion of the reset
signal, where the output is set low upon assertion of the active-low q
reset signal. Assigning the to "clocked" results in a sr_assertion
synchronous assertion of the reset signal, where the output is set q
low at the next falling edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 49

Table 36: Pin Descriptions

Name Type Description

d Input Data input.

rn Input Active-low asynchronous reset input. A low on sets the output low independent of the other rn q
inputs.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the falling q
edge of the clock if the asynchronous reset input is high.

Table 37: Function Table With sr_assertion = "unclocked"

Inputs Output

rn d ckn q

0 X X 0

1 X X Hold

1 0 ↓ 0

1 1 ↓ 1

Table 38: Function Table With sr_assertion = "clocked"

Inputs Output

rn d ckn q

0 X ↓ 0

1 X X Hold

1 0 ↓ 0

1 1 ↓ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 50

Instantiation Templates

Verilog

ACX_DFFNR #(

 .init (1'b0)
) instance_name (

 .q (user_out),
 .d (user_din),

 .rn (user_reset),
 .ckn (user_clock)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFNR
generic map (

 init => '0'
)

port map (
 q => user_out,

 d => user_din,
 rn => user_reset,

 ckn => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 51

ACX_DFFNS (Negative Clock Edge D-Type Register With Asynchronous Set)

Figure 23: Negative Clock Edge D-Type Register With Asynchronous Set

ACX_DFFNS is a single D-type register with data input (), clock (), and active-low set () inputs and data (d ckn sn
) output. The active-low set input overrides the other inputs when it is asserted low and sets the data output q

high. The response of the output in response to the asserted set is described under the q sr_assertion
parameter. If the set input is not asserted, the data output is set to the value on the data input upon the next
falling edge of the clock.

Table 39: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b1
The parameter defines the initial value of the output of the init
DFFNS register. This is the value the register takes upon the initial
application of power to the FPGA.

sr_assertion
"unclocked",
"clocked" "unclocked"

The parameter defines the behavior of the output sr_assertion
when the set input is asserted. Assigning the to sn sr_assertion
"unclocked" results in an asychronous assertion of the set signal,
where the output is set to one upon assertion of the active-low set q
signal. Assigning the to "clocked" results in a sr_assertion
synchronous assertion of the set signal, where the output is set to q
one at the next falling edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 52

Table 40: Pin Descriptions

Name Type Description

d Input Data input.

sn Input Active-low asynchronous set input. A low on sets the output high independent of the other sn q
inputs.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the falling q
edge of the clock if the asynchronous set input is high.

Table 41: Function Table With sr_assertion = "unclocked"

Inputs Output

sn d ckn q

0 X X 1

1 X X Hold

1 0 ↓ 0

1 1 ↓ 1

Table 42: Function Table With sr_assertion = "clocked"

Inputs Output

sn d ckn q

0 X ↓ 1

1 X X Hold

1 0 ↓ 0

1 1 ↓ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 53

Instantiation Templates

Verilog

ACX_DFFNS #(

 .init (1'b1)
) instance_name (

 .q (user_out),
 .d (user_din),

 .sn (user_set),
 .ckn (user_clock)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFNS
generic map (

 init => '1'
)

port map (
 q => user_out,

 d => user_din,
 sn => user_set,

 ckn => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 54

ACX_DFFR (Positive Clock Edge D-Type Register With Asynchronous Reset)

Figure 24: Positive Clock Edge D-Type Register With Asynchronous Reset

ACX_DFFR is a single D-type register with data input (), clock (), and active-low reset () inputs and data (d ck rn q
) output. The active-low reset input overrides the other inputs when it is asserted low and sets the data output
low. The response of the output in response to the asserted reset is described under the q sr_assertion
parameter. If the reset input is not asserted, the data output is set to the value on the data input upon the next
rising edge of the clock.

Note

References may be seen to DFFC in the resulting netlist. This macro is functionally equivalent to the
DFFR. ACE software automatically replaces any instance of DFFC with DFFR.

Table 43: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The parameter defines the initial value of the output of the init
DFFR register. This is the value the register takes upon the initial
application of power to the FPGA.

sr_assertion
"unclocked",
"clocked" "unclocked"

The parameter defines the behavior of the output sr_assertion
when the reset input is asserted. Assigning the rn sr_assertion
to "unclocked" results in an asychronous assertion of the reset
signal, where the output is set low upon assertion of the active-low q
reset signal. Assigning the to "clocked" results in a sr_assertion
synchronous assertion of the reset signal, where the output is set q
low at the next rising edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 55

Table 44: Pin Descriptions

Name Type Description

d Input Data input.

rn Input Active-low asynchronous reset input. A low on sets the output low independent of the other rn q
inputs.

ck Input Positive-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the rising edge q
of the clock if the asynchronous reset input is high.

Table 45: Function Table With sr_assertion = "unclocked"

Inputs Output

rn d ck q

0 X X 0

1 X X Hold

1 0 ↑ 0

1 1 ↑ 1

Table 46: Function Table With sr_assertion = "clocked"

Inputs Output

rn d ck q

0 X ↑ 0

1 X X Hold

1 0 ↑ 0

1 1 ↑ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 56

Instantiation Templates

Verilog

ACX_DFFR #(

 .init (1'b0)
) instance_name (

 .q (user_out),
 .d (user_din),

 .rn (user_reset),
 .ck (user_clock)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFR
generic map (

 init => '0'
)

port map (
 q => user_out,

 d => user_din,
 rn => user_reset,

 ck => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 57

ACX_DFFS (Positive Clock Edge D-Type Register With Asynchronous Set)

Figure 25: Positive Clock Edge D-Type Register With Asynchronous Set

ACX_DFFS is a single D-type register with data input (), clock (), and active-low set () inputs and data () d ck sn q
output. The active-low set input overrides the other inputs, when it is asserted low the data output is asserted
high. The response of the output in response to the asserted set is described under the q sr_assertion
parameter. If the set input is not asserted, the data output is set to the value on the data input upon the next
rising edge of the clock.

Note

References may be seen to DFFP in the resulting netlist. This macro is functionally equivalent to the
DFFS. ACE software automatically replaces any instance of DFFP with DFFS.

Table 47: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b1
The parameter defines the initial value of the output of the init
DFFS register. This is the value the register takes upon the initial
application of power to the FPGA.

sr_assertion
"unclocked",
"clocked" "unclocked"

The parameter defines the behavior of the output sr_assertion
when the set input is asserted. Assigning the to sn sr_assertion
"unclocked" results in an asychronous assertion of the set signal,
where the output is set to one upon assertion of the active-low set q
signal. Assigning the to "clocked" results in a sr_assertion
synchronous assertion of the set signal, where the output is set to q
one at the next rising edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 58

Table 48: Pin Descriptions

Name Type Description

d Input Data input.

sn Input Active-low asynchronous set input. A low on sets the output high independent of the other sn q
inputs.

ck Input Positive-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the rising edge q
of the clock if the asynchronous set input is high.

Table 49: Function Table With sr_assertion = "unclocked"

Inputs Output

sn d ck q

0 X ↑ 1

1 X X Hold

1 0 ↑ 0

1 1 ↑ 1

Table 50: Function Table With sr_assertion = "clocked"

Inputs Output

sn d ck q

0 X X 1

1 X X Hold

1 0 ↑ 0

1 1 ↑ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 59

Instantiation Template

Verilog

ACX_DFFS #(

 .init (1'b1)
) instance_name (

 .q (user_out),
 .d (user_din),

 .sn (user_set),
 .ck (user_clock)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_DFFS
generic map (

 init => '1'
)

port map (
 q => user_out,

 d => user_din,
 sn => user_set,

 ck => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 60

Register Macros
The following DFF modes are not natively supported by the hardware, but are transparently resolved into the
appropriate primitives by ACE software.

ACX_DFFNEP (Negative Clock Edge D-Type Register With Clock Enable and
Synchronous Preset)

Figure 26: Negative Clock Edge D-Type Register With Clock Enable and
Synchronous Preset

ACX_DFFNEP is a single D-type register with data input (), clock enable (), clock (), and active-low d ce ckn
synchronous preset () inputs and data () output. The active-low synchronous preset input sets the data pn q
output high upon the next falling edge of the clock if it is asserted low and the clock enable signal is asserted
high. If the synchronous preset input is not asserted, the data output is set to the value on the data input upon
the next falling edge of the clock if the active-high clock enable input is asserted.

Table 51: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b1
The parameter defines the initial value of the output of the DFFNEP init
register. This is the value the register takes upon the initial application of
power to the FPGA.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 61

Table 52: Pin Descriptions

Name Type Description

d Input Data input.

pn Input Active-low synchronous preset input. A low on sets the output high upon the next falling edge pn q
of the clock if the clock enable is asserted high.

ce Input Active-high clock enable input.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the falling q
edge of the clock if the clock enable input is high and the synchronous preset input is high.

Table 53: Function Table

Inputs Output

pn ce d ckn q

X 0 X X Hold

0 1 X ↓ 1

1 1 0 ↓ 0

1 1 1 ↓ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 62

Instantiation Templates

Verilog

ACX_DFFNEP #(

 .init (1'b1)
) instance_name (

 .q (user_out),
 .d (user_din),

 .pn (user_preset)
 .ce (user_clock_enable),

 .ckn (user_clock)
);

VHDL

------------- ACHRONIX LIBRARY ------------
library speedster7t;

use speedster7t.core.all;
----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation
instance_name : ACX_DFFNEP

generic map (
 init => '1'

)
port map (

 q => user_out,
 d => user_din,

 pn => user_preset,
 ce => user_clock_enable,

 ckn => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 63

ACX_DFFEC (Positive Clock Edge D-Type Register With Clock Enable and
Synchronous Clear)

Figure 27: Positive Clock Edge D-Type Register With Clock Enable and
Synchronous Clear

ACX_DFFEC is a single D-type register with data input (), clock enable (), clock (), and active-low d ce ck
synchronous clear () inputs and data () output. The active-low synchronous clear input sets the data output cn q
low upon the next rising edge of the clock if it is asserted low and the clock enable signal is asserted high. If the
synchronous clear input is not asserted, the data output is set to the value on the data input upon the next rising
edge of the clock if the active-high clock enable input is asserted.

Table 54: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The parameter defines the initial value of the output of the DFFEC init
register. This is the value the register takes upon the initial application of
power to the FPGA.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 64

Table 55: Pin Descriptions

Name Type Description

d Input Data input.

cn Input Active-low synchronous clear input. A low on sets the output low upon the next rising edge of cn q
the clock if the clock enable is asserted high.

ce Input Active-high clock enable input.

ck Input Positive-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the rising edge q
of the clock if the clock enable input is high and the synchronous clear input is high.

Table 56: Function Table

Inputs Output

cn ce d ck q

X 0 X X Hold

0 1 X ↑ 0

1 1 0 ↑ 0

1 1 1 ↑ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 65

Instantiation Templates

Verilog

ACX_DFFEC #(

 .init (1'b0)
) instance_name (

 .q (user_out),
 .d (user_din),

 .cn (user_clear),
 .ce (user_clock_enable),

 .ck (user_clock)
);

VHDL

------------- ACHRONIX LIBRARY ------------
library speedster7t;

use speedster7t.core.all;
----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation
instance_name : ACX_DFFEC

generic map (
 init => '0'

)
port map (

 q => user_out,
 d => user_din,

 cn => user_clear,
 ce => user_clock_enable,

 ck => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 66

ACX_DFFEP (Positive Clock Edge D-Type Register With Clock Enable and
Synchronous Preset)

Figure 28: Positive Clock Edge D-Type Register With Clock Enable and
Synchronous Preset

ACX_DFFEP is a single D-type register with data input (), clock enable (), clock (), and active-low d ce ck
synchronous preset () inputs and data () output. The active-low synchronous preset input sets the data pn q
output high upon the next rising edge of the clock if it is asserted low and the clock enable signal is asserted
high. If the synchronous preset input is not asserted, the data output is set to the value on the data input upon
the next rising edge of the clock if the active-high clock enable input is asserted.

Table 57: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b1
The parameter defines the initial value of the output of the DFFEP init
register. This is the value the register takes upon the initial application of
power to the FPGA.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 67

Table 58: Pin Descriptions

Name Type Description

d Input Data input.

pn Input Active-low synchronous preset input. A low on sets the output high upon the next rising edge pn q
of the clock if the clock enable is asserted high.

ce Input Active-high clock enable input.

ck Input Positive-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the rising edge q
of the clock if the clock enable input is high and the synchronous preset input is high.

Table 59: Function Table

Inputs Output

pn ce d ck q

X 0 X X Hold

0 1 X ↑ 1

1 1 0 ↑ 0

1 1 1 ↑ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 68

Instantiation Templates

Verilog

ACX_DFFEP #(

 .init (1'b1)
) instance_name (

 .q (user_out),
 .d (user_din),

 .pn (user_preset),
 .ce (user_clock_enable),

 .ck (user_clock)
);

VHDL

------------- ACHRONIX LIBRARY ------------
library speedster7t;

use speedster7t.core.all;
----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation
instance_name : ACX_DFFEP

generic map (
 init => '1'

)
port map (

 q => user_out,
 d => user_din,

 pn => user_preset,
 ce => user_clock_enable,

 ck => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 69

ACX_DFFNEC (Negative Clock Edge D-Type Register With Clock Enable and
Synchronous Clear)

Figure 29: Negative Clock Edge D-Type Register With Clock Enable and
Synchronous Clear

ACX_DFFNEC is a single D-type register with data input (), clock enable (), clock (), and active-low d ce ckn
synchronous clear () inputs and data () output. The active-low synchronous clear input sets the data output cn q
low upon the next falling edge of the clock if it is asserted low and the clock enable signal is asserted high. If the
synchronous clear input is not asserted, the data output is set to the value on the data input upon the next falling
edge of the clock if the active-high clock enable input is asserted.

Table 60: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0
The parameter defines the initial value of the output of the DFFNEC init
register. This is the value the register takes upon the initial application of
power to the FPGA.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 70

Table 61: Pin Descriptions

Name Type Description

d Input Data input.

cn Input Active-low synchronous clear input. A low on sets the output low upon the next falling edge of cn q
the clock if the clock enable is asserted high.

ce Input Active-high clock enable input.

ckn Input Negative-edge clock input.

q Output Data output. The value present on the data input is transferred to the output upon the falling q
edge of the clock if the clock enable input is high and the synchronous clear input is high.

Table 62: Function Table

Inputs Output

cn ce d ckn q

X 0 X X Hold

0 1 X ↓ 0

1 1 0 ↓ 0

1 1 1 ↓ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 71

Instantiation Templates

Verilog

ACX_DFFNEC #(

 .init (1'b0)
) instance_name (

 .q (user_out),
 .d (user_din),

 .cn (user_clear),
 .ce (user_clock_enable),

 .ckn (user_clock)
);

VHDL

------------- ACHRONIX LIBRARY ------------
library speedster7t;

use speedster7t.core.all;
----------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation
instance_name : ACX_DFFNEC

generic map (
 init => '0'

)
port map (

 q => user_out,
 d => user_din,

 cn => user_clear,
 ce => user_clock_enable,

 ckn => user_clock
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 72

Boundary Pin Cells
In Speedcore devices, boundary pins provide the mechanism for routing signals between the core logic and
surrounding ASIC logic. Boundary pins are directional buffers, with optional flip-flops. Boundary pins do not
support enables nor bidirectional I/O. Boundary pins can either be handled automatically as part of the user
software design flow or instantiated directly in the design.

IPIN (Input Data Pin)

Figure 30: ACX_IPIN Logic Diagram

ACX_IPIN is an input boundary pin with a bypass-capable flip-flop, which supports data, reset, and enable
signals. Clock signals must use ACX_CLK_IPIN. Set the parameter to to use combinational mode, or to mode 0 1
to use flopped mode.

Table 63: Ports

Name Type Description

din Input Data input.

clk Input Clock input. Used only in flopped mode ().mode == 1

ce Input Active-high clock enable input.

rstn Input

Active-low asynchronous/synchronous reset input. A low on sets the output to the rstn dout
value of the parameter independent of the other inputs if the rst_value sr_assertion
parameter is set to . If the parameter is set to , a low on unclocked sr_assertion clocked

 sets the output to the value of the parameter at the next rising edge of the rstn dout rst_value
clock.

dout Output Data output.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 73

Table 64: Parameters

Parameter Defined Values Default
Value Description

mode 0, 1 0

A value of selects combinational mode for the IPIN, and the 0
 pin connection is ignored. A value of selects flopped clk 1

mode for the IPIN, and the pin must be connected to a clk
valid clock.

init 0, 1 0 The initial value of the flop if mode is set to .1

sr_assertion
unclocked,
clocked

unclocked

The parameter defines the behavior of the sr_assertion
output when the reset input is asserted. Assigning the rstn
sr_assertion to results in an asynchronous unclocked
assertion of the reset signal, where the output is set to dout
the value of the parameter upon assertion of the rst_value
active-low reset signal. Assigning the to sr_assertion

 results in a synchronous assertion of the reset signal, clocked
where the output is set to the value of the dout rst_value
parameter at the next rising edge of the clock. The default value
of the parameter is ".sr_assertion unclocked

rst_value 0, 1 0
The parameter defines the value (or) that is rst_value 1 0
output on the pin when reset is asserted.dout

location <pin_location> ""
An optional parameter that can be used to place the instance
on a site in the target device. It is recommended to use PDC
constraints for placement instead of this parameter.

Table 65: ACX_IPIN Function Table When sr_assertion = "unclocked"

Inputs Output

rstn ce din clk dout

0 X X X rst_value

1 0 X X Hold

1 1 0 ↑ 0

1 1 1 ↑ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 74

Table 66: ACX_IPIN Function Table When sr_assertion = "clocked"

Inputs Output

rstn ce din clk dout

0 X X ↑ rst_value

1 0 X X Hold

1 1 0 ↑ 0

1 1 1 ↑ 1

Instantiation Templates

Verilog – Combinational Mode

ACX_IPIN #(

 .mode (0),
 .init (0),

 .sr_assertion ("unclocked"),
 .rst_value (0),

 .location ("")
) instance_name (

 .din (user_pad),
 .clk (),

 .ce (),
 .rstn (),

 .dout (user_dout)
);

Verilog – Flopped Mode

ACX_IPIN #(
 .mode (1),

 .init (0),

 .sr_assertion ("unclocked"),
 .rst_value (0),

 .location ("")
) instance_name (

 .din (user_pad),
 .clk (user_clk),

 .ce (user_ce),
 .rstn (user_rstn),

 .dout (user_dout)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 75

VHDL – Combinational Mode

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.io.all;

------------- DONE ACHRONIX LIBRARY -------

-- Component Instantiation
instance_name : ACX_IPIN

generic map (
 mode => 0,

 init => 0,
 sr_assertion => "unclocked",

 rst_value => 0,
 location => ""

)
port map (

 din => user_pad,
 dout => user_dout

);

VHDL – Flopped Mode

------------- ACHRONIX LIBRARY ------------
library speedster7t;

use speedster7t.io.all;
------------- DONE ACHRONIX LIBRARY -------

-- Component Instantiation
instance_name : ACX_IPIN

generic map (
 mode => 1,

 init => 0,
 sr_assertion => "unclocked",

 rst_value => 0,
 location => ""
)
port map (

 din => user_pad,
 clk => user_clk,

 ce => user_ce,
 rstn => user_rstn,

 dout => user_dout
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 76

ACX_OPIN (Output Data Pin)

Figure 31: ACX_OPIN Logic Diagram

ACX_OPIN is an output boundary pin with a bypass-capable flip-flop, which supports data, reset, and enable
signals. Clock signals must use ACX_CLK_OPIN. Set the parameter to to use combinational mode, or to mode 0

 to use flopped mode.1

Table 67: Ports

Name Type Description

din Input Data input.

clk Input Clock input. Used only in flopped mode ().mode == 1

ce Input Active-high clock enable input.

rstn Input

Active-low asynchronous/synchronous reset input. A low on sets the output to the rstn dout
value of the parameter independent of the other inputs if the rst_value sr_assertion
parameter is set to . If the parameter is set to ", a low on unclocked sr_assertion clocked

 sets the output to the value of the parameter at the next rising edge of the rstn dout rst_value
clock.

dout Output Data output.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 77

Table 68: Parameters

Parameter Defined Values Default
Value Description

mode 0, 1 0

A value of selects combinational mode for the OPIN, and the 0
 pin connection is ignored. A value of selects flopped clk 1

mode for the OPIN, and the pin must be connected to a clk
valid clock.

init 0, 1 0 The initial value of the flop if is set to .mode 1

sr_assertion
unclocked,
clocked

unclocked

The parameter defines the behavior of the sr_assertion
output when the reset input is asserted. setting rstn

 to results in an asynchronous sr_assertion unclocked
assertion of the reset signal, where the output is set to dout
the value of the parameter upon assertion of the rst_value
active-low reset signal. Setting to sr_assertion clocked
results in a synchronous assertion of the reset signal, where the

 output is set to the value of the parameter at dout rst_value
the next rising edge of the clock. The default value of the

 parameter is .sr_assertion unclocked

rst_value 0, 1 0
The parameter defines the value (or) that is rst_value 1 0
output on the pin when reset is asserted.dout

location <pin_location> ""
An optional parameter that can be used to place the instance
on a site in the target device. It is recommended to use PDC
directives for placement instead of this parameter.

Table 69: ACX_OPIN Function Table When sr_assertion = "unclocked"

Inputs Output

rstn ce din clk dout

0 X X X rst_value

1 0 X X Hold

1 1 0 ↑ 0

1 1 1 ↑ 1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 78

Table 70: ACX_OPIN Function Table When sr_assertion = "clocked"

Inputs Output

rstn ce din clk dout

0 X X ↑ rst_value

1 0 X X Hold

1 1 0 ↑ 0

1 1 1 ↑ 1

Instantiation Templates

Verilog – Combinational Mode

ACX_OPIN #(

 .mode (0),
 .init (0),

 .sr_assertion ("unclocked"),
 .rst_value (0),

 .location ("")
) instance_name (

 .din (user_din),
 .clk (),

 .ce (),
 .rstn (),

 .dout (user_pad)
);

Verilog – Flopped Mode

ACX_OPIN #(
 .mode (1),

 .init (0),

 .sr_assertion ("unclocked"),
 .rst_value (0),

 .location ("")
) instance_name (

 .din (user_din),
 .clk (user_clk),

 .ce (user_ce),
 .rstn (user_ce),

 .dout (user_pad)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 79

VHDL – Combinational Mode

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.io.all;

------------- DONE ACHRONIX LIBRARY -------

-- Component Instantiation
instance_name : ACX_OPIN

generic map (
 mode => 0,

 init => 0,
 sr_assertion => "unclocked",

 rst_value => 0,
 location => ""

)
port map (

 din => user_din,
 dout => user_pad

);

VHDL – Flopped Mode

------------- ACHRONIX LIBRARY ------------
library speedster7t;

use speedster7t.io.all;
------------- DONE ACHRONIX LIBRARY -------

-- Component Instantiation
instance_name : ACX_OPIN

generic map (
 mode => 1,

 init => 0,
 sr_assertion => "unclocked",

 rst_value => 0,
 location => ""
)
port map (

 din => user_din,
 clk => user_clk,

 ce => user_ce,
 rstn => user_rstn,

 dout => user_pad
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 80

ACX_CLK_IPIN (Input Clock Pin)

Figure 32: ACX_CLK_IPIN Logic Symbol

ACX_CLK_IPIN is an input boundary pin which supports only clock signals. Data and reset signals must use
IPIN.

Table 71: Ports

Name Type Description

din Input Clock input.

dout Output Clock output.

Table 72: Parameters

Parameter Defined Values Default Value

location <pin_location> ""

Table 73: Input Function Table

din dout

0 0

1 1

X X

Z X

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 81

Instantiation Templates

Verilog

ACX_CLK_IPIN #(

 .location ("")
) instance_name (

 .din (user_pad),
 .dout (user_clkout)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.io.all;

------------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_CLK_IPIN
generic map (

 location => ""
)

port map (
 din => user_pad,

 dout => user_clkout
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 82

ACX_CLK_OPIN (Output Clock Pin)

Figure 33: ACX_CLK_OPIN Logic Symbol

ACX_CLK_IPIN is an output boundary pin which supports only clock signals. Data and reset signals must use
OPIN.

Table 74: Ports

Name Type Description

din Input Clock input.

dout Output Clock output.

Table 75: Parameters

Parameter Defined Values Default Value

location <pin_location> ""

Table 76: Input Function Table

din dout

0 0

1 1

X X

Z X

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 83

Instantiation Templates

Verilog

ACX_CLK_OPIN #(

 .location ("")
) instance_name (

 .din (user_clkin),
 .dout (user_pad)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.io.all;

------------- DONE ACHRONIX LIBRARY ---------

-- Component Instantiation

instance_name : ACX_CLK_OPIN
generic map (

 location => ""
)

port map (
 din => user_clkin,

 dout => user_pad
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 84

Chapter - 3: Logic Functions

ACX_SYNCHRONIZER, ACX_SYNCHRONIZER_N

Figure 34: ACX_SYNCHRONIZER Logic Symbol

ACX_SYNCHRONIZER implements a data synchronizer to reduce the frequency of metastability when sampling
data synchronous to one clock domain with a register clocked by another clock domain. It is strongly
recommended that this macro be used for control signals that cross clock domains. Using this macro has several
advantages over using a two-register synchronizer:

The ACX_SYNCHRONIZER macro uses two back-to-back registers and improves the mean time between
failures (MTBF) by including ACE pragmas (and SDC) that constrain the placement of the registers relative to
one another. When constructing a synchronizer from two registers (not recommended), there is a chance that the
tool might separate the flip-flops within the fabric.

Embedded ACE and SDC constraints in the ACX_SYNCHRONIZER macro ensure that:

All timing paths through the input are disabled, while the input paths are not disabled. When din rstn
constructing a synchronizer from two registers (not recommended), manually add constraints to disable
these paths. If such a path is timed, the tool may report false critical paths resulting in longer run-times.

The two registers in the macro are not cloned or duplicated by the tools.

ACX_SYNCHRONIZER_N is identical to ACX_SYNCHRONIZER, except that it synchronizes to the falling edge
of the reference clock instead of the rising edge.

Table 77: Parameters

Parameter Defined
Values

Default
Value Description

init 1'b0, 1'b1 1'b0

The parameter defines the initial value of the output of the init
synchronizer and of the intermediate register, whose results are seen
after the first rising clock edge after reset. This setting is also the value
that the synchronizer takes upon the initial application of power to the
FPGA.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 85

Table 78: Pin Descriptions

Name Type Clock
Domain Description

rstn Input – Active-low reset input. Resets the value of the output register and the intermediate
register to the value provided by the parameter.init

din Input – Data input.

clk Input Clock reference. The signal is synchronized to the rising edge of this clock.dout

dout Output clk Data output.

Table 79: Function Table

Inputs Output

din clk dout

0 ↑ ↑ 0

1 ↑ ↑ 1

Using ACX_SYNCHRONIZER to Synchronize Reset

Figure 35: ACX_SYNCHRONIZER Synchronizing Reset

An instance of the ACX_SYNCHRONIZER module can also be used to synchronize reset signals. In this case,
the active-low non-synchronous reset input is connected to the input of the ACX_SYNCHRONIZER rstn
module, the input is driven with , and the parameter is set to . When the input is din 1'b1 init 1'b0 rstn
asserted, the output is immediately driven to a value of (as determined by the parameter). The 1'b0 init 1'b1
on the data input propagates to the output after two output clock cycles; after which, when is de-asserted, rstn
the output is set to on the next rising edge of .1'b1 clk

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 86

Instantiation Templates

Verilog

ACX_SYNCHRONIZER #(

 .init (1'b0)
) instance_name (

 .clk (user_output_clock),
 .rstn (user_reset_n),

 .din (user_din),
 .dout (user_out)

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 87

ACX_SHIFTREG

Figure 36: ACX_SHIFTREG Logic Symbol

ACX_SHIFTREG is a macro that provides an efficient multi-tap shift register implementation using LRAMs, with a
configurable data width and delay for each tap. On each rising clock edge, the data at the input pins is din
captured and saved by the shift register. The data is then presented on after the number of cycles of dout[n]
delay assigned to tap . De-asserting the input pauses operation of the shift register, such that the data n en
present on the input pins is not captured by the shift register, and the output does not change. For example, if the
shift register is configured to have three taps, and the delays for the taps are 2, 5, and 7, then the data sampled
at the input to the shift register on a given clock cycle is available at after two clock cycles, at dout[0] dout[1]
after five clock cycles, and at after seven clock cycles. To use this macro, include the following in the dout[2]
Verilog source code that instantiates the ACX_SHIFTREG macro:

`include "speedster7t/macros/ACX_SHIFTREG.v"

The shift register implementation optionally uses both edges of the clock, allowing for two taps per LRAM
instance. This implementation reduces the number of LRAMs used at the expense of timing closure at higher
clock frequencies.

Table 80: Parameters

Parameter Defined
Values Default Value Description

W <int> 32 The width of the signal, signals, and internal data din[] dout[]
storage.

N <int> 1 The number of taps supported by the shift register.

TAPS [<int>]

Array of tap latencies. The n entry in the array specifies the th TAPS

latency of the n tap, as seen on the signals. Individual th dout[n]
latencies are measured from , each value in the array must be din
larger than the previous value.

MODE [0,1] [0, 0, …]
Array of modes. Setting the n entry in the array to allows th MODE 1'b1
that entry to be implemented using an LRAM with both rising and falling
clock edges. A mode of uses only the rising clock edge.1'b0

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 88

Table 81: Pin Descriptions

Name Type Description

clk Input
Clock reference. All inputs and outputs are relative to the rising edge of this clock.
Depending on the implementation mode, internal logic may use the falling edge of
this clock.

rstn Input
Active-low reset. When asserted, the value of the internal data registers are reset to

. Using this signal prevents the shift register data storage from being mapped to 0
LRAMs, and the shift register is built out of core registers.

en Input Active-high clock enable. De-asserting this signals stops operation of the shift
register.

din[(W-1):0] Input Data input.

dout[(W-1):0]
[(N-1):0]

Output An array of data outputs, where carries the data out from the dout[(W-1):0][0]
first tap, and represents the data out from the last tap.dout[(W-1):0][N-1]

Table 82: Function Table

Inputs Output

rstn en clk dout[n].

0 X X 0 (and resets all internal states).

1 0 ↑ Previous dout[n].

1 1 ↑ dout[n] gets the next data element in the shift register.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 89

Instantiation Templates

Verilog

ACX_SHIFTREG #(

 .W (32), // Data is 32 bit wide
 .N (3), // 3 taps

 .TAPS ([3, 5, 7]), // Taps at 3 cycles, 5 cycles, and 7 cycles
 .MODE ([0,0,0]) // Rising clock edge only.

) instance_name (
 .clk (user_clock),

 .rstn (user_reset_n),
 .en (user_en),

 .din (user_din),
 .dout (user_out_array)

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 90

1.

Chapter - 4: Clock Functions

ACX_CLKDIV (Clock Divider)
The ACX_CLKDIV component implements a clock divider to provide an output clock at 1/2, 1/4, 1/6, or 1/8 the
frequency of the input clock with a configurable offset.

Figure 37: ACX_CLKDIV Logic Symbol

Table 83: Parameters

Parameter Defined
Values

Default
Value Description

div_by 2, , , 4 6 8 2 Determines the factor by which the input clock is divided.

offset 0, , , 1 2 3 0
Defines the number of input clock cycles by which to delay the output
clock.

Table 84: Pin Descriptions

Name Type Description

clk_in(1) Input Input clock to be divided.

clk_out(1) Output Divided clock output.

Table Notes

Both and must connect to clock tracks within the FPGA. They cannot connect directly clk_in clk_out
with data tracks.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 91

The following timing diagram shows how the and parameters affect the output clock.div_by offset

Figure 38: Output Clock Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 92

Constraints
The ACX_CLKDIV component does propagate the input clock frequency from to . not clk_in clk_out
Therefore, suitable constraints for must be specified to ensure that correct timing is applied. These clk_out
constraints should be present in both the Synplify Pro and ACE constraint files.

Example of constraint required with divide by 2, and offset of 0. Input clock is from the port

"i_clk_in". Output of divider connects to net named "clk_in_div_2"
create_generated_clock -name clk_div_2 -source [get_port i_clk_in] -divide_by 2 [get_nets

clk_in_div_2]

Instantiation Templates

Verilog

ACX_CLKDIV #(

 .div_by (2),
 .offset (1)

) instance_name (
 .clk_in (user_clk_in),

 .clk_out (user_clk_out)
);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

------------- DONE ACHRONIX LIBRARY -------

-- Component Instantiation
instance_name : ACX_CLKDIV

generic map (
 div_by => 2,

 offset => 1
)

port map (

 clk_in => user_clk_in,
 clk_out => user_clk_out

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 93

1.

ACX_CLKGATE (Clock Gate)

Figure 39: ACX_CLKGATE Logic Symbol

The ACX_CLKGATE component implements a clock gate that allows the output to toggle only when the input, en
, is asserted high. This component disables the clock only after the clock input has transitioned low, guaranteeing
that the output is glitchless. The output clock is guaranteed to never have a pulse width narrower in time than the
input pulse width.

Note

When simulating the ACX_CLKGATE component, if the transition on the input signal, , and the en
transition on the input clock arrive at the same moment, the time that it takes for the transition to en
have an effect is dependent on how the simulator schedules events and may vary with different
simulators, different designs, and different simulation models.

Table 85: Pin Descriptions

Name Type Description

en Input When asserted high, the output is driven by the input.clk_out clk_in

clk_in(1) Input Input clock to be gated.

clk_out(1) Output Gated clock output.

Table Notes

Both and must connect to clock tracks within the FPGA. They cannot connect directly clk_in clk_out
with data tracks.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 94

The following timing diagram illustrates the behavior of the ACX_CLKGATE component.

Figure 40: ACX_CLKGATE Timing Diagram

Constraints
The ACX_CLKGATE component does not propagate the input clock frequency from to in clk_in clk_out
Synplify Pro. Therefore, it is necessary to specify additional constraints for . With the constraint, clk_out
Synplify Pro correctly passes through the input clock domain to the output clock domain for static timing analysis
purposes. ACE can propagate the input clock frequency through the ACX_CLKGATE to the output clock. The
following constraint is needed by Synplify Pro.

Example of defining a generated clock for ACX_CLKGATE. In this example, 'i_clkgate' is the

instance name of the ACX_CLKGATE and the input clock is 'i_clk'.

create_generated_clock -name clk_gate [get_pins {i_clkgate/clk_out}] -source [get_ports

{i_clk}] -divide_by 1

Instantiation Templates

Verilog

ACX_CLKGATE instance_name

(
 .en (user_en),

 .clk_in (user_clk_in),
 .clk_out (user_clk_out)

);

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

------------- DONE ACHRONIX LIBRARY -------

-- Component Instantiation

instance_name : ACX_CLKGATE
port map (

 en => user_en,
 clk_in => user_clk_in,

 clk_out => user_clk_out
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 95

ACX_CLKSWITCH (Clock Switch)

Figure 41: ACX_CLKSWITCH Logic Symbol

The ACX_CLKSWITCH component implements clock switching functionality allowing the output clock to be
glitchlessly switched between two different clock inputs. The glitchless behavior is implemented by disabling the
clock being switched when that clock is at value , and then enabling the clock being switched when that from 0 to
clock has a value of . In this way, the output clock never has a pulse that is narrower than the original clock or 0
the new clock.

There are three switching behaviors depending on the value applied to the parameter:SYNCHRONIZE_SEL

0 – ensures the input, , for each clock is synchronized to the rising and then falling edge of the sel[]
clock being selected

1 – synchronizes the input signal, , to the falling edge followed by the next falling edge of the clock sel[]
being selected

2 – synchronizes to a single falling edge of the clock it is selecting (a value of should only be sel[] 2
used when the input signal, is synchronized to both and)sel[] clk_in[0] clk_in[1]

To ensure glitchless operation, set to the appropriate value to meet timing requirements and SYNCHRONIZE_SEL
ensure that each bit of is synchronized to the clock that it is used to select.sel[]

If a clock is not toggling, then de-asserting the input bit for that clock does not deselect the clock. In this sel[]
case, the input can be used to asynchronously force deselection of a clock input.desel[]

Note

When simulating the ACX_CLKSWITCH component, if the transition on the input signal and the sel[]
transition on one of the input clocks arrive at the same moment, the time that it takes for the sel[]
transition to have an effect is dependent on how the simulator schedules events and may vary with
different simulators, different designs, and different simulation models. Using when the input desel[]
clock is toggling can cause a glitch or partial pulse on the output.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 96

1.

2.

Table 86: Parameter Descriptions

Parameter Defined
Values

Default
Value Description

PRESEL 0, , 1 2 0

Determines the operation of the CLKSWITCH at startup time to prevent
the need for a clock switching event when the FPGA begins normal
operation. The value should match the startup value of the input, sel[1:

.0]

SYNCHRONIZE_SEL 0, , 1 2 0

Determines how many half-cycle or full cycle synchronization stages are
used to synchronize the inputs, :sel[1:0]

0 – synchronizes the input, , to the rising and then falling sel[1:0]
edge of the selected clock
1 – synchronizes the input, , to two conscutive falling edges of sel[1:0]
the selected clock.
2 – synchronizes the input, , to a single falling edge of the sel[1:0]
selected clock.

Table 87: Pin Descriptions

Name Type Description

sel[1:0] Input

Assert to drive the output clock from and assert to drive sel[0] clk_in[0] sel[1]
the output clock from . If both bits of are de-asserted, the clk_in[1] sel[] clk_out
output stops toggling. Asserting both bits of at the same time results in sel[]
unpredictable output.

desel[1:0](1) Input

When switching from one input clock to another clock using , the first clock is sel[]
synchronously disabled before the second clock is enabled. If the first clock is not
toggling, it can not be synchronously disabled. The input provides a desel[]
mechanism for deselecting a clock that is not toggling. Asserting desel[n]
asynchronously deselects , allowing to be deselected even clk_in[n] clk_in[n]
when it is not toggling.

clk_in[1:0](2) Input Input clocks.

clk_out(2) Output Output clock.

Table Notes

Using to deselect a clock while it is toggling can cause a glitch on the output clockdesel[]

Both and must connect to clock tracks within the FPGA. They cannot connect clk_in[1:0] clk_out
directly with data tracks.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 97

The following timing diagrams show how the parameter affects the output clock.SYNCHRONIZE_SEL

Figure 42: SYNCHRONIZE_SEL = 0 Timing Diagram

Figure 43: SYNCHRONIZE_SEL = 1 Timing Diagram

Figure 44: SYNCHRONIZE_SEL = 2 Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 98

Constraints
The ACX_CLKSWITCH component does not propagate the input clock frequency from both ports to the clk_in

 port in Synplify Pro. Therefore, it is necessary to specify additional timing constraints for . clk_out clk_out
With these added constraints, Synplify Pro correctly passes the input clock domains through to the output clock
domain for static timing analysis purposes. ACE can propagate the input clock frequency through the
ACX_CLKSWITCH to the output clock. The following constraints are needed by Synplify Pro.

Example of defining a generated clock for ACX_CLKSWITCH. In this example, 'i_clkswitch' is the

instance name of the ACX_CLKSWITCH and the input clock is 'i_clk_0' and 'i_clk_1'.
create_generated_clock -name clk_switch0 [get_pins {i_clkswitch/clk_out}] -source [get_ports

{i_clk_0}] -divide_by 1
create_generated_clock -name clk_switch1 [get_pins {i_clkswitch/clk_out}] -add -master_clock

clk1 -source [get_ports {i_clk_1}] -divide_by 1

Instantiation Templates

Verilog

ACX_CLKSWITCH #(

 .SYNCHRONIZE_SEL (1),
 .PRESEL (1)

) instance_name (
 .sel (user_sel),

 .desel (user_desel),
 .clk_in (user_clk_in),

 .clk_out (user_clk_out)
);

VHDL

------------- ACHRONIX LIBRARY ------------
library speedster7t;

use speedster7t.core.all;
------------- DONE ACHRONIX LIBRARY -------

-- Component Instantiation
instance_name : ACX_CLKSWITCH

generic map (
 SYNCHRONIZE_SEL => 1 ,

 PRESEL => 1
)

port map (
 sel => user_sel,

 desel => user_desel,
 clk_in => user_clk_in,

 clk_out => user_clk_out
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 99

Chapter - 5: Arithmetic and DSP Functions

ACX_ALU8
The ACX_ALU8 implements either an 8-bit adder or 8-bit subtractor.

Figure 45: Eight-Input Adder/Subtractor With Programmable Load

Description
The ACX_ALU8 has the following inputs:

Adder/subtractor (,)a[7:0] b[7:0]

Load value ()d[7:0]

Load enable ()load

Carry-in ()cin

The following outputs are generated:

Sum/difference ()s[7:0]

Carry-out ()cout

Asserting the load signal high assigns the output with the load value, , input.s[7:0] d[7:0]

Multiple ACX_ALU8 blocks may be combined by connecting the output of one slice to the input of the cout cin
next significant eight-bit slice. Selection of whether the ACX_ALU8 is configured as an adder or subtractor is
determined by the value of the parameter.invert_b

Note

When chaining the output, , of one ACX_ALU8 to the input, , of another ACX_ALU8, special cout cin
routing details should be understood. Refer to the figure showing routing between RLBs in the section
on .Speedcore Fabric Architecture (see page 11)

Parameters

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 100

Parameters
Table 88: Parameters

Parameter Defined
Values

Default
Value Description

invert_b 1'b0, 1'b1 1'b0

The parameter determines whether the ACX_ALU8 functions invert_b
as an adder or a subtractor:
1'b0 – the ACX_ALU8 performs two's complement addition of a[7:0]

.+ b[7:0] + cin
 – the ACX_ALU8 inverts the input so that two's 1'b1 b[7:0]

complement subtraction of can be performed. When a[7:0] – b[7:0]
subtraction is desired, the input must be connected to . With cin 1'b1
the input inverted and set to , in two's compliment b[7:0] cin 1'b1
arithmetic, this creates the value . When multiple s are –b ACX_ALU8
connected to perform higher resolution subtractors, only the of the cin
LSB of the subtractor is to be connected to , all other inputs 1'b1 cin
must be set to .1'b0

Ports
Table 89: Pin Descriptions

Name Type Description

a[7:0] Input Data input . An 8-bit two's complement signed input, where bit 7 is the most significant bit. In a
subtraction mode, data input a is the minuend.

b[7:0] Input Data input . An 8-bit two's complement signed input, where bit 7 is the most significant bit. In b
subtraction mode, data input b is the subtrahend.

d[7:0] Input Load value input. Input is loaded onto the outputs upon the active-high d[7:0] s[7:0]
assertion of the load input.

load Input Load input (active-high). Asserting the input sets the output equal to the load s[7:0] d[7:0]
input.

cin Input Carry-In input (active-high). The is the carry-in to the ALU8. For subtraction, should be cin cin
tied high.

s[7:0] Output

Sum/difference output.
If the parameter is set to and the input is low, the output invert_b 1'b0 load s[7:0]
reflects the sum of the , , and inputs. If the parameter is set to and the a b cin invert_b 1'b1

 input is low, the output reflects the difference of the , , and inputs.load s[7:0] a b cin

cout Output Carry-out output. The is set high during an add when the output overflows.cout s[7:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 101

Functions
Table 90: Function Table With invert_b = 1'b0

load cin s[3:0] Note

1 X d[7:0] Load.

0 – a[7:0] + b[7:0] + cin Add.

Table 91: Function Table With invert_b = 1'b1

load cin s[7:0] Note

1 X d[7:0] Load.

0 1 a[7:0] – b[7:0] Subtract.

0 0 a[7:0] – b[7:0] – 1 Subtract .–1

Instantiation Template

Verilog

ACX_ALU8 #(

 .invert_b (1'b0)
) instance_name (

 .a (user_a),
 .b (user_b),

 .d (user_load_value),
 .load (user_load),

 .cin (user_carry_in),
 .s (user_sum),

 .cout (user_cout)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 102

ACX_DSP_GEN
The ACX_DSP_GEN block is optimized for fixed-point digital signal processing (DSP). Columns of
ACX_DSP_GEN blocks reside within the Achronix embedded FPGA core to aid in the efficient implementation of
blocks such as FIR filters and processing of wireless signals.

Figure 46: ACX_DSP_GEN Tile Logic Symbol

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 103

Figure 47: ACX_DSP_GEN Block Diagram

Note

The signals, , , , and at the top and bottom of the ACX_DSP_GEN fwdi_* fwdo_* revi_* revo_*
Block Diagram denote hardwired connections to/from adjacent ACX_DSP_GEN tiles

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 104

Table 92: Control Parameter References Index Numbers for the ACX_DSP_GEN Block Diagram

Index Parameter Index Parameter Index Parameter

1 a_del 13 cout_del 25 sel_addsub_a

2 b_del 14 match_del 26 sel_addsub_b

3 sub_del 15 over_neg_del 27 sel_cin

4 cin_del 16 over_pos_del 28 addsub_bypass

5 load_del 17 fwdi_casc_del 29 sel_fwdo_dout

6 rnd_del 18 fwdo_casc_del 30 sel_dout

7 regaddr_del 19 revi_casc_del 31 round_mode

8 mshift_del 20 sel_revi_casc 32 preadd_mode

9 preadd_del 21 sel_fwd_preadd 33 sat_mode

10 multout_del 22 sel_rev_preadd 34 sel_48_dout

11 addsub_areg_del 23 sel_mult_a 35 &match_pattern & ~(|match_mask)

12 dout_del 24 sel_mult_b 36 sel_fwdo_cout

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 105

ACX_DSP_GEN Pins
Table 93: ACX_DSP_GEN Pin Descriptions

Name Type Description

a[17:0] Input Data input A, an 18-bit two’s complement signed input, where bit 17 is the most
significant bit.

b[26:0] Input Data input B, a 27-bit, two’s complement signed input, where bit 26 is the most
significant bit.

sub Input
Active-high subtract input. Setting to inverts the B input allowing an sub 1 a[27:

 subtraction operation to be performed. The input must be 0] – b[27:0] cin
asserted during a subtract operation.

cin Input Active-high user carry input. The input to the adder/subtractor is determined by cin
the setting of the parameter.sel_cin

load Input

Active-high add/sub load input. Asserting high results in the add/sub block load
summing the and the inputs. Set the a[63:0] const[63:0] load_const
parameter to if a load accumulator function is desired. The input is 64'h0 cin
ignored when the input is asserted.load

rnd Input

Active-high round add/sub input. Asserting the input high rounds the sum of rnd
 with the rounding mode selected by the parameter. (a + b + cin) round_mode

For rounding modes that may result in an overflow condition, enable saturation with
the parameter.sat_mode

mshift Input
Active-high multiplier shift input. Asserting high shifts the B input of the addmshift
/sub block seventeen bits to the right with sign extension. Aids in the computation of
products larger than the 19x27 bits provided natively by the multiplier unit.

reg_addr[2:0] Input

Register address input. Selects one of eight 27-bit constants in the register file for
the A or B inputs of the multiplier block. The output of the register is valid on the
next rising edge of the clock after the address is presented on the reg_addr
inputs. The register file contents are programmed with the 27-bit values of the

 through parameters.regfile_0 regfile_7

ce_a Input Active-high data input A register clock enable. Set high to allow data input A to be
clocked into the A-input register when the signal is high.rstn_a

ce_b Input Active-high data input B register clock enable. Set high to allow data input B to be
clocked into the B-input register when the signal is high.rstn_b

ce_addsub Input
Active-high add/sub input register clock enable. Set high to assert the clock enable
inputs for the , , , and input registers. Set low to allow rnd sub load cin mshift
these registers to hold their value at the next rising edge of the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 106

Name Type Description

ce_addsub_a Input

Active-high add/sub A input register clock enable. Set high to allow input to the add
/sub A input register to be clocked into the register when the rstn_addsub_a
signal is inactive. Set low to allow the add/sub A input register to hold its value at
the next rising edge of the clock.

ce_dout Input
Active-high add/sub output register clock enable. Set high to allow the data output
of the add/sub block to be clocked into the and registers when the dout cout

 signal is high.rstn_dout

ce_cascade Input Active-high cascade bus register clock enable. Set high to enable the , revi_casc
 and registers when the signal is high.fwdi_casc fwdo_casc rstn_casc

ce_multout Input
Active-high multiplier output register clock enable. Set high to allow the multiplier
output to be clocked into the multiplier output register when the rstn_multout
signal is high.

rstn_a Input

Active-low data input A register reset. Assert low to perform a synchronous reset of
the data input A register upon the next rising edge of the clock, and set the register
to the value defined by the parameter. The priority of rst_value_a rstn_a
relative to the clock enable input, , is determined by the value of the ce_a

 parameter.regce_priority_a

rstn_b Input

Active-low data input B register reset. Assert low to perform a synchronous reset of
the data input B register upon the next rising edge of the clock, and set the register
to the value defined by the parameter. The priority of rst_value_b rstn_b
relative to the clock enable input, , is determined by the value of the ce_b

 parameter.regce_priority_b

rstn_addsub Input

Active-low add/sub control input registers reset. Assert low to perform a
synchronous reset of the , , , and input registers upon rnd sub load cin mshift
the next rising edge of the clock. Upon reset, the value taken on by these registers
is determined by the parameters. The priority of rst_value_<regname>

 relative to the clock enable input, , is determined by the rstn_addsub ce_addsub
value of the parameters.regce_priority_<regname>

rstn_addsub_a Input

Active-low add/sub A input register reset. Assert low to perform a synchronous
reset of the add/sub A input register upon the next rising edge of the clock, and set
the register to the value defined by the parameter. The rst_value_addsub_a
priority of relative to the clock enable input, , is rstn_addsub_a ce_addsub_a
determined by the value of the parameter.regce_priority_addsub_a

rstn_dout Input

Active-low dout/cout output register reset. Assert low to performs a synchronous
reset of the and output registers upon the next rising edge of the clock, dout cout
and set the register to the value defined by the dout rst_value_dout
parameter. Also sets the register to the value defined by the cout

 parameter. The priority of relative to the clock rst_value_cout rstn_dout
enable input, , is determined by the value of the ce_dout regce_priority_dout
parameter.

Active-low cascade bus register reset. Assert low to perform a synchronous reset of
the , and registers upon the next rising edge revi_casc fwdi_casc fwdo_casc

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 107

Name Type Description

rstn_cascade Input of the clock, and set the value of these registers to zero. The operation of
 is independent of the value of the input.rstn_cascade ce_cascade

rstn_multout Input

Active-low multiplier output register reset. Assert low to perform a synchronous
reset of the multiplier output register upon the next rising edge of the clock, and set
the value of this register to zero. The operation of is independent rstn_multout
of the value of the input.ce_multout

clk Input Clock input. Data is clocked into the input and output registers at the rising edge of
this input.

dout[44:0](1) Output

Data out. The dout[44:0] output is a 45-bit signed two’s complement output of the
add/sub block, where bit 44 is the most significant bit. Alternatively, the dout output
may be programmed to output the upper or lower 32 bits of the add/sub output as
determined by the value of the del_dout parameter. This output is conditionally
registered as determined by the value of the sel_dout_del parameter.

cout Output
Active-high carry out. Set high if a carry was generated out of the add/sub block.
This output is conditionally registered as determined by the value of the

 parameter.sel_dout_del

over_pos Output

Active-high positive overflow output. Set high if an overflow of the add/sub/round
block is detected for a positive number. If the saturation block is enabled, the output
is limited to the maximum value determined by the rounding and saturation
parameter settings (see the section for details). This Saturation (see page 135)
output is conditionally registered as determined by the parameter.match_del

over_neg Output

Active-high negative overflow output. Set high if an overflow of the add/sub/round
block is detected for a negative number. If the saturation block is enabled, the
output is limited to the minimum value determined by the rounding and saturation
parameter settings (see the section for details). This Saturation (see page 135)
output is conditionally registered as determined by the parameter.match_del

match Output

Active-high match output. Set high if the parameter (masked by match_pattern
the parameter value) matches the value of the add/sub block output match_mask
(see the chapter for details). This output ACX_DSP_GEN Rounding (see page 121)
is conditionally registered as determined by the parameter.match_del

fwdi_casc[26:0] Input

Forward data cascade bus input. Aids in the development of FIR filters. The
 input directly connects to the output of the fwdi_casc fwdo_casc

ACX_DSP_GEN block adjacent to the bottom of this block. This input must not be
connected to the FPGA fabric or an error condition occurs. The forward data cbus
traverses from the bottom of the ACX_DSP_GEN column to the top, connecting
adjacent ACX_DSP_GEN blocks.

fwdi_dout[63:0] Input

Forward accumulator cascade bus input. Daisy chains the accumulator outputs to
enable fast summation of FIR filter multiplier outputs. The input directly fwdi_dout
connects to the output of the ACX_DSP_GEN block adjacent to the fwdo_dout
bottom of this block. This input must not be connected to the FPGA fabric or an
error condition occurs. The forward accumulator cascade bus traverses from the
bottom of the ACX_DSP_GEN column to the top, connecting adjacent
ACX_DSP_GEN blocks.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 108

fwdi_cin Input

Forward carry cascade input. Cascades the current add/sub block with the previous
ACX_DSP_GEN block to provide accumulation of widths greater than 64 bits. The

 input directly connects to the output of the ACX_DSP_GEN fwdi_cin fwdo_cout
block adjacent to the bottom of this block. This input must not be connected to the
FPGA fabric or an error condition occurs. The forward carry cascade bus traverses
from the bottom of the ACX_DSP_GEN column to the top, connecting adjacent
ACX_DSP_GEN blocks.

fwdi_match Input

Forward match cascade input. The forward match cascade input is used to daisy-
chain the current block with the previous ACX_DSP_GEN block to allow
comparisons wider than the 64 bit comparison provided by a single
ACX_DSP_GEN block. The input directly connects to the fwdi_match

 output of the ACX_DSP_GEN block adjacent to the bottom of this fwdo_match
block. This input must not be connected to the FPGA fabric or an error condition
occurs. The forward match cascade bus traverses from the bottom of the
ACX_DSP_GEN column to the top, connecting adjacent ACX_DSP_GEN blocks.

revi_casc[26:0] Input

Reverse data cascade bus input. Aids in the development of symmetric FIR filters.
The input directly connects to the output of the revi_casc revo_casc
ACX_DSP_GEN block adjacent to the top of this block. This input must not be
connected to the FPGA fabric or an error condition occurs. The reverse data
cascade bus traverses from the top of the ACX_DSP_GEN column to the bottom,
connecting adjacent ACX_DSP_GEN blocks.

revi_dout[31:0] Input

Reverse dout bus input. Routes the bottom 32 bits of the add/sub block to the
ACX_DSP_GEN block adjacent to the top of this block. Allows this block to output
the bottom 32 bits of the add/sub output while the next ACX_DSP_GEN block
outputs the top 32 bits of the add/sub output, making the entire 64-bit add/sub
output available to the FPGA fabric. The input directly connects to the revi_dout

 output of the ACX_DSP_GEN block adjacent to the top of this block. revo_dout
This input must not be connected to the FPGA fabric or an error condition occurs.
The reverse dout bus traverses from each ACX_DSP_GEN block to the adjacent
ACX_DSP_GEN block below.

fwdo_casc[26:0] Output

Forward data cascade bus output. Aids in the development of FIR filters. The
 output directly connects to the output of the fwdo_casc fwdi_casc

ACX_DSP_GEN block adjacent to the top of this block. This output must not be
connected to the FPGA fabric or an error condition occurs. The forward data
cascade bus traverses from the bottom of the ACX_DSP_GEN column to the top,
connecting adjacent ACX_DSP_GEN blocks.

fwdo_dout[63:0] Output

Forward accumulator cascade bus output. Daisy chains the accumulator outputs to
enable fast summation of FIR filter multiplier outputs. The output fwdo_dout
directly connects to the input of the ACX_DSP_GEN block adjacent to fwdi_dout
the top of this block. This output must not be connected to the FPGA fabric or an
error condition occurs. The forward accumulator cascade bus traverses from the
bottom of the ACX_DSP_GEN column to the top, connecting adjacent
ACX_DSP_GEN blocks.

Forward carry cascade output. Cascades the current add/sub block with the next
ACX_DSP_GEN block to provide accumulation of widths greater than 64 bits. The

 output directly connects to the input of the ACX_DSP_GEN fwdo_cout fwdi_cin

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 109

1.

Name Type Description

fwdo_cout Output block adjacent to the top of this block. This output must not be connected to the
FPGA fabric or an error condition occurs. The forward carry cascade bus traverses
from the bottom of the ACX_DSP_GEN column to the top, connecting adjacent
ACX_DSP_GEN blocks.

fwdo_match Output

Forward match cascade output. Daisy chains the current block with the next
ACX_DSP_GEN block to allow comparisons wider than the 64 bit comparison
provided by a single block. The output directly connects to the fwdo_match

 input of the ACX_DSP_GEN block adjacent to the top of this block. fwdi_match
This output must not be connected to the FPGA fabric or an error condition occurs.
The forward match cascade bus traverses from the bottom of the ACX_DSP_GEN
column to the top, connecting adjacent ACX_DSP_GEN blocks.

revo_casc[26:0] Output

Reverse data cascade bus output. Aids in the development of symmetric FIR filters.
The output directly connects to the input of the revo_casc revi_casc
ACX_DSP_GEN block adjacent to the bottom of this block. This output must not be
connected to the FPGA fabric or an error condition occurs. The reverse data
cascade bus traverses from the top of the ACX_DSP_GEN column to the bottom,
connecting adjacent ACX_DSP_GEN blocks.

revo_dout[31:0] Output

Reverse dout bus output. Routes the bottom 32 bits of the add/sub block to the
ACX_DSP_GEN block (if =) or the bottom 32 bits of the addaddsub_bypass 1'b0
/sub block A input (if =) to the ACX_DSP_GEN block addsub_bypass 1'b1
adjacent to the bottom of this block. This allows this block to output the top 32 bits
of the add/sub output while the previous ACX_DSP_GEN block outputs the bottom
32 bits of the add/sub output, making the entire 64-bit add/sub output available to
the FPGA fabric. The output directly connects to the input revo_dout revi_dout
of the ACX_DSP_GEN block adjacent to the bottom of this block. This output must
not be connected to the FPGA fabric or an error condition occurs. The reverse dout
bus traverses from current block to the adjacent ACX_DSP_GEN block below.

Table Notes

The output precision of a single ACX_DSP_GEN block may be expanded to 48 bits by setting the
 parameter to reallocate the , and outputs as .sel_48_dout over_pos over_neg match dout[47:45]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 110

Parameters
Table 94: ACX_DSP_GEN Parameters

Parameter Defined Values Default
Value Description

init_a 18-bit hexadecimal value 18'h0
Defines the power-up default value of the 18-
bit data input A input register.

init_b 27-bit hexadecimal value 27'h0
Defines the power-up default value of the 27-
bit data input B input register.

init_sub 1'b0, 1'b1 1'b0
Defines the power-up default value of the 1-bit
subtract input register.

init_cin 1'b0, 1'b1 1'b0
Defines the power-up default value of the
carry-in input register.

init_load 1'b0, 1'b1 1'b0
Defines the power-up default value of the load
input register.

init_rnd 1'b0, 1'b1 1'b0
Defines the power-up default value of the
round input register.

init_mshift 1'b0, 1'b1 1'b0
Defines the power-up default value of the
mshift input register.

init_dout 64-bit hexadecimal value 64'h0
Defines the power-up default value of the 64-
bit data output register.

init_cout 1'b0, 1'b1 1'b0
Defines the power-up default value of the
carry-out output register.

rst_value_a 18-bit hexadecimal value 18'h0

Defines the value assigned to the 18-bit data
input A input register when the input rstn_a
is asserted concurrent with the rising edge of
the clock.

rst_value_b 27-bit hexadecimal value 27'h0

Defines the value assigned to the 27-bit data
input B input register when the input rstn_b
is asserted concurrent with the rising edge of
the clock.

rst_value_sub 1'b0, 1'b1 1'b0

Defines the value assigned to the subtract
input register when the input is rstn_sub
asserted concurrent with the rising edge of
the clock.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 111

Parameter Defined Values Default
Value Description

rst_value_cin 1'b0, 1'b1 1'b0

Defines the value assigned to the carry-in
input register when the input is rstn_cin
asserted concurrent with the rising edge of
the clock.

rst_value_load 1'b0, 1'b1 1'b0

Defines the value assigned to the load input
register when the input is rstn_load
asserted concurrent with the rising edge of
the clock.

rst_value_rnd 1'b0, 1'b1 1'b0
Defines the value assigned to the round input
register when the input is asserted rstn_rnd
concurrent with the rising edge of the clock.

rst_value_mshift 1'b0, 1'b1 1'b0

Defines the value assigned to the mshift input
register when the input is rstn_mshift
asserted concurrent with the rising edge of
the clock.

rst_value_dout 64-bit hexadecimal value 64'h0

Defines the value assigned to the 64-bit data-
out output register when the rstn_dout
input is asserted concurrent with the rising
edge of the clock.

rst_value_cout 1'b0, 1'b1 1'b0

Defines the value assigned to the carry-out
output register when the input is rstn_dout
asserted concurrent with the rising edge of
the clock.

rst_mode_a (1) 1'b0, 1'b1 1'b0
Determines whether the assertion of the reset
of the data A input register is synchronous or
asynchronous with respect to the input.clk

rst_mode_b(1) 1'b0, 1'b1 1'b0
Determines whether the assertion of the reset
of the data B input register is synchronous or
asynchronous with respect to the input.clk

rst_mode_sub(1) 1'b0, 1'b1 1'b0

Determines whether the assertion of the reset
of the subtract input register is synchronous
or asynchronous with respect to the clk
input.

rst_mode_cin(1) 1'b0, 1'b1 1'b0
Determines whether the assertion of the reset
of the carry-in input register is synchronous or
asynchronous with respect to the input.clk

rst_mode_load(1) 1'b0, 1'b1 1'b0
Determines whether the assertion of the reset
of the load input register is synchronous or
asynchronous with respect to the input.clk

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 112

Parameter Defined Values Default
Value Description

rst_mode_rnd(1) 1'b0, 1'b1 1'b0
Determines whether the assertion of the reset
of the round input register is synchronous or
asynchronous with respect to the input.clk

rst_mode_mshift(1) 1'b0, 1'b1 1'b0
Determines whether the assertion of the reset
of the mshift input register is synchronous or
asynchronous with respect to the input.clk

rst_mode_dout(1) 1'b0, 1'b1 1'b0

Determines whether the assertion of the reset
of the data out output register and the carry-
out output registers are synchronous or
asynchronous with respect to the input.clk

regce_priority_a "rstreg", "regce" "regce"

Defines the priority of the clock enable ce_a
input relative to the reset input during rstn_a
assertion of the reset input on the rstn_a
data input A input register when parameter

 is set high. Setting rst_mode_a
 to allows regce_priority_a "rstreg"

the data input A input register to be set/reset
at the next rising edge of the clock without
requiring the clock enable input to be ce_a
active. Setting to regce_priority_a

 requires that the clock enable "regce" ce_a
input is high for the reset operation to occur at
the next rising edge of the clock.

regce_priority_b "rstreg", "regce" "regce"

Defines the priority of the clock enable ce_b
input relative to the reset input during rstn_b
an assertion of the reset input on the rstn_b
data input B input register when parameter

 is set high. Setting rst_mode_b
 to allows regce_priority_b "rstreg"

the data input B input register to be set/reset
at the next rising edge of the clock without
requiring the clock enable input to be ce_b
active. Setting to regce_priority_b

 requires that the clock enable "regce" ce_b
input is high for the reset operation to occur at
the next rising edge of the clock.

regce_priority_sub(2) "rstreg", "regce" "regce"

Defines the priority of the clock ce_addsub
enable input relative to the rstn_addsub
reset input during an assertion of the

 reset input on the sub input rstn_addsub
register when parameter is rst_mode_sub
set high. Setting to regce_priority_sub

 allows the sub input register to be "rstreg"

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 113

Parameter Defined Values Default
Value Description

set/reset at the next rising edge of the clock
without requiring the clock ce_addsub
enable input to be active.

regce_priority_cin(2) "rstreg", "regce" "regce"

Defines the priority of the clock ce_addsub
enable input relative to the rstn_addsub
reset input during an assertion of the

 reset input on the cin input rstn_addsub
register when parameter is rst_mode_cin
set high. Setting to regce_priority_cin

 allows the cin input register to be "rstreg"
set/reset at the next rising edge of the clock
without requiring the clock ce_addsub
enable input to be active.

regce_priority_load(2) "rstreg", "regce" "regce"

Defines the priority of the clock ce_addsub
enable input relative to the rstn_addsub
reset input during an assertion of the

 reset input on the load input rstn_addsub
register when parameter is rst_mode_load
set high. Setting to regce_priority_load

 allows the load input register to be "rstreg"
set/reset at the next rising edge of the clock
without requiring the clock ce_addsub
enable input to be active.

regce_priority_rnd(2) "rstreg", "regce" "regce"

Defines the priority of the clock ce_addsub
enable input relative to the rstn_addsub
reset input during an assertion of the

 reset input on the round input rstn_addsub
register when parameter is rst_mode_rnd
set high. Setting to regce_priority_rnd

" allows the round input register to "rstreg
be set/reset at the next rising edge of the
clock without requiring the clock ce_addsub
enable input to be active.

regce_priority_mshift
(2) "rstreg", "regce" "regce"

Defines the priority of the clock ce_addsub
enable input relative to the rstn_addsub
reset input during an assertion of the

 reset input on the mshift input rstn_addsub
register when parameter rst_mode_mshift
is set high. Setting

 to regce_priority_mshift "rstreg"
allows the mshift input register to be set/reset
at the next rising edge of the clock without
requiring the clock enable input ce_addsub
to be active.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 114

Parameter Defined Values Default
Value Description

regce_priority_dout "rstreg", "regce" "regce"

Defines the priority of the clock ce_dout
enable input relative to the reset rstn_dout
input during an assertion of the rstn_dout
reset input on the dout output register and the
carry-out output register when parameter

 is set high. Setting rst_mode_dout
 to regce_priority_dout "rstreg"

allows the Dout output register and the carry-
out output register to be set/reset at the next
rising edge of the clock without requiring the

 clock enable input to be active. ce_dout
Setting to regce_priority_dout "regce"
requires that the clock enable input ce_dout
is high for the reset operation to occur at the
next rising edge of the clock.

a_del(3) 1'b0, 1'b1 1'b0
Defines whether the data A input register is
used or bypassed.

b_del(3) 1'b0, 1'b1 1'b0
Defines whether the data B input register is
used or bypassed.

sub_del(3) 1'b0, 1'b1 1'b0
Defines whether the sub input register is used
or bypassed.

cin_del(3) 1'b0, 1'b1 1'b0
Defines whether the cin input register is used
or bypassed.

load_del(3) 1'b0, 1'b1 1'b0
Defines whether the load input register is
used or bypassed.

rnd_del(3) 1'b0, 1'b1 1'b0
Defines whether the round input register is
used or bypassed.

mshift_del(3) 1'b0, 1'b1 1'b0
Defines whether the mshift input register is
used or bypassed.

dout_del(3) 1'b0, 1'b1 1'b0
Defines whether the dout output register is
used or bypassed.

cout_del(3) 1'b0, 1'b1 1'b0
Defines whether the cout output register is
used or bypassed.

over_pos_del 1'b0, 1'b1 1'b0

Defines whether the output over_pos
register is used or bypassed. Setting to 1'b0
bypasses the register while setting to 1'b1
enables the register.

Defines whether the output over_neg
register is used or bypassed. Setting to 1'b0

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 115

Parameter Defined Values Default
Value Description

over_neg_del 1'b0, 1'b1 1'b0 bypasses the register while setting to 1'b1
enables the register.

match_del(3) 1'b0, 1'b1 1'b0
Defines whether the match output register is
used or bypassed.

preadd_del(3) 1'b0, 1'b1 1'b0
Defines whether the pre-adder output register
is used or bypassed.

multout_del(3) 1'b0, 1'b1 1'b0
Defines whether the multiplier output register
is used or bypassed.

addsub_areg_del(3) 1'b0, 1'b1 1'b0
Defines whether the add/sub A input register
is used or bypassed.

regaddr_del(3) 1'b0, 1'b1 1'b0
Defines whether the register file address input
register is used or bypassed.

fwdi_casc_del(3) 1'b0, 1'b1 1'b0
Defines whether the forward cascade data
input register is used or bypassed.

fwdo_casc_del(3) 1'b0, 1'b1 1'b0
Defines whether the forward cascade data
output register is used or bypassed.

revi_casc_del(3) 1'b0, 1'b1 1'b0
Defines whether the reverse cascade data
input register is used or bypassed.

addsub_bypass 1'b0, 1'b1 1'b1

Defines whether the add/sub block is used or
bypassed. Setting to addsub_bypass 1'b0
allows the add/sub block to be used, while
setting to bypasses addsub_bypass 1'b1
the add/sub block by connecting the A input of
the add/sub block to the input of the dout
output register.

sel_addsub_a 2'b00–2'b11 2'b00

Defines what is routed to the input of the add
/sub block A input:
2'b00 – multiplier output sign extended to 64
bits.

 – multiplier output arithmetically 2'b01
shifted 18 bits to the left. must sel_48_dout
also be set to .1'b0

 – 64-bit sign extension of the 2'b10
concatenation of the , A and B reg_addr
inputs: sext{reg_addr[2:0],a[17:0],b

. Also routes the data A input [26:0]}
register clock enable and reset signals to the
register file address input registers.

 – 64-bit input from the 2'b11 fwdi_dout
ACX_DSP_GEN block below the current

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 116

Parameter Defined Values Default
Value Description

block. must also be set to sel_addsub_b
.1'b0

sel_addsub_b(4) (5) 1'b0, 1'b1 1'b0

Defines what is routed to the input of the add
/sub block B input:
1'b0 – registered ACX_DSP_GEN output

.dout[63:0]
 – 64-bit input from the 1'b1 fwdi_dout

ACX_DSP_GEN block below the current
block.

sel_cin 1'b0, 1'b1 1'b0

Selects either the carry-in input of this
ACX_DSP_GEN block or the carry-out output
of the ACX_DSP_GEN block below the
current block:
1'b0 – the input is routed to the add/sub cin
block input.cin

 – the input is routed to the 1'b1 fwdi_cin
add/sub block input.cin

sel_fwdo_dout(6) 2'b00–2'b10 2'b00

Defines what is routed to the forward
accumulator cascade bus () fwdo_dout
output:
2'b00 – : 64-bit addsub_bypass = 1'b0
unregistered add/sub block output.

 – : 64-bit 2'b00 addsub_bypass = 1'b1
add/sub block A input.

 – : 64-bit 2'b01 addsub_bypass = 1'b0
registered add/sub block output.

 – : 64-bit 2'b01 addsub_bypass = 1'b1
registered add/sub block A input.

 – 64-bit input.2'b10 fwdi_dout
 – Undefined.2'b11

sel_fwdo_cout 1'b0, 1'b1 1'b0

Defines what is routed to the fwdo_cout
output that is connected to the next
ACX_DSP_GEN block input:fwdi_cin

1'b0 – the from the add/sub/rnd/sat cout
block is routed to .fwdo_cout

 – the input is routed to 1'b1 fwdi_cout
.fwdo_cout

Defines what is routed to the 45-bit dout
output:
2'b00 – : the addsub_bypass = 1'b0
conditionally-registered (by) lower dout_del
45 bits of the add/sub block output.

 – : the 2'b00 addsub_bypass = 1'b1
conditionally registered (by) lower dout_del

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 117

Parameter Defined Values Default
Value Description

sel_dout 2'b00–2'b10 2'b00 45 bits of the add/sub block A input.
 – the upper 32 bits of add/sub output: 2'b01

.{13'h0,Add/Sub[63:32]}
 – the bottom 32 bits of the add/sub 2'b10

block above the current ACX_DSP_GEN
block: .{13'h0,revi_dout[31:0]}

 – undefined.2'b11

sel_48_dout 1'b0, 1'b1 1'b0

Expands the dout precision from 45 to 48 bits
by reallocating the , over_pos over_neg
and outputs as through match dout[48]

:dout[46]

1'b0 – the output is isused as over_pos
positive overflow output.

 – the output is used as the 1'b0 over_neg
negative overflow output.

 – the match output is used as the 1'b0
pattern match output.

 – the output is used as a carry for 1'b0 cout
a 64-bit add/sub/rnd/sat word.

 – the output isused as 1'b1 over_pos dout
.[47]
 – the output is used as 1'b1 over_neg dout
.[46]
 – the match output is used as 1'b1 dout
.[45]
 – the output is used as a carry for 1'b1 cout

a 48-bit add/sub/rnd/sat word.
This parameter also redefines the cout
output to generate the carry signal on the 48th
bit of the add/sub/rnd/sat block so that pairs of
ACX_DSP_GEN blocks may be used as 48-
bit slices of adders or subtractors. If

 is set to , sel_48_dout 1'b1 sel_dout
must be set to .2'b00

sel_revi_casc 1'b0, 1'b1 1'b0

Defines what is routed to the input of the
reverse data cascade bus delay register:
1'b0 – is routed to the reverse revi_casc
data cascade bus delay register input.

 – of the current 1'b1 fwdo_casc
ACX_DSP_GEN block is routed to the
reverse data cascade bus delay register input.
Usually set to to select the 1'b0 revi_casc
data input. If the current block is the middle
stage of a symmetric FIR filter, where the
forward data cascade bus must be looped
back to the reverse data cascade bus, this
parameter must be set to .1'b1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 118

Parameter Defined Values Default
Value Description

sel_fwd_preadd 2'b00–2'b10 2'b00

Defines what is routed to the B input of the
preadder:
2'b00 – .27'h0

 – .2'b01 fwdi_casc[26:0]
 – data input .2'b10 b[26:0]
 – undefined.2'b11

sel_rev_preadd 2'b00–2'b10 2'b00

Defines what is routed to the A input of the
preadder:
2'b00 – .27'h0

 – .2'b01 revi_casc[26:0]
 – data input sign extended 2'b10 a[17:0]

to 27 bits.
 – Undefined.2'b11

sel_mult_a 2'b00–2'b11 2'b00

Defines what is routed to the A input of the
multiplier:
2'b00 – data input sign extended a[17:0]
to 19 bits: .{a[17],a[17:0]}

 – pre-adder output .2'b01 [18:0]
 – register file output .2'b10 [18:0]
 – unsigned data input : 2'b11 a[17:0]

.{1'b0,a[17:0]}

sel_mult_b 2'b00–2'b11 2'b00

Defines what is routed to the B input of the
multiplier:
2'b00 – data input .b[26:0]

 – .2'b01 fwdi_casc[26:0]
 – pre-adder output .2'b10 [26:0]
 – register file output .2'b11 [26:0]

preadd_mode(7) 2'b00–2'b10 2'b00

Defines the functionality of the pre-adder:
2'b00 – data input A plus data input B.

 – data input A minus data input B.2'b01
 – data input B minus data input A.2'b10
 – Undefined.2'b11

round_mode(8) 3'b000–3'b111 3'h0

Defines the functionality of the rounding unit
within the add/sub block:
3'b000 – no rounding.

 – round towards nearest integer.3'b001
 – round towards zero.3'b010
 – round towards infinity.3'b011
 – round towards plus infinity, round 3'b100

towards nearest even, round towards nearest
odd, or round half down.

 – round half away from zero.3'b101
 – round half up.3'b110
 – round half towards zero.3'b111

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 119

Parameter Defined Values Default
Value Description

See ACX_DSP_GEN Rounding (see page 121
 for a complete description of the rounding)

modes.

sat_mode 6'h0–6'h3F 6'h0

Defines the saturation mode of the add/sub
block. The default value of disables 6'h0
saturation and directly passes the add/sub
output to the pins. A non-zero value of dout
the parameter selects the most sat_mode
significant bit of where saturation is detected
to allow saturation of data paths less than the
full 64-bit resolution of the add/sub block. See
the section for Saturation (see page 135)
further details. If is set to sel_48_dout 1'b1
, must be .sat_mode 6'h0

use_match_in 1'b0, 1'b1 1'b0

Allows the pattern match function to occur
across multiple ACX_DSP_GEN blocks.
When set to , requires the previous 1'b1
ACX_DSP_GEN block output, , fwdo_match
to be high when evaluating the match
function. Leaving the default value of 1'b0
performs the match function only within the
current block. If set to , 1'b1 round_mode
must be set to .3'h0

match_pattern
64'h0–
64'hFFFFFFFFFFFFFFFF

64'h0
Defines the data pattern that should be used
to compare against the output of the add/sub
block when performing match detection.

match_mask
64'h0–
64'hFFFFFFFFFFFFFFFF

64'h0

Defines which of the 64 bits at the output of
the add/sub block should be used in the
match detection operation. The match
detection compares each bit position that
contains a high bit in the match_mask
parameter. The bit positions in the parameter
that are set to zero are not used in the match
function.

round_const
64'h0–
64'hFFFFFFFFFFFFFFFF

64'h0

Defines the offset to be added to the output of
the add/sub block if a rounding operation is to
be performed. Please refer to the

 ACX_DSP_GEN Rounding (see page 121)
section for a detailed description of the
rounding function.

load_const
64'h0–
64'hFFFFFFFFFFFFFFFF

64'h0

Defines what is loaded into the B side of the
add/sub block if the load input is asserted. To
load only the A side into the add/sub block,
this parameter should be set to 64'h0.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 120

1.

2.

3.

4.

5.

6.

7.

8.

Parameter Defined Values Default
Value Description

regfile_0–regfile_7 27'h0–27'h7FFFFFF 27'h0

The through regfile_0 regfile_7
parameters define the value of the output of
the register file on the clock cycle after the

 inputs are set to reg_addr[2:0] 3'h0
through , respectively.3'h7

Table Notes

Setting this parameter high defines the assertion of reset to be asynchronous with respect to the clock
input. Setting this parameter low defines the assertion of the reset to be synchronous with the rising edge
of the input.clk

Setting this parameter to requires that the clock enable input is high for the reset regce ce_addsub
operation to occur at the next rising edge of the clock.
Setting this parameter to bypasses the register while setting it to enables the register.1'b0 1'b1

The 64-bit value selected by the input is conditionally shifted seventeen bits to the right sel_addsub_b
by the mshift input before it is routed to the B input of the add/sub block.
If the parameter is set to , must be set to , must be sel_addsub_b 1'b0 dout_del 1'b1 round_mode
set to .3'h0

If the 64-bit registered add/sub block output is selected, then parameter must be set to , dout_del 1'b1
and inputs, and , must be driven appropriately.rstn_dout ce_dout

The pre-adder operates on two 27-bit inputs and produces a 27-bit result. If full 27-bit resolution of the
output is required, limit the dynamic range of the inputs to 26 bits and sign-extend into the 27th bit to
prevent an overflow condition at the output of the pre-adder.
The parameter must be used in conjuction with the use of the , round_mode match_pattern

 and parameters.match_mask round_const

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 121

Add/Subtract/Round/Saturate Blocks
The add/sub/round/saturate block can be sub-divided into adder/subtracter, round, and saturate blocks as shown
in the following figure. The A input from the multiplier to the adder/subtracter may bypass the adder/subtractor,
round, and saturate blocks by enabling the parameter.addsub_bypass

Figure 48: Adder/Subtracter, Round, and Saturate Blocks Example

ACX_DSP_GEN Rounding
As mathematical operations are performed, the number of bits required to represent the number may increase.
For example, in multiplication, multiplying an m-bit number and an n-bit number will result in an (m + n)-bit
product. Also, adding two n-bit numbers may result in a (n+1)-bit result.

Rounding is a method used to control bit growth and approximate the result to a fixed number of bits. There are
also many variations in how the rounding is performed. The ACX_DSP_GEN block supports a variety of rounding
methods.

Note

A given rounding mode may have several different names all referring to the same method.

The rounding unit within the add/sub block supports the rounding modes shown in the following table. The
various names for the rounding modes are also reflected in the table. The rounding operation is performed on the
output of the adder/subtracter after the add or subtract operation has been performed and before the saturation
unit.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 122

Table 95: Supported Rounding Modes

Rounding Mode Alternative Name

No rounding No

Round to zero
MATLAB fix()
Sign-magnitude truncation
Round away from infinity

Round to infinity –

Round to plus infinity
MATLAB ceil()
Ceiling
Round up

Round to minus infinity

Two’s complement truncation
Downward-directed rounding
MATLAB floor()
Round down

Round to nearest integer MATLAB round()

Round to nearest-even Round half to nearest-even

Round to nearest-odd Round half to nearest-odd

Round half up Round half towards plus infinity

Round half down Round half towards minus infinity

Round half away from zero Round half towards infinity

Round half towards zero Round half away from infinity

The following sections describe each of the rounding modes. Each of the diagrams show the number X on the x
axis and the corresponding rounded value of X on the y axis.

Note

When there is a dot on the end of a line segment, that end value is included on the line. For example, in
the Round to Zero diagram, the line that corresponds to the range of X from one to two with the dot on
the left side of the line, represents the X values greater than or equal to (>=) one and less than (<) two.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 123

Below each rounding mode figure is a table containing the values of the , , match_pattern match_mask
 and parameters required for the given rounding model. Additionally, for rounding to round_const round_mode

occur, the round input, , must be asserted. At the top of the table, the number to be rounded is shown in the rnd
form of XXXX.YYYYYY, where XXXX is the integer part of the number and YYYYYY is the fractional part. For
this specific example XXXX.YYYYYY, the integer part is four bits and the fractional part is six bits. Depending on
where the decimal point needs to be for the specific number format, the shown values of XXXX and YYYYYY
might have to be expanded or contracted about the position of the decimal point. If the Y value needs to be
widened, the shown Y value should be extended to the right, copying the lsb of the shown Y value. Likewise, the
XXXX value can be expanded or contracted from the leftmost position.

Note

The resultant XXXX.YYYYYY pattern must be zero-extended to the left to fill out the entire 64-bit value
of the given parameter.

For the result of the rounding operation, use the XXXX bits and discard the YYYYYY bits.

For each of the rounding modes, the rounding circuitry is looking for certain conditions that determine if the
number needs rounding or not. Where one rounding mode differs from the next depends upon what happens
when the number is exactly half way between two integers. For example, 2.5 or -2.5, or exactly at an integer
boundary (2.0 or -2.0). Since the circuitry also allows the assumed position of the decimal point to be moved, the
assumed location of the decimal point must be declared.

To check for the half boundary, the match pattern is set to have a match pattern of 0.5. The programmed
match_pattern value is a 64-bit number in the form of a string of zeroes on the left, a single one, and a string of
zeroes to the right. The position of the one is in the 2^(-1) bit position. The parameter determines match_mask
which of the bit positions are used. To check for the integer boundary, the match pattern is set match_pattern
to all zeroes to the right of the decimal and the is set to select the bits to the right of the decimal match_mask
point.

When the rounding condition is determined by the check using the and , the match_pattern match_mask
 parameter setting is used to select the conditions when the forced rounding is to occur. The round_mode

rounding is usually performed by adding a one to the 2^0 bit position. The rounding circuit forces a one into the
carry-in input of the rounding unit. The parameter determines how far the carry is to ripple to the round_const
left to get to the assumed 2^0 bit position.

Round to even or odd is accomplished in a similar fashion, with the pattern detection circuitry looking for even
/odd boundaries.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 124

Round Towards Zero

Figure 49: Round Towards Zero

Table 96: Required Parameter Settings for Round Towards Zero Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.000000

match_mask 0000.111111

round_const 0000.111111

round_mode 3'b010

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 125

Rounding Towards Infinity

Figure 50: Round Towards Infinity

Table 97: Required Parameter Settings for Round Towards Infinity Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.000000

match_mask 0000.111111

round_const 0000.111111

round_mode 3'b011

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 126

Round Towards Plus Infinity

Figure 51: Round Towards Plus Infinity

Table 98: Required Parameter Settings for Round Towards Plus Infinity Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.000000

match_mask 0000.111111

round_const 0000.111111

round_mode 3'b100

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 127

Round Towards Minus Infinity

Figure 52: Round Towards Minus Infinity

Table 99: Required Parameter Settings for Round Towards Minus Infinity Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern xxxx.xxxxxx

match_mask xxxx.xxxxxx

round_const xxxx.xxxxxx

round_mode 3'b000

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 128

Round Towards Nearest Integer

Figure 53: Round Towards Nearest Integer

Table 100: Required Parameter Settings for Round Towards Nearest Integer Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.100000

match_mask 0000.111111

round_const 0000.111111

round_mode 3'b001

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 129

Round Towards Nearest Even

Figure 54: Round Towards Nearest Even

Table 101: Required Parameter Settings for Round Towards Nearest Even Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.100000

match_mask 0001.111111

round_const 0000.011111

round_mode 3'b100

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 130

Round Towards Nearest Odd

Figure 55: Round Towards Nearest Odd

Table 102: Required Parameter Settings for Round Towards Nearest Odd Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0001.100000

match_mask 0001.111111

round_const 0000.011111

round_mode 3'b100

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 131

Round Half Up

Figure 56: Round Half Up

Table 103: Required Parameter Settings for Round Half Up Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.100000

match_mask 0000.100000

round_const 0000.111111

round_mode 3'b110

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 132

Round Half Down

Figure 57: Round Half Down

Table 104: Required Parameter Settings for Round Half Down Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.100000

match_mask 0000.111111

round_const 0000.011111

round_mode 3'b100

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 133

Round Half Away From Zero

Figure 58: Round Half Away From Zero

Table 105: Required Parameter Settings for Round Half Away from Zero Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.100000

match_mask 0000.111111

round_const 0000.011111

round_mode 3'b101

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 134

Round Half Towards Zero

Figure 59: Round Half Towards Zero

Table 106: Required Parameter Settings for Round Half Towards Zero Mode

Parameter Required Parameter Value
XXXX.YYYYYY Format

match_pattern 0000.100000

match_mask 0000.111111

round_const 0000.011111

round_mode 3'b111

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 135

Saturation
When two numbers are added or subtracted, the result may require an additional bit to represent the result. If
there is not sufficient room for bit growth in the adder/subtractor to contain the result, an overflow condition may
occur.

Overflow is defined as when the maximum value allowed by the provided number of bits is exceeded. This may
occur for both positive and negative numbers.

The usual remedy is to either guarantee that an overflow never occurs, or take corrective measures. One way to
handle overflow is with a saturation unit. The function of the saturation unit is to correct an overflow to the
maximum positive value in the case of a positive overflow, and to correct an overflow to the maximum negative
value in the case of a negative overflow.

In the ACX_DSP_GEN block, an optional saturation block is available. Additionally, the bit position where the
saturation is to be performed may be specified. This allows the saturation function to accommodate word widths
less than the full 64 bit precision of the add/sub block.

To enable saturation, the 6-bit parameter must be set to a non-zero value. The value of the sat_mode sat_mode
parameter sets the position of the msb where the rounding is to occur. For example, if the location of the msb is
at the fifteenth bit (zero relative) in the add/sub block, the parameter should be set to .sat_mode 6'h0F

Pre-Adder Block
The ACX_DSP_GEN block contains a 27-bit pre-adder block used to halve the number of required multipliers.
The pre-adder may be configured as either an adder or subtracter so it may support either symmetric or
asymmetric filter coefficients. The pre-adder may take data from either the A and B inputs to the ACX_DSP_GEN
block, or the forward and reverse cascades buses. The output of the pre-adder block can be routed to the either
the 19-bit or 27-bit input of the multiplier. Care should be taken to limit the input data to the pre-adder so that the
resultant sum is within the resolution of the multiple input. For example, if the pre-adder output is routed to the 27-
bit input of the multiplier, the input to the pre-adder should contain 26-bit data sign extended into the 27th bit so
as to prevent an overflow condition at the output of the pre-adder. If using the output of the pre-adder to drive the
19-bit input of the adder, the full resolution of the 18-bit data may be used, as there is a 19-bit into the multiplier
to accommodate a carry.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 136

ACX_DSP_GEN Verilog Instantiation Template
The recommended method of including the ACX_DSP_GEN in a design is by inference (see ACX_DSP_GEN

). However, if the full range of ACX_DSP_GEN functions are required, Verilog Inference Template (see page 138)
or a function that cannot be fully inferred is needed, the ACX_DSP_GEN can be directly instantiated.

The Verilog instantiation template is shown in the following example.

ACX_DSP_GEN Verilog Instantiation Template

ACX_DSP_GEN
#(

 .init_a (18'h0),
 .init_b (27'h0),

 .init_sub (1'b0),
 .init_cin (1'b0),

 .init_load (1'b0),
 .init_rnd (1'b0),

 .init_mshift (1'b0),
 .init_dout (64'h0),

 .init_cout (1'b0),
 .rst_value_a (18'h0),

 .rst_value_b (27'h0),
 .rst_value_sub (1'b0),

 .rst_value_cin (1'b0),
 .rst_value_load (1'b0),

 .rst_value_rnd (1'b0),
 .rst_value_mshift (1'b0),

 .rst_value_dout (64'h0),
 .rst_value_cout (1'b0),

 .regce_priority_a ("regce"),
 .regce_priority_b ("regce"),

 .regce_priority_sub ("regce"),
 .regce_priority_cin ("regce"),

 .regce_priority_load ("regce"),
 .regce_priority_rnd ("regce"),

 .regce_priority_mshift ("regce"),
 .regce_priority_dout ("regce"),

 .a_del (1'b0),
 .b_del (1'b0),

 .sub_del (1'b0),
 .cin_del (1'b0),

 .load_del (1'b0),
 .rnd_del (1'b0),

 .mshift_del (1'b0),
 .dout_del (1'b0),

 .match_del (1'b0),
 .preadd_del (1'b0),

 .multout_del (1'b0),
 .addsub_areg_del (1'b0),

 .regaddr_del (1'b0),
 .fwdi_casc_del (1'b0),

 .fwdo_casc_del (1'b0),
 .revi_casc_del (1'b0),

 .addsub_bypass (1'b0),
 .sel_addsub_a (2'b00),

 .sel_addsub_b (1'b0)
 .sel_cin (1'b0),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 137

 .sel_fwdo_dout (2'b00),

 .sel_fwdo_cout (1'b0),
 .sel_dout (2'b00),

 .sel_48_dout (1'b0),
 .sel_revi_casc (1'b0),

 .sel_fwd_preadd (2'b00),
 .sel_rev_preadd (2'b00),

 .sel_mult_a (2'b00),
 .sel_mult_b (2'b00),

 .preadd_mode (2'b0),
 .round_mode (3'b000),

 .sat_mode (6'h00),
 .use_match_in (1'b0),

 .match_pattern (64'h0),
 .match_mask (64'h0),

 .round_const (64'h0),
 .load_const (64'h0),

 .regfile_0 (27'h0),

 .regfile_1 (27'h0),
 .regfile_2 (27'h0),

 .regfile_3 (27'h0),
 .regfile_4 (27'h0),

 .regfile_5 (27'h0),
 .regfile_6 (27'h0),

 .regfile_7 (27'h0)
) instance_name (

 .clk (user_clk),
 .a (user_a),

 .b (user_b),
 .sub (user_sub),

 .cin (user_cin),
 .load (user_load),

 .rnd (user_rnd),
 .mshift (user_mshift),

 .reg_addr (user_reg_addr),
 .ce_a (user_ce_a),

 .ce_b (user_ce_b),
 .ce_addsub (user_ce_addsub),

 .ce_addsub_a (user_ce_addsub_a),
 .ce_dout (user_ce_dout),

 .ce_cascade (user_ce_cascade),
 .ce_multout (user_ce_multout),

 .rstn_a (user_rstn_a),
 .rstn_b (user_rstn_b),

 .rstn_addsub (user_rstn_addsub),
 .rstn_addsub_a (user_rstn_addsub_a),

 .rstn_dout (user_rstn_dout),
 .rstn_cascade (user_rstn_cascade),

 .rstn_multout (user_rstn_multout),
 .dout (user_dout),

 .cout (user_cout),
 .over_pos (user_over_pos),

 .over_neg (user_over_neg),
 .match (user_match),

 .fwdi_casc (user_fwdi_casc),
 .fwdi_dout (user_fwdi_dout),

 .fwdi_cin (user_fwdi_cin),
 .fwdi_match (user_fwdi_match),

 .revi_casc (user_revi_casc),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 138

 .revi_dout (user_revi_dout),

 .fwdo_casc (user_fwdo_casc),
 .fwdo_dout (user_fwdo_dout),

 .fwdo_cout (user_fwdo_cout),
 .fwdo_match (user_fwdo_match),

 .revo_casc (user_revo_casc),
 .revo_dout (user_revo_dout)

);

ACX_DSP_GEN Verilog Inference Template
Synplify Pro supports both direct instantiation of the Speedcore ACX_DSP_GEN block as well as inferencing
with specific code structures. Inferencing occurs for multiplication functions of up to 36 × 27 bits. For addition and
subtraction functions, fabric logic is inferred. For direct instantiation of a DSP64, see ACX_DSP_GEN Verilog

.Instantiation Template (see page 136)

In addition, the ACE IP generator supports the generation of multiple DSP-based math functions which can then
be directly instantiated within the user code (see the for details. (UG070)ACE User Guide

The following example shows how to correctly infer an 18 × 18 bit multiplier to be mapped to an ACX_DSP_GEN
block.

Inferred Multiplier Example

`timescale 1ps/1ps

module inferred_mult_18x18_signed (ina, inb, multout, clk);
localparam a_width = 18;

localparam b_width = 18;
localparam prod_width = a_width + b_width;

input clk;
input signed [a_width-1:0] ina;

input signed [b_width-1:0] inb;
output signed [prod_width-1:0] multout;

reg signed [a_width-1:0] ina_reg = 18'h0;
reg signed [b_width-1:0] inb_reg = 18'h0;

reg signed [prod_width-1:0] multout = 36'h0;
always @(posedge clk)

begin
 ina_reg <= ina;

 inb_reg <= inb;
 multout <= ina_reg * inb_reg;

end
endmodule

Implementing Finite Impulse Response (FIR) Filters
A finite impulse response (FIR) filter is implemented as a sum-of-products of the form:

Figure 60: Generic FIR Filter Equation

https://www.achronix.com/documentation/ace-user-guide-ug070

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 139

Parallel Filter Implementation
The following figure shows the block diagram of a direct FIR filter implementation using a parallel adder tree.
While this is functionally correct, it uses more resources than necessary.

Figure 61: FIR Filter Block Diagram Using a Parallel Adder Tree

The following figure shows the FIR filter implemented with a serial adder tree. While this implementation is more
resource efficient, it suffers from poor performance due to the serial chain of adders.

Figure 62: FIR Filter Block Diagram Using a Serial Adder Tree

As shown in the following figure, A pipeline register can be added at the last filter tap without changing the
functionality. An additional cycle of latency is added for this pipeline stage.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 140

Figure 63: FIR Filter Block Diagram With Pipelined Output

Performance can be improved further by adding a pair of pipeline registers at the last stage of the FIR filter as
shown in the following figure. A pipeline register added at the input to the last adder must be matched by a
pipeline register in front of the last multiplier to maintain proper functionality. An additional cycle of latency is
added for this register pair.

Figure 64: FIR Filter Block Diagram With Additional Pipeline Registers at the Last
Stage

Likewise, a pipeline register pair may be added at each stage for additional performance. The following figure
shows the FIR filter with pipeline registers at the input of the adder and the multiplier at each stage. An additional
cycle of latency is added for each pair of added pipeline registers. For lower latency, optionally pipeline every
other stage and trade lower latency at the output versus higher performance.

Figure 65: FIR Filter Block Diagram With Pipeline Registers at Each Stage

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 141

1.

2.

3.

4.

For further timing improvements, choose to add a pipeline stage at the output of the multipliers to separate the
multiplications and the additions by a cycle. If this option is selected, pipeline registers must be added to all
stages of the FIR filter as shown in the following figure.

Figure 66: FIR Filter Block Diagram With Pipelined Multiplier Outputs

Symmetric FIR Filter Implementation
FIR filters, in which the coefficients for the first half of the filter are symmetric to the coefficients of the second half
of the filter, are said to be symmetric. There are four variants to the symmetric filter, depending on whether the
filter coefficients are symmetric versus anti-symmetric, or whether the length of the filter is odd or even:

Odd-length symmetric impulse response filters

Odd-length, anti-symmetric impulse response filters

Even-length symmetric impulse response filters

Even-length, anti-symmetric impulse response filters

The following four subsections detail the four variants of symmetric FIR filters.

Odd-Length Symmetric Impulse Response FIR Filters

An odd-length symmetric FIR filter has the first half of the filters coefficients equal to the second half of the filter
coefficients with the following relationship. For a filter with n (n odd) filter taps:

coefficient(n−1) = coefficient(0)

coefficient(n−2) = coefficient(1)

coefficient(n−3) = coefficient(2)

coefficient(((n−1)/2)−3) = coefficient(((n−1)/2) + 3)

coefficient(((n−1)/2)−2) = coefficient(((n−1)/2) + 2)

coefficient(((n−1)/2)−1) = coefficient(((n−1)/2) + 1)

coefficient((n−1)/2) (middle tap) does not have a paired coefficient

The multipliers for the filter taps with equivalent coefficients may be shared if the corresponding data inputs for
the taps are added before the multiplier.

(coef.(0) × data(0)) + (coef.(0) × data(n−1)) = (data(0) + data(n−1)) × coef.(0)

This optimization halves the number of multipliers required to implement a FIR filter.

The figure below shows an unoptimized block diagram of a odd-length symmetric FIR filter. The following

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 142

The figure below shows an unoptimized block diagram of a odd-length symmetric FIR filter. The following
discussion and figures illustrate how to optimize the performance.

Figure 67: Odd-Length Symmetric FIR Filter Block Diagram

A pre-adder is then added to the input of each multiplier with the second input of the pre-adder tied to zero. The
structure shown in the following figure maintains the functionality of the FIR filter.

Figure 68: Odd-Length Symmetric FIR Filter with Pre-Adder Block Diagram

The required number of multipliers are halved (excluding the unpaired center tap) if the shift register path is
folded back and the filter taps with equivalent coefficients are connected to the second input of the pre-adder as
shown in the following figure. The FIR filter maintains the functionality of the unfolded version.

Figure 69: Odd-Length Symmetric FIR Filter Block With Folded Back Datapath

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 143

The current structure of the FIR filter suffers from poor performance due to the serial chain of adders. Pipeline
registers must be added to the adder chain. A pair of pipeline registers can be added in the forward path at the
second-to-last filter tap to improve timing. In order to maintain functionality, one of the registers in the reverse
delay line must be removed as shown in the following figure.

Figure 70: Odd-Length Symmetric FIR Filter Block With Single Pipeline Stage
Added

Likewise, an additional pipeline stage pair is added in the forward path two stages earlier. For each additional
pipeline stage, a register must be removed from the backwards datapath. Pipeline stages should not be added at
each stage of the folded symmetric FIR filter or the reverse datapath becomes unregistered and performance
suffers. A balance must be maintained between adding pipeline stages in the forward datapath and removing
pipelines stages in the reverse datapath.

Figure 71: Odd-Length Symmetric FIR Filter Block With Additional Pipeline Stage
Added

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 144

To achieve a balance between adding pipeline stages in the forward datapath and removing pipeline stages in
the reverse datapath, pipeline stages have been added every two stages as shown in the following figure.

Figure 72: Odd-Length Symmetric FIR Filter Block with Every Other Stage Pipelined

Further pipelining can be achieved by adding pipeline registers at the output of the multipliers and/or the output
of the pre-adders. If pipelining at the output of the multipliers and/or the pre-adders is used, it must be performed
at every stage of the filter to maintain proper functionality. The use of these pipeline registers is shown in the
following figure.

Figure 73: Odd-Length Symmetric FIR Filter With Pipelined Pre-Adders and
Multipliers

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 145

Odd-Length, Anti-Symmetric Impulse Response FIR Filters

An odd-length anti-symmetric FIR filter has the first half of the filter coefficients related to the second half of the
filter coefficients with the following relationship. For a filter with n (n odd) filter taps:

coefficient(n−1) = −1 × coefficient(0)

coefficient(n−2) = −1 × coefficient(1)

coefficient(n−3) = −1 × coefficient(2)

coefficient(((n−1)/2)−3) = −1 × coefficient(((n−1)/2) + 3)

coefficient(((n−1)/2)−2) = −1 × coefficient(((n−1)/2) + 2)

coefficient(((n−1)/2)−1) = −1 × coefficient(((n−1)/2) + 1)

coefficient((n−1)/2) (middle tap) does not have a paired coefficient

The multipliers for the filter taps with equivalent coefficients may be shared if the corresponding data inputs for
the taps are added before the multiplier.

(coef.(0) × data(0)) + (−coef.(0) × data(n−1)) = (data(0) − data(n−1)) × coef.(0)

This optimization has the same structure as an odd-length symmetric filter with the pre-adder replaced with a pre-
subtracter. Pre-subtracting the data before the multiplier halves the number of multipliers required to implement a
FIR filter. The final structure of the optimized even-length anti-symmetric FIR filter is shown in the following
figure. Again, this structure is identical to that of the even-length symmetric FIR filter with the pre-adder replaced
with a pre-subtracter.

Figure 74: Odd-Length Anti-Symmetric FIR Filter With Pipelined Pre-Adders and
Multipliers

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 146

Even-Length Symmetric Impulse Response FIR Filters

An even-length symmetric FIR filter has the first half of the filter coefficients equal to the second half of the filter
coefficients with the following relationship. For a filter with n (n even) filter taps:

coefficient(n−1) = coefficient(0)

coefficient(n−2) = coefficient(1)

coefficient(n−3) = coefficient(2)

coefficient((n/2)−3) = coefficient((n/2) + 2)

coefficient((n/2)−2) = coefficient((n/2) + 1)

coefficient((n/2)−1) = coefficient((n/2))

The multipliers for the filter taps with equivalent coefficients may be shared if the corresponding data inputs for
the taps are added before the multiplier.

(coef.(0) × data(0)) + (coef.(0) × data(n−1)) = (data(0) + data(n−1)) × coef.(0)

This optimization halves the number of multipliers required to implement a FIR filter.

The following figure shows an unoptimized block diagram of an even-length symmetric FIR filter. The following
discussion and figures illustrate how to optimize the performance.

Figure 75: Even-Length Symmetric FIR Filter Block Diagram

A pre-adder is then added to the input of each multiplier, with the second input of the pre-adder tied to zero. This
structure, shown in the following figure, maintains the functionality of the FIR filter.

Figure 76: Even-Length Symmetric FIR Filter With Pre-Adder Block Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 147

The required number of multipliers is halved if the shift register path is folded back and the filter taps with
equivalent coefficients are connected to the second input of the pre-adder as shown in the following figure. The
FIR filter maintains the functionality of the unfolded version.

Figure 77: Even-Length Symmetric FIR Filter Block With Folded Back Datapath

The current structure of the FIR filter suffers from poor performance due to the serial chain of adders. Pipeline
registers must be added to the adder chain. A pair of pipeline registers can be added in the forward path at the
last filter tap to improve timing. In order to maintain functionality, one of the registers in the reverse delay line
must be removed as shown in the following figure.

Figure 78: Even-Length Symmetric FIR Filter Block With Single Pipeline Stage
Added

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 148

Likewise, an additional pipeline stage pair is added in the forward path, two stages earlier. For each additional
pipeline stage, a register must be removed from the backwards datapath. Pipeline stages should not be added at
each stage of the folded symmetric FIR filter or the reverse datapath becomes unregistered and performance
suffers. A balance must be maintained between adding pipeline stages in the forward datapath and removing
pipeline stages in the reverse datapath.

Figure 79: Even-Length Symmetric FIR Filter Block With Additional Pipeline Stage
Added

To achieve a balance between adding pipeline stages in the forward datapath and removing pipeline stages in
the reverse datapath, pipeline stages have been added every two stages as shown below in in the following
figure.

Figure 80: Even-Length Symmetric FIR Filter Block Mith Every Other Stage
Pipelined

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 149

Further pipelining can be achieved by adding pipeline registers at the output of the multipliers and/or the output
of the pre-adders. If pipelining at the output of the multipliers and/or the pre-adders is used, it must be performed
at every stage of the filter to maintain proper functionality. The use of these pipeline registers is shown in the
following figure.

Figure 81: Even-Length Symmetric FIR Filter with Pipelined Pre-Adders and
Multipliers

Even-Length, Anti-Symmetric Impulse Response FIR Filters

An even-length anti-symmetric FIR filter has the first half of the filter coefficients related to the second half of the
filter coefficients with the following relationship. For a filter with n (n even) filter taps:

coefficient(n−1) = −1 × coefficient(0)

coefficient(n−2) = −1 × coefficient(1)

coefficient(n−3) = −1 × coefficient(2)

coefficient((n/2)−3) = −1 × coefficient((n/2) + 2)

coefficient((n/2)−2) = −1 × coefficient((n/2) + 1)

coefficient((n/2)−1) = −1 × coefficient((n/2))

The multipliers for the filter taps with equivalent coefficients may be shared if the corresponding data inputs for
the taps are subtracted before the multiplier.

(coef.(0) × data(0)) + (−coef.(0) × data(n−1)) = (data(0) − data(n−1)) × coef.(0)

This optimization has the same structure as an even-length symmetric filter with the pre-adder replaced with a
pre-subtracter. Presubtracting the data before the multiplier halves the number of multipliers is required to
implement an FIR filter.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 150

The final structure of the optimized even-length anti-symmetric FIR filter is shown in the following figure. This
structure is identical to that of the even-length symmetric FIR filter with the pre-adder replaced with a pre-
subtracter.

Figure 82: Even-Length Anti-Symmetric FIR Filter With Pipelined Pre-Adders and
Multipliers

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 151

ACX_DSP_MACC_GEN
The ACX_DSP_MACC_GEN macro provides a multiply-accumulate function with an optional C input to be added
to the output. The macro supports multiplication of A × B, where A and B can either be 27 × 18 or 27 × 26. The C
input is 48 bits. The macro provides all multiplication and accumulate options up to and including 36 × 27 + 48-bit
C with 64-bit accumulator.

Table 107: ACX_DSP_MACC_GEN Macro Parameters

Parameter Values Default Description

A_INPUT_WIDTH
18 or
36 18 Width of the A input to the multiplier.

REGISTER_INPUTS On/Off Off Optionally register the A and B inputs, adding one cycle of latency to the
result.

REGISTER_MULT On/Off Off
Register the output of the multiplier, adding one cycle of latency to the
result. Registering the output may be required when operating at high
target frequencies.

C_INPUT_48B On/Off Off Add a 48-bit C input, this value is added to the output.

ACC_64_OUTPUT On/Off Off When enabled, the output accumulates, performing the function dout =
dout + (A × B + C). When disabled, the function is dout = A × B + C.

The following table shows the number of DSP blocks consumed by the ACX_DSP_MACC_GEN macro based on
the provided parameters.

Table 108: ACX_DSP_MACC_GEN DSP Block Usage Based On Parameter Values

Parameter Value Number of DSP Value Number of DSP

A_INPUT_WIDTH 18 1 36 2

C_INPUT_48B Off 0 On 1

ACC_64_OUTPUT Off 0 On 1

In the maximum configuration of 36 × 27 + 48-bit C with 64-bit accumulator, the macro uses 4 DSP blocks.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 152

Table 109: ACX_DSP_MACC_GEN Macro Ports

Port Name Direction Description

clk In DSP clock.

reset_n In DSP reset. When is set to , = 0; When = , the reset_n 1'b0 dout reset_n 1'b1
DSP operates as follows.

a_in[n:0] In Signed A input, either 18 or 36 bits. This input is multiplied by the B input.

b_in[26:0] In Signed B input. This input is multiplied by the A input.

c_in[47:0] In Optional signed 48-bit C input. When present, this input is added to the multiplication of
A × B, resulting in A × B + C.

dout[63:0] Out Signed sum or accumulation of A × B + C.

Timing
The output timing from ACX_DSP_MACC_GEN is dependent upon the input parameters. The parameters

 and each add an extra stage of latency to the result. These delays are REGISTER_INPUTS REGISTER_MULT
shown in the following timing diagrams:

Figure 83: DSP MACC Timing Diagram

Note

The values shown in the timing diagram illustrate the following parameter settings:dout

dout : Not registered.(1)

 : applied.dout (2) REGISTER_INPUTS

 : and applied.dout (3) REGISTER_INPUTS REGISTER_MULT

 : applied with no registers.dout (4) ACC_64_OUTPUT

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 153

ACX_DSP_ACCUMULATOR_GEN
The ACX_DSP_ACCUMULATOR_GEN macro provides for an input of up to 192 bits, which are successively
accumulated. The macro uses one DSP for each 48 bits of output.

Table 110: ACX_DSP_ACCUMULATOR_GEN Parameters

Parameter Values Default Description

ACC_WIDTH 32 to 192 96 Specifies the width of the data input and accumulator output.

Table 111: ACX_DSP_ACCUMULATOR_GEN Ports

Name Direction Description

clk In DSP clock.

reset_n In DSP reset. When is set to , = 0; When = , the reset_n 1'b0 dout reset_n 1'b1
DSP operates as follows.

acc_enable In When is set to , the DSP accumulates with . acc_enable 1'b1 dout acc_value
When is set to , remains constant.acc_enable 1'b0 dout

load In

When is set to , the value on is loaded into the load 1'b1 acc_value[n:0]
DSP, and one cycle later is set to . When is set to dout[n:0] acc_value load

, the DSP operates in accumulate mode. The input is independent of, 1'b0 load
and has priority over .acc_enable

acc_value[n:0] In Unsigned load value. When is set to , is used to load the load 1'b1 acc_value
DSP with an initial value.

dout[n:0] Out Unsigned result of the DSP accumulation.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 154

Timing
The timing for the DSP accumulator is shown in the following figure.

Figure 84: ACX_DSP_ACCUMULATOR_GEN Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 155

ACX_DSP_COUNTER_GEN
The ACX_DSP_COUNTER_GEN macro provides a counter of up to 192 bits. The macro uses one DSP for each
48 bits of output.

Table 112: ACX_DSP_COUNTER_GEN Macro Parameters

Parameter Values Default Description

COUNTER_WIDTH 32 to 192 96 Specifies the width of the data input and accumulator output.

Table 113: ACX_DSP_COUNTER_GEN Macro Ports

Name Direction Description

clk In DSP clock.

reset_n In DSP reset. When is set to , = 0; When = , reset_n 1'b0 dout reset_n 1'b1
the DSP operates as follows.

count_enable In When is set to , the DSP performs a rising count on count_enable 1'b1 dout
. When is set to , remains constant.count_enable 1'b0 dout

load In

When is set to , the value on is loaded into the load 1'b1 load_value[n:0]
DSP, and one cycle later is set to . When dout[n:0] load_value[n:0] load
is set to , the DSP operates as a counter. The input is independent 1'b0 load
of, and has priority over .count_enable

load_value[n:0] In Unsigned load value. When is set to , is used to load load 1'b1 load_value
the DSP with an initial value.

dout[n:0] Out Unsigned result of the DSP count.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 156

Timing
The following figure shows the timing diagram for the DSP counter.

Figure 85: DSP Counter Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 157

ACX_DSP_SUM_SQUARES_GEN
The ACX_DSP_SUM_SQUARES_GEN macro provides for N sum of squares function: (A ±B) where the A and 2

B inputs can be up to 18 bits each and N can be up to 4 pairs of values. This macro consumes one DSP for each
(A ±B) pair of inputs.

Table 114: ACX_DSP_SUM_SQUARES_GEN Macro Parameters

Name Values Default Description

NUM_INPUT_PAIRS 1 to 4 2 Specifies the number of A and B input pairs.

REGISTER_AB_INPUTS On/Off Off Optionally register the A and B inputs, adding one cycle of latency to
the result.

REGISTER_MULT On/Off Off
Register the output of the multiplier, adding one cycle of latency to
the result. Registering may be required when operating at high target
frequencies.

ADD_SUB_N
(A+B),
(A-B),
(B-A)

(A+B) Each pair of inputs may be summed or subtracted from one another.
This addition or subtraction occurs before the result is squared.

Table 115: ACX_DSP_SUM_SQUARES_GEN Macro Ports

Name Direction Description

clk In DSP clock.

reset_n In DSP reset. When is set to , = 0; When = , the reset_n 1'b0 dout reset_n 1'b1
DSP operates as follows.

a_in In
Array of signed A inputs. The definition of the input is [17:0] A

. Each A input is 18 bits wide. A value must be [NUM_INPUT_PAIRS-1:0]
supplied for each A input in the array.

b_in In
Array of signed B inputs. The definition of the input is [17:0] B

. Each B input is 18 bits wide. A value must be [NUM_INPUT_PAIRS-1:0]
supplied for each B input in the array.

dout[47:0] Out Signed 48-bit sum of each pair of (A ±B) .2

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 158

Timing
The following figure shows the timing diagram for ACX_DSP_SUM_SQUARES_GEN.

Figure 86: ACX_DSP_SUM_SQUARES_GEN Timing Diagram

Note

The values shown in the timing diagram illustrate the following parameter settings:dout

dout : Not registered.(1)

 : applied.dout (2) REGISTER_AB_INPUTS

 : and applied.dout (3) REGISTER_AB_INPUTS REGISTER_MULT

Enabling each one of these parameters adds one cycle of latency to the output.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 159

ACX_MLP72
Arithmetic within the Speedster7t architecture is primarily focused on the machine learning processing block
(ACX_MLP72). This dedicated silicon block is optimized for artificial intelligence and machine learning (AI/ML)
functions.

The machine learning processor block (MLP) is an array of up to 32 multipliers, followed by an adder tree, and an
accumulator. The MLP is also tightly coupled with two memory blocks, a BRAM72k and LRAM2k. These
memories can be used individually or in conjunction with the array of multipliers. The number of multipliers
available varies with the bit width of each operand and the total width of input data. When the MLP is used in
conjunction with a BRAM72k, the number of data inputs to the MLP block increases, enabling the use of
additional multipliers.

The MLP offers a range of features:

Configurable multiply precision and multiplier count. Any of the following modes are available:

Up to 32 multiplies for 4-bit integers or 4-bit block floating-point values in a single MLP

Up to 16 multiplies for 8-bit integers or 8-bit block floating-point values in a single MLP

Up to 4 multiplies for 16-bit integers in a single MLP

Up to 2 multiplies for 16-bit floating point with both 5-bit and 8-bit exponents in a single MLP

Up to 2 multiplies for 24-bit floating point in a single MLP

Multiple number formats:

Integer

Floating point 16 (including B float 16)

Floating point 24

Block floating point, a method that combines the efficiency of the integer multiplier-adder tree with
the range of the floating point accumulators

Adder tree and accumulator block

Tightly-coupled register file (LRAM) with an optional sequence controller for easily caching and feeding
back results

Tightly-coupled BRAM for reusable input data such as kernels or weights

Cascade paths up a column of MLPs

Allows for broadcast of operands up a column of MLPs without using up critical routing resources

Allows for adder trees to extend across multiple MLPs

Broadcast read/write to tightly-coupled BRAMs up a column of MLPs to efficiently create large
memories

Along with the numerous multiply configurations, the MLP block includes optional input and pipelining registers at
various locations to support high-frequency designs. There is a deep adder tree after the multipliers with the
option to bypass the adders and output the multiplier products directly. In addition, a feedback path allows for
accumulation within the MLP block.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 160

The following block diagrams show the MLP using the fixed or floating-point formats:

Figure 87: MLP Using Fixed-Point Mode

Figure 88: MLP Using Floating-Point Mode

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 161

A powerful feature available in the Achronix MLP is the ability to connect several MLPs with dedicated high-
speed cascade paths. The cascade paths allow for the adder tree to extend across multiple MLP blocks in a
column without using extra fabric routing resources, and a data cascade/broadcast path is available to send
operands across multiple MLP blocks. Cascading input or result data to multiple MLPs in parallel allows for
complex, multi-element operations to be performed efficiently without the need for extra routing. The following
diagram shows the cascade paths across MLPs:

Figure 89: MLP Cascade Path

Note

Straight addition within the ACX_MLP72 (without a leading multiplication) is not supported.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 162

Numerical Formats
The ACX_MLP72 can process the following numerical formats:

Table 116: ACX_MLP72 Supported Numerical Formats

 Formats

Integer int3, int4, int6, int7, int8, int16

Block floating point BFP Int3, BFP Int4, BFP Int6, BFP Int7, BFP Int8, BFP Int16

Floating point fp3, fp4, fp6, fp8, fp16, fp16e8, fp24.

See for details of each of the numerical formats.Speedster7t MLP Number Formats

Parallel Multiplications
The following table lists the maximum number of parallel multiplies that are supported in the ACX_MLP72 as a
function of the data type, and the input mode. The input modes specify from where the data input to the MLP is
sourced and are described in the section Modes.

For block floating-point operations, the bit width shown is the mantissa width.

Table 117: Parallel Multiplication Capabilities

Data
Type

x1 Mode
Inputs only from

FPGA Fabric

x2 Mode
Inputs from FPGA Fabric and

Coupled BRAM Input

x4 Mode
Inputs from FPGA Fabric and

Coupled BRAM Output

Integer

Int3 12 24 32

Int4 8 16 32

Int6 6 12 16

Int7 5 10 16

Int8 4 8 16

Int16 2 4 4 (1)

Block Floating Point

Exponents
(2) 2 4/2 4

BFP Int3 10 16/20 32

BFP Int4 8 12/16 32

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 163

1.

2.

Data
Type

x1 Mode
Inputs only from

FPGA Fabric

x2 Mode
Inputs from FPGA Fabric and

Coupled BRAM Input

x4 Mode
Inputs from FPGA Fabric and

Coupled BRAM Output

BFP Int6 5 8/10 16

BFP Int7 4 8/9 16

BFP Int8 4 6/8 16

BFP Int16 2 4 4 (1)

Floating Point

fp16 1 2 2 (1)

fp16e8 1 2 2 (1)

fp24 1 2 2 (1)

Table Notes

The number of multiplications is limited by the available hardware multipliers, and can be achieved by
using x2 input mode.
With x2 input mode, the number of block floating point exponents can be either 2 or 4. Using only 2
exponents allows for a greater number of mantissas to be input to the MLP, resulting in a greater number
of parallel multiplications.

Memories
A key feature of the ACX_MLP72 is its tight coupling with local memories. Each ACX_MLP72 is grouped with a

 and a at a single silicon site. In addition to the normal fabric I/O, the ACX_BRAM72K ACX_LRAM2K
ACX_MLP72, ACX_BRAM72K and the ACX_LRAM2K are also connected by dedicated, non-fabric paths. This
tight coupling supports 144-bit paths between the elements, with deterministic timing, allowing full-speed
operation of all multipliers operating in parallel.

This arrangement allows for efficient processing by storing input data that is reused (such as a convolution kernel
or weights) and by storing results in a register file to allow for efficient burst transfers to external memory stores
or other processing blocks. Using this architecture, it is possible to construct highly efficient matrix vector
multiplication, 2D convolution and dot product processes that maximize the functionality of the ACX_MLP72 and
its tightly-coupled memories.

Instantiation
Currently it is not possible to infer a full ACX_MLP72. In addition, due to the complexity of the full ACX_MLP72,
Achronix supports, and recommends, the use of the ACX_MLP72 via libraries of macros and primitive functions
derived from the full ACX_MLP72. These libraries enable implementing complex mathematical functions, all
within a single block, via a simplified interface. The provided libraries include support for and integer floating-point
functions.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 164

For particular use cases not covered by the libraries of ACX_MLP72 macros and primitives, details of the full
ACX_MLP72 are provided. Refer to Achronix reference designs for further examples of direct instantiation of a
full ACX_MLP72.

Common Stages

Stages
Due to the complexity of the ACX_MLP72, the details that follow, including tables of parameters and ports, have
been divided up into various stages. Each of these stages represents a functional stage within the ACX_MLP72,
whether that be input selection or multiplier configuration. The stages are described in signal flow order,
beginning with common signals and input selection, and proceeding through the multiplier stages to the output
routing. Understand each stage thoroughly before configuring it via the various parameters.

The initial overview of the full ACX_MLP72 structure focuses on the integer modes. This overview details:

Common Signals (see page 165)

Input Selection (see page 167)

Integer Byte Selection

Integer Multiplier Stage

Integer Output Stage

LRAM

When familiar with the overall ACX_MLP72 integer structure and data flow, additional sections are provided on
floating-point support:

Block Floating Point

Floating Point

Symmetrical Structure

In general terms, the functions of the MLP72 can be divided into two halves: upper and lower (also referred to as
"ab" and "cd"). For the purposes of clarity, a number of the block diagrams which follow only show one half of the
ACX_MLP72. In these cases, unless indicated otherwise, it can be assumed that the other half operates in an
identical manner.

Modes
Operation of the ACX_MLP72 is commonly categorized into three operating modes, each of which reflects the
number of multipliers in use, and the necessary routing of the inputs in order to supply the multipliers. The
number of multipliers given in the following definitions refers to 8 bit multiplication; when 16 bit or 4 bit values are
used, these values halve or double respectively.

By-one mode (×1) – just the four multipliers in the lower half of the ACX_MLP72, mult[3:0], are in use. This
requires the A and B input buses to each have 32 bits of data, or for a single input source to have 64 bits
of data. Therefore any of the available input sources can be switched to these four multipliers, and it is
possible to provide all the multiplier inputs from a single data source.

By-two mode (×2) – all eight of the multipliers in the lower half of the ACX_MLP72, mult[7:0], are in use.
This requires each of the A and B input buses to have 64 bits of data, so at least two of the input sources
are required. In addition there are some x2 split modes whereby four of the multipliers from the lower half,
and four of the multipliers from the top half of the ACX_MLP72 are used.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 165

By-four mode (×4) – all 16 multipliers in the ACX_MLP72 are in use. This requires two A and B input
buses, each with 64 bits of data, resulting in the combined A and B input buses each having 128 bits of
data. To achieve this, one of the advanced routing techniques is required. The most common method is to
provide one of the 128 bit buses from the coupled ACX_BRAM72K output, and then to input the other 128
bus split between the normal MLP input and the BRAM input (each 72 bits). Methods for routing data in ×4
mode are discussed in the . (UG088)Speedster7t Machine Learning Processing User Guide

Common Signals
There are a number of signals and parameters that are common to multiple sections of the ACX_MLP72. These
common signals are primarily for controlling delay stages throughout the ACX_MLP72.

Between each functional stage there are optional registers, known as delay stages. These can be optionally
enabled (using the parameter). If enabled, their clock enable and negative resets can be connected to del_xx
any one of a common set of and inputs. The and parameters respectively ce[] rstn[] cesel_xx rstsel_xx
control which of the and inputs are connected to the selected delay stage. Further, for ce[11:0] rstn[3:0]
certain delay stages it is possible to control whether the reset is synchronous or asynchronous using the
appropriate parameter.rst_mode_xx

These optional delay stages all follow the same structure as shown in the following figure.

Figure 90: Delay Stage Structure

In the diagrams which follow, showing the various stages of the MLP72, the delay stages are shown as a register
with a dotted outline indicating that they are optionally selected to be in circuit. The parameters for each delay
stage are then shown in the dashed box alongside the register symbol. This representation is shown in the
following figure.

https://www.achronix.com/documentation/speedster7t-machine-learning-processing-user-guide-ug088

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 166

Figure 91: Delay Stage Symbol

Parameters

Table 118: Common Parameters

Parameter Supported Values Default Value Description

clk_polarity "rise", "fall" "rise" Specifies whether the registers are clocked
by the rising or the falling edge of the clock.

cesel_*[3:0] 4'b0000–4'b1101 Must be set (0–13)

Selects the inputs for each delay stage ce
register:
4'b0000 – .1'b0

 – .4'b0001 ce[0]
 – .4'b0010 ce[1]
 – .4'b0011 ce[2]
 – .4'b0100 ce[3]
 – .4'b0101 ce[4]
 – .4'b0110 ce[5]
 – .4'b0111 ce[6]
 – .4'b1000 ce[7]
 – .4'b1001 ce[8]
 – .4'b1010 ce[9]
 – .4'b1011 ce[10]
 – .4'b1100 ce[11]
 – .4'b1101 1'b1

rstsel_*[2:0] 3'b000–3'b101 Must be set (0–5)

Selects the input for each delay stage rstn
register:
3'b000 – 1'b0.

 – 3'b001 rstn[0].
 – 3'b010 rstn[1].
 – 3'b011 rstn[2].
 – 3'b100 rstn[3].
 – 3'b101 1'b1.

rst_mode_* 1'b0–1'b1 1'b0

Selects the reset mode (clocked vs.
unclocked) for each delay stage register:
1'b0 – synchronous reset mode.

 – asynchronous reset mode.1'b1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 167

Parameter Supported Values Default Value Description

del_* 1'b0–1'b1 1'b0

Selects if each delay stage register is
enabled or bypassed:
1'b0 – delay stage register is bypassed.

 – delay stage register is enabled.1'b1

Ports

Table 119: Common Ports

Name Direction Description

clk Input Clock input. If input or output registers are enabled, they are updated on the active edge
of this clock.

ce[11:0] Input
Set of clock enable signals for delay stage registers. Asserting the clock enable signal
for a delay stage register causes it to capture that data at it's input on the rising edge of

. Has no effect when the register is disabled.clk

rstn[3:0] Input
Set of negative reset signals for the delay stage registers. When the reset signal for a
delay register stage is asserted (), a value of 0 is written to the output of that 1'b0
register on the rising edge of . Has no effect when the register is disabled.clk

dft_0 Input Reserved for Achronix internal use. Must be left unconnected.

dft_1 Input Reserved for Achronix internal use. Must be left unconnected.

dft_2 Input Reserved for Achronix internal use. Must be left unconnected.

Input Selection
The ACX_MLP72 can accept inputs from a wide variety of sources. The purpose of the input selection block is to
select from these sources, and generate four internal data buses. These four buses are then divided into byte
lanes (byte is used as a generic term, the lanes are not necessarily 8 bits, the width is applicable to the selected
number format). These byte lanes are then sent to the two banks of multipliers (high and low), with each bank
consisting of 8 multipliers, and each multiplier having an A and B input.

The selected internal data buses are also output to the cascade paths so that they can be used by adjacent
ACX_MLP72s in the same column.

The internal data buses, and their respective input selection are notated as , where:multX_Y

X = A or B to indicate whether the bus is for the A or B input of the respective multipliers

Y = H or L to indicate whether the bus is for the High or Low set of multipliers.

The buses are therefore named as , , , .multa_l multb_l multa_h multb_h

The high bank of multipliers has a wider selection of input data buses (8) than the low bank (4). This is shown in
the following diagrams.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 168

1.

2.

Figure 92: High Bank Multipliers Input Selection

Note

The noted MUX inputs in the preceding diagram have the following conditions:

BRAM_DIN[71:0] and are logical names for the respective signal paths. BRAM_DOUT[143:0]
The physical port names vary, and are listed in the following Ports table.

LRAM_DOUT[143:0] is an internal connection only from the coupled LRAM. This is not available
as an input port on the MLP.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 169

1.

2.

Figure 93: Low Bank Multipliers Input Selection

Note

The noted MUX inputs in the preceding diagram have the following conditions:

BRAM_DIN[71:0] and BRAM_DOUT[143:0] are logical names for the respective signal paths.
The physical port names vary, and are listed in the following Ports table.

LRAM_DOUT[143:0] is an internal connection only from the coupled LRAM. This is not available
as an input port on the MLP.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 170

Parameters

Table 120: Input Selection Parameters

Parameter Supported Values Default Value Description

mux_sel_multa_h[2:0] 3'b000–3'b111 3'b000

3'b000 – .MLP_DIN[71:0]
 – .3'b001 BRAM_DIN[71:0]

 – . 3'b010 LRAM_DOUT[71:0] (1)

 – . 3'b011 LRAM_DOUT[143:72] (1)

 – . 3'b100 BRAM_DOUT[71:0] (1)

 – . 3'b101 BRAM_DOUT[143:72] (2)

 – .3'b110 FWDI_MULTA_L[71:0]
 – .3'b111 FWDI_MULTA_H[71:0]

mux_sel_multa_l[1:0] 2'b00–2'b11 2'b00

2'b00 – .MLP_DIN[71:0]

 – . 2'b01 LRAM_DOUT[71:0] (1)

 – . 2'b10 BRAM_DOUT[71:0] (2)

 – .2'b11 FWDI_MULTA_L[71:0]

mux_sel_multb_h[2:0] 3'b000–3'b111 3'b000

3'b000 – .MLP_DIN[71:0]
 – .3'b001 BRAM_DIN[71:0]

 – . 3'b010 LRAM_DOUT[71:0] (1)

 – . 3'b011 LRAM_DOUT[143:72] (1)

 – . 3'b100 BRAM_DOUT[71:0] (2)

 – . 3'b101 BRAM_DOUT[143:72] (2)

 – .3'b110 FWDI_MULTB_L[71:0]
 – .3'b111 FWDI_MULTB_H[71:0]

mux_sel_multb_l[1:0] 2'b00–2'b11 2'b00

2'b00 – .MLP_DIN[71:0]

 – . 2'b01 LRAM_DOUT[71:0] (1)

 – . 2'b10 BRAM_DOUT[71:0] (2)

 – .2'b11 FWDI_MULTB_L[71:0]

lram_out2multb_l 1'b0–1'b1 1'b0

Routes direct to the bus, bypassing LRAM_DOUT[71:0] multb_l mux_sel_m
:ultb_l

1'b0 – input to the multipliers is the bus selected by .'b' mux_sel_multb_l

 – input to the low bank of multipliers is . 1'b1 'b' LRAM_DOUT[71:0] (1)

lram_out2multb_h 1'b0–1'b1 1'b0

Routes direct to the bus, bypassing LRAM_DOUT[143:72] multb_h mux_sel
:_multb_h

1'b0 – input to the multipliers is the bus selected by .'b' mux_sel_multb_h

 – input to the high bank of multipliers is . 1'b1 'b' LRAM_DOUT[143:72] (1)

cesel_multX_Y[3:0] 4'b0000–4'b1101 Must be set (0–13)

Selects the inputs for each register group:ce

4'b0000 – .1'b0
 – .4'b0001 ce[0]
 – .4'b0010 ce[1]
 – .4'b0011 ce[2]
 – .4'b0100 ce[3]
 – .4'b0101 ce[4]
 – .4'b0110 ce[5]
 – .4'b0111 ce[6]
 – .4'b1000 ce[7]
 – .4'b1001 ce[8]
 – .4'b1010 ce[9]
 – .4'b1011 ce[10]
 – .4'b1100 ce[11]
 – .4'b1101 1'b1

Selects the input for each register group:rstn

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 171

1.

2.

Parameter Supported Values Default Value Description

rstsel_multX_Y[2:0] 3'b000–3'b101 Must be set (0–5) 3'b000 – .1'b0
 – .3'b001 rstn[0]
 – .3'b010 rstn[1]
 – .3'b011 rstn[2]
 – .3'b100 rstn[3]
 – .3'b101 1'b1

rst_mode_multX_Y 1'b0–1'b1 1'b0

Selects the reset mode (clocked vs. unclocked) for each register group:
1'b0 – synchronous reset mode.

 – asynchronous reset mode.1'b1

del_multX_Y 1'b0–1'b1 1'b0

Controls if each register group is enabled:
1'b0 – pipeline register is disabled.

 – pipeline register is enabled.1'b1

Table Notes

LRAM_DOUT[143:0] is an internal connection only from the coupled LRAM. This is not available as an input port on the MLP.
BRAM_DIN[71:0] and are logical names for the respective signal paths. The physical port names vary, and are listed in the BRAM_DOUT[143:0]
following Ports table.

Ports

Table 121: Input Selection Ports

Name Direction Description

din[71:0] Input MLP_DIN[71:0] data inputs.

mlpram_bramdin2mlpdin[71:0](1) Input Dedicated path from co-sited ACX_BRAM72K. Connects
 port to MLP.BRAM_DIN[71:0]

mlpram_bramdout2mlp[143:0](1) Input Dedicated path from co-sited ACX_BRAM72K. Connects
 to MLP.BRAM_DOUT[143:0]

fwdi_multa_h[71:0] Input Forward cascade path inputs for multiplier A inputs, higher
multiplier block.

fwdi_multb_h[71:0] Input Forward cascade path inputs for multiplier B inputs, higher
multiplier block.

fwdi_multa_l[71:0] Input Forward cascade path inputs for multiplier A inputs, lower
multiplier block.

fwdi_multb_l[71:0] Input Forward cascade path inputs for multiplier B inputs, lower
multiplier block.

fwdo_multa_h[71:0] Output Forward cascade path output for multiplier A inputs, higher
multiplier block.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 172

1.

Name Direction Description

fwdo_multb_h[71:0] Output

Forward cascade path output for multiplier B inputs, higher
multiplier block. This bus is the selection from

 and is not affected by the value of mult_sel_multb_h
.lram_out2multb_h

fwdo_multa_l[71:0] Output Forward cascade path output for multiplier A inputs, lower
multiplier block.

fwdo_multb_l[71:0] Output

Forward cascade path output for multiplier B inputs, lower
multiplier block. This bus is the selection from

 and is not affected by the value of mult_sel_multb_l
.lram_out2multb_l

Table Notes

This port can only be connected to the equivalent, same-named output on a ACX_BRAM72K. This port
cannot be driven directly by fabric logic. A BRAM must be instantiated to use this connection.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 173

Integer Modes
The most straightforward operation of the ACX_MLP72 is in integer mode, when up to 32 parallel multiplications
can be performed, and combined with various adder and accumulation stages.

Byte Selection
When the four input buses have been selected; the buses are divided up into "byte" lanes. These lanes are then
sent to each multiplier. Normally byte implies an 8-bit signal, however in this instance the signal width varies and
is dependent upon the selected number format. Throughout this description, byte is used as nomenclature for the
selected group of bits sent to each multiplier. The byte selection is controlled by the two parameters,

 to select the words from and into multipliers [7:0], and to bytesel_00_07 multa_l multb_l bytesel_08_15
select the words from and for multipliers[15:8].multa_h multb_h

In most applications, and are assigned the same value. However, it is bytesel_00_07 bytesel_08_15
possible to assign different values, particularly when treating the MLP72 as two independent halves. In addition,
for the expanded modes (×2 and ×4) value may retain the same value as for the ×1 mode bytesel_00_07
configuration, with just changing to map the bytes to the upper multipliers.bytesel_08_15

The sources for , , , and are selected independently. With particular multa_l multb_l multa_h multb_h
 mappings, the same input source could be used for the a and b multiplier inputs. For instance, if bytesel

selecting Int8 in 1x mode (only 4 multipliers used), then both and can be set to select the multa_l multb_l
 input. If this input is packed asMLP_DIN[71:0] MLP_DIN[71:0] = {8'h00, b3, b2, b1, b0, a3,

, then using the correct , the a and b inputs to the 4 multipliers can be selected from just a2, a1, a0} bytesel
this one single input. (As reference, in this example, and should both be set bytesel_00_07 bytesel_08_15
to 'h0).

The following tables show the integer byte selection from each input bus, based on the values of . The bytesel
tables are grouped by the required number format. Greyed out cells are not used, and should be set to 1'b0.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 174

Int8

A total of up to 16 multipliers can be used, in either ×1, ×2, ×4 or a split mode.

Table 122: Four Multipliers (×1 Mode – bytesel_00_07 = 'h00; bytesel_08_15 = 'h00)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l a3 a2 a1 a0

multb_l b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table 123: Eight Multipliers (×2 Mode – bytesel_00_07 = 'h01; bytesel_08_15 = 'h01)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l a7 a6 a5 a4 a3 a2 a1 a0

multb_l b7 b6 b5 b4 b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table 124: Sixteen Multipliers (×4 Mode – bytesel_00_07 = 'h01; bytesel_08_15 = 'h21)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l a7 a6 a5 a4 a3 a2 a1 a0

multb_l b7 b6 b5 b4 b3 b2 b1 b0

multa_h a15 a14 a13 a12 a11 a10 a9 a8

multb_h b15 b14 b13 b12 b11 b10 b9 b8

The following mode uses 4 multipliers from the lower half, and 4 multipliers from the top half of the MLP72.

Table 125: Eight Multipliers (×2 Split Mode – bytesel_00_07 = 'h00; bytesel_08_15 = 'h20)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l a3 a2 a1 a0

multb_l b3 b2 b1 b0

multa_h a11 a10 a9 a8

multb_h b11 b10 b9 b8

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 175

Int7

A total of up to 16 multipliers can be used, in either ×1, ×2, ×4 or a split mode.

Table 126: Five Multipliers (×1 Mode – bytesel_00_07 = 'h07; bytesel_08_15 = 'h07)

Input Bus [71:70] [69:63] [62:56] [55:49] [48:42] [41:35] [34:28] [27:21] [20:14] [13:7] [6:0]

multa_l a4 a3 a2 a1 a0

multb_l b4 b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table 127: Ten Multipliers (×2 Mode – bytesel_00_07 = 'h08; bytesel_08_15 = 'h08)

Input Bus [71:70] [69:63] [62:56] [55:49] [48:42] [41:35] [34:28] [27:21] [20:14] [13:7] [6:0]

multa_l a7 a6 a5 a4 a3 a2 a1 a0

multb_l b7 b6 b5 b4 b3 b2 b1 b0

multa_h a9 a8

multb_h b9 b8

Table 128: Sixteen Multipliers (×4 Mode – bytesel_00_07 = 'h08; bytesel_08_15 = 'h28)

Input Bus [71:70] [69:63] [62:56] [55:49] [48:42] [41:35] [34:28] [27:21] [20:14] [13:7] [6:0]

multa_l a7 a6 a5 a4 a3 a2 a1 a0

multb_l b7 b6 b5 b4 b3 b2 b1 b0

multa_h a15 a14 a13 a12 a11 a10 a9 a8

multb_h b15 b14 b13 b12 b11 b10 b9 b8

The following mode uses 5 multipliers from the lower half, and 5 multipliers from the top half of the MLP72.

Table 129: Ten Multipliers (×2 Split Mode – bytesel_00_07 = 'h07; bytesel_08_15 = 'h27)

Input Bus [71:70] [69:63] [62:56] [55:49] [48:42] [41:35] [34:28] [27:21] [20:14] [13:7] [6:0]

multa_l a4 a3 a2 a1 a0

multb_l b4 b3 b2 b1 b0

multa_h a12 a11 a10 a9 a8

multb_h b12 b11 b10 b9 b8

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 176

Int6

A total of up to 16 multipliers can be used, in either ×1, ×2, ×4 or a split mode.

Table 130: Six Multipliers (×1 Mode – bytesel_00_07 = 'h0a. bytesel_08_15 = 'h0a)

Input Bus [71:66] [65:60] [59:54] [53:48] [47:42] [41:36] [35:30] [29:24] [23:18] [17:12] [11:6] [5:0]

multa_l a5 a4 a3 a2 a1 a0

multb_l b5 b4 b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table 131: Twelve Multipliers (×2 Mode – bytesel_00_07 = 'h0b; bytesel_08_15 = 'h0b)

Input Bus [71:66] [65:60] [59:54] [53:48] [47:42] [41:36] [35:30] [29:24] [23:18] [17:12] [11:6] [5:0]

multa_l a7 a6 a5 a4 a3 a2 a1 a0

multb_l b7 b6 b5 b4 b3 b2 b1 b0

multa_h a11 a10 a9 a8

multb_h b11 b10 b9 b8

Table 132: Sixteen Multipliers (×4 Mode – bytesel_00_07 = 'h0b; bytesel_08_15 = 'h2b)

Input Bus [71:66] [65:60] [59:54] [53:48] [47:42] [41:36] [35:30] [29:24] [23:18] [17:12] [11:6] [5:0]

multa_l a7 a6 a5 a4 a3 a2 a1 a0

multb_l b7 b6 b5 b4 b3 b2 b1 b0

multa_h a15 a14 a13 a12 a11 a10 a9 a8

multb_h b15 b14 b13 b12 b11 b10 b9 b8

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 177

The following mode uses 6 multipliers from the lower half, and 6 multipliers from the top half of the MLP72.

Table 133: Twelve Multipliers (×2 Split Mode – bytesel_00_07 = 'h0a; bytesel_08_15 = 'h2a)

Input Bus [71:66] [65:60] [59:54] [53:48] [47:42] [41:36] [35:30] [29:24] [23:18] [17:12] [11:6] [5:0]

multa_l a5 a4 a3 a2 a1 a0

multb_l b5 b4 b3 b2 b1 b0

multa_h a13 a12 a11 a10 a9 a8

multb_h b13 b12 b11 b10 b9 b8

Int4

MLP72 supports up to 32 int4 multipliers. This is achieved by internally dividing each of the native int8 multipliers
into two. There are no separate modes for int4. Instead, use the int8 modes, packing two int4 bytesel bytesel
arguments per int8 value. The number of mapped int4 multiplications is double the number of int8 multiplications
for the same mode.

Int3

MLP72 supports up to 32 int3 multipliers. This is achieved by internally dividing each of the native int8 multipliers
into two. There are no separate modes for int3. Instead, use the int6 modes, packing two int3 bytesel bytesel
arguments per int6 value. The number of mapped int3 multiplications is double the number of int6 multiplications
for the same mode.

Int16

A total of up to 4 multiplications can be performed in parallel, in either ×1, ×2, split or compact mode.

Table 134: Two Multiplications (×1 Mode – bytesel_00_07 = 'h11. bytesel_08_15 = 'h11)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a1 a0

multb_l b1 b0

multa_h Unused

multb_h Unused

Table 135: Four Multiplications (×2 Mode – bytesel_00_07 = 'h12. bytesel_08_15 = 'h12)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a1 a0

multb_l b1 b0

multa_h a3 a2

multb_h b3 b2

The following mode achieves 2 multiplications in the lower half, and 2 multiplications in the top half of the MLP72.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 178

The following mode achieves 2 multiplications in the lower half, and 2 multiplications in the top half of the MLP72.

Table 136: Four Multiplications (×2 Split Mode – bytesel_00_07 = 'h11. bytesel_08_15 = 'h31)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a1 a0

multb_l b1 b0

multa_h a3 a2

multb_h b3 b2

The following mode achieves 2 multiplications in the lower half, and 2 multiplications in the top half of the MLP72.

Table 137: Four Multiplications (×2 Compact Mode – bytesel_00_07 = 'h12. bytesel_08_15 = 'h32)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a1 a0

multb_l b1 b0

multa_h a3 a2

multb_h b3 b2

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 179

Parameters

Table 138: Integer Byte Selection Parameters

Parameter Supported Values Default Value Description

bytesel_00_07[4:0] 5'h00–5'h12 5'h00

5'h00 – Int8 ×1 and ×2 split mode.
 – Int8 ×2 and ×4 mode.5'h01
 – Int7 ×1 and ×2 mode.5'h07
 – Int7 ×2 and ×4 mode.5'h08
 – Int6 ×1 and ×2 split mode.5'h0A
 – Int6 ×2 and ×4 mode.5'h0B
 – Int16 ×1 mode.5'h11
 – Int16 ×2 mode.5'h12

bytesel_08_15[5:0] 6'h00–6'h2B 6'h00

6'h00 – Int8 ×1 mode.
 – Int8 ×2 mode.6'h01
 – Int7 ×1 mode.6'h07
 – Int7 ×2 mode.6'h08
 – Int6 ×1 mode.6'h0A
 – Int6 ×2 mode.6'h0B
 – Int16 ×1 mode.6'h11
 – Int16 ×2 mode.6'h12
 – Int8 ×2 split mode.6'h20
 – Int8 ×4 mode.6'h21
 – Int7 ×2 split mode.6'h27
 – Int7 ×4 mode.6'h28
 – Int6 ×2 split mode.6'h2A
 – Int6 ×4 mode.6'h2B
 – Int16 ×2 split mode.6'h31
 – Int16 ×2 compact mode.6'h32

Multiplier Stage
The ACX_MLP72 contains 16 integer multipliers, each of which can multiply two 8 bit values. These multipliers
can then either be combined to support multiplication of larger integer values such as 16 bit, or else subdivided to
support double the multiplication capacity for 4 and 3 bit integers. The multipliers are divided into two banks, high
and low, and each bank is fed from the corresponding input stage.

Within each bank, there are 8 multipliers which are summed as two groups of 4. These intermediate sums are
then optionally summed, or subtracted from each other. Finally the sum of each bank is added together to give
an overall result, representing the sum of all 16 input multipliers.

The input to each integer multiplier supports an optional delay stage. For multipliers[3:0] each individual input has
it's own delay stage control, including control of the reset mode. For multipliers[15:4], the delay stages are
controlled in banks of 4, corresponding to the group of 4 multipliers which are initially summed together.

The structure of integer multiplication, summing and delay stages is shown in the following figure. The
parameters which control signal selection, delay stage selection, add or subtract are shown as text only
alongside the component they apply to.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 180

Figure 94: Multiplication Stage Structure (Integer)

Parallel Multiplications

The ACX_MLP72 combines multipliers in appropriate structures based on the selected number formats. Each
multiplier natively supports an Int8 × Int8 multiplication with a 16 bit result. These multipliers can then also be
split to perform two parallel Int4 × Int4, or Int3 × Int3 multiplications. In these split modes, the output of the
multiplier can either be the two individual results (8 bits each, configured by the parameter multmode_xx_xx

 mode), or the sum of the two results. 16 parallel multiplications can then be achieved for number SNOADD
formats of 8 bits and 6 bits. Finally, for number formats greater than 8 bits, such as Int16, a lower number of
parallel integer multiplications is achieved as the multipliers are combined to compute the larger result. The
maximum number of parallel multiplications for each number format is shown in the following table.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 181

Table 139: Maximum Possible Integer Multiplications

Number Format Maximum Parallel Multiplications

Int3 32

Int4 32

Int6 16

Int8 16

Int16 4

Number Formats

For details of the number formats used within the ACX_MLP72, refer to . In addition to the Number formats
actual number formats listed, there is a further processed format, , that is specific to the Sign - No Add
ACX_MLP72.

Sign - No ADD (SNOADD)

SNOADD is an output only number format from a multiplier. When the multiplier is set to Int4 or Int3 format, the
multiplier is split into two separate multipliers, each performing either a Int4 × Int4, or Int3 × Int3 multiplication.
The multiplier can then be set to either add the two results together, to give the multiply-accumulate sum of the
two input pairs, or alternatively the multiplier can be set to output the two results in parallel, each using 8 bits of
the 16 bit multiplier output. It is not intended that there would be any further processing of this value within the
MLP72, instead this split value can be sent directly to the ACX_MLP72 output stage.

Format Consistency

Between the Input Selection and the the ACX_MLP72 selects the Integer Multiplier Stage (see page 179)
appropriate slice of the input bus to route to each multiplier. This slice selection is dependent upon the input
number format, and is controlled by the parameters, and detailed in bytesel_xx_xx Byte Selection (see page

. Equally the multiplier modes are controlled by the parameters, which are dependent 173) multmode_xx_xx
upon the selected number format. The and parameters must be consistent in terms of bytesel multmode
number format and sizes in order to achieve correct multiplication results.

Parameters

Parameters that are specific to the integer multiplication stage are detailed in the following table. For the
purposes of clarity, the delay stage parameters are not shown in this table, instead they are shown in the
previous .Figure (see page 180)

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 182

Table 140: Integer Multiplication Parameters

Parameter Supported Values Default Value Description

multmode_00_07[4:0] 5'h00–5'h11 5'h00

5'h00 – SIGNED 8×8.
 – UNSIGNED 8×8.5'h01
 – SMAG 8×8 (SignMAGnitude).5'h02
 – SIGNED 7×7.5'h03
 – SMAG 7×7 (SignMAGnitude).5'h04
 – SIGNED 6×6.5'h05
 – SMAG 6×6 (SignMAGnitude).5'h06
 – SIGNED 4×4.5'h07
 – SMAG 4×4 (SignMAGnitude).5'h08
 – SNOADD 4×4 (Sign-NOADDer).5'h09
 – SIGNED 3×3.5'h0A
 – SMAG 3×3 (SignMAGnitude).5'h0B
 – SNOADD 3×3 (Sign-NOADDer).5'h0C
 – SIGNED 16×16.5'h0D
 – SA_UB 16×16 (SignedA_UnsignedB).5'h0E
 – UA_SB 16×16 (UnsignedA_SignedB).5'h0F
 – UNSIGNED 16×16.5'h10
 – NO OP (NO OPeration).5'h11
 – A SIGNED, B UNSIGNED 8×8.5'h12
 – A UNSIGNED, B SIGNED 8×8.5'h13

multmode_08_15[4:0] 5'h00–5'h11 5'h00

5'h00 – SIGNED 8×8.
 – UNSIGNED 8×8.5'h01
 – SMAG 8×8 (SignMAGnitude).5'h02
 – SIGNED 7×7.5'h03
 – SMAG 7×7 (SignMAGnitude).5'h04
 – SIGNED 6×6.5'h05
 – SMAG 6×6 (SignMAGnitude).5'h06
 – SIGNED 4×4.5'h07
 – SMAG 4×4 (SignMAGnitude).5'h08
 – SNOADD 4×4 (Sign-NOADDer).5'h09
 – SIGNED 3×3.5'h0A
 – SMAG 3×3 (SignMAGnitude).5'h0B
 – SNOADD 3×3 (Sign-NOADDer).5'h0C
 – SIGNED 16×16.5'h0D
 – SA_UB 16×16 (SignedA_UnsignedB).5'h0E
 – UA_SB 16×16 (UnsignedA_SignedB).5'h0F
 – UNSIGNED 16×16.5'h10
 – NO OP (NO OPeration).5'h11
 – A SIGNED, B UNSIGNED 8×8.5'h12
 – A UNSIGNED, B SIGNED 8×8.5'h13

add_00_07_bypass 1'b0–1'b1 1'b0

Controls if ADD07 is bypassed:
1'b0 – input selects ADD07 output.ADD0_7_REG

 – input selects ADD03 output.1'b1 ADD0_7_REG

add_00_07_sub 1'b0–1'b1 1'b0

Controls if ADD07 is in subtract mode:
1'b0 – ADD07 performs A + B.

 – ADD07 performs A – B.1'b1

add_08_15_bypass 1'b0–1'b1 1'b0

Controls if ADD815 is bypassed:
1'b0 – ADD8_15_REG input selects ADD815 output.

 – ADD8_15_REG input selects ADD811 output.1'b1

add_08_15_sub 1'b0–1'b1 1'b0

Controls if ADD815 is in subtract mode:
1'b0 – ADD815 performs A + B.

 – ADD815 performs A – B.1'b1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 183

Output Stage
The ACX_MLP72 output stage supports addition, subtraction or accumulation of the output from the multiplier
stage. Other signals from the BRAM and LRAM may also be combined or routed through for specific
configurations.

Figure 95: Output Stage

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 184

Parameters

Table 141: Output Stage Parameters

Parameter Supported
Values

Default
Value Description

add_00_15_sel 1'b0–1'b1 1'b0

Selects if the output of ADD015 is used:
1'b0 – ADD0_7_REG output is routed toward FPMULT_AB_REG.

 – ADD015 output is routed toward FPMULT_AB_REG.1'b1

fpmult_ab_bypass 1'b0–1'b1 1'b0

Select to bypass (A*B) Floating-Point Multiplier:
1'b0 – floating-Point Multiplier is enabled.

 – floating-Point Multiplier is bypassed; integer multiplier is selected.1'b1

fpmult_cd_bypass 1'b0–1'b1 1'b0

Select to bypass (C*D) Floating-Point Multiplier:
1'b0 – floating-Point Multiplier is enabled.

 – floating-Point Multiplier is bypassed; integer multiplier is selected.1'b1

fpadd_cd_dina_sel 1'b0–1'b1 1'b0

Select the value between (C*D) Floating-Point multiplier and (A*B) Accumulator:
1'b0 – selection the value from (C*D) Floating-Point-Multiplier.

 – selection the value from (A*B) Accumulator.1'b1

This selector is not shown on the diagram above.

fpadd_cd_dinb_sel[2:0] 3'b000–3'b100 3'b000

Select the addend, or subtrahend for the CD Accumulator:
3'b000 – 48-bit input (registered).ACCUM_CD_REG

 – 48-bit MLP Forward Cascaded input .3'b001 FWDI_DOUT[47:0]
 – 48-bit .3'b010 LRAM_DOUT[47:0]
 – reserved.3'b011
 – 48-bit AB Accumulator data output.3'b100

fpadd_ab_dinb_sel[2:0] 3'b000–3'b101 3'b000

Select the addend, or subtrahend for the AB Accumulator:
3'b000 – 48-bit ACCUM_AB_REG input (always registered).

 – 48-bit MLP Forward Cascaded input .3'b001 FWDI_DOUT[47:0]

 – 48-bit .3'b010 LRAM_DOUT[47:0] (1)

 – 24-bit (top 24 bits tied to zero).3'b011 LRAM_DOUT[59:36]
 – 24-bit MLP Forward Cascade input (top 24 bits tied to zero).3'b100 FWDI_DOUT[47:24]
 – 48-bit .3'b101 LRAM_DOUT[119:72]

add_accum_ab_bypass 1'b0–1'b1 1'b0

Select to bypass the AB accumulator output:
1'b0 – integer AB accumulator value is used.

 – bypass integer AB accumulator.1'b1

add_accum_cd_bypass 1'b0–1'b1 1'b0

Select to bypass the CD accumulator output:
1'b0 – integer CD accumulator value is used.

 – bypass integer CD accumulator.1'b1

out_reg_din_sel[2:0] 3'b000–3'b110 2'b00

Select input:out_reg

3'b000 – value is from Mult8×4.
 – output of floating point FP_ADD_CD accumulator.3'b010
 – output or bypass of integer CD accumulator, as set by .3'b011 add_accum_cd_bypass
 – 8-bit wide A ± B output.3'b100
 – value is Mult16×2.3'b110

This selector is not shown on the diagram above.

accum_ab_reg_din_sel 1'b0–1'b1 1'b0

Select between integer and floating point AB result:
1'b0 – value from integer AB accumulator block.

 – value from floating point FP_ADD_AB accumulator block.1'b1

Select values for the forward DOUT cascade path:
2'b00 – value from optionally registered output (Not shown on diagram).OUT_REG[63:0]

 – concatenated outputs of upper and lower MLP outputs 2'b01 {24'h0,ACCUM_AB_REG

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 185

1.

Parameter Supported
Values

Default
Value Description

dout_mlp_sel[1:0] 2'b00–2'b11 2'b00 , used to pass floating point values via .[23:0],OUT_REG[23:0]} fwdo_dout
 – value from optionally registered output .2'b10 ACCUM_AB_REG[47:0]
 – concatenated lower 36 bits from upper and lower MLP outputs 2'b11 {ACCUM_AB_REG

.[35:0],OUT_REG[35:0]}

outmode_sel[1:0] 2'b00–2'b11 2'b00

Select final value:DOUT

2'b00 – 72-bit output of value selected by parameter .dout_mlp_sel[1:0]

 – .2'b01 LRAM_DOUT[71:0] (1)

 – .2'b10 BRAM_DOUT[143:72]
 – optionally registered concatenated outputs of floating point format conversion 2'b11

registers with status {20'h0,fp_ab_status, fp_cd_status, accum_ab_reg,
.out_reg}

rndsubload_share 1'b0–1'b1 1'b0
Select to share Round, Sub, and Load input from the upper (cd sum) half with the lower (ab
sum) half.

Table Notes

LRAM_DOUT is not a physical port on the ACX_MLP72. It is an internal only connection from the associated tightly-coupled ACX_LRAM.

Ports

Table 142: Output Stage Ports

Name Direction Description

load Input
rndsubshare = 1'b0 – when the upper half cd_add_accum accumulator is enabled, load the accumulator
with the sum.add[15:8]

 – load both ab_add_accum and cd_add_accum with their respective sum inputs.rndsubshare = 1'b1

load_ab Input
rndsubshare = 1'b0 – when the lower half ab_add_accum accumulator is enabled, load the accumulator with
the output of the add_00_15_sel multiplexer.

 – unused.rndsubshare = 1'b1

sub Input rndsubshare = 1'b0 – configure upper half cd_add_accum adder to subtraction mode.
 – configure both add_accum adders to subtraction mode.rndsubshare = 1'b1

sub_ab Input rndsubshare = 1'b0 – configure lower half ab_add_accum adder to subtraction mode.
 – unused.rndsubshare = 1'b1

dout[71:0] Output The result of the multiply-accumulate operation.

fwdi_dout[47:0] Input MLP72 internally calculated result, cascaded from the ACX_MLP72 block below.

fwdo_dout[47:0] Output MLP72 internally calculated results, cascaded up to the ACX_MLP72 block above.

mlpram_mlp_dout[95:0] Output

Bits[47:0] ACX_MLP72 internally calculated result truncated to 48 bits.
Bits[95:48] result of the ab sum path.
The intended operation of is when selects the result of the cd sum path. mlpram_mlp_dout dout_mlp_sel
Then is a concatenation of the cd and ab sums, each truncated to 48 bits.mlpram_mlp_dout

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 186

Integrated LRAM
The ACX_MLP72 has an integrated Logic 2-kb RAM (LRAM) tightly bonded to both its external inputs and
internal signals. This LRAM enables local storage and reuse of both input values, and output results. The LRAM
is often referred to as a register file, particularly when it is configured to store and replay ACX_MLP72 results.
The LRAM can be configured as 36 bits × 64, 72 bits × 32, or 144 bits × 16, dependent upon the application.

Standalone LRAM
If an LRAM independent of the MLP72 is required, use the dedicated or ACX_LRAM2K_SDP

 primitive, appropriate to the application. These primitives have only the ACX_LRAM2K_FIFO (see page 449)
required ACX_LRAM2K ports and parameters, simplifying instantiation.

Note

When an ACX_LRAM2K is instantiated directly, the associated ACX_MLP72 is not available due to the
use of shared pins.

LRAM Operational Modes
When the LRAM is used as an integrated part of the ACX_MLP72, it can be operated in three modes (the mode
values correspond to the values set for the and lram_input_control_mode lram_output_control_mode
parameters):

Mode 0 (default) – LRAM is slaved to co-sited ACX_BRAM72K. Using the and address wrmsel rdmsel
enables on the co-sited ACX_BRAM72K, the LRAM operates as an extension to the ACX_BRAM72K,
supporting additional address space. The data, read and write signals are connected from the
ACX_BRAM72K to the LRAM using the dedicated signal paths. This mode is intended for initializing the
LRAM via the NoC during power-up.

Mode 1 – LRAM operates as either a RAM or FIFO (dependent upon). Re-lram_fifo_enable
purposing several dual-use inputs (CE, RSTN, EXPB), the LRAM can store the results of the ACX_MLP72
calculation, and its output can be routed back into the ACX_MLP72 Input Selection stage. For details of
how the ACX_MLP72 inputs can be re-purposed to the LRAM, see LRAM Virtual Ports. (see page 186)

Mode 2 – the LRAM must be set to operate as a FIFO in Mode 1 (= 1'b1). Mode 2 lram_fifo_enable
then adds additional signals that allow the reset of the FIFO address generators (see FIFO Address

). This additional flexibility allows the LRAM to store groups of results or Generators (see page 189)
coefficients that do not necessarily match the length of the FIFO, i.e., their length is not a power of 2 .n

Note

Although and are separate lram_input_control_mode lram_output_control_mode
parameters, it is anticipated that in normal operation they would both be set to the same value. If the
user application requires these parameters to be set to differing values, it is recommended to discuss
the requirements with Achronix Support.

LRAM Virtual Ports
When the LRAM is configured within the ACX_MLP72, several of the ACX_MLP72 ports are re-purposed to the
LRAM. These configurations are also dependent upon the operating mode. These re-purposed ports have logical
internal signal names and can be considered virtual ports to the LRAM. The mapping of these virtual ports is
detailed in the following table.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 187

Table 143: LRAM Virtual Port Mapping

 External Pin

Virtual Port Name Description Mode 0 Mode 1 Mode 2

lram_wraddr[5:0] Write address. mlpram_wraddr expb[7:2] 6'h0

lram_wren Write enable. mlpram_wren ce[7] ce[7]

lram_rdaddr[5:0] Read address. mlpram_rdaddr {expb[1:0],ce[11:8]} 6'h0

lram_rden Read enable. mlpram_rden ce[6] ce[6]

lram_rstregn
Output register reset,
(optionally block memory
reset).

1'b1 rstn[0] rstn[0]

lram_fsm_wrrst
Reset FIFO write address
pointer. 1'b0 1'b0 ce[9]

lram_fsm_rdrst
Reset FIFO read address
pointer. 1'b0 1'b0 ce[8]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 188

Interconnection Diagram
The block diagram and interconnection of the LRAM is shown in the following figure.

Figure 96: LRAM connectivity

Note

The port is an internal connection only to the coupled LRAM and is not available LRAM_DOUT[143:0]
as an output port from the MLP. Inputs prefixed with are dedicated paths and can only be MLPRAM_
connected to equivalent, same-named outputs on a co-sited ACX_BRAM72K and cannot be driven
directly by fabric logic.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 189

FIFO Address Generators
The LRAM is designed with particular flexibility around its FIFO address generators. allowing them to be used as
built-in generic address counters. This mode of operation is particularly useful when partial sums produced by
the MLP are written to the LRAM, to be read back some cycles later as input to the MLP for further additions.
Using built-in address pointers rather than external address counters reduces user logic, and allows the virtual

 and ports defined above to be used as and inputs.lram_wraddr lram_rdaddr ce expb

Three separate features can be enabled to transform the FIFO address pointers into regular address counters.
When these features are used, the FIFO counters no longer satisfy normal FIFO operation, they allow over and
underflow, and for entries to be read multiple times. Although the FIFO status flags are still computed, user logic
should ignore them as the pointers no longer maintain the FIFO property; this applies to the , , full empty

, , , and .almost_full almost_empty write_error read_error flags

Length Adjustment

The ACX_MLP72 supports programmable end locations for both the write and read address generators. These
thresholds are set using the and parameters. lram_fifo_wrptr_maxval lram_fifo_rdptr_maxval
When an address pointer is equal to the specified threshold, the next increment assigns the address maxval
counter back to 0.

Mode 2 Pointer Reset

In Mode 2 (requirement that = 1'b1) two external pins are re-purposed as internal FIFO lram_fifo_enable
address generator resets:

Asserting resets the FIFO write pointer to 0 on the next active edge of .lram_fsm_wrrst lram_wrclk

Asserting resets the FIFO read pointer to 0 on the next active edge of .lram_fsm_rdrst lram_rdclk

These additional signals allow the read or write pointers to be dynamically reset.

Ignore Flags

Normally, in FIFO mode, a write in the full state has no effect: no memory location is changed, and the write
pointer is not incremented. Likewise, a read from an empty FIFO does not change the output, and the read
pointer is not incremented. However, when the parameter is set, these rules are lram_fifo_ignore_flags
not followed: A write always writes the current memory location and increments the write pointer, and a read
always returns the value stored at the current location and increments the read pointer. (The increments wrap
around as specified by their thresholds).maxval

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 190

Parameters
Table 144: LRAM Parameters

Parameter Supported
Values

Default
Value Description

lram_wrclk_polarity "rise", "fall" "rise" Specifies whether registers are clocked by the rising or falling edge of the clock.

lram_rdclk_polarity "rise", "fall" "rise" Specifies whether registers are clocked by the rising or falling edge of the clock.

lram_sync_mode 1'b0–1'b1 1'b0

Set LRAM synchronous mode:
1'b0 – write clock and read clock are asynchronous.

 – write clock and read clock are the same clock (synchronous).1'b1

lram_reg_dout 1'b0–1'b1 1'b0

Enable optional register:LRAM_DOUT[143:0]

1'b0 – LRAM read data is asynchronous read, no register.
 – LRAM read data is synchronous read, register enabled.1'b1

lram_sr_assertion 1'b0–1'b1 1'b0

Set reset mode for the output register:
1'b0 – synchronous reset mode.

 – asynchronous reset mode.1'b1

If = 1'b0, then this parameter has no effect.lram_reg_dout

lram_fifo_enable 1'b0–1'b1 1'b0

Enable LRAM FIFO mode:
1'b0 – LRAM is not in FIFO mode.

 – LRAM is in FIFO mode.1'b1

lram_clear_enable(1) 1'b0–1'b1 1'b0

Enable LRAM block memory clear:
1'b0 – LRAM block memory clear is disabled.

 – when the virtual port is asserted (1'b0), the contents of the 1'b1 lram_regrstn
LRAM memory are reset to 0.

lram_write_width[1:0] 2'b00–2'b10 2'b00

Select LRAM write data width and depth value:
2'b00 – data is 72-bit wide and 32 deep.

 – data is 36-bit wide and 64 deep.2'b01
 – data is 144-bit wide and 16 deep.2'b10

lram_read_width[1:0] 2'b00–2'b10 2'b00

Select LRAM read data width and depth value:
2'b00 – data is 72-bit wide and 32 deep.

 – data is 36-bit wide and 64 deep.2'b01
 – data is 144-bit wide and 16 deep.2'b10

lram_input_control_mode[1:0] 2'b00–2'b11 2'b00

Select LRAM Input control mode:
2'b00 – BRAM controls LRAM write control.

 – LRAM uses MLP inputs.2'b01
 – LRAM uses MLP inputs with additional FIFO controller FSM inputs.2'b10
 – LRAM is off/disabled.2'b11

This controls the source of wraddr and wren.

lram_output_control_mode[1:0] 2'b00–2'b11 2'b00

Select LRAM output control mode:
2'b00 – BRAM controls LRAM read control.

 – LRAM uses MLP inputs.2'b01
 – LRAM uses MLP inputs with additional FIFO controller FSM inputs.2'b10
 – LRAM is off/disabled.2'b11

This controls the source of , and :rdaddr rden regrstn

LRAM_DIN[143:0] source:
2'b00 – . BRAM internal ×144-bit write data.mlpram_din2mlpdout[143:0]

 – aggregation of { , }. 2'b01 mlpram_din2mlpdout[71:0] MLP_DIN[71:0]
BRAM internal ×72-bit input and MLP ×72-bit data in.

 – input selected by .2'b10 lram_accum_data_input_sel

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 191

1.

Parameter Supported
Values

Default
Value Description

lram_write_data_mode[1:0] 2'b00–2'b11 2'b00 – aggregation of mutliplier "b" input buses, { , 2'b11 multb_h[71:0] multb_l
}.[71:0]

lram_accum_data_input_sel 1'b0–1'b1 1'b0

Select Accumulated data for :LRAM_DIN[143:0]

1'b0 – aggregation of { , , , 24'h0 ADD_ACCUM_AB[47:0] 24'h0 ADD_ACCUM_CD
}. ×144-bit mode.[47:0]

 – aggregation of { , , , , 1'b1 72'h0 12'h0 ADD_ACCUM_AB[23:0] 12'h0 ADD_ACCU
}. ×72-bit mode.M_CD[23:0]

lram_fifo_wrptr_maxval[6:0] 7'h00–7'h7F 7'h7F
LRAM FIFO write pointer maximum value (must be for normal FIFO 'h7F
operation)

lram_fifo_rdptr_maxval[6:0] 7'h00–7'h7F 7'h7F LRAM FIFO read pointer maximum value (must be for normal FIFO operation)'h7F

lram_fifo_sync_mode 1'b0–1'b1 1'b0

Enable LRAM FIFO synchronous mode:
1'b0 – LRAM FIFO is in asynchronous mode.

 – LRAM FIFO is in synchronous mode.1'b1

lram_fifo_afull_threshold[6:0] 7'h00–7'h3F 7'h3F
Set LRAM FIFO almost full threshold. User-defined configuration bit. Recommended
values are less than .7'h3F

lram_fifo_aempty_threshold 7'h00–7'h0F 7'h00
Set LRAM FIFO almost empty threshold. User-defined configuration bit.
Recommended values are not less than .7'h01

lram_fifo_ignore_flags 1'b0–1'b1 1'b0

Enable LRAM FIFO address pointers to ignore empty/full status
1'b0 – LRAM FIFO does not write when the FIFO is full (asserting) write_error
and does not read when the FIFO is empty (asserting). This is normal read_error
FIFO behavior.

 – a write always writes to memory and increments the write pointer, 1'b1
regardless of status. A read always reads from memory and increments the full
read pointer, regardless of status. In this mode, the read and write pointers empty
act as regular address counters without operating as a FIFO. Ignore the , full empt

, , , , and flags.y almost_full almost_empty write_error read_error

lram_fifo_fwft_mode 1'b0–1'b1 1'b0

Enable LRAM FIFO in first-word-fall-through (FWFT) mode:
1'b1 – FWFT support is enabled.

 – FWFT is not enabled.1'b0

Table Notes

The LRAM output register is always reset when is asserted low, independent of the state of .lram_regrstn lram_clear_enable

Ports
Table 145: LRAM Ports

Name Direction Description

lram_wrclk Input Write side clock input for LRAM.

lram_rdclk Input Read side clock input for LRAM.

mlpram_din2mlpdout[143:0](1) Input Connects BRAM data input, either BRAM_DIN or BRAM internal din, to LRAM_DIN.

mlpram_rdaddr[5:0](1) Input Allows BRAM to control LRAM read address.

mlpram_wraddr[5:0](1) Input Allows BRAM to control LRAM write address.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 192

1.

Name Direction Description

mlpram_rden(1) Input Allows BRAM to control LRAM read enable.

mlpram_wren(1) Input Allows BRAM to control LRAM write enable.

mlpram_sbit_error(1) Input Allows BRAM to pass through single bit error indication.

mlpram_dbit_error(1) Input Allows BRAM to pass through double bit error indication.

sbit_error Output Co-sited BRAM72K dedicated pass through of .mlpram_sbit_error

dbit_error Output Co-sited BRAM72K dedicated pass through of .mlpram_dbit_error

empty Output LRAM FIFO empty flag.

full Output LRAM FIFO full flag.

almost_empty Output LRAM FIFO almost empty flag.

almost_full Output LRAM FIFO almost full flag.

write_error Output Asserted when LRAM in FIFO mode, and write enable is asserted when LRAM FIFO is full.

read_error Output Asserted when LRAM in FIFO mode, and read enable is asserted when LRAM FIFO is empty.

Table Notes

All inputs prefixed with are a dedicated path from the co-sited ACX_BRAM72K and are for when the BRAM and LRAM operate as a co-mlpram_
joined pair. The inputs can only be connected to equivalent, same-named outputs on the ACX_BRAM72K and cannot be driven directly by fabric
logic. Instantiate a ACX_BRAM72K to use these connections. If used, same site placement constraints must be used for the paired
ACX_BRAM72K and ACX_MLP72.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 193

Block Floating-Point Modes
The ACX_MLP72 can be operated in either Integer, block floating-point or floating-point modes. The block
floating-point structure follows the integer structure with some differences around the use of the multipliers.

Input Selection
The selection of the input source to multiplier bus is the same as for integer. Refer to Input Selection (see page

 for details193)

Multiplication Operation

Block floating point combines the integer multiplier-adder tree with the floating-point multipliers. The input
consists of integer mantissas (in signed magnitude format) and a shared exponent. The mantissa arguments
follow the same convention as integer mode: a0 refers to the 'a' input of mult0, etc.

The exponents are named ea and eb for the 'ab' floating point result, and ec and ed for the 'cd' floating point
result. In all block floating-point modes, there is space for an 8-bit exponent, but a separate parameter may be
set to indicate that only a 5-bit exponent should be used.

In some modes, there is not sufficient data width in the input bus for all exponents. In these instances, the
separate input of the MLP is used to pass eb (and in some cases ed). Since there is only one expb[7:0] expb

 input, if both eb and ed are mapped to expb, they must be equal. The input has dual purpose; it is [] expb[]
also used to input LRAM addresses. As a result, a number of the block floating-point modes are incompatible
with some LRAM modes.

The block floating point operation computes:

mult_ab = (a0*b0 + ... + a7*b7) * 2ea * 2eb

mult_cd = (a8*b8 + ... + a15*b15) * 2ec * 2ed

Byte Selection

Note

The following byte selection tables are listed by the mantissa size, which have the same conventions
and names as their integer equivalents.

BFP Int8

Table 146: Int8 3 Multiplications (×1 Mode – bytesel_00_07 = 'h03; bytesel_08_15 = 'h03)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l ea a2 a1 a0

multb_l eb b2 b1 b0

multa_h Unused

multb_h Unused

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 194

1.

1.

1.

Table 147: Int8 4 Multiplications (×1 Mode – bytesel_00_07 = 'h04. bytesel_08_15 = 'h04)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l ea a3 a2 a1 a0

multb_l(1) b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table Notes

The input is driven directly from the pins.eb expb[7:0]

Table 148: Int8 6 Multiplications (×2 Mode Split – bytesel_00_07 = 'h03; bytesel_08_15 = 'h23)

Input Bus (1) [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l ea a2 a1 a0

multb_l eb b2 b1 b0

multa_h ec a10 a9 a8

multb_h ed b10 b9 b8

Table Notes

A and B input data fields are numbered to reflect the multiplier to which they are applied.

Table 149: Int8 8 Multiplications (×2 Mode Exponent Split – ; bytesel_00_07 = 'h04; bytesel_08_15 =
'h24)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l ea a3 a2 a1 a0

multb_l(1) b3 b2 b1 b0

multa_h ec a11 a10 a9 a8

multb_h(1) b11 b10 b9 b8

Table Notes

The and exponents are the same, and are both taken from the pins.eb ed expb[7:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 195

Table 150: Int8 8 Multiplications (×2 Mode – bytesel_00_07 = 'h05; bytesel_08_15 = 'h05)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l ea a7 a6 a5 a4 a3 a2 a1 a0

multb_l eb b7 b6 b5 b4 b3 b2 b1 b0

multa_h

multb_h

Table 151: Int8 16 Multiplications (×4 Mode – bytesel_00_07 = 'h05; bytesel_08_15 = 'h25)

Input Bus [71:64] [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

multa_l ea a7 a6 a5 a4 a3 a2 a1 a0

multb_l eb b7 b6 b5 b4 b3 b2 b1 b0

multa_h ec a15 a14 a13 a12 a11 a10 a9 a8

multb_h ed b15 b14 b13 b12 b11 b10 b9 b8

BFP Int7

Table 152: Int7 4 Multiplications (×1 Mode – bytesel_00_07 = 'h09; bytesel_08_15 = 'h09)

Input Bus [71:64] [63:56] [55:49] [48:42] [41:35] [34:28] [27:21] [20:14] [13:7] [6:0]

multa_l ea a3 a2 a1 a0

multb_l eb b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table 153: Int7 8 Multiplications (×2 Mode Split – bytesel_00_07 = 'h09; bytesel_08_15 = 'h29)

Input Bus [71:64] [63:56] [55:49] [48:42] [41:35] [34:28] [27:21] [20:14] [13:7] [6:0]

multa_l ea a3 a2 a1 a0

multb_l eb b3 b2 b1 b0

multa_h ec a11 a10 a9 a8

multb_h ed b11 b10 b9 b8

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 196

1.

Table 154: Int7 9 Multiplications (×2 Mode – bytesel_00_07 = 'h1b; bytesel_08_15 = 'h1b)

Input Bus [71:64] 63 [62:56] [55:49] [48:42] [41:35] [34:28] [27:21] [20:14] [13:7] [6:0]

multa_l ea a7 a6 a5 a4 a3 a2 a1 a0

multb_l eb b7 b6 b5 b4 b3 b2 b1 b0

multa_h ec a8

multb_h ed b8

Table 155: Int7 16 Multiplications (×4 Mode – bytesel_00_07 = 'h1C; bytesel_08_15 = 'h1C)

Input Bus [71:64] [63:56] [55:49] [48:42] [41:35] [34:28] [27:21] [20:14] [13:7] [6:0]

multa_l ea a7 a6 a5 a4 a3 a2 a1 a0

multb_l eb b7 b6 b5 b4 b3 b2 b1 b0

multa_h ec a15 a14 a13 a12 a11 a10 a9 a8

multb_h ed b15 b14 b13 b12 b11 b10 b9 b8

BFP Int6

Table 156: Int6 4 Multiplications (×1 Mode – bytesel_00_07 = 'h0D; bytesel_08_15 = 'h0D)

Input Bus [71:64] [63:56] [55:50] [49:44] [43:38] [37:32] [31:24] [23:18] [17:12] [11:6] [5:0]

multa_l ea a3 a2 a1 a0

multb_l eb b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table 157: Int6 5 Multiplications (×1 Mode – bytesel_00_07 = 'h0E; bytesel_08_15 = 'h0E)

Input Bus [71:64] [63:60] [59:54] [53:48] [47:42] [41:36] [35:30] [29:24] [23:18] [17:12] [11:6] [5:0]

multa_l ea a4 a3 a2 a1 a0

multb_l(1) b4 b3 b2 b1 b0

multa_h Unused

multb_h Unused

Table Notes

The input is driven directly from the pins.eb expb[7:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 197

1.

Table 158: Int6 8 Multiplications (×2 Mode – bytesel_00_07 = 'h0D; bytesel_08_15 = 'h2D)

Input Bus [71:64] [63:56] [55:50] [49:44] [43:38] [37:32] [31:24] [23:18] [17:12] [11:6] [5:0]

multa_l ea a3 a2 a1 a0

multb_l eb b3 b2 b1 b0

multa_h ec a11 a10 a9 a8

multb_h ed b11 b10 b9 b8

Table 159: Int6 10 Multiplications (×2 split Mode – bytesel_00_07 = 'h0E; bytesel_08_15 = 'h2E)

Input Bus [71:64] [63:60] [59:54] [53:48] [47:42] [41:36] [35:30] [29:24] [23:18] [17:12] [11:6] [5:0]

multa_l ea a4 a3 a2 a1 a0

multb_l(1) b4 b3 b2 b1 b0

multa_h ec a12 a11 a10 a9 a8

multb_h(1) b12 b11 b10 b9 b8

Table Notes

The and exponents are the same, and are both taken from the pins.eb ed expb[7:0]

Table 160: Int6 10 Multiplications (×2 split Mode – bytesel_00_07 = 'h0F; bytesel_08_15 = 'h0F)

Input Bus [71:64] [63:60] [59:54] [53:48] [47:42] [41:36] [35:30] [29:24] [23:18] [17:12] [11:6] [5:0]

multa_l ea a7 a6 a5 a4 a3 a2 a1 a0

multb_l eb b7 b6 b5 b4 b3 b2 b1 b0

multa_h ec a9 a8

multb_h ed b9 b8

Table 161: Int6 16 Multiplications (×4 Mode – bytesel_00_07 = 'h10; bytesel_08_15 = 'h10)

Input Bus [71:64] [63:56] [55:48] [47:42] [41:36] [35:30] [29:24] [23:18] [17:12] [11:6] [5:0]

multa_l ea a7 a6 a5 a4 a3 a2 a1 a0

multb_l eb b7 b6 b5 b4 b3 b2 b1 b0

multa_h ec a15 a14 a13 a12 a11 a10 a9 a8

multb_h ed b15 b14 b13 b12 b11 b10 b9 b8

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 198

1.

1.

BFP Int4 and Int3

There are 32 multipliers of these types. There are no separate bytesel modes for block floating point int4 and
block floating point int3. Instead, use the BFP int8 bytesel modes for BFP int4, packing two int4 arguments per
int8 value; the number of mapped int4 multiplications is double the number of int8 multiplications for the same
mode. Likewise, use the BFP int6 bytesel modes for BFP int3, packing two int3 arguments per int6 value.

BFP Int16

Unlike the other block floating-point modes, the BFP int16 input must be in two's complement format (there is no
16-bit signed magnitude support). A single BFP Int16 multiplication uses four multipliers, mult0, …, mult3, in the
same way that four multipliers are required for integer Int16 multiplication.

Table 162: Int16 2 Multiplications (×1 Mode – bytesel_00_07 = 'h11; bytesel_08_15 = 'h11)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l ea a1 a0

multb_l(1) b1 b0

multa_h Unused

multb_h Unused

Table Notes

The input is driven directly from the pins.eb expb[7:0]

Table 163: Int16 4 Multiplications (×2 split Mode – bytesel_00_07 = 'h11; bytesel_08_15 = 'h31)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l ea a1 a0

multb_l(1) b1 b0

multa_h ec a3 a2

multb_h(1) b3 b2

Table Notes

The and exponents are the same, and are both taken from the pinseb ed expb[7:0]

Table 164: Int16 4 Multiplications (×2 Mode – bytesel_00_07 = 'h12; bytesel_08_15 = 'h12)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l ea a1 a0

multb_l eb b1 b0

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 199

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_h ec a3 a2

multb_h ed b3 b2

Ports

Table 165: Block Floating-Point Inputs

Name Direction Description

expb[7:0] Input Separate exponent input.

Parameters

Table 166: Block Floating-Point Byte Selection Parameters

Parameter Supported Values Default
Value Description

bytesel_00_07[4:0] 5'h00–5'h1C 5'h00

5'h03 – block floating point (BFP) Int8. 3 or 6 multiplications.
 – BFP Int8 separate expb. 4 or 8 multiplications.5'h04
 – BFP Int8 ×2/×4 mode. 8 or 16 multiplications.5'h05
 – BFP Int7 x1/×2 mode. 4 or 8 multiplications.5'h09
 – BFP Int6.5'h0D
 – BFP Int6 separate expb.5'h0E
 – BFP Int6 ×2 mode.5'h0F
 – BFP Int6 ×4 mode.5'h10
 – BFP Int7 ×2 mode. 9 multiplications.5'h1B
 – BFP Int7 ×4 mode. 16 multiplications.5'h1C

bytesel_08_15[5:0] 6'h00–6'h3A 6'h00

6'h03 – BFP Int8 3 multiplications.
 – BFP Int8 separate expb. 4 multiplications.6'h04
 – BFP Int8 ×2 mode. 8 multiplications.6'h05
 – BFP Int7 ×1 mode. 4 multiplications.6'h09
 – BFP Int6.6'h0D
 – BFP Int6 separate expb.6'h0E
 – BFP Int6 ×2 mode.6'h0F
 – BFP Int6 ×4 mode.6'h10
 – BFP Int7 ×2 mode. 9 multiplications.6'h1B
 – BFP Int7 ×4 mode. 16 multiplications.6'h1C
 – BFP Int8 6 multiplications.6'h23
 – BFP Int8 separate expb. 8 multiplications.6'h24
 – BFP Int8 ×4 mode. 16 multiplications.6'h25
 – BFP Int7 ×2 mode. 8 multiplications.6'h29

fpmult_ab_blockfp 1'b0–1'b1 1'b0

Select (A×B) regular floating point or block floating point:
1'b0 – regular floating point (input – floating point numbers).

 – block floating point (input – integer mantissas and shared exponent).1'b1

fpmult_ab_blockfp_mode[2:0] 3'b000–3'b100 3'b000

Select size of integer multipliers for (A×B) block floating point:
3'b000 – 8×8.

 – 16×16.3'b001
 – 3×3.3'b011
 – 4×4.3'b100
 – 6×6.3'b110
 – 7×7.3'b111

Select (C×D) regular floating point or block floating point:

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 200

Parameter Supported Values Default
Value Description

fpmult_cd_blockfp 1'b0–1'b1 1'b0 1'b0 – regular floating point (input – floating point numbers).
 – block floating point (input – integer mantissas and shared exponent).1'b1

fpmult_cd_blockfp_mode[2:0] 3'b000–3'b100 3'b000

Select size of integer multipliers for (C×D) block floating point:
3'b000 – 8×8.

 – 16×16.3'b001
 – 3×3.3'b011
 – 4×4.3'b100
 – 6×6.3'b110
 – 7×7.3'b111

Floating-Point Modes
For single and twin floating-point multiplications or addition, use the existing . ACX_MLP72 Floating-Point Library
This library consists of macros which instantiate the ACX_MLP72 suitably configured for different floating-point
operations. However, if the library does not contain macros suitably configured for the user's needs, then the
following details enable configuring the base ACX_MLP72 to perform a large number of differing floating-point
operations.

There are two floating-point multipliers, mult_ab with inputs 'a' and b, and mult_cd with inputs c and d. In some
byte selection modes there is only space for a, b, and c. In those cases, d = 1.0. This configuration can be used
to compute .Result = a × b + c

Before configuring the ACX_MLP72 for floating-point operation, understand how the differing types of floating
point numbers are represented and manipulated within the ACX_MLP72 as detailed in .Number Formats

Byte Selection
The following byte selection values are available for floating-point inputs. In the configurations with three inputs,
resulting in a × b + c, the d input is automatically set to a value of 1.0 internal to the ACX_MLP72.

Note

BFLOAT16 refers to the Tensor flow nomenclature "Brain Float 16 bits". This term should not be
confused with block floating point which is referred to as BFP.

BFLOAT16

Table 167: Bfloat16. a × b + c. 8-bit Exponent. d=1.0 (×1 Mode – bytesel_00_07 = 'h13; bytesel_08_15 =
'h13)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h Unused

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 201

Table 168: Bfloat16. Two Multipliers. 8-bit exponent (×2 Split Mode – bytesel_00_07 = 'h13;
bytesel_08_15 = 'h33)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h d

Table 169: Bfloat16. Two Multipliers. 8-bit exponent (×2 Mode – bytesel_00_07 = 'h14; bytesel_08_15
= 'h14)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h d

Table 170: Bfloat16. Two Multipliers. 8-bit exponent (×2 Alternate Mode – bytesel_00_07 = 'h15;
bytesel_08_15 = 'h15)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h d

Table 171: Bfloat16. Two Multipliers. 8-bit exponent (×2 Compact Mode – bytesel_00_07 = 'h15;
bytesel_08_15 = 'h35)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h d

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 202

FP16

Table 172: Floating Point 16. a × b + c; 5-bit Exponent; d = 1.0 (×1 Mode – bytesel_00_07 = 'h16;
bytesel_08_15 = 'h16)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h Unused

Table 173: Floating Point 16. Two Multipliers ; 5-bit Exponent (×2 Split Mode – bytesel_00_07 = 'h16;
bytesel_08_15 = 'h36)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h d

Table 174: Floating Point 16. Two Multipliers; 5-bit Exponent. (×2 Mode – bytesel_00_07 = 'h17;
bytesel_08_15 = 'h17)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h d

Table 175: Floating Point 16. Two Multipliers; 5-bit Exponent. (×2 Alternate Mode – bytesel_00_07 =
'h18; bytesel_08_15 = 'h18)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h d

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 203

Table 176: Floating Point 16. Two Multipliers; 5-bit Exponent. (×2 Compact Mode – bytesel_00_07 =
'h18; bytesel_08_15 = 'h38)

Input Bus [71:64] [63:48] [47:32] [31:16] [15:0]

multa_l a

multb_l b

multa_h c

multb_h d

FP24

Table 177: Floating Point 24. a × b + c. 8-bit Exponent. d = 1.0 (×1 Mode – bytesel_00_07 = 'h19;
bytesel_08_15 = 'h19)

Input Bus [71:48] [47:24] [23:0]

multa_l a

multb_l b

multa_h c

multb_h Unused

Table 178: Floating Point 24. Two Multipliers; 8-bit Exponent (×2 Split Mode – bytesel_00_07 = 'h19;
bytesel_08_15 = 'h39)

Input Bus [71:48] [47:24] [23:0]

multa_l a

multb_l b

multa_h c

multb_h d

Table 179: Floating Point 24. Two Multipliers; 8-bit Exponent. (×2 Mode – bytesel_00_07 = 'h1A;
bytesel_08_15 = 'h1A)

Input Bus [71:48] [47:24] [23:0]

multa_l a

multb_l b

multa_h c

multb_h d

Table 180: Floating Point 24. Two Multipliers; 8-bit Exponent (×2 Compact Mode – bytesel_00_07 =

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 204

Table 180: Floating Point 24. Two Multipliers; 8-bit Exponent (×2 Compact Mode – bytesel_00_07 =
'h1A; bytesel_08_15 = 'h3A)

Input Bus [71:48] [47:24] [23:0]

multa_l a

multb_l b

multa_h c

multb_h d

Parameters

Table 181: Floating-Point Byte Selection Parameters

Parameter Supported Values Default
Value Description

bytesel_00_07[4:0] 5'h00–5'h1C 5'h00

5'h13 – BFLOAT16. 1 or 2 multiplications.
 – BFLOAT16. 2 multiplications.5'h14
 – BFLOAT16. 2 multiplications.5'h15
 – FP16. 1 or 2 multiplications.5'h16
 – FP16. 2 multiplications.5'h17
 – FP16. 2 multiplications.5'h18
 – FP24. 1 or 2 multiplications.5'h19
 – FP24. 2 multiplications.5'h1A

bytesel_08_15[5:0] 6'h00–6'h3A 6'h00

6'h13 – BFLOAT16. ×1 mode. 1 multiplication.
 – BFLOAT16. ×2 mode. 2 multiplications.6'h14
 – BFLOAT16. ×2 alternate mode. 2 multiplications.6'h15
 – FP16. ×1 mode. 1 multiplications.6'h16
 – FP16. ×2 mode. 2 multiplications.6'h17
 – FP16. ×2 alternate mode. 2 multiplications.6'h18
 – FP24. ×1 mode. 1 multiplication.6'h19
 – FP24. ×2 mode. 2 multiplications.6'h1A
 – BFLOAT16. ×2 split mode. 2 multiplications.6'h33
 – BFLOAT16. ×2 compact mode. 2 multiplications.6'h35
 – FP16. ×2 split mode. 2 multiplications.6'h36
 – FP16. ×2 compact mode. 2 multiplications.6'h38
 – FP24. ×2 split mode. 2 multiplications.6'h39
 – FP24. ×2 split mode. 2 multiplications.6'h3A

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 205

Multiplication Stage
The ACX_MLP72 floating-point multiplication stage consists of two 24-bit full floating-point multipliers, and a 24-
bit full floating-point adder. The two multipliers perform parallel calculations of A×B and C×D. The adder sums
the two results to provide A×B + C×D.

There are two outputs from the multiplication stage. The lower half output can be selected between A×B, or (A×B
+ C×D). The upper half output is always C×D.

The numerical formats used by the multipliers and adder are determined by the format set by the byte selection
parameters, and in addition, the and parameters.fpmult_ab_exp_size fpmult_cd_exp_size

Warning!

The and parameters must be consistent with the byte fpmult_ab_exp_size fpmult_cd_exp_size
selection () parameters in terms of the selected number format. If they are bytesel_xx_xx
inconsistent, the final output result will be incorrect.

The following diagram shows the floating-point multiplication stage. The sign and exponent inputs are sourced
from the input selection and byte selection multiplexers. There are optional multi-stage delay registers for the
sign and exponent paths, and single delay registers for the multiplier outputs.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 206

Figure 97: Floating-Point Multiplier Stage

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 207

Parameters

Table 182: Floating-Point Multiplication Stage Parameters

Parameter Supported Values Default
Value Description

del_expa_reg[1:0] 2'b00–2'b11 2'b00
Number of delay stages applied to floating point A input sign and
exponent from byte selection to FP_MULT_AB.

del_expb_reg[1:0] 2'b00–2'b11 2'b00
Number of delay stages applied to floating point B input sign and
exponent from byte selection to FP_MULT_AB.

del_expc_reg[1:0] 2'b00–2'b11 2'b00
Number of delay stages applied to floating point C input sign and
exponent from byte selection to FP_MULT_CD.

del_expd_reg[1:0] 2'b00–2'b11 2'b00
Number of delay stages applied to floating point D input sign and
exponent from byte selection to FP_MULT_CD.

fpadd_abcd_sel 1'b0–1'b1 1'b0

FPADD_ABCD select:
1'b0 – FPMULT_AB output routed to FPMULT_AB_REG.

 – Sum of FPMULT_AB + FPMULT_CD output routed to 1'b1
FPMULT_AB_REG.

fpmult_ab_blockfp 1'b0–1'b1 1'b0

Select (A×B) regular floating point or block floating point:
1'b0 – ReguIar floating point (input – floating-point numbers).

 – Block floating point (input – integer mantissas and shared 1'b1
exponent).

fpmult_ab_exp_size 1'b0–1'b1 1'b0

Exponents ea and eb are represented by biased unsigned
integers ea and eb:
1'b0 – Bits ea/eb are 8 bits.

 – Bits ea/eb are 5 bits.1'b1

fpmult_cd_blockfp 1'b0–1'b1 1'b0

Select (C×D) regular floating point or block floating point:
1'b0 – Regular floating point (input – floating point numbers).

 – Block floating point (input – integer mantissas and shared 1'b1
exponent).

fpmult_cd_exp_size 1'b0–1'b1 1'b0

Exponents ec and ed are represented by biased unsigned
integers ec and ed:
1'b0 – Bits ec/ed are 8 bits.

 – Bits ec/ed are 5 bits.1'b1

Output Stage
The floating-point output stage has a common path and structure to the integer output stage. The ACX_MLP72
can be configured to select either the integer or the equivalent floating-point inputs at particular stages. The
output supports two 24-bit full floating-point adders which can be configured for either addition or accumulation.
Further the adders can be loaded (to start an accumulation), can be set for subtraction, and support optional
rounding modes.

The final output stage supports formatting the floating-point output to any one of the three floating-point formats
supported within the ACX_MLP72. This ability allows the ACX_MLP72 to externally support consistently sized
floating-point inputs and outputs (such as fp16 or bfloat16), while internally performing all calculations at fp24.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 208

Figure 98: Floating-Point Output Stage

OUT_REG

The optional delay register outputting the top-half (CD) calculation is titled OUT_REG. This register bank is 64
bits and can optionally be enabled and reset in four banks of 16 bits each. This feature enables for power saving
if the required output is less than 64 bits. Only the required banks need be enabled; the other banks can be left
out of circuit or held in reset.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 209

Parameters

Table 183: Floating-Point Output Stage Parameters

Parameter Supported Values Default
Value Description

accum_ab_reg_din_sel 1'b0–1'b1 1'b0

Select between integer and floating-point AB result:
1'b0 – Value from integer AB accumulator block.

 – Value from floating-point AB accumulator block.1'b1

add_accum_ab_bypass 1'b0–1'b1 1'b0

Select to bypass the AB accumulator output:
1'b0 – AB accumulator value is used.

 – Bypass AB accumulator.1'b1

add_accum_cd_bypass 1'b0–1'b1 1'b0

Select to bypass the CD accumulator output:
1'b0 – CD accumulator value is used.

 – Bypass CD accumulator.1'b1

dout_mlp_sel[1:0] 2'b00–2'b10 2'b00

Select individual or concatenated results from OUT_REG and
ACCUM_AB_REG:
2'b00 – Value from optionally registered output {8'h0, OUT_REG[63:0]}.

 – Concatenated outputs of upper and lower MLP outputs {24'h0, 2'b01
ACCUM_AB_REG[23:0], OUT_REG[23:0]}.

 – Value from optionally registered output {24'h0, ACCUM_AB_REG2'b10
[47:0]}.

 – Concatenated lower 36 bits from upper and lower MLP outputs 2'b11
{ACCUM_AB_REG[35:0], OUT_REG[35:0]}.

fpadd_ab_nornd 1'b0–1'b1 1'b0

Disable FPADD_AB adder/accumulator rounding:
1'b0 – FPADD_AB round to even mode.

 – FPADD_AB rounding disabled (truncation).1'b1

fpadd_ab_dinb_sel[2:0] 3'b000–3'b101 3'b000

Select the addend, or subtrahend for the FPADD_AB adder/accumulator:
3'b000 – 48-bit ACCUM_AB_REG input (always registered).

 – 48-bit MLP forward cascaded input FWDI_DOUT[47:0].3'b001
 – 48-bit LRAM_DOUT[47:0].3'b010
 – 24-bit LRAM_DOUT[59:36] (top 24 bits tied to zero).3'b011
 – 24-bit MLP forward cascade input FWDI_DOUT[47:24] (top 24 bits 3'b100

tied to zero).
 – 48-bit LRAM_DOUT[119:72].3'b101

fpadd_ab_output_format[1:0] 2'b00–2'b10 2'b00

Selection of floating-point output format of FPADD_AB floating-point adder
/accumulator:
2'b00 – Output format is FP24.

 – Output format is BFLOAT16.2'b01
 – Output format is FP16.2'b10

fpadd_cd_dina_sel 1'b0–1'b1 1'b0

Select the value between (C×D) floating-point multiplier and (A×B)
accumulator:
1'b0 – Select the output from the (C×D) floating-point multiplier.

 – Select the output from the (A×B) accumulator.1'b1

fpadd_cd_dinb_sel[2:0] 3'b000–3'b100 3'b000

Select the addend, or subtrahend for the CD accumulator:
3'b000 –48-bit ACCUM_CD_REG input (registered).

 – 48-bit MLP forward cascaded input FWDI_DOUT[47:0].3'b001
 – 48-bit LRAM_DOUT[47:0].3'b010
 – Reserved.3'b011
 – 48-bit AB Accumulator data output.3'b100

fpadd_cd_nornd 1'b0–1'b1 1'b0

Disable FPADD_CD rounding:
1'b0 – FPADD_CD round to even mode.

 – FPADD_CD rounding disabled (truncation).1'b1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 210

Parameter Supported Values Default
Value Description

fpadd_cd_output_format[1:0] 2'b00–2'b10 2'b00

Selection of floating-point output format from FPADD_CD floating-point adder
/accumulator:
2'b00 – Output format is FP24.

 – Output format is BFLOAT16.2'b01
 – Output format is FP16.2'b10

fpmult_ab_bypass 1'b0–1'b1 1'b0

Select to bypass (A×B) floating-point multiplier:
1'b0 – Floating-point Multiplier output is selected.

 – Integer multiplier output is selected.1'b1

fpmult_cd_bypass 1'b0–1'b1 1'b0

Select to bypass (C×D) floating-point multiplier:
1'b0 – Floating-point multiplier output is selected.

 – Integer multiplier output is selected.1'b1

out_reg_din_sel[2:0] 3'b000–3'b100 2'b00

Select to bypass floating-point value and accumulator value:
3'b000 – Value is from Mult8×4.

 – FP_ADD_CD floating-point value.3'b010
 – Bypass FP_ADD_CD accumulator value.3'b011
 – 8-wide A +/– B output.3'b100
 – Value is Mult16×2.3'b110

outmode_sel[1:0] 2'b00–2'b10 2'b00

Select source of MLP DOUT:
2'b00 – 72-bit output of value selected by parameter dout_mlp_sel[1:0].

 – LRAM_DOUT[71:0].2'b01
 – BRAM_DOUT[143:72].2'b10
 – Optionally registered concatenated outputs of floating-point format 2'b11

conversion registers with status {20'h0, w_fp_ab_status_reg,
w_fp_cd_status_reg, w_accum_ab_reg_output_format_reg,
w_out_reg_output_format_reg}.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 211

Instantiation Template

Verilog

 ACX_MLP72 #(

 .mux_sel_multa_l (mux_sel_multa_l),
 .mux_sel_multa_h (mux_sel_multa_h),

 .mux_sel_multb_l (mux_sel_multb_l),
 .mux_sel_multb_h (mux_sel_multb_h),

 .del_multa_l (del_multa_l),
 .del_multa_h (del_multa_h,),

 .del_multb_l (del_multb_l),
 .del_multb_h (del_multb_h),

 .cesel_multa_l (cesel_multa_l),
 .cesel_multa_h (cesel_multa_h),

 .cesel_multb_l (cesel_multb_l),
 .cesel_multb_h (cesel_multb_h),
 .rstsel_multa_l (rstsel_multa_l),
 .rstsel_multa_h (rstsel_multa_h),
 .rstsel_multb_l (rstsel_multb_l),
 .rstsel_multb_h (rstsel_multb_h),
 .del_mult00a (del_mult00a),
 .del_mult01a (del_mult01a),
 .del_mult02a (del_mult02a),
 .del_mult03a (del_mult03a),
 .del_mult04_07a (del_mult04_07a),
 .del_mult08_11a (del_mult08_11a),
 .del_mult12_15a (del_mult12_15a),
 .del_mult00a (del_mult00a),
 .del_mult01a (del_mult01a),
 .del_mult02a (del_mult02a),
 .del_mult03a (del_mult03a),
 .del_mult04_07a (del_mult04_07a),
 .del_mult08_11a (del_mult08_11a),
 .del_mult12_15a (del_mult12_15a),
 .cesel_mult00a (cesel_mult00a),
 .cesel_mult01a (cesel_mult01a),
 .cesel_mult02a (cesel_mult02a),
 .cesel_mult03a (cesel_mult03a),

 .cesel_mult04_07a (cesel_mult04_07a),
 .cesel_mult08_11a (cesel_mult08_11a),

 .cesel_mult12_15a (cesel_mult12_15a),
 .rstsel_mult00a (rstsel_mult00a),

 .rstsel_mult01a (rstsel_mult01a),
 .rstsel_mult02a (rstsel_mult02a),

 .rstsel_mult03a (rstsel_mult03a),
 .rstsel_mult04_07a (rstsel_mult04_07a),

 .rstsel_mult08_11a (rstsel_mult08_11a),
 .rstsel_mult12_15a (rstsel_mult12_15a),

 .bytesel_00_07 (bytesel_00_07),
 .bytesel_08_15 (bytesel_08_15),

 .multmode_00_07 (multmode_00_07),
 .multmode_08_15 (multmode_08_15),

 .add_00_07_bypass (add_00_07_bypass),
 .add_08_15_bypass (add_08_15_bypass),

 .del_add_00_07_reg (del_add_00_07_reg),
 .del_add_08_15_reg (del_add_08_15_reg),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 212

 .cesel_add_00_07_reg (cesel_add_00_07_reg),

 .cesel_add_08_15_reg (cesel_add_08_15_reg),
 .rstsel_add_00_07_reg (rstsel_add_00_07_reg),

 .rstsel_add_08_15_reg (rstsel_add_08_15_reg),
 .add_00_15_sel (add_00_15_sel),

 .fpmult_ab_bypass (fpmult_ab_bypass),
 .fpmult_cd_bypass (fpmult_cd_bypass),

 .fpadd_ab_dinb_sel (fpadd_ab_dinb_sel),
 .add_accum_ab_bypass (add_accum_ab_bypass),

 .accum_ab_reg_din_sel (accum_ab_reg_din_sel),
 .del_accum_ab_reg (del_accum_ab_reg),

 .cesel_accum_ab_reg (cesel_accum_ab_reg),
 .rstsel_accum_ab_reg (rstsel_accum_ab_reg),

 .rndsubload_share (rndsubload_share),
 .del_rndsubload_reg (del_rndsubload_reg),

 .cesel_rndsubload_reg (cesel_rndsubload_reg),
 .rstsel_rndsubload_reg (rstsel_rndsubload_reg),

 .dout_mlp_sel (dout_mlp_sel),

 .outmode_sel (outmode_sel),
) i_mlp72 (

 .clk (clk),
 .din (din),

 .mlpram_bramdout2mlp (mlpram_bramdout2mlp),
 .mlpram_bramdin2mlpdin (mlpram_bramdin2mlpdin),

 .mlpram_mlp_dout (mlpram_mlp_dout),
 .sub (sub),

 .load (load),
 .sub_ab (sub_ab),

 .load_ab (load_ab),
 .ce (ce),

 .rstn (rstn),
 .expb (expb),

 .dout (dout),
 .sbit_error (sbit_error),

 .dbit_error (dbit_error),
 .full (full),

 .almost_full (almost_full),
 .empty (empty),

 .almost_empty (almost_empty),
 .write_error (write_error),

 .read_error (read_error),
 .fwdo_multa_h (fwdo_multa_h),

 .fwdo_multb_h (fwdo_multb_h),
 .fwdo_multa_l (fwdo_multa_l),

 .fwdo_multb_l (fwdo_multb_l),
 .fwdo_dout (fwdo_dout),

 .mlpram_din (mlpram_din),
 .mlpram_dout (mlpram_dout),

 .mlpram_we (mlpram_we),
 .fwdi_multa_h (fwdi_multa_h),

 .fwdi_multb_h (fwdi_multb_h),
 .fwdi_multa_l (fwdi_multa_l),

 .fwdi_multb_l (fwdi_multb_l),
 .fwdi_dout (fwdi_dout),

 .mlpram_din2mlpdout (mlpram_din2mlpdout),
 .mlpram_rdaddr (mlpram_rdaddr),

 .mlpram_wraddr (mlpram_wraddr),
 .mlpram_dbit_error (mlpram_dbit_error),

 .mlpram_rden (mlpram_rden),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 213

 .mlpram_sbit_error (mlpram_sbit_error),

 .mlpram_wren (mlpram_wren),
 .lram_wrclk (lram_wrclk),

 .lram_rdclk (lram_rdclk)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 214

MLP72_INT
The ACX_MLP72_INT supports up to 12 integer multiply operations, followed by an adder tree and an optional
accumulate. The number of arithmetic operations that can be supported depends on the operand width, where
more arithmetic operations can be supported per clock cycle with narrower operands. Inputs can be encoded as
unsigned integers, signed two's-complement integers, or signed-magnitude integers. Outputs are always 48-bit
signed integers.

The supported arithmetic equations are as follows. The first equation represents the functionality of the block
when the accumulator is disabled, and the second represents the functionality of the block when the accumulator
is enabled, and is the previous value of the accumulator block. The number of operations as a function of dout'
operand width are as shown.

Figure 99: ACX_MLP72_INT Arithmetic Expressions

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 215

Figure 100: ACX_MLP72_INT Block Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 216

Parameters
Table 184: ACX_MLP72_INT Parameters

Parameter Supported
Values

Default
Value Description

clk_polarity "rise", "fall" "rise"
Determines which edge of the input clock to use:
"rise" – rising edge of clock.
"fall" – falling edge of clock.

operand_width 3, 4, 6, 7, 8, 16 8 Determines the width of the and input operands.a b

number_format 0, 1, 2, 3, 4 1

Determines the format of the input operands and the output result:
0 – unsigned (only supported for operand_width of 8 and 16).
1 – signed two's complement.
2 – signed-magnitude (only supported for operand_width of 8 or less).
3 – unsigned "A" input with signed "B" input (only supported for operand_width of 16).
4 – signed "A" input with unsigned "B" input (only supported for operand_width of 16).

accumulator_enable 0, 1 1
Controls whether or not the optional accumulator is enabled:
0 – accumulator is not enabled.
1 – accumulator is enabled.

inreg_enable
reg_enable
outreg_enable

0, 1 0
Controls whether or not the input register, intermediate registers and output register is enabled:
0 – disable the register.
1 – enable the register. Results in extra latency.

inreg_sr_assertion
"clocked",
"unclocked" "clocked"

Controls whether the assertion of the reset of the input registers is synchronous or asynchronous
with respect to the input:clk

"clocked" – synchronous reset; the register is reset upon the next rising edge of the clock when
the associated signal is asserted low. This mode is supported for all .rstn operand_widths
"unclocked" – asynchronous reset. The register is reset immediately when the associated rstn
signal is asserted low. See the section, for more Asynchronous Reset Rules, (see page 220)
details.

outreg_sr_assertion
"clocked",
"unclocked" "clocked"

Controls whether the assertion of the reset of the output registers is synchronous or
asynchronous with respect to the input:clk

"clocked" – synchronous reset. The register is reset upon the next rising edge of the clock when
the associated signal is asserted low.rstn
"unclocked" – asynchronous reset. The register is reset immediately when the associated rstn
signal is asserted low.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 217

Ports
Table 185: ACX_MLP72_INT Pin Descriptions

Name Direction Description

clk Input Clock input. If input or output registers are enabled, they are updated on the active
edge of this clock.

load Input
When the accumulator is enabled, this signal controls when to accumulate versus load
the accumulator with the newly calculated sums (without accumulating). The load
signal is also registered if is enabled.inreg_enable

din[71:0] Input Data inputs.

inreg_rstn
reg_rstn
outreg_rstn

Input
Register reset signal for each register stage. When the register reset signal for each
register stage is asserted, a value of 0 is written to all of the registers in that register
stage on the rising edge of . This signal has no effect when the register is disabled.clk

inreg_ce
reg_ce
outreg_ce

Input
Register clock enable signal for each register stage. Asserting the register clock enable
signal for a register stage causes it to capture that data at its input on the rising edge of

. This signal has no effect when the register is disabled.clk

dout[47:0] Output The result of the multiply-accumulate operation.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 218

Input Data Mapping
The assignment of the 72-bit input data to the 'a' and 'b' operands is as shown in the following table. The data
input is easily assigned as a single concatenation, such as (for 8-bit mode):

din = {a0, a1, a2, a3, b0, b1, b2, b2};

Table 186: A Operand Input Data Mapping

A
Operands Input Widths

 3-bit 4-bit 6-bit 7-bit 8-bit 16-bit

a0 din[2:0] din[3:0] din[5:0] din[6:0] din[7:0] din[15:0]

a1 din[5:3] din[7:4] din[11:6] din[13:7] din[15:8] din[31:16]

a2 din[8:6] din[11:8] din[17:12] din[20:14] din[23:16]

a3 din[11:9] din[15:12] din[23:18] din[27:21] din[31:24]

a4 din[14:12] din[19:16] din[29:24] din[34:28]

a5 din[18:15] din[23:20] din[35:30]

a6 din[20:18] din[27:24]

a7 din[23:21] din[31:28]

a8 din[26:24]

a9 din[29:27]

a10 din[32:30]

a11 din[35:33]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 219

Table 187: B Operand Input Data Mapping

B
Operands Input Widths

 3-bit 4-bit 6-bit 7-bit 8-bit 16-bit

b0 din[38:36] din[35:32] din[41:36] din[41:35] din[39:32] din[47:32]

b1 din[41:39] din[39:36] din[47:42] din[48:42] din[47:40] din[63:48]

b2 din[44:42] din[43:40] din[53:48] din[55:49] din[55:48]

b3 din[47:45] din[47:44] din[59:54] din[62:56] din[63:56]

b4 din[50:48] din[51:48] din[65:60] din[69:63]

b5 din[49:51] din[55:52] din[71:66]

b6 din[56:54] din[59:56]

b7 din[59:57] din[63:60]

b8 din[62:60]

b9 din[65:63]

b10 din[68:66]

b11 din[71:69]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 220

Output Formatting and Error Conditions
The number format of the data output is the same as the format of the data input, as controlled by the
number_format parameter. The output register is always 48 bits wide, regardless of the number format or input
data width.

Asynchronous Reset Rules
Asynchronous reset mode on input registers, , is only supported in the inreg_sr_assertion="unclocked"
lower four internal multiply units. The upper multiply units only support . inreg_sr_assertion="clocked"
Therefore, to use , do one of the following:inreg_sr_assertion="unclocked"

Tie off the upper multipliers and do not use them

Set and replace the input registers of the MLP with fabric DFFsinreg_enable=0

Note

For optimal MLP performance on upper multipliers, use synchronous ("clocked") resets in a design.

When is set to 1, then set ; accumulator_enable inreg_sr_assertion="clocked"
 is not supported when using the accumulator feature. The following inreg_sr_assertion="unclocked"

table describes valid scenarios when can be set to when the input inreg_sr_assertion "unclocked"
register is enabled.

Table 188: ACX_MLP72_INT Asynchronous Reset Rules

operand_width accumulator_enable Multipliers For Use With
inreg_sr_assertion of "unclocked"

Multipliers to be Tied Off and Not Used with
inreg_sr_assertion of "unclocked"

3 0 Lower 8 multipliers (sets of A/B inputs). Upper 4 multipliers (sets of A/B inputs).

4 0 All 8 multipliers (sets of A/B inputs).

6 0 Lower 4 multipliers (sets of A/B inputs). Upper 2 multipliers (sets of A/B inputs).

7 0 Lower 4 multipliers (sets of A/B inputs). Upper 1 multiplier (set of A/B inputs).

8 0 All 4 multipliers (sets of A/B inputs).

16 0 Lower 1 multiplier (set of A/B inputs). Upper 1 multiplier (set of A/B inputs).

Inference
The ACX_MLP72_INT is inferrable using RTL constructs commonly used to infer multiplication and addition
operations, such as those shown.

Data widths which fall between the supported values infer the next largest input size and, if appropriate, sign
extend the input when it is defined as a signed value. For example, 9-bit signed signals would be extended to be
16-bit signed inputs of the ACX_MLP72_INT.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 221

Examples

inreg_enable=0, outreg_enable=0, 4 inputs

x = a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3;

inreg_enable=0, outreg_enable=1

always @(posedge clk) begin
 x <= a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3;

end

inreg_enable=0, outreg_enable=1, Asynchronous Reset

always @(posedge clk, negedge rstn) begin

 if (rstn == 1'b0)
 x <= 'h0;

 else if (en == 1'b1)
 x <= a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3;

end

Instantiation Template

Verilog

 ACX_MLP72_INT #(
 .clk_polarity (clk_polarity),

 .operand_width (operand_width),
 .number_format (number_format),

 .accumulator_enable (accumulator_enable),
 .inreg_enable (inreg_enable),

 .reg_enable (reg_enable),
 .outreg_enable (outreg_enable),

 .inreg_sr_assertion (inreg_sr_assertion),
 .outreg_sr_assertion (outreg_sr_assertion)

) instance_name (
 .clk (clk),

 .load (load),
 .din (din),

 .inreg_rstn (inreg_rstn),
 .inreg_ce (inreg_ce),

 .reg_rstn (reg_rstn),
 .reg_ce (reg_ce),

 .outreg_rstn (outreg_rstn),
 .outreg_ce (outreg_ce),

 .dout (dout)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 222

MLP72_INT8_MULT_4X
The ACX_MLP72_INT8_MULT_4X primitive is a simple multiplier block with support for up to four parallel
multipliers using 8-bit two's-complement signed, signed magnitude, or unsigned integers. For higher performance
operation, additional input and/or output registers can be enabled. Enabling each register causes an additional
cycle of latency.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 223

Figure 101: ACX_MLP72_INT8_MULT_4X Block Diagram

Parameters

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 224

Parameters
Table 189: ACX_MLP72_INT8_MULT_4X Parameters

Parameter Supported
Values

Default
Value Description

clk_polarity "rise", "fall" "rise"
Controls which edge of the input clock to use:
"rise" – rising edge of clock.
"fall" – falling edge of clock.

number_format 0, 1, 2 0

Controls the number format to use for all data inputs for each
of the four multipliers:
0 – unsigned.
1 – signed two's complement.
2 – signed-magnitude.

inrega3_enable
inregb3_enable
inrega2_enable
inregb2_enable
inrega1_enable
inregb1_enable
inrega0_enable
inregb0_enable
outreg3_enable
outreg2_enable
outreg1_enable
outreg0_enable

0, 1 0

Controls whether or not the input and output registers are
enabled:
0 – disable the register.
1 – enable the register. Results in extra latency.

inrega3_sr_assertion
inregb3_sr_assertion
inrega2_sr_assertion
inregb2_sr_assertion
inrega1_sr_assertion
inregb1_sr_assertion
inrega0_sr_assertion
inregb0_sr_assertion
outreg3_sr_assertion
outreg2_sr_assertion
outreg1_sr_assertion
outreg0_sr_assertion

"clocked","
unclocked" "clocked"

Controls whether the assertion of the reset of the input and
output registers is synchronous or asynchronous with respect
to the input:clk

"clocked" – synchronous reset. The register is reset upon the
next rising edge of the clock when the associated rstn
signal is asserted low.
"unclocked" – asynchronous reset. The register is reset
immediately when the associated signal is asserted rstn
low.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 225

Ports
Table 190: ACX_MLP72_INT8_MULT_4X Pin Descriptions

Name Direction Description

clk Input Clock input. If input or output registers are enabled, they are updated on the active
edge of this clock.

a0[7:0]
a1[7:0]
a2[7:0]
a3[7:0]

Input Operand A input, in the specified number_format.

b0[7:0]
b1[7:0]
b2[7:0]
b3[7:0]

Input Operand B input, in the specified number_format.

rstn0
rstn1
rstn2
rstn3

Input

Register resets. When a given is asserted (active low), a value of 0 is reg_rstn
written to the input register upon the next active edge of . Synchronous or clk
asynchronous reset assertion is determined by the outreg/inreg_sr_assertion
parameter.

inrega3_ce
inregb3_ce
inrega2_ce
inregb2_ce
inrega1_ce
inregb1_ce
inrega0_ce
inregb0_ce

Input
Input register clock enable (active high). When the parameter is 1, inreg_enable
de-asserting the signal causes the MLP72_INT8_MULT to keep the inreg_ce
contents of the input register unchanged.

outreg3_ce
outreg2_ce
outreg1_ce
outreg0_ce

Input
Output register clock enable (active high). When the parameter is 1, outreg_enable
de-asserting the signal causes the MLP72_INT8_MULT to keep the outreg_ce
contents of the output register unchanged.

dout0[15:0]
dout1[15:0]
dout2[15:0]
dout3[15:0]

Output The result of the multiply operation.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 226

Timing Diagrams
The following timing diagram shows typical use of ACX_MLP72_INT8_MULT_4X, where both inreg_enable
and are true, and all control inputs are active high.outreg_enable

Figure 102: Timing Diagram for Single Multiplier Channel

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 227

Inference
The ACX_MLP72_INT8_MULT_4X is inferrable using RTL constructs commonly used to infer multiplication
operations, such as those shown in the following examples.

Note

This component is appropriate for integer data widths of 8 bits and less.

For widths larger than 8 bits, use .ACX_MLP72_INT16_MULT_2X

As an inference target, it is only necessary to use a single pair of inputs and a single output. If
there are other compatible instances in a design, they are merged during the build flow.

Examples

inreg_enable = 0, outreg_enable=0

x1 = a1 * b2;

inreg_enable = 0, outreg_enable=1

always @(posedge clk) begin

 x2 <= a2 * b2;
end

inreg_enable = 0, outreg_enable=1, with reset

always @(posedge clk) begin
 if (rstn == 1'b0)

 x3 <= 'h0;
 else if (en)

 x3 <= a3 * b3;
end

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 228

inreg_enable=1, outreg_enable=1, with input clock enable and output clock enable

always @(posedge clk) begin

 if (rstn == 1'b0) begin
 a4_d <= 'h0;

 b4_d <= 'h0;
 end else if (inreg_ce == 1'b1) begin

 a4_d <= a4;
 b4_d <= a4;

 end
end

always @(posedge clk) begin

 if (rstn == 1'b0)
 x4 <= 'h0;

 else if (outreg_ce == 1'b1)
 x4 <= a4_d * b4_d;

end

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 229

Instantiation Template

Verilog

 ACX_MLP72_INT8_MULT_4X

 #(
 .clk_polarity (clk_polarity),

 .number_format (number_format),
 .inrega3_enable (inrega3_enable),

 .inregb3_enable (inregb3_enable),
 .inrega2_enable (inrega2_enable),

 .inregb2_enable (inregb2_enable),
 .inrega1_enable (inrega1_enable),

 .inregb1_enable (inregb1_enable),
 .inrega0_enable (inrega0_enable),

 .inregb0_enable (inregb0_enable),
 .outreg3_enable (outreg3_enable),
 .outreg2_enable (outreg2_enable),
 .outreg1_enable (outreg1_enable),
 .outreg0_enable (outreg0_enable),
 .inrega3_sr_assertion (inrega3_sr_assertion),
 .inregb3_sr_assertion (inregb3_sr_assertion),
 .inrega2_sr_assertion (inrega2_sr_assertion),
 .inregb2_sr_assertion (inregb2_sr_assertion),
 .inrega1_sr_assertion (inrega1_sr_assertion),
 .inregb1_sr_assertion (inregb1_sr_assertion),
 .inrega0_sr_assertion (inrega0_sr_assertion),
 .inregb0_sr_assertion (inregb0_sr_assertion),
 .outreg3_sr_assertion (outreg3_sr_assertion),
 .outreg2_sr_assertion (outreg2_sr_assertion),
 .outreg1_sr_assertion (outreg1_sr_assertion),
 .outreg0_sr_assertion (outreg0_sr_assertion)
) instance_name (
 .clk (clk),
 .a0 (a0),
 .a1 (a1),
 .a2 (a2),
 .a3 (a3),
 .b0 (b0),

 .b1 (b1),
 .b2 (b2),

 .b3 (b3),
 .rstn0 (rstn0),

 .rstn1 (rstn1),
 .rstn2 (rstn2),

 .rstn3 (rstn3),
 .inrega3_ce (inrega3_ce),

 .inregb3_ce (inregb3_ce),
 .inrega2_ce (inrega2_ce),

 .inregb2_ce (inregb2_ce),
 .inrega1_ce (inrega1_ce),

 .inregb1_ce (inregb1_ce),
 .inrega0_ce (inrega0_ce),

 .inregb0_ce (inregb0_ce),
 .outreg3_ce (outreg3_ce),

 .outreg2_ce (outreg2_ce),
 .outreg1_ce (outreg1_ce),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 230

 .outreg0_ce (outreg0_ce),

 .dout0 (dout0),
 .dout1 (dout1),

 .dout2 (dout2),
 .dout3 (dout3)

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 231

MLP72_INT16_MULT_2X
The ACX_MLP72_INT16_MULT_2X primitive is a simple multiplier block with support for up to two parallel 16-bit
multipliers using 16-bit two's-complement signed, signed magnitude, or unsigned integers. For higher
performance operation, additional input and/or output registers can be enabled. Enabling each register causes
an additional cycle of latency.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 232

Figure 103: ACX_MLP72_INT16_MULT_2X Block Diagram

Parameters

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 233

1.

Parameters
Table 191: ACX_MLP72_INT16_MULT_2X Parameters

Parameter Supported
Values

Default
Value Description

clk_polarity "rise", "fall" "rise"
Controls which edge of the input clock to use:
"rise" – rising edge of clock.
"fall" – falling edge of clock.

number_format 0, 1, 2, 3 0

Controls the number format to use for all data inputs for both of the
multipliers:
0 – unsigned.
1 – signed two's complement.
2 – signed "A" input with unsigned "B" input.
3 – unsigned "A" input with signed "B" input.

inrega0_enable
inrega1_enable
inregb0_enable
inregb1_enable
outreg0_enable
outreg1_enable

0, 1 0
Controls whether or not the input and output registers are enabled:
0 – disable the register.
1 – enable the register. Results in extra latency.

inrega0_sr_assertion
inregb0_sr_assertion
outreg0_sr_assertion
outreg1_sr_assertion

"clocked","
unclocked" "clocked"

Controls whether the assertion of reset for the input and output registers is
synchronous or asynchronous with respect to the input:clk

"clocked" – synchronous reset. The register is reset upon the next rising
edge of the clock when the associated signal is asserted low.rstn
"unclocked" – asynchronous reset. The register is reset immediately when
the associated signal is asserted low.rstn

inrega1_sr_assertion
inregb1_sr_assertion "clocked" (1) "clocked"

The hardware only supports synchronous reset with respect to the clk
input for the upper multiplier input registers. If a circuit uses asynchronous
reset, then and should be set to 0, inrega1_enable inregb1_enable
and the upper multiplier input register must be instantiated outside the
MLP72_INT16_MULT_2X as a DFF.
"clocked" – synchronous reset. The register is reset upon the next rising
edge of the clock when the associated signal is asserted low.rstn

Table Notes

For optimal MLP performance on upper multipliers, use synchronous ("clocked") resets.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 234

Ports
Table 192: ACX_MLP72_INT16_MULT_2X Pin Descriptions

Name Direction Description

clk Input Clock input. If input or output registers are enabled, they are updated on the active
edge of this clock.

a0[15:0]
a1[15:0]

Input Operand A input, in the specified number_format.

b0[15:0]
b1[15:0]

Input Operand B input, as specified by the number_format.

inrega0_ce
inrega1_ce
inregb0_ce
inregb1_ce
outreg0_ce
outreg1_ce

Input
Input register clock enable (active high). When the parameter is 1, inreg_enable
de-asserting the signal causes the MLP72_INT16_MULT2X to keep the inreg_ce
contents of the input register unchanged.

rstn0
rstn1

Input

Register resets. When a given is asserted (active low), a value of 0 is reg_rstn
written to the input register upon the next active edge of . Synchronous or clk
asynchronous reset assertion is determined by the /<outreg

 parameter.inreg>_sr_assertion

dout1[31:0]
dout0[31:0]

Output The result of the multiply operation.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 235

Timing Diagrams
The following timing diagram shows typical use of the ACX_MLP72_INT16_MULT2X, where both

 and are true, and all control inputs are active high.inreg_enable outreg_enable

Figure 104: Timing Diagram for a Single Multiplier Channel

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 236

Inference
The ACX_MLP72_INT16_MULT_2X is inferrable using RTL constructs commonly used to infer multiplication
operations, such as those shown in the following examples.

Note

This component is appropriate for integer data widths between 9 and 16 bits, inclusive:

For widths between 9 and 15 inclusive, sign extend the inputs and truncate the output as
appropriate.

For widths narrower than 9 bits, use .ACX_MLP72_INT8_MULT_4X

As an inference target, it is only necessary to use a single pair of inputs and a single output. If there are
other compatible primitives in the design, they are merged during the build flow.

Examples

inreg_enable=0, outreg0_enable=0

x = a * b;

inreg_enable=0, outreg_enable=1

always @(posedge clk) begin

 x <= a * b;
end

inreg_enable=0, outreg0_enable=1, synchronous reset

always @(posedge clk) begin
 if (rstn == 1'b0)

 x <= 'h0;
 else if (en == 1'b1)

 x <= a * b;
end

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 237

inreg_enable=1, outreg_enable=1, asynchronous resets

always @(posedge clk, negedge rstn) begin

 if (rstn == 1'b0) begin
 a_d <= 'h0;

 end else if (inrega_ce == 1'b1) begin
 a_d <= a;

 end
end

always @(posedge clk, negedge rstn) begin

 if (rstn == 1'b0) begin
 b_d <= 'h0;

 end else if (inregb_ce == 1'b1) begin
 b_d <= b;

 end
end

always @(posedge clk, negedge rstn) begin
 if (rstn == 1'b0)

 x <= 'h0;
 else if (outreg_ce == 1'b1)

 x <= a_d * b_d;
end

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 238

Instantiation Template

Verilog

 ACX_MLP72_INT16_MULT_2X

 #(
 .clk_polarity (clk_polarity),

 .number_format (number_format),
 .inrega0_enable (inrega0_enable),

 .inregb0_enable (inregb0_enable),
 .inrega1_enable (inrega1_enable),

 .inregb1_enable (inregb1_enable),
 .outreg0_enable (outreg0_enable),

 .outreg1_enable (outreg1_enable),
 .inrega0_sr_assertion (inrega0_sr_assertion),

 .inregb0_sr_assertion (inregb0_sr_assertion),
 .inrega1_sr_assertion (inrega1_sr_assertion),
 .inregb1_sr_assertion (inregb1_sr_assertion),
 .outreg0_sr_assertion (outreg0_sr_assertion),
 .outreg1_sr_assertion (outreg1_sr_assertion)
) instance_name (
 .clk (clk),
 .a0 (a0),
 .b0 (b0),
 .a1 (a1),
 .b1 (b1),
 .rstn0 (rstn0),
 .rstn1 (rstn1),
 .inrega0_ce (inrega0_ce),
 .inregb0_ce (inregb0_ce),
 .inrega1_ce (inrega1_ce),
 .inregb1_ce (inregb1_ce),
 .outreg0_ce (outreg0_ce),
 .outreg1_ce (outreg1_ce),
 .dout0 (dout0),
 .dout1 (dout1)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 239

Integer Library
The Achronix integer library provides macros that use the ACX_MLP72 to perform common integer operations. In
addition, the library enables the use of the MLUT logic cell to efficiently implement integer multiplication with
programmable logic. To use the library, include the following in the Verilog source code that instantiates any of
the integer library macros:

`include "speedster7t/common/acx_integer.sv"

MLP Registers
The ACX_MLP72 has a number of internal registers that can be enabled to pipeline operations. Pipelining allows
for higher clock frequencies, but operations take more clock cycles. Generally, for operation at the maximum
fabric speed, all registers need to be enabled, but for lower frequencies some may be omitted.

For the integer library, modules support input registers, and one or more pipeline registers. The latter are simply
identified by the number of desired pipeline stages. All registers are disabled by default.

Clock Enable and Reset
The input registers typically have separate clock enables for the 'a' and 'b' inputs and a shared reset. The
pipeline registers have a shared clock enable and a shared reset, separate from the input registers. Many
designs do not need clock enables and resets, in which case these inputs can simply be tied to (in 1'b1
particular, the accumulator is normally started with a load signal rather than a reset).

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 240

Accumulation
Most operations have an option to accumulate results. When accumulation is enabled, a new accumulation is
started by asserting the signal. When is high, the previous value of the internal accumulation register load load
is ignored, and the new value is stored. The output is then set to this value. When is low, the old and new load
values are added, and the sum is stored. The output is this sum.

The signal is internally pipelined to have the same latency as the input. If a set of inputs start a new load
accumulation, then must be high when those inputs are presented. If accumulation is not enabled, then the load

 signal is ignored.load

The accumulator uses an internal register, independent of the pipelining. In particular, accumulation may be used
with , though this setting results in a lower frequency.pipeline_regs = 0

Figure 105: Accumulator With Load Signal

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 241

ACX_INT_MULT
The ACX_INT_MULT module implements integer multiplication with fabric logic or with the ACX_MLP72, and
delivers the following features:

N × N multiplication, for N = 3–8, 16, 32

Either input can be signed or unsigned

Optional accumulator

Optional registers to enable higher frequency operation

Figure 106: Integer Multiplier With Optional Accumulate

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 242

Parameters
Table 193: ACX_INT_MULT Parameters

Parameter Supported Values Default Description

int_size 3, 4, 5, 6, 7, 8, 16, 32 8 Number of bits of each integer input.

int_unsigned_a 0, 1 0 0 – is signed (two's complement).i_din_a
1 – is unsigned.i_din_a

int_unsigned_b 0, 1 0 0 – is signed (two's complement).i_din_b
1 – is unsigned.i_din_b

accumulate 0, 1 0
0 – no accumulation: dout = i_din_a * i_din_b
1 – accumulation: is the accumulated value. The start of accumulation is signaled by dout
asserting .i_load=1

in_reg_enable 0, 1 0

0 – no input registers.
1 – and are registered.i_din_a i_din_b

The input registers are controlled by the , , andi_in_reg_a_ce i_in_reg_b_ce
 inputs. Enabling the input register adds one cycle of latency.i_in_reg_rstn

pipeline_regs 0, 1, 2 (3) 0
The number of pipeline registers, not counting the input register. The total latency is

. A value of 3 is only allowed if pipeline_regs + in_reg_enable int_size=32
and . For all other cases, the valid values are 0, 1, and 2.accumulate=1

dout_size Output (see page 244)
Width of the output. The default and range are determined by several other o_dout
parameters, as explained in the section. Signed results are sign-Output (see page 244)
extended as necessary. Values that do not fit are truncated at the high-order bits.

architecture "auto", "rlb", "mlp" auto

This string-valued parameter determines the implementation method. Refer to Architecture (see
 for more information.page 244)

"rlb" – implementation is with reconfigurable logic, including MLUT, , and .ALU8 DFF's
"mlp" – implementation uses a single .MLP72
"auto" – equivalent to "rlb" if ; equivalent to "mlp" if .int_size <= 8 int_size > 8

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 243

Ports
Table 194: ACX_INT_MULT Pin Descriptions

Name Direction Description

i_clk Input Clock input, used for the (optional) registers and accumulator.

i_din_a[(int_size-1):0] Input A data input to multiplier.

i_din_b[(int_size-1):0] Input B data input to multiplier.

i_in_reg_a_ce Input if – ignored.in_reg_enable=0
if – clock enable for .in_reg_enable=1 i_din_a

i_in_reg_b_ce Input if – ignored.in_reg_enable=0
if – clock enable for .in_reg_enable=1 i_din_b

i_in_reg_rstn Input if – ignored.in_reg_enable=0
if – synchronous active-low reset for input registers.in_reg_enable=1

i_pipeline_ce Input if – ignored.pipeline_regs=0
if – clock enable for pipeline and accumulator registers.pipeline_regs>0

i_pipeline_rstn Input
if – ignored.pipeline_regs=0
if – synchronous active-low reset for pipeline and pipeline_regs>0
accumulator registers.

i_load Input

if – ignored.accumulate=0
if – resets the accumulator to , ignoring the accumulate=1 i_din_a*i_din_b
previous value.
This signal is internally pipelined to have the same latency as andi_din_a

.i_din_b

o_dout[dout_size-1:0] Output Result of multiplication and accumulation.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 244

Usage and Inference
ACX_INT_MULT is intended for situations where direct control over the implementation of multiplication is
required, in particular, when a fabric logic based implementation is desired or when manual control over the
registers is needed. Alternatively, integer multiplication written as in RTL is recognized and inferred, using a*b
an MLP-based implementation similar to the one provided by this module.

In addition to direct instantiation in Verilog or VHDL, an instance of ACX_INT_MULT can also be created in the
ACE IP Configuration Perspective. See for details. (UG103)Speedster7t Soft IP User Guide

Architecture
For small integer sizes (≤ 8), by default, the multiplier is constructed using reconfigurable logic which int_size
uses the efficient Achronix MLUT feature to reduce count compared to other FPGAs.LUT

For ≤ 8, the parameter can be used to select an implementation with an int_size architecture ACX_MLP72
(this includes all registers and the accumulator). However, while this setting can result in a faster design, using
an entire ACX_MLP72 for a single multiplication is not an efficient use of resources. Better efficiency can be
achieved by using the ACX_INT_MULT_N module, which allows combining several multiplications in a single
ACX_MLP72. Alternatively, one can write and let Synplify and ACE handle the implementation, which also a*b
maps to an ACX_MLP72, and may pack several multiplications into a single ACX_MLP72 (packing decisions are
based on the netlist connectivity).

For = 16, the implementation always uses a single ACX_MLP72 (this includes all registers and the int_size
accumulator). As before, resource usage can be improved by using ACX_INT_MULT_N to combine two 16×16
multiplications in a single ACX_MLP72. Alternatively, writing also uses an ACX_MLP72 implementation, and a*b
may pack two multiplications depending on netlist connectivity.

For = 32, the implementation always uses a single ACX_MLP72. The ACX_MLP72 includes most of int_size
the registers, but not the accumulator. If accumulation is enabled, the accumulator and associated register are
implemented with fabric logic.

Output
For multiplication, the default output size is two times the input size, but a smaller can be specified if dout_size
the result is known to fit. When accumulation is enabled, typically a larger output size is required. For fabric logic
based implementations (≤ 8), and for = 32, the accumulator is built with fabric logic and int_size int_size
with bits as specified by the user. For based implementations with ≤ 16, the dout_size ACX_MLP72 int_size
accumulator is a maximum of 48 bits wide. The default and limits are summarized in the following table. The
output format is unsigned if both inputs are unsigned, otherwise the output is signed (two's complement).

Table 195: dout_size Default and Limits

 accumulate=0 accumulate=1

int_size architecture Default Max Default Max

3–8 auto, rlb 2 × int_size 48 2 × int_size 48

3–8 mlp 2 × int_size 48 48 48

16 auto, mlp 32 48 48 48

32 auto, mlp 64 64 64 any

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 245

Instantiation Templates

Verilog

// Verilog template for ACX_INT_MULT

ACX_INT_MULT #(
 .int_size (int_size),

 .int_unsigned_a (int_unsigned_a),
 .int_unsigned_b (int_unsigned_b),

 .accumulate (accumulate),
 .in_reg_enable (in_reg_enable),

 .pipeline_regs (pipeline_regs),
 .dout_size (dout_size),

 .architecture (architecture)
) instance_name (

 .i_clk (user_i_clk),
 .i_din_a (user_i_din_a[int_size-1 : 0]),
 .i_din_b (user_i_din_b[int_size-1 : 0]),
 .i_in_reg_a_ce (user_i_in_reg_a_ce),
 .i_in_reg_b_ce (user_i_in_reg_b_ce),
 .i_in_reg_rstn (user_i_in_reg_rstn),
 .i_pipeline_ce (user_i_pipeline_ce),
 .i_pipeline_rstn (user_i_pipeline_rstn),
 .i_load (user_i_load),
 .o_dout (user_o_dout[dout_size-1 : 0])
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 246

VHDL

-- VHDL Component template for ACX_INT_MULT

component ACX_INT_MULT is
generic (

 int_size : integer := 8;
 int_unsigned_a : integer := 0;

 int_unsigned_b : integer := 0;
 accumulate : integer := 0;

 in_reg_enable : integer := 0;
 pipeline_regs : integer := 0;

 dout_size : integer := 48;
 architecture : string := "auto"

);
port (

 i_clk : in std_logic;
 i_din_a : in std_logic_vector(int_size-1 downto 0);

 i_din_b : in std_logic_vector(int_size-1 downto 0);
 i_in_reg_a_ce : in std_logic;

 i_in_reg_b_ce : in std_logic;
 i_in_reg_rstn : in std_logic;

 i_pipeline_ce : in std_logic;
 i_pipeline_rstn : in std_logic;

 i_load : in std_logic;
 o_dout : out std_logic_vector(dout_size-1 downto 0)

);
end component ACX_INT_MULT

-- VHDL Instantiation template for ACX_INT_MULT

instance_name : ACX_INT_MULT
generic map (

 int_size => int_size,
 int_unsigned_a => int_unsigned_a,

 int_unsigned_b => int_unsigned_b,
 accumulate => accumulate,

 in_reg_enable => in_reg_enable,
 pipeline_regs => pipeline_regs,

 dout_size => dout_size,
 architecture => architecture

)

port map (
 i_clk => user_i_clk,

 i_din_a => user_i_din_a,
 i_din_b => user_i_din_b,

 i_in_reg_a_ce => user_i_in_reg_a_ce,
 i_in_reg_b_ce => user_i_in_reg_b_ce,

 i_in_reg_rstn => user_i_in_reg_rstn,
 i_pipeline_ce => user_i_pipeline_ce,

 i_pipeline_rstn => user_i_pipeline_rstn,
 i_load => user_i_load,

 o_dout => user_o_dout
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 247

ACX_INT_MULT_N
The ACX_INT_MULT_N module computes N parallel multiplications with all numbers using the same format.
There is no accumulation option. The macro has the following features:

K × K multiplication, with K = 3–8, or 16

Either input (a, b, or both) can be signed or unsigned

N parallel multiplications (all the same format)

Optional registers to enable higher clock frequency

Figure 107: N Integer Parallel Multiplications

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 248

Parameters
Table 196: ACX_INT_MULT_N Parameters

Parameter Supported
Values Default Description

int_size 3, 4, 5, 6, 7, 8, 16 8 Number of bits of each integer input.

num_mult 1–8 1 Number of parallel multiplications. Refer to Maximum Parallel
 for the limit per number format.Multiplications (see page 250)

int_unsigned_a 0, 1 0 0 – is signed (two's complement).i_din_a(i)
1 – is unsigned.i_din_a(i)

int_unsigned_b 0, 1 0 0 – is signed (two's complement).i_din_b(i)
1 – is unsigned.i_din_b(i)

in_reg_enable 0, 1 0

0 – No input registers.
1 – and are registered. The input registers i_din_a i_din_b
are controlled by the , , and i_in_reg_a_ce i_in_reg_b_ce

 inputs. Enabling the input register adds one i_in_reg_rstn
cycle of latency.

pipeline_regs 0, 1 0 The number of pipeline registers, not counting the input register.
The total latency is .pipeline_regs + in_reg_enable

An internal parameter, , is generated from the above parameters. This parameter determines the number num_ce
of clock enables supported. The calculation of is shown in the following example.num_ce

localparam integer num_ce = (int_size <= 4)? (num_mult + 1)/2 : num_mult

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 249

Ports
Table 197: ACX_INT_MULT_N Pin Descriptions

Name Direction Description

i_clk Input Clock input, used for the (optional) registers.

i_din_a[(num_mult*int_size-1):0] Input Packed (see page 249) vector of A data input to multipliers.

i_din_b[(num_mult*int_size-1):0] Input Packed (see page 249) vector of B data input to multipliers.

i_in_reg_a_ce[(num_ce-1):0] Input
if = 0 – ignored.in_reg_enable
if = 1 – clock enable for . Refer to in_reg_enable i_din_a Clock Enables

.(see page 249)

i_in_reg_b_ce[(num_ce-1):0] Input
if = 0 – ignored.in_reg_enable
if = 1 – clock enable for . Refer to in_reg_enable i_din_b Clock Enables

.(see page 249)

i_in_reg_rstn Input if = 0 – ignored.in_reg_enable
if = 1 – synchronous active-low reset for input registers.in_reg_enable

i_pipeline_ce Input if = 0 – ignored.pipeline_regs
if > 0 – clock enable for pipeline registers.pipeline_regs

i_pipeline_rstn Input if = 0 – ignored.pipeline_regs
if > 0 – synchronous active-low reset for pipeline registers.pipeline_regs

o_dout[(num_mult*2*int_size-1):0] Output
Packed (see page 249) vector of multiplication results. The results are
unsigned if both inputs are unsigned. Otherwise, the results are signed (two's
complement).

Data Packing

Inputs and outputs are packed in single input and output vectors.

a(i) = i_din_a[i*int_size +: int_size];
b(i) = i_din_b[i*int_size +: int_size];

dout(i) = o_dout[i*2*int_size +: 2*int_size];

Clock Enables

If the input register is enabled, each input has its own clock enable if >= 5. For = 3 or 4, int_size int_size
two adjacent inputs share the same clock enable. For example, and share , a(0) a(1) i_in_reg_a_ce[0]
etc.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 250

Maximum Parallel Multiplications

Parameter specifies the number of parallel multiplications. The maximum is determined by the input num_mult
format (if either input is unsigned, the "Unsigned" column applies).

Table 198: Maximum Parallel Multiplications

int_size
Max Signed

Multiplications
Max Unsigned
Multiplications

3 8 8

4 8 4

5,6,7,8 4 4

16 2 2

Usage and Inference
ACX_INT_MULT_N maps to a single . This macro is intended for situations where direct control ACX_MLP72
over the implementation of multiplications is required, including the use of registers and the choice of which
multiplications to combine in a single ACX_MLP72. Alternatively, integer multiplication written as in RTL is a*b
recognized and inferred using an ACX_MLP72-based implementation, and combines multiplications based on
netlist connectivity.

In addition to direct instantiation in Verilog or VHDL, an instance of ACX_INT_MULT_N can also be created in
the ACE IP Configuration Perspective. See for details. (UG103)Speedster7t Soft IP User Guide

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 251

Instantiation Templates

Verilog

// Verilog template for ACX_INT_MULT_N

ACX_INT_MULT_N #(
 .int_size (int_size),

 .num_mult (num_mult),
 .int_unsigned_a (int_unsigned_a),

 .int_unsigned_b (int_unsigned_b),
 .in_reg_enable (in_reg_enable),

 .pipeline_regs (pipeline_regs)
) instance_name (

 .i_clk (user_i_clk),
 .i_din_a (user_i_din_a[num_mult*int_size-1 : 0]),

 .i_din_b (user_i_din_b[num_mult*int_size-1 : 0]),
 .i_in_reg_a_ce (user_i_in_reg_a_ce[num_ce-1 : 0]),
 .i_in_reg_b_ce (user_i_in_reg_b_ce[num_ce-1 : 0]),
 .i_in_reg_rstn (user_i_in_reg_rstn),
 .i_pipeline_ce (user_i_pipeline_ce),
 .i_pipeline_rstn (user_i_pipeline_rstn),
 .o_dout (user_o_dout[num_mult*2*int_size-1 : 0])
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 252

VHDL

-- VHDL Component template for ACX_INT_MULT_N

component ACX_INT_MULT_N is
generic (

 int_size : integer := 8;
 num_mult : integer := 1;

 int_unsigned_a : integer := 0;
 int_unsigned_b : integer := 0;

 in_reg_enable : integer := 0;
 pipeline_regs : integer := 0

);
port (

 i_clk : in std_logic;
 i_din_a : in std_logic_vector(num_mult*int_size-1 downto 0);

 i_din_b : in std_logic_vector(num_mult*int_size-1 downto 0);
 i_in_reg_a_ce : in std_logic_vector(num_ce-1 downto 0);

 i_in_reg_b_ce : in std_logic_vector(num_ce-1 downto 0);
 i_in_reg_rstn : in std_logic;

 i_pipeline_ce : in std_logic;
 i_pipeline_rstn : in std_logic;

 o_dout : out std_logic_vector(num_mult*2*int_size-1 downto 0)
);

end component ACX_INT_MULT_N

-- VHDL Instantiation template for ACX_INT_MULT_N
instance_name : ACX_INT_MULT_N

generic map (
 int_size => int_size,

 num_mult => num_mult,
 int_unsigned_a => int_unsigned_a,

 int_unsigned_b => int_unsigned_b,
 in_reg_enable => in_reg_enable,

 pipeline_regs => pipeline_regs,
 out_reg_enable => out_reg_enable

)
port map (

 i_clk => user_i_clk,
 i_din_a => user_i_din_a,

 i_din_b => user_i_din_b,

 i_in_reg_a_ce => user_i_in_reg_a_ce,
 i_in_reg_b_ce => user_i_in_reg_b_ce,

 i_in_reg_rstn => user_i_in_reg_rstn,
 i_pipeline_ce => user_i_pipeline_ce,

 i_pipeline_rstn => user_i_pipeline_rstn,
 o_dout => user_o_dout

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 253

ACX_INT_MULT_ADD
The ACX_INT_MULT_ADD module computes a parallel sum of products, SUM a(i) × b(i), with optional
accumulation. This macro features:

K × K multiplication, for K = 3 – 8, or 16

Inputs can be signed or unsigned

Sum of N parallel multiplications

Optional accumulator

Optional registers to enable higher frequency

Figure 108: N Integer Sum of Products With Optional Accumulation

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 254

Parameters
Table 199: ACX_INT_MULT_ADD Parameters

Parameter Supported Values Default Description

int_size 3, 4, 5, 6, 7, 8, 16 8 Number of bits of each integer input.

num_mult 1–24 1 Number of parallel multiplications. Refer to Maximum Parallel Multiplications
 for the limits per number format.(see page 256)

int_unsigned_a 0, 1 0 0 – is signed (two's complement).i_din_a
1 – is unsigned.i_din_a

int_unsigned_b 0, 1 0 0 – is signed (two's complement).i_din_b
1 – is unsigned.i_din_b

accumulate 0, 1 0
0 – No accumulation: .dout = SUM(i_din_a(i)*i_din_b(i))
1 – Accumulation: is the accumulated value. The start of accumulation dout
is signaled by asserting .i_load=1

in_reg_enable 0, 1 0

0 – No input registers.
1 – and are registered. The input registers are controlled i_din_a i_din_b
by the , , and inputs. i_in_reg_a_ce i_in_reg_b_ce i_in_reg_rstn
Enabling the input register adds one cycle of latency.

pipeline_regs 0, 1, 2 0 The number of pipeline registers, not counting the input register. The total
latency is .pipeline_regs + in_reg_enable

dout_size ≤ 48 48 Width of the output. Values that do not fit are truncated at the high-o_dout
order bits.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 255

Ports
Table 200: ACX_INT_MULT_ADD Pin Descriptions

Name Direction Description

i_clk Input Clock input, used for the (optional) registers and accumulator.

i_din_a[num_mult*int_size-1 : 0] Input Packed (see page 255) vector of A data input to multipliers.

i_din_b[num_mult*int_size-1 : 0] Input Packed (see page 255) vector of B data input to multipliers

i_in_reg_a_ce Input if – ignored.in_reg_enable=0
if – clock enable for .in_reg_enable=1 i_din_a

i_in_reg_b_ce Input if – ignored.in_reg_enable=0
if – clock enable for .in_reg_enable=1 i_din_b

i_in_reg_rstn Input if – ignored.in_reg_enable=0
if – synchronous active-low reset for input registers.in_reg_enable=1

i_pipeline_ce Input if – ignored.pipeline_regs=0
if – clock enable for pipeline and accumulator registers.pipeline_regs>0

i_pipeline_rstn Input
if – ignored.pipeline_regs=0
if – synchronous active-low reset for pipeline and pipeline_regs>0
accumulator registers.

i_load Input

if – ignored.accumulate=0
if – resets the accumulator to , accumulate=1 SUM(i_din_a*i_din_b)
ignoring the previous value.
This signal is internally pipelined to have the same latency as i_din_a
and .i_din_b

o_dout[(dout_size-1):0] Output Sum of products, or result of accumulation.

Input Packing

Inputs are packed in single input vectors:

a(i) = i_din_a[i*int_size +: int_size];
b(i) = i_din_b[i*int_size +: int_size];

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 256

Maximum Parallel Multiplications

Parameter specifies the number of parallel multiplications. The used by the module has num_mult ACX_MLP72
two input modes, normal and wide. Wide mode enables more parallel multiplications per ACX_MLP72. However,
in this mode, the adjacent site is used as route-through, meaning it is no longer available for ACX_BRAM72K
BRAM placement. The selection between normal and wide mode is automatically made based on the number of
requested multiplications and the size of the inputs.

The following table lists the maximum number of parallel multiplications for each of the two modes. If either input
is unsigned, the columns apply. Wide mode is only selected if is larger than the maximum Unsigned num_mult
for normal mode. For example, for = 8, if <= 4, ACX_INT_MULT_ADD requires one int_size num_mult
ACX_MLP72, but if > 4, ACX_INT_MULT_ADD requires one ACX_MLP72 and one ACX_BRAM72K.num_mult

Table 201: Maximum Number of Parallel Multiplications

 Normal Mode Wide Mode

int_size Max Signed
Multiplications

Max Unsigned
Multiplications

Max Signed
Multiplications

Max Unsigned
Multiplications

3 12 8 24 16

4 8 6 16 12

5 6 6 12 12

6 6 5 12 10

7 5 4 10 8

8 4 4 8 8

16 2 2 4 4

Usage and Inference
The ACX_INT_MULT_ADD module gives direct control over the multiply-add functionality of the In ACX_MLP72.
particular, it enables the use of wide mode to increase the number of parallel multiplications. Alternatively, a sum
of products written in RTL, such as is recognized and inferred. However, an inferred multiply-x=a0*b0 + a1*b1
add does not use wide mode and is currently limited to int8 and int16.

In addition to direct instantiation in Verilog or VHDL, an instance of ACX_INT_MULT_ADD can also be created in
the ACE IP Configuration Perspective. See for details. (UG103)Speedster7t Soft IP User Guide

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 257

Instantiation Templates

Verilog

// Verilog template for ACX_INT_MULT_ADD

ACX_INT_MULT_ADD #(
 .int_size (int_size),

 .num_mult (num_mult),
 .int_unsigned_a (int_unsigned_a),

 .int_unsigned_b (int_unsigned_b),
 .accumulate (accumulate),

 .in_reg_enable (in_reg_enable),
 .pipeline_regs (pipeline_regs),

 .dout_size (dout_size)
) instance_name (

 .i_clk (user_i_clk),
 .i_din_a (user_i_din_a[num_mult*int_size-1 : 0]),
 .i_din_b (user_i_din_b[num_mult*int_size-1 : 0]),
 .i_in_reg_a_ce (user_i_in_reg_a_ce),
 .i_in_reg_b_ce (user_i_in_reg_b_ce),
 .i_in_reg_rstn (user_i_in_reg_rstn),
 .i_pipeline_ce (user_i_pipeline_ce),
 .i_pipeline_rstn (user_i_pipeline_rstn),
 .i_load (user_i_load),
 .o_dout (user_o_dout[dout_size-1 : 0])
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 258

VHDL

-- VHDL Component template for ACX_INT_MULT_ADD

component ACX_INT_MULT_ADD is
generic (

 int_size : integer := 8;
 num_mult : integer := 1;

 int_unsigned_a : integer := 0;
 int_unsigned_b : integer := 0;

 accumulate : integer := 0;
 in_reg_enable : integer := 0;

 pipeline_regs : integer := 0;
 dout_size : integer := 48

);
port (

 i_clk : in std_logic;
 i_din_a : in std_logic_vector(num_mult*int_size-1 downto 0);

 i_din_b : in std_logic_vector(num_mult*int_size-1 downto 0);
 i_in_reg_a_ce : in std_logic;

 i_in_reg_b_ce : in std_logic;
 i_in_reg_rstn : in std_logic;

 i_pipeline_ce : in std_logic;
 i_pipeline_rstn : in std_logic;

 i_load : in std_logic;
 o_dout : out std_logic_vector(dout_size-1 downto 0)

);
end component ACX_INT_MULT_ADD

-- VHDL Instantiation template for ACX_INT_MULT_ADD

instance_name : ACX_INT_MULT_ADD
generic map (

 int_size => int_size,
 num_mult => num_mult,

 int_unsigned_a => int_unsigned_a,
 int_unsigned_b => int_unsigned_b,

 accumulate => accumulate,
 in_reg_enable => in_reg_enable,

 pipeline_regs => pipeline_regs,
 dout_size => dout_size

)

port map (
 i_clk => user_i_clk,

 i_din_a => user_i_din_a,
 i_din_b => user_i_din_b,

 i_in_reg_a_ce => user_i_in_reg_a_ce,
 i_in_reg_b_ce => user_i_in_reg_b_ce,

 i_in_reg_rstn => user_i_in_reg_rstn,
 i_pipeline_ce => user_i_pipeline_ce,

 i_pipeline_rstn => user_i_pipeline_rstn,
 i_load => user_i_load,

 o_dout => user_o_dout
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 259

Floating-Point Library
Introduction
The Achronix floating-point library provides macros that instantiate the ACX_MLP72 to perform common floating-
point operations. To use the library, include the following in the Verilog source code:

`include "speedster7t/common/acx_floating_point.sv"

MLP Registers
The MLP has a number of internal registers that can be enabled to pipeline operations. Pipelining allows for
higher clock frequencies, but operations take more clock cycles. Generally, for operation at the maximum fabric
speed, all registers need to be enabled, but for lower frequencies some may be omitted.

For the floating-point library, modules support input registers and one or more pipeline registers. The latter are
simply identified by the number of desired pipeline stages. All registers are by default disabled (bypassed).

Clock Enable and Reset
The input registers typically have separate clock enables for the 'a' and 'b' inputs, and a shared reset. The
pipeline registers have a shared clock enable and a shared reset, separate from the input registers. Many
designs do not need clock enables and resets, in which case these inputs can simply be tied to (in 1'b1
particular, the accumulator is normally started with a load signal rather than a reset).

Accumulation
Most operations have an option to accumulate results. When accumulation is enabled, a new accumulation is
started by asserting the signal. When is high, the previous value of the internal accumulation register load load
is ignored, and the new value is stored. The output is then set to this value. When is low, the old and new load
values are added, and the sum is stored. The output is this sum.

The signal is internally pipelined to have the same latency as the input. If a set of inputs start a new load
accumulation, then must be high when those inputs are presented. If accumulation is not enabled, then the load

 signal is ignored.load

The accumulator uses an internal register, independent of the pipelining. In particular, accumulation may be used
with , though this setting results in a lower frequency.pipeline_regs = 0

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 260

Figure 109: Accumulator With Load Signal

Floating-Point Format
The input and output format of each operation is specified with two parameters, and . fp_size fp_exp_size
Refer to for an explanation of these two parameters.Number Formats

Note

The selected format applies to both inputs and outputs. Internally, the actual multiplications and
additions are always performed with fp24.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 261

Output Status
Operations have a two bit status output. The interpretation is as follows.

Table 202: Output Status Bits

Status Description

2'b00 Normal.

2'b01 Result is ± 0.0.

2'b11 Last operation had underflow, and thus, the result is ± 0.0.

2'b10 Result is ± infinity.

That a result is 0.0 or infinity can also be determined by inspecting the exponent field of the result. The status
flags are an additional method to check the result.

When a result is 0.0, it can be because the result is mathematically 0 (e.g., x − x = 0) or because an underflow
occurred. For instance, if dout = a × b + c, the underflow status refers to the addition. Underflow of the
multiplication would merely result in dout = 0 + c, which itself has no underflow.

Note

Underflow refers to the last operation that produced the current output.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 262

ACX_FP_ADD
The ACX_FP_ADD module computes A+B, with optional accumulation. Internal register stages can be enabled
to allow for higher operating frequencies.

Figure 110: Floating-Point Adder With Optional Accumulate

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 263

Parameters
Table 203: ACX_FP_ADD Parameters

Parameter Supported
Values Default Description

fp_size 16, 24 16 Width of floating point number. Supports fp24, fp16, and fp16e8.

fp_exp_size 5, 8 5 Size of floating-point exponent.

subtract 0, 1 0 0 – compute .i_din_a + i_din_b
1 – compute .i_din_a - i_din_b

accumulate 0, 1 0

0 – no accumulation: (determined by dout = i_din_a ± i_din_b
the parameter).subtract
1 – accumulation: is the accumulated value. The start of dout
accumulation is signaled by asserting .i_load=1

in_reg_enable 0, 1 0

0 – no input registers.
1 – and are registered. The input registers are i_din_a i_din_b
controlled by the , , and i_in_reg_a_ce i_in_reg_b_ce

 inputs. Enabling the input registers adds one cycle of i_in_reg_rstn
latency.

pipeline_regs 0–5 0 The number of pipeline registers, not counting the input register. The
total latency is .pipeline_regs + in_reg_enable

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 264

1.

Ports
Table 204: ACX_FP_ADD Pin Descriptions

Name Direction Description

i_clk Input Clock input. Used by the (optional) registers and accumulator.

i_din_a[(fp_size–1):0] Input 'A' data input to adder.

i_din_b[(fp_size–1):0] Input 'B' data input to adder.

i_in_reg_a_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_a

i_in_reg_b_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_b

i_in_reg_rstn Input If – ignored.in_reg_enable=0
If – synchronous active-low reset for input registers.in_reg_enable=1

i_pipeline_ce Input If – ignored.pipeline_regs=0
If – clock enable for pipeline and accumulator registers.pipeline_regs>1

i_pipeline_rstn Input
If – ignored.pipeline_regs=0
If – synchronous active-low reset for pipeline and accumulator pipeline_regs>1
registers.

i_load Input

If – ignored.accumulate=0
If – resets the accumulator to , ignoring the accumulate=1 i_din_a ± i_din_b
previous value.
This signal is internally pipelined to have the same latency as .i_din_a ± i_din_b

o_dout[(fp_size–1):0] Output Result of addition and accumulation.

o_status[1:0](1) Output Error status of .o_dout

Table Notes

See for details.Output Status

Usage and Inference
ACX_FP_ADD cannot be inferred and must be directly instantiated. The specified floating point format applies to
the inputs and output but, internally, the operations are performed with fp24.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 265

Instantiation Templates

Verilog

// Verilog template for ACX_FP_ADD

ACX_FP_ADD #(
 .fp_size (fp_size),

 .fp_exp_size (fp_exp_size),
 .subtract (subtract),

 .accumulate (accumulate),
 .in_reg_enable (in_reg_enable),

 .pipeline_regs (pipeline_regs)
) instance_name (

 .i_clk (user_i_clk),
 .i_din_a (user_i_din_a),

 .i_din_b (user_i_din_b),
 .i_in_reg_a_ce (user_i_in_reg_a_ce),
 .i_in_reg_b_ce (user_i_in_reg_b_ce),
 .i_in_reg_rstn (user_i_in_reg_rstn),
 .i_pipeline_ce (user_i_pipeline_ce),
 .i_pipeline_rstn (user_i_pipeline_rstn),
 .i_load (user_i_load),
 .o_dout (user_o_dout),
 .o_status (user_o_status)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 266

VHDL

-- VHDL Component template for ACX_FP_ADD

component ACX_FP_ADD is
generic (

 fp_size : integer := 16;
 fp_exp_size : integer := 5;

 subtract : integer := 0;
 accumulate : integer := 0;

 in_reg_enable : integer := 0;
 pipeline_regs : integer := 0

);
port (

 i_clk : in std_logic;
 i_din_a : in std_logic_vector(fp_size-1 downto 0);

 i_din_b : in std_logic_vector(fp_size-1 downto 0);
 i_in_reg_a_ce : in std_logic;

 i_in_reg_b_ce : in std_logic;
 i_in_reg_rstn : in std_logic;

 i_pipeline_ce : in std_logic;
 i_pipeline_rstn : in std_logic;

 i_load : in std_logic;
 o_dout : out std_logic_vector(fp_size-1 downto 0);

 o_status : out std_logic_vector(1 downto 0)
);

end component ACX_FP_ADD

-- VHDL Instantiation template for ACX_FP_ADD
instance_name : ACX_FP_ADD

generic map (
 fp_size => fp_size,

 fp_exp_size => fp_exp_size,
 subtract => subtract,

 accumulate => accumulate,
 in_reg_enable => in_reg_enable,

 pipeline_regs => pipeline_regs
)

port map (
 i_clk => user_i_clk,

 i_din_a => user_i_din_a,

 i_din_b => user_i_din_b,
 i_in_reg_a_ce => user_i_in_reg_a_ce,

 i_in_reg_b_ce => user_i_in_reg_b_ce,
 i_in_reg_rstn => user_i_in_reg_rstn,

 i_pipeline_ce => user_i_pipeline_ce,
 i_pipeline_rstn => user_i_pipeline_rstn,

 i_load => user_i_load,
 o_dout => user_o_dout,

 o_status => user_o_status
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 267

ACX_FP_MULT
The ACX_FP_MULT module computes A × B, with optional accumulation. Internal register stages can be
enabled to allow for higher operating frequencies.

Figure 111: Floating-Point Multiplier With Optional Accumulate

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 268

Parameters
Table 205: ACX_FP_MULT Parameters

Parameter Supported
Values Default Description

fp_size 16, 24 16 Width of floating-point number. Supports fp24, fp16, and fp16e8.

fp_exp_size 5, 8 5 Size of floating-point exponent.

accumulate 0, 1 0
0 – no accumulation: .dout = i_din_a × i_din_b
1 – accumulation: is the accumulated value. The start of dout
accumulation is signaled by asserting .i_load=1

in_reg_enable 0, 1 0

0 – no input registers.
1 – and are registered. The input registers are i_din_a i_din_b
controlled by the , , and i_in_reg_a_ce i_in_reg_b_ce

 inputs. Enabling the input registers adds one cycle of i_in_reg_rstn
latency.

pipeline_regs 0–4 0 The number of pipeline registers, not counting the input register. The
total latency is .pipeline_regs + in_reg_enable

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 269

1.

Ports
Table 206: ACX_FP_MULT Pin Descriptions

Name Direction Description

i_clk Input Clock input, used for the (optional) registers and accumulator.

i_din_a[(fp_size–1):0] Input 'A' data input to multiplier.

i_din_b[(fp_size–1):0] Input 'B' data input to multiplier.

i_in_reg_a_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_a

i_in_reg_b_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_b

i_in_reg_rstn Input If – ignored.in_reg_enable=0
If – synchronous active-low reset for input registers.in_reg_enable=1

i_pipeline_ce Input If – ignored.pipeline_regs=0
If – clock enable for pipeline and accumulator registers.pipeline_regs>1

i_pipeline_rstn Input
If – ignored.pipeline_regs=0
If – synchronous active-low reset for pipeline and accumulator pipeline_regs>1
registers.

i_load Input

If – ignored.accumulate=0
If – resets the accumulator to , ignoring the previous accumulate=1 i_din_a × i_din_b
value.
This signal is internally pipelined to have the same latency as .i_din_a × i_din_b

o_dout[(fp_size–1):0] Output Result of multiplication and accumulation.

o_status[1:0](1) Output Error status of .o_dout

Table Notes

See for details.Output Status

Usage and Inference
ACX_FP_MULT cannot be inferred and must be directly instantiated. The specified floating point format applies
to the inputs and output but, internally, the operations are performed with fp24.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 270

Instantiation Templates

Verilog

// Verilog template for ACX_FP_MULT

ACX_FP_MULT #(
 .fp_size (fp_size),

 .fp_exp_size (fp_exp_size),
 .accumulate (accumulate),

 .in_reg_enable (in_reg_enable),
 .pipeline_regs (pipeline_regs)

) instance_name (
 .i_clk (user_i_clk),

 .i_din_a (user_i_din_a),
 .i_din_b (user_i_din_b),

 .i_in_reg_a_ce (user_i_in_reg_a_ce),
 .i_in_reg_b_ce (user_i_in_reg_b_ce),
 .i_in_reg_rstn (user_i_in_reg_rstn),
 .i_pipeline_ce (user_i_pipeline_ce),
 .i_pipeline_rstn (user_i_pipeline_rstn),
 .i_load (user_i_load),
 .o_dout (user_o_dout),
 .o_status (user_o_status)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 271

VHDL

-- VHDL Component template for ACX_FP_MULT

component ACX_FP_MULT is
generic (

 fp_size : integer := 16;
 fp_exp_size : integer := 5;

 accumulate : integer := 0;
 in_reg_enable : integer := 0;

 pipeline_regs : integer := 0
);

port (
 i_clk : in std_logic;

 i_din_a : in std_logic_vector(fp_size-1 downto 0);
 i_din_b : in std_logic_vector(fp_size-1 downto 0);

 i_in_reg_a_ce : in std_logic;
 i_in_reg_b_ce : in std_logic;

 i_in_reg_rstn : in std_logic;
 i_pipeline_ce : in std_logic;

 i_pipeline_rstn : in std_logic;
 i_load : in std_logic;

 o_dout : out std_logic_vector(fp_size-1 downto 0);
 o_status : out std_logic_vector(1 downto 0)

);
end component ACX_FP_MULT

-- VHDL Instantiation template for ACX_FP_MULT

instance_name : ACX_FP_MULT
generic map (

 fp_size => fp_size,
 fp_exp_size => fp_exp_size,

 accumulate => accumulate,
 in_reg_enable => in_reg_enable,

 pipeline_regs => pipeline_regs
)

port map (
 i_clk => user_i_clk,

 i_din_a => user_i_din_a,
 i_din_b => user_i_din_b,

 i_in_reg_a_ce => user_i_in_reg_a_ce,

 i_in_reg_b_ce => user_i_in_reg_b_ce,
 i_in_reg_rstn => user_i_in_reg_rstn,

 i_pipeline_ce => user_i_pipeline_ce,
 i_pipeline_rstn => user_i_pipeline_rstn,

 i_load => user_i_load,
 o_dout => user_o_dout,

 o_status => user_o_status
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 272

ACX_FP_MULT_PLUS
The ACX_FP_MULT_PLUS module computes A×B+C, with optional accumulation. Internal register stages can
be enabled to allow for higher operating frequencies.

Figure 112: Floating-Point Multiplier Plus Adder With Optional Accumulate

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 273

Parameters
Table 207: ACX_FP_MULT_PLUS Parameters

Parameter Supported
Values Default Description

fp_size 16, 24 16 Width of floating-point number. Supports fp24, fp16, and fp16e8.

fp_exp_size 5, 8 5 Size of floating-point exponent.

subtract 0, 1 0 0 – compute .i_din_a × i_din_b + i_din_c
1 – compute .i_din_a × i_din_b - i_din_c

accumulate 0, 1 0
0 – no accumulation: .dout = i_din_a × i_din_b ± i_din_c
1 – accumulation: is the accumulated value. The start of dout
accumulation is signaled by asserting .i_load=1

in_reg_enable 0, 1 0

0 – no input registers.
1 – , , and are registered. The input i_din_a i_din_b i_din_c
registers are controlled by the , , i_in_reg_a_ce i_in_reg_b_ce

, and inputs. Enabling the input i_in_reg_c_ce i_in_reg_rstn
registers adds one cycle of latency.

pipeline_regs 0–5 0 The number of pipeline registers, not counting the input register. The
total latency is .pipeline_regs + in_reg_enable

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 274

1.

Ports
Table 208: ACX_FP_MULT_PLUS Pin Descriptions

Name Direction Description

i_clk Input Clock input. All inputs are registered on rising edge of . All outputs are synchronous i_clk
to .i_clk

i_din_a[(fp_size–1):0] Input 'A' data input to multiplier.

i_din_b[(fp_size–1):0] Input 'B' data input to multiplier.

i_din_c[(fp_size–1):0] Input 'C' data input direct to adder.

i_in_reg_a_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_a

i_in_reg_b_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_b

i_in_reg_c_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_c

i_in_reg_rstn Input If – ignored.in_reg_enable=0
If – synchronous active-low reset for input registers.in_reg_enable=1

i_pipeline_ce Input If – ignored.pipeline_regs=0
If – clock enable for pipeline and accumulator registers.pipeline_regs>1

i_pipeline_rstn Input
If – ignored.pipeline_regs=0
If – synchronous active-low reset for pipeline and accumulator pipeline_regs>1
registers.

i_load Input

If – ignored.accumulate=0
If – resets the accumulator to , accumulate=1 i_din_a × i_din_b ± i_din_c
ignoring the previous value.
This signal is internally pipelined to have the same latency as

.i_din_a × i_din_b ± i_din_c

o_dout[(fp_size–1):0] Output Result of multiplication and accumulation.

o_status[1:0](1) Output Error status of .o_dout

Table Notes

See for details.Output Status

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 275

Usage and Inference
ACX_FP_MULT_PLUS cannot be inferred and must be directly instantiated. The specified floating point format
applies to the inputs and output but, internally, the operations are performed with fp24. The multiplication result
A×B is rounded (to fp24) before being added to C. Thus, this is not the fusedMultiplyAdd operation defined in the
IEEE-754 standard (which would avoid the intermediate rounding step).

Instantiation Templates

Verilog

// Verilog template for ACX_FP_MULT_PLUS

ACX_FP_MULT_PLUS #(
 .fp_size (fp_size),

 .fp_exp_size (fp_exp_size),
 .subtract (subtract),

 .accumulate (accumulate),

 .in_reg_enable (in_reg_enable),
 .pipeline_regs (pipeline_regs)

) instance_name (
 .i_clk (user_i_clk),

 .i_din_a (user_i_din_a),
 .i_din_b (user_i_din_b),

 .i_din_c (user_i_din_c),
 .i_in_reg_a_ce (user_i_in_reg_a_ce),

 .i_in_reg_b_ce (user_i_in_reg_b_ce),
 .i_in_reg_c_ce (user_i_in_reg_c_ce),

 .i_in_reg_rstn (user_i_in_reg_rstn),
 .i_pipeline_ce (user_i_pipeline_ce),

 .i_pipeline_rstn (user_i_pipeline_rstn),
 .i_load (user_i_load),

 .o_dout (user_o_dout),
 .o_status (user_o_status)

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 276

VHDL

-- VHDL Component template for ACX_FP_MULT_PLUS

component ACX_FP_MULT_PLUS is
generic (

 fp_size : integer := 16;
 fp_exp_size : integer := 5;

 subtract : integer := 0;
 accumulate : integer := 0;

 in_reg_enable : integer := 0;
 pipeline_regs : integer := 0

);
port (

 i_clk : in std_logic;
 i_din_a : in std_logic_vector(fp_size 1 downto 0);

 i_din_b : in std_logic_vector(fp_size 1 downto 0);
 i_din_c : in std_logic_vector(fp_size 1 downto 0);

 i_in_reg_a_ce : in std_logic;
 i_in_reg_b_ce : in std_logic;

 i_in_reg_c_ce : in std_logic;
 i_in_reg_rstn : in std_logic;

 i_pipeline_ce : in std_logic;
 i_pipeline_rstn : in std_logic;

 i_load : in std_logic;
 o_dout : out std_logic_vector(fp_size 1 downto 0);

 o_status : out std_logic_vector(1 downto 0)
);

end component ACX_FP_MULT_PLUS

-- VHDL Instantiation template for ACX_FP_MULT_PLUS
instance_name : ACX_FP_MULT_PLUS

generic map (
 fp_size => fp_size,

 fp_exp_size => fp_exp_size,
 subtract => subtract,

 accumulate => accumulate,
 in_reg_enable => in_reg_enable,

 pipeline_regs => pipeline_regs
)

port map (

 i_clk => user_i_clk,
 i_din_a => user_i_din_a,

 i_din_b => user_i_din_b,
 i_din_c => user_i_din_c,

 i_in_reg_a_ce => user_i_in_reg_a_ce,
 i_in_reg_b_ce => user_i_in_reg_b_ce,

 i_in_reg_c_ce => user_i_in_reg_c_ce,
 i_in_reg_rstn => user_i_in_reg_rstn,

 i_pipeline_ce => user_i_pipeline_ce,
 i_pipeline_rstn => user_i_pipeline_rstn,

 i_load => user_i_load,
 o_dout => user_o_dout,

 o_status => user_o_status
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 277

ACX_FP_MULT_2X
The ACX_FP_MULT_2X module is similar to , but uses a single to compute two ACX_FP_MULT ACX_MLP72
products in parallel, with optional accumulations. The two operations are:

dout_ab = i_din_a × i_din_b

dout_cd = i_din_c × i_din_d

Figure 113: Twin Floating-Point Multipliers With Optional Accumulate

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 278

Parameters
Table 209: ACX_FP_MULT_2X Parameters

Parameter Supported
Values Default Description

fp_size 16, 24 16 Width of floating-point number. Supports fp24, fp16, and fp16e8.

fp_exp_size 5, 8 5 Size of floating-point exponent.

accumulate 0, 1 0

0 – no accumulation: , dout_ab = i_din_a × i_din_b dout_cd =
.i_din_c × i_din_d

1 – accumulation: and are the accumulated values. The start of dout_ab dout_cd
accumulation is signaled by asserting or , respectively.i_load_ab=1 i_load_cd=1

in_reg_enable 0, 1 0

0 – no input registers.
1 – , , and are registered.i_din_a i_din_b i_din_c i_din_d

The input registers are controlled by the , ,i_in_reg_a_ce i_in_reg_b_ce
, and inputs. Enabling the input i_in_reg_c_ce i_in_reg_d_ce i_in_reg_rstn

registers adds one cycle of latency.

pipeline_regs 0–4 0 The number of pipeline registers, not counting the input register. The total latency is
.pipeline_regs + in_reg_enable

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 279

Ports
Table 210: ACX_FP_MULT_2X Pin Descriptions

Name Direction Description

i_clk Input Clock input, used for the (optional) registers and accumulator.

i_din_a[(fp_size–1):0] Input 'A' data input to AB multiplier.

i_din_b[(fp_size–1):0] Input 'B' data input to AB multiplier.

i_din_c[(fp_size–1):0] Input 'C' data input to CD multiplier.

i_din_d[(fp_size–1):0] Input 'D' data input to CD multiplier.

i_in_reg_a_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_a

i_in_reg_b_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_b

i_in_reg_c_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_c

i_in_reg_d_ce Input If – ignored.in_reg_enable=0
If – clock enable for .in_reg_enable=1 i_din_d

i_in_reg_rstn Input If – ignored.in_reg_enable=0
If – synchronous active-low reset for input registers.in_reg_enable=1

i_pipeline_ce Input If – ignored.pipeline_regs=0
If – clock enable for pipeline and accumulator registers.pipeline_regs>1

i_pipeline_rstn Input
If – ignored.pipeline_regs=0
If – synchronous active-low reset for pipeline and accumulator pipeline_regs>1
registers.

i_load_ab Input

If – ignored.accumulate=0
If – resets the AB accumulator to , ignoring the accumulate=1 i_din_a × i_din_b
previous value.
This signal is internally pipelined to have the same latency as .i_din_a × i_din_b

i_load_cd Input

If – ignored.accumulate=0
If – resets the CD accumulator to , ignoring the accumulate=1 i_din_c × i_din_d
previous value.
This signal is internally pipelined to have the same latency as .i_din_c × i_din_d

o_dout_ab[(fp_size–1):0] Output Result of A × B multiplication and accumulation.

o_dout_cd[(fp_size–1):0] Output Result of C × D multiplication and accumulation.

o_status_ab[1:0](1) Output Error status of .o_dout_ab

o_status_cd[1:0](1) Output Error status of .o_dout_cd

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 280

1.

Name Direction Description

Table Notes

See for details.Output Status

Usage and Inference
ACX_FP_MULT_2X cannot be inferred and must be directly instantiated. The specified floating point format
applies to the inputs and outputs but, internally, the operations are performed with fp24.

If , the four data inputs require 96 bits total. Since this is more than 72 bits, the that fp_size=24 ACX_MLP72
performs the operation is used in wide input mode. In this mode, the adjacent site is used as ACX_BRAM72K
route-through, meaning it is no longer available for BRAM placement. By contrast, if , only 64 input fp_size=16
bits are needed and normal input mode is used.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 281

Instantiation Templates

Verilog

// Verilog template for ACX_FP_MULT_2X

ACX_FP_MULT_2X #(
 .fp_size (fp_size),

 .fp_exp_size (fp_exp_size),
 .accumulate (accumulate),

 .in_reg_enable (in_reg_enable),
 .pipeline_regs (pipeline_regs)

) instance_name (
 .i_clk (user_i_clk),

 .i_din_a (user_i_din_a),
 .i_din_b (user_i_din_b),

 .i_din_c (user_i_din_c),
 .i_din_d (user_i_din_d),
 .i_in_reg_a_ce (user_i_in_reg_a_ce),
 .i_in_reg_b_ce (user_i_in_reg_b_ce),
 .i_in_reg_c_ce (user_i_in_reg_c_ce),
 .i_in_reg_d_ce (user_i_in_reg_d_ce),
 .i_in_reg_rstn (user_i_in_reg_rstn),
 .i_pipeline_ce (user_i_pipeline_ce),
 .i_pipeline_rstn (user_i_pipeline_rstn),
 .i_load_ab (user_i_load_ab),
 .i_load_cd (user_i_load_cd),
 .o_dout_ab (user_o_dout_ab),
 .o_dout_cd (user_o_dout_cd),
 .o_status_ab (user_o_status_ab),
 .o_status_cd (user_o_status_cd)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 282

VHDL

-- VHDL Component template for ACX_FP_MULT_2X

component ACX_FP_MULT_2X is
generic (

 fp_size : integer := 16;
 fp_exp_size : integer := 5;

 accumulate : integer := 0;
 in_reg_enable : integer := 0;

 pipeline_regs : integer := 0
);

port (
 i_clk : in std_logic;

 i_din_a : in std_logic_vector(fp_size-1 downto 0);
 i_din_b : in std_logic_vector(fp_size-1 downto 0);

 i_din_c : in std_logic_vector(fp_size-1 downto 0);
 i_din_d : in std_logic_vector(fp_size-1 downto 0);

 i_in_reg_a_ce : in std_logic;
 i_in_reg_b_ce : in std_logic;

 i_in_reg_c_ce : in std_logic;
 i_in_reg_d_ce : in std_logic;

 i_in_reg_rstn : in std_logic;
 i_pipeline_ce : in std_logic;

 i_pipeline_rstn : in std_logic;
 i_load_ab : in std_logic;

 i_load_cd : in std_logic;
 o_dout_ab : out std_logic_vector(fp_size-1 downto 0);

 o_dout_cd : out std_logic_vector(fp_size-1 downto 0);
 o_status_ab : out std_logic_vector(1 downto 0);

 o_status_cd : out std_logic_vector(1 downto 0)
);

end component ACX_FP_MULT_2X

-- VHDL Instantiation template for ACX_FP_MULT_2X
instance_name : ACX_FP_MULT_2X

generic map (
 fp_size => fp_size,

 fp_exp_size => fp_exp_size,
 accumulate => accumulate,

 in_reg_enable => in_reg_enable,

 pipeline_regs => pipeline_regs
)

port map (
 i_clk => user_i_clk,

 i_din_a => user_i_din_a,
 i_din_b => user_i_din_b,

 i_din_c => user_i_din_c,
 i_din_d => user_i_din_d,

 i_in_reg_a_ce => user_i_in_reg_a_ce,
 i_in_reg_b_ce => user_i_in_reg_b_ce,

 i_in_reg_c_ce => user_i_in_reg_c_ce,
 i_in_reg_d_ce => user_i_in_reg_d_ce,

 i_in_reg_rstn => user_i_in_reg_rstn,
 i_pipeline_ce => user_i_pipeline_ce,

 i_pipeline_rstn => user_i_pipeline_rstn,
 i_load_ab => user_i_load_ab,

 i_load_cd => user_i_load_cd,

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 283

 o_dout_ab => user_o_dout_ab,

 o_dout_cd => user_o_dout_cd,
 o_status_ab => user_o_status_ab,

 o_status_cd => user_o_status_cd
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 284

ACX_FP_MULT_ADD
The ACX_FP_MULT_ADD module computes (A×B) + (C×D), with optional accumulation. Internal register stages
can be enabled to allow for higher operating frequencies.

Figure 114: Twin Floating-Point Multiplies With Addition and Optional
Accumulation

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 285

Parameters
Table 211: ACX_FP_MULT_ADD Parameters

Parameter Supported
Values Default Description

fp_size 16, 24 16 Width of floating-point number. Supports fp24, fp16, and fp16e8.

fp_exp_size 5, 8 5 Size of floating-point exponent.

subtract 0, 1 0 0 – compute .(i_din_a × i_din_b) + (i_din_c × i_din_d)
1 – compute .(i_din_a × i_din_b) - (i_din_c × i_din_d)

accumulate 0, 1 0
0 – no accumulation: .dout = (i_din_a × i_din_b) ± (i_din_c × i_din_d)
1 – accumulation: is the accumulated value. The start of accumulation is signaled dout
by asserting .i_load=1

in_reg_enable 0, 1 0

0 – no input registers.
1 – , , and are registered.i_din_a i_din_b i_din_c i_din_d

The input registers are controlled by the , i_in_reg_ac_ce i_in_reg_bd_ce
and inputs. Enabling the input registers adds one cycle of latency.i_in_reg_rstn

pipeline_regs 0–5 0 The number of pipeline registers not counting the input register. The total latency is
.pipeline_regs + in_reg_enable

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 286

1.

Ports
Table 212: ACX_FP_MULT_ADD Pin Descriptions

Name Direction Description

i_clk Input Clock input, used for the (optional) registers and accumulator.

i_din_a[(fp_size–1):0] Input 'A' data input to AB multiplier.

i_din_b[(fp_size–1):0] Input 'B' data input to AB multiplier.

i_din_c[(fp_size–1):0] Input 'C' data input to CD multiplier.

i_din_d[(fp_size–1):0] Input 'D' data input to CD multiplier.

i_in_reg_ac_ce Input If – ignored.in_reg_enable=0
If – clock enable for and .in_reg_enable=1 i_din_a i_din_c

i_in_reg_bd_ce Input If – ignored.in_reg_enable=0
If – clock enable for and .in_reg_enable=1 i_din_b i_din_d

i_in_reg_rstn Input If – ignored.in_reg_enable=0
If – synchronous active-low reset for input registers.in_reg_enable=1

i_pipeline_ce Input If – ignored.pipeline_regs=0
If – clock enable for pipeline and accumulator registers.pipeline_regs>1

i_pipeline_rstn Input
If – ignored.pipeline_regs=0
If – synchronous active-low reset for pipeline and accumulator pipeline_regs>1
registers.

i_load Input

If – ignored.accumulate=0
If – resets the accumulator to:accumulate=1

, ignoring the previous value.(i_din_a × i_din_b) ± (i_din_c × i_din_d)

This signal is internally pipelined to have the same latency as:
.(i_din_a × i_din_b) ± (i_din_c × i_din_d)

o_dout[(fp_size–1):0] Output Result of multiplication and accumulation.

o_status[1:0](1) Output Error status of .o_dout

Table Notes

See for details.Output Status

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 287

Usage and Inference
ACX_FP_MULT_ADD cannot be inferred and must be directly instantiated. The specified floating point format
applies to the inputs and output but, internally, the operations are performed with fp24.

If , the four data inputs require 96 bits total. Since this is more than 72 bits, the that fp_size=24 ACX_MLP72
performs the operation is used in wide input mode. In this mode, the adjacent site is used as ACX_BRAM72K
route-through, meaning it is no longer available for BRAM placement. By contrast, if , only 64 input fp_size=16
bits are needed, and normal input mode is used.

Instantiation Templates

Verilog

// Verilog template for ACX_FP_MULT_ADD
ACX_FP_MULT_ADD #(

 .fp_size (fp_size),
 .fp_exp_size (fp_exp_size),

 .subtract (subtract),
 .accumulate (accumulate),

 .in_reg_enable (in_reg_enable),
 .pipeline_regs (pipeline_regs)

) instance_name (
 .i_clk (user_i_clk),

 .i_din_a (user_i_din_a),
 .i_din_b (user_i_din_b),

 .i_din_c (user_i_din_c),
 .i_din_d (user_i_din_d),

 .i_in_reg_ac_ce (user_i_in_reg_ac_ce),
 .i_in_reg_bd_ce (user_i_in_reg_bd_ce),

 .i_in_reg_rstn (user_i_in_reg_rstn),
 .i_pipeline_ce (user_i_pipeline_ce),

 .i_pipeline_rstn (user_i_pipeline_rstn),
 .i_load (user_i_load),

 .o_dout (user_o_dout),
 .o_status (user_o_status)

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 288

VHDL

-- VHDL Component template for ACX_FP_MULT_ADD

component ACX_FP_MULT_ADD is
generic (

 fp_size : integer := 16;
 fp_exp_size : integer := 5;

 subtract : integer := 0;
 accumulate : integer := 0;

 in_reg_enable : integer := 0;
 pipeline_regs : integer := 0

);
port (

 i_clk : in std_logic;
 i_din_a : in std_logic_vector(fp_size-1 downto 0);

 i_din_b : in std_logic_vector(fp_size-1 downto 0);
 i_din_c : in std_logic_vector(fp_size-1 downto 0);

 i_din_d : in std_logic_vector(fp_size-1 downto 0);
 i_in_reg_ac_ce : in std_logic;

 i_in_reg_bd_ce : in std_logic;
 i_in_reg_rstn : in std_logic;

 i_pipeline_ce : in std_logic;
 i_pipeline_rstn : in std_logic;

 i_load : in std_logic;
 o_dout : out std_logic_vector(fp_size-1 downto 0);

 o_status : out std_logic_vector(1 downto 0)
);

end component ACX_FP_MULT_ADD

-- VHDL Instantiation template for ACX_FP_MULT_ADD
instance_name : ACX_FP_MULT_ADD

generic map (
 fp_size => fp_size,

 fp_exp_size => fp_exp_size,
 subtract => subtract,

 accumulate => accumulate,
 in_reg_enable => in_reg_enable,

 pipeline_regs => pipeline_regs
)

port map (

 i_clk => user_i_clk,
 i_din_a => user_i_din_a,

 i_din_b => user_i_din_b,
 i_din_c => user_i_din_c,

 i_din_d => user_i_din_d,
 i_in_reg_ac_ce => user_i_in_reg_ac_ce,

 i_in_reg_bd_ce => user_i_in_reg_bd_ce,
 i_in_reg_rstn => user_i_in_reg_rstn,

 i_pipeline_ce => user_i_pipeline_ce,
 i_pipeline_rstn => user_i_pipeline_rstn,

 i_load => user_i_load,
 o_dout => user_o_dout,

 o_status => user_o_status
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 289

Chapter - 6: Memories

ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error
Correction)

Figure 115: 20-kb Simple Dual-Port Memory With Error Correction

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 290

The block RAM (ACX_BRAMSDP) implements a 20kb simple-dual-port (SDP) memory block with one write port
and one read port. Each port can be independently configured as follows:

512 × 40

512 × 36

512 × 32

1k × 20

1k × 18

1k × 16

2k × 10

2k × 9

2k × 8

4k × 5

4k × 4

8k × 2

16k × 1

The read and write operations are both synchronous. For higher performance operation, an additional output
register can be enabled which causes an additional cycle of read latency. Write enable (we) controls provide 8-
bit, 9-bit, or 10-bit byte enable control for port widths above 16 bits.

The initial value of the memory contents may be specified either with parameters or with a memory initialization
file. The initial/reset values of the output registers may also be specified.

Figure 116: ACX_BRAMSDP Block Diagram (Per Port)

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 291

Table 213: ACX_BRAMSDP Pin Descriptions

Name Type Description

wrclk, rdclk Input
Write/read clock inputs. Read/write operations are fully synchronous and occur upon the active edge of

/ when the / signal is high. The active edge of / is determined by wrclk rdclk wren rden wrclk rdclk
the / parameter.write_clock_polarity read_clock_polarity

rden Input Read port enable. Asserted to perform a read operation. If the parameter is , read_peval 1'b0 rden
is active low, otherwise if , is active high.1'b1 rden

rdaddr[13:0] Input Determines which memory location is being read. When the port width is greater than 1, the address
must be top-justified, meaning that the low order address bits must be tied to 0.

wren Input Write port enable. Asserted to perform a write operation. If the parameter is , write_peval 1'b0 wren
is active low, otherwise if , is active high.1'b1 wren

wraddr[13:0] Input Determines which memory location is being written. When the port width is greater than 1, the address
must be top-justified, meaning that the low order address bits must be tied to 0.

we[3:0] Input

Write port byte-wide write enable. Each bit enables a 10-bit byte to be written to the memory block as
follows:
Byte writes are enabled on the write port when both the signal is asserted and the corresponding wren
bit in the signal is asserted. For write port widths <= 20, must be tied to . For write we we[3:2] 2'b00
port width <= 10, must be tied to .we[1] we[0]

din[31:0], Input Write port data input.

dinp[3:0] Input Write port parity input. May be used for data.

dinpx[3:0] Input Write port extended parity input. May be used for data.

rstlatch Input Output latch synchronous reset. When asserted, the value of the parameter is written to read_srval
the output latch on the next active edge of .rdclk

rstreg Input

Output register reset. The parameter determines whether the reset is sr_assertion_reg
synchronous (default) or asynchronous, and the parameter determines whether it is reg_rstval
active-high (default) or active-low. When reset is asserted, the output register is assigned the value of
the parameter. The priority of the input relative to the clock enable input,read_srval rstreg

, is determined by the value of the parameter.outregce regce_priority

outregce Input
Output register clock enable (active-high). When the parameter is , de-asserting the en_out_reg 1'b1

 signal causes the BRAM output to retain the , , and signals unchanged, outregce dout doutp doutpx
independent of a read operation. When is 1'b0, the input is ignored.en_out_reg outregce

dout[31:0] Output Read port data output. For read operations, is updated with the memory contents addressed bydout
 if the port enable is active.rdaddr rden

doutp[3:0] Output Read port parity output. Behaves in the same manner as and is used when the is dout read_width
set to 5, 9, 10, 18, 20, 36, or 40 bits.

doutpx[3:0] Output Read port extended parity output. Behaves in the same manner as and is used when thedout
 is set to 10, 20 or 40 bits.read_width

sbit_error Output

Single-bit error (active-high). Asserted during a read operation when the parameter decoder_enable
is , and a single-bit error is detected. In this case, the corrected word is output on the pins. 1'b1 dout
The memory contents are not corrected by the error correction circuitry. The signal is sbit_error
aligned with the associated read data word.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 292

Name Type Description

dbit_error Output

Dual-bit error (active-high). Asserted during a read operation when the parameter is decoder_enable
, and a dual-bit error is detected. In the case of a dual-bit error condition, the uncorrected read 1'b1

data word is output on the pins. The signal is aligned with the associated read data dout dbit_error
word.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 293

Table 214: ACX_BRAMSDP Parameters

Parameter Defined
Values

Default
Value Description

read_width
1, 2, 4, 5, 8,
9, 10, 16, 18,
20, 32, 36, 40

40 Sets the width of the read port.

write_width
1, 2, 4, 5, 8,
9, 10, 16, 18,
20, 32, 36, 40

40
Sets the width of the write port. May vary from the write port width, but it
must be within the allowable combinations defined in Memory Organization

.and Data Input/Output Pin Assignments (see page 295)

write_clock_polarity,
read_clock_polarity

rise, fall rise Used to set the active edge of the read and write clocks.

write_peval 1'b0, 1'b1 1'b1
Defines the active level of the port. A value of sets active low, wren 1'b0
while sets active-high.1'b1

read_peval 1'b0, 1'b1 1'b1
Defines the active level of the ports. A value of sets active low,rden 1'b0

 sets active-high.1'b1

latch_rstval 1'b0, 1'b1 1'b1
Defines the active level of the input. A value of sets active rstlatch 1'b0
low, while sets active high.1'b1

en_out_reg 1'b0, 1'b1 1'b0
Determines whether the output register is enabled. A value of disables 1'b0
the output register and results in a read latency of one cycle, while 1'b1
enables the output register and results in a read latency of two cycles.

reg_rstval 1'b0, 1'b1 1'b1
Defines the active level of the input. A value of sets rstreg 1'b0 rstreg
active low, while sets active high.1'b1

regce_priority
rstreg,
regce

rstreg

Defines the priority of the clock enable input relative to theoutregce
 reset.rstreg

" " – allows the output register to be reset by asserting rstreg rstreg
without requiring assertion of .outregce

" " – allows the output register to be reset only by asserting both regce
 and together.rstreg outregce

read_initval(1) 40-bit number 40'h0

When enabled, defines the power-up default value of the data on the output
of the latch and output register. Assignment is dependent on the

 parameter as shown in read_width Table: initval, srval, and meminit File
.Mapping to Output Signals (see page 304)

read_srval(1) 40-bit number 40'h0

When enabled, defines the reset value of the data on the output of the latch
and output register, when and/or is asserted. rstlatch rstreg
Assignment is dependent on the parameter as shown in read_width Table:

.initval, srval, and meminit File Mapping to Output Signals (see page 304)

sr_assertion_reg
clocked, un
clocked

clocked

Sets whether the assertion of the output register reset is synchronous or
asynchronous with respect to the input. A value of " " sets rdclk clocked
synchronous reset where the output register is reset at the next rising edge
of the clock if is asserted. A value of " " sets rstreg unclocked
asynchronous reset where the output register is reset immediately following
the assertion of the input.rstreg

Provides a mechanism to set the initial contents of the ACX_BRAMSDP
memory.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 294

1.

Parameter Defined
Values

Default
Value Description

mem_init_file <path to
HEX file>

"" If this parameter is defined, the BRAM is initialized with the values
defined in the file pointed to by the parameter according to the format
defined in .Memory Initialization (see page 304)

If left at the default value (""), the initial contents are defined by the
values of the – , – , andinitd_00 initd_63 initp_0 initp_7

– parameters.initpx_0 initpx_7

If the memory initialization parameters and the mem_init_file
parameters are not defined, the contents of the BRAM remain
uninitialized.

initd_00–initd_63 256-bit
hex value 256'hx

The through parameters define the initial contents of initd_00 initd_63
the memory associated with and . Each 256-douta[15:0] doutb[15:0]
bit parameter associated with the BRAM memory is defined in Memory

.Initialization (see page 304)

initp_0–initp_7 256-bit
hex value 256'hx

The through parameters define the initial contents of the initp_0 initp_7
memory associated with and . Each 256-bit doutpa[1:0] doutpb[1:0]
parameter associated with the BRAM memory is defined in Memory

.Initialization (see page 304)

initpx_0–initpx_7 256-bit
hex value 256'hx

The through parameters define the initial contents of initpx_0 initpx_7
the memory associated with and . Each doutpxa[1:0] doutpxb[1:0]
256-bit parameter associated with the BRAM memory is defined in Memory

.Initialization (see page 304)

encoder_enable 1'b0, 1'b1 1'b0

Determines if the ECC encoder circuitry is selected or bypassed. A value of
 enables the ECC encoder for normal operation, while disables 1'b1 1'b0

the ECC encoder circuitry and allows the and inputs to be dinp dinpx
connected directly to the underlying memory array.

decoder_enable 1'b0, 1'b1 1'b0

Determines if the ECC decoder circuitry is selected or bypassed. A value of
 enables the ECC decoder for normal operation while disables 1'b1 1’b0

the ECC decoder circuitry and allows the and memory doutp doutpx
outputs to be driven directly from the underlying memory array.

Table Notes

Special Case for ECC Mode: This parameter has no effect when the ECC decoder is enabled (), decoder_enable == 1'b1
and the BRAM data output register is disabled (). In this configuration, the BRAM output latch is en_out_reg == 1'b0
bypassed, and the power-up default value of the data output is undefined. To enable read port init values and/or reset values in
ECC mode, the output register must be enabled ().en_out_reg == 1'b1

Note

The ACE BRAM IP Configuration GUI and ACX_BRAM_GEN macros only support a single bit write
enable (we) for the entire data word. Byte-wise write enables are not supported via the GUI or in Verilog
macros. Access to the full capabilities of the BRAM is available by instantiating the ACX_BRAMSDP
primitive directly.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 295

Memory Organization and Data Input/Output Pin Assignments
The ACX_BRAMSDP block supports memory widths from one to forty bits wide. The width of the data input din
is determined by the parameter while the data output width is determined by the write_width dout

 parameter. The read port and write port widths may be different. There are some limitations of the read_width
port width assignments between the read and write width assignments, these limitations and the supported port
width combinations are described in the following table. 'X' indicates a supported configuration.

Table 215: Supported Width Combinations

Read
Width Write Width

512 x
40

1k ×
20

2k ×
10

4k ×
5

512 x
36

1k ×
18

2k ×
9

512 x
32

1k ×
16

2k ×
8

4k ×
4

8k ×
2

16k ×
1

512 × 40 X X X X – – – – – – – – –

1k × 20 X X X X – – – – – – – – –

2k × 10 X X X X – – – – – – – – –

4k × 5 X X X X – – – – – – – – –

512 x 36 – – – – X X X – – – – – –

1k × 18 – – – – X X X – – – – – –

2k × 9 – – – – X X X – – – – – –

512 x 32 – – – – – – – X X X X X X

1k × 16 – – – – – – – X X X X X X

2k × 8 – – – – – – – X X X X X X

4k × 4 – – – – – – – X X X X X X

8k × 2 – – – – – – – X X X X X X

16k × 1 – – – – – – – X X X X X X

Data Widths Using Parity Pins
The ACX_BRAMSDP memory has three buses for both data in and data out; the respective and din dout
interfaces, along with the , , and parity interfaces. When ECC is used, the parity dinp dinpx doutp doutpx
interfaces are unused, as the ECC encoder and decoder make use of the respective memory pins for ECC
operation. When ECC is disabled, the parity interfaces are assigned to the respective data buses as shown in the
following table.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 296

Table 216: Parity Pins Assignment, (Per Port)

Data
Width dinpx/doutpx dinp/doutp din/dout

40 {data[39], data[29],
data[19], data[9]}

{data[34], data[24], data[14],
data[4]}

{data[38:35], data[33:30], data[28:25],
data[23:20], data[18:15], data[13:10], data[8:5],
data[3:0]}

36 – {data[35], data[26], data[17],
data[8]} {data[34:27], data[25:18], data[16:9], data[7:0]}

32 – – data[31:0]

20 {2'b00, data[19],
data[9]} {2'b00, data[14], data[4]} {16'h0, data[18:15], data[13:10], data[8:5],

data[3:0]}

18 – {2'b00, data[17], data[8]} {16'h0, data[16:9], data[7:0]}

16 – – {16'h0, data[15:0]}

10 {3'b000, data[9]} {3'b000, data[4]} {24'h0, data[8:5], data[3:0]}

9 – {3'b000, data[8]} {24'h0, data[7:0]}

8 – – {24'h0, data[7:0]}

5 – {3'b000, data[4]} {28'h0, data[3:0]}

4 – – {28'h0, data[3:0]}

2 – – {30'h0, data[1:0]}

1 – – {31'h0, data[0]}

Caution!

Pay close attention to non power-of-two-sized data widths and how the data bits are assigned.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 297

Address Bus Mapping
When the ACX_BRAMSDP is configured for memory depths of less than 16K entries, the address bus is
assigned left justified, assigning the lower unused address bits to 0 as required. This is shown in the following
table.

Table 217: ACX_BRAMSDP Address Bus Mapping (Per Port)

Memory
Organization

rdaddr/wraddr
Pins

Address Pins
Tied to 0

512 × 40 13:5 4:0

512 × 36 13:5 4:0

512 × 32 13:5 4:0

1k × 20 13:4 3:0

1k × 18 13:4 3:0

1k × 16 13:4 3:0

2k × 10 13:3 2:0

2k × 9 13:3 2:0

2k × 8 13:3 2:0

4k × 5 13:2 1:0

4k × 4 13:2 1:0

8k × 2 13:1 0

16k × 1 13:0 –

Warning

A common error is to assign the address bus incorrectly justified; it must be assigned , not left-justified
right-justified.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 298

Read and Write Operations

Timing Options
The BRAM has two options for interface timing, controlled by the parameter:en_out_reg

Latched mode – when is , the port is in latched mode where the read address is en_out_reg 1'b0
registered and the stored data is latched into the output latches on the following clock cycle, providing a
read operation with one cycle of latency.

Registered mode – when is , the port is in registered mode where there is an en_out_reg 1'b1
additional register after the latch, supporting higher-frequency designs, providing a read operation with two
cycles of latency.

Read Operation
Read operations are signaled by driving the signal with the address to be read, and asserting the rdaddr rden
signal. The requested read data arrives on the , , and signals on the following clock cycle or dout doutp doutpx
the cycle after, depending on the parameter value.en_out_reg

Table 218: Latched Mode BRAM Output Function Table (Assumes Rising-Edge Clock and Active-High
Port Enable)

Operation rdclk rstlatch rden dout

Hold X X X Hold previous value.

Reset latch ↑ 1 X init_srval

Hold ↑ 0 0 Hold previous value.

Read ↑ 0 1 mem[rdaddr]

Table 219: Registered Mode BRAM Output Function Table (Assumes Active-High Clock, Output Register
Clock Enable, and Output Register Reset)

Operation regce_priority rdclk rstreg outregce dout

Hold – X X X dout_previous

Reset Output "rstreg" ↑ 1 X read_srval

Reset Output "regce" ↑ 1 1 read_srval

Hold "regce" ↑ X 0 dout_previous

Hold "rstreg" or "regce" ↑ 0 0 dout_previous

Update Output "rstreg" or "regce" ↑ 0 1 Registered from latch output.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 299

Write Operation
Write operations are signaled by asserting the signal and asserting the write enable () signal for the wren we
bytes to be written. The values of the , , and signals are stored in the memory array at the din dinp dinpx
indicated address by the signal on the next active clock edge.wraddr

Simultaneous Memory Operations
Memory operations may be performed simultaneously from both sides of the memory; however, there is a
restriction regarding memory collisions. A memory collision is defined as the condition where both of the ports
access the same memory location(s) within the same clock cycle (both ports connected to the same clock), or
within a fixed time window (if each port is connected to a different clock). If one of the ports is writing an address
while the other port is reading the same address (qualified with overlapping write enables per bit), the write
operation takes precedence, but the read data is invalid. The data may be reliably read on the next cycle if there
is no longer a write collision.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 300

Timing Diagrams
This section contains timing diagrams for both values of the parameter. The first timing diagram en_out_reg
illustrates the behavior of the ACX_BRAMSDP instance with the output register disabled.

Figure 117: Latched Mode Read Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 301

The behavior of the ACX_BRAMSDP on each clock cycle of the preceding diagram is described in the following
table, where each row represents a transaction that spans the clock cycles indicated.

Table 220: ACX_BRAMSDP Timing Diagram Clock Cycle Behavior With Output Register Disabled

Clock
Cycle Transaction Description

1 No-op wren is asserted but is not asserted. Nothing is written to the memory array.we

2 Write wren and are both asserted. Data on is committed to location in the we din wraddr
memory array.

3 Write wren and are both asserted. Data on is committed to location in the we din wraddr
memory array.

4 No-op wren is not asserted. Asserted is ignored and nothing is written to the memory array.we

4–5 Read reset
latch

rstlatch is asserted, causing the output to be set to as provided by the srval
 parameter on the next cycle.read_srval

5–6 Read rden is asserted. The memory is read and presented on on the following cycle.dout

6–7 Read reset
latch

rden is asserted. The memory is read. Since is asserted, the output is reset to rstlatch
the as provided by the parameter.srval read_srval

7–8 Read rden is asserted. The memory is read and presented on on the following cycle.dout

8–9 Hold rden and are both de-asserted. retains its previous value.rstlatch dout

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 302

The second timing diagram illustrates the behavior of a ACX_BRAMSDP instance with the output register
enabled.

Figure 118: Registered Mode Read Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 303

The behavior of the ACX_BRAMSDP on each clock cycle of the preceding diagram is described in the following
table, where each row represents a transaction that spans the clock cycles indicated.

Table 221: ACX_BRAMSDP Timing Diagram Clock Cycle Behavior With Output Register Enabled

Clock
Cycle Transaction Description

1 No-op wren is asserted but is not asserted. Nothing is written to memory.we

2 Write wren and are both asserted. Data on is committed to location in memory.we din wraddr

3 Write wren and are both asserted. Data on is committed to location in memory.we din wraddr

4 No-op wren is not asserted. The asserted is ignored and nothing is written to memory.we

3–5 Read reset
latch

rstlatch is asserted on the second cycle, causing the output to be set to on the srval
next cycle as provided by the parameter.read_srval

4–6 Hold All of the control signals are de-asserted and the signals retain their previous value.dout

5–7 Hold rden is asserted. Memory is read. Since is de-asserted on the second cycle, outregce
 retains its previous value.dout

6–8 Read rden is asserted. Memory is read. Since is asserted on the second cycle, outregce dout
provides the data that was just read from the memory array.

7–9 Read reset
register

rden is asserted. Memory is read. Since and are both asserted, outregce rstreg dout
is reset to the value instead of providing the data that was just read.read_srval

8–10 Read rden is asserted. Memory is read. Since is asserted on the second cycle, outregce dout
provides the data that was just read.

9–11
Register
reset without
outregce

rden is asserted. Memory is read. On the second cycle, is asserted and rstreg outregce
is de-asserted. The output data is either unchanged or is set to the as provided by srval
the parameter depending on the value of the parameter.read_srval regce_priority

If is , asserting resets the output register regce_priority "rstreg" rstreg
independent of the signaloutregce

If is , both and must be asserted to regce_priority "regce" rstreg outregce
reset the output register

10–12 – outregce and are both asserted on the second cycle, then is reset to the rstreg dout
 value.read_srval

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 304

Memory Initialization

Initializing With Parameters
The data portion of initial memory contents may be defined by setting the 64 256-bit parameters initd_00
through . The data memory is organized as little-endian with bit 0 mapped to bit zero of parameter initd_63

 and bit 16383 mapped to bit 255 of parameter .initd_00 initd_63

When a BRAM is configured with port widths of 9 or 18 bits, the parity portion of the initial memory contents may
be defined by setting the eight 256-bit parameters through . The parity memory is also initp_0 initp_7
organized as little-endian with the first parity bit location mapped to bit 0 of and the last parity bit initp_0
mapped to the bit 255 of .initp_7

When a BRAM is configured with port widths of 5, 10 or 20 bits, the parity and extended parity portions of the
initial memory contents may be defined by setting the eight 256-bit parameters through and initp_0 initp_7
the eight 256-bit parameters through . The parity and extended parity memories are both initpx_0 initpx_7
organized as little-endian with the first parity bit location mapped to bit 0 of / and the last initp_0 initpx_0
parity bit mapped to bit 255 of / .initp_7 initpx_7

Initializing With a Memory Initialization File
Alternatively, a BRAM may be initialized with a memory file by setting the parameter to the mem_init_file
path of a memory initialization file. The file format must be hexadecimal entries separated by white space, where
the white space is defined by spaces or line separation. Each entry is a hexadecimal number of width equal to
the maximum of the and parameters.read_width write_width

A number entry may contain underscore () characters among the digits (i.e.,). Commenting _ "A234_4567_33"
is allowed beginning with a double-slash (). C-like commenting is also allowed with the comment placed //
between and characters. The memory is initialized starting with the first entry of the file initializing the "/*" "*/"
memory array starting with address zero and moving upward.

If is defined, the BRAM is initialized with the values in the file referenced by the mem_init_file
 parameter. If is left at the default value of "", the initial contents are defined mem_init_file mem_init_file

by the values of the parameters through , through , and initd_00 initd_63 initp_0 initp_7 initpx_0
through . If neither the memory initialization parameters nor the parameters are initpx_7 mem_init_file
defined, the contents of the BRAM remain uninitialized and unknown until the memory locations are written.

The following tables show how the init values in the and parameters and the read_initval read_srval
memory initialization file entries map to , , and :dout doutp doutpx

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 305

Table 222: srval and initval to Output Signals Mapping for datawidth = 1, 2, 4, 8, 16, and 32

initval datawidth

32 16 8 4 2 1

init[31:16] dout[31:16] –

init[15:8] dout[15:8] –

init[7:4] dout[7:4] –

init[3:2] dout[3:2] –

init[1] dout[1] –

init[0] dout[0]

Table 223: srval and initval to Output Signals Mapping for datawidth = 9, 18, and 36

initval datawidth

36 18 9

init[35] doutp[3]

–
init[34:27] dout[31:24]

init[26] doutp[2]

init[25:18] dout[23:16]

init[17] doutp[1]

–
init[16:9] dout[15:8]

init[8] doutp[0]

init[7:0] dout[7:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 306

Table 224: srval and initval to Output Signals Mapping for datawidth = 5, 10, 20, and 40

initval datawidth

40 20 10 5

init[39] doutpx[3]

–

init[38:35] dout[31:28]

init[34] doutp[3]

init[33:30] dout[27:24]

init[29] doutpx[2]

init[28:25] dout[23:20]

init[24] doutp[2]

init[23:20] dout[19:16]

init[19] doutpx[1]

–
init[18:15] dout[15:12]

init[14] doutp[1]

init[13:10] dout[11:8]

init[9] doutpx[0]

–
init[8:5] dout[7:4]

init[4] doutp[0]

init[3:0] dout[3:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 307

ECC Modes of Operation
There are four modes of operation for the ACX_BRAMSDP defined by the and encoder_enable

 parameters as shown in the following table. The and decoder_enable write_width read_width
parameters must both be set to 40 to enable any of these modes.

Table 225: ACX_BRAMSDP ECC Modes of Operation

encoder_enable decoder_enable ECC Operation Mode

1'b0 1'b0
ECC encoder and decoder disabled, standard ACX_BRAMSDP operation
available.

1'b0 1'b1 ECC decode-only mode.

1'b1 1'b0 ECC encode-only mode.

1'b1 1’b1 Normal ECC encode/decode mode.

ECC Encode/Decode Operation Mode
The ECC encode/decode operation mode utilizes both the ECC encoder and the ECC decoder. The 32-bit user
data is written into the ACX_BRAMSDP via the inputs. The ECC encoder generates the 7-bit error din[31:0]
correction syndrome and writes it into the memory array alongside the data word via the parity () and dinp
extended parity () inputs. During read operations, the ECC decoder reads the 32-bit user data and the 7-dinpx
bit syndrome data to generate an error correction mask. The ECC decoder corrects any single-bit error and only
detects, but does not correct, any dual-bit error. If the ECC decoder detects a single-bit error, it automatically
corrects the error and places the corrected data on the pins and asserts the output. dout[31:0] sbit_error
The memory location containing the error is not corrected. If the ECC decoder detects a dual-bit error, it places
the uncorrected data on the pins and asserts the output one cycle after the the data dout[31:0] dbit_error
word is read.

ECC Encode-Only Operation Mode
The ECC encode-only operation has the ECC encoder enabled and the ECC decoder disabled. This mode
allows writing 32 bits of data while having the 7-bit error correction syndrome automatically written to the ({dinpx

) bits of the memory array during write operations. Read operations provide the 32-bit user [2:0],dinp[3:0]}
data and the error syndrome without correcting the data. Encode-only mode can be used as a building block to
have error correction for off-chip memories.

ECC Decode-Only Operation Mode
The ECC decode-only operation has the ECC encoder disabled and the ECC decoder enabled. This mode
bypasses the ECC encoder and allows writing 40-bit data directly into the memory array during write operations.
Read operations place the 7-bit error correction syndrome on the () bits. The ECC {doutpx[2:0],doutp[3:0}
decoder corrects any single-bit error and detects, but does not correct, any dual-bit error. If the ECC decoder
detects a single-bit error, it automatically corrects the error and places the corrected data on the dout[31:0]
pins and asserts the output. The memory location containing the error is not corrected. If the ECC sbit_error
decoder detects a dual-bit error, it places the uncorrected data on the pins and asserts the dout[31:0]

 output one cycle after the the data word is read. Decode-only mode can be used as a building dbit_error
block to have error correction for off-chip memories.

Using ACX_BRAMSDP as a Read-Only Memory (ROM)

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 308

1.

2.

3.

Using ACX_BRAMSDP as a Read-Only Memory (ROM)
The ACX_BRAMSDP macro can be used as a read-only memory (ROM) by providing memory initialization data
via a file or parameters (as described in), and tying the signal to its de-Memory Initialization (see page 304) wren
asserted value. All signals on the read-side of the ACX_BRAMSDP operate as described above. This
configuration allows reading from the memory, but not writing to it.

Create an Instance
To create memories within a design, there are three available methods:

Infer the memory – this method provides the greatest code portability and is the recommended approach.
An example follows of an ACX_BRAMSDP inference.

Directly instantiated – this method gives access to the full feature set of the memory. However, any code
is less portable to other technology nodes. See .Instantiation Template (see page 313)

ACE BRAM IP generator – use this tool to create the appropriate memory structure. Refer to the ACE
 for details. (UG070)User Guide

Inference Template

ACX_BRAMSDP Symmetric Inference

//---

//
// Copyright (c) 2022 Achronix Semiconductor Corp.

// All Rights Reserved.
//

//
// This software constitutes an unpublished work and contains

// valuable proprietary information and trade secrets belonging
// to Achronix Semiconductor Corp.

//
// This software may not be used, copied, distributed or disclosed

// without specific prior written authorization from
// Achronix Semiconductor Corp.

//
// The copyright notice above does not evidence any actual or intended

// publication of such software.

//
//

//---
// Design: BRAMSDP Symmetric Inference
// An example to infer a symmetric BRAMSDP in Speedcore designs
//---

`timescale 1ps / 1ps

module bram_sdp_symmetric

#(
 parameter ADDR_WIDTH = 11,

 parameter DATA_WIDTH = 9,
 parameter INIT_FILE_NAME = ""

)
(

 // Clocks and resets

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 309

 input wire clk,

 // Enables
 input wire we,

 // Address and data

 input wire [ADDR_WIDTH-1:0] wr_addr,
 input wire [ADDR_WIDTH-1:0] rd_addr,

 input wire [DATA_WIDTH-1:0] wr_data,

 // Output

 output reg [DATA_WIDTH-1:0] rd_data
);

localparam DATA_DEPTH = (2 ** ADDR_WIDTH);

reg [DATA_WIDTH-1:0] mem_ram[DATA_DEPTH-1:0] /* synthesis syn_ramstyle = "block_ram"

"no_rw_check" */;

initial begin

 if (INIT_FILE_NAME != "")
 $readmemh(INIT_FILE_NAME, mem_ram);

end

// synthesis synthesis_off

reg addr_collision;
assign addr_collision = (rd_addr == wr_addr);

// synthesis synthesis_on

always @(posedge clk) begin

 // synthesis synthesis_off
 if (addr_collision && we)

 rd_data <= {DATA_WIDTH{1'bx}};
 else

 // synthesis synthesis_on
 rd_data <= mem_ram[rd_addr];

 if(we)

 mem_ram[wr_addr] <= wr_data;
end

endmodule : bram_sdp_symmetric

ACX_BRAMSDP Inference

//---

//
// Copyright (c) 2022 Achronix Semiconductor Corp.

// All Rights Reserved.
//

//
// This software constitutes an unpublished work and contains

// valuable proprietary information and trade secrets belonging
// to Achronix Semiconductor Corp.

//
// This software may not be used, copied, distributed or disclosed

// without specific prior written authorization from
// Achronix Semiconductor Corp.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 310

//

// The copyright notice above does not evidence any actual or intended
// publication of such software.

//
//

//---
// Design: BRAMSDP Inference

// An example to infer a simple dual-port BRAM in Speedcore designs
//---

`timescale 1ps / 1ps

module bram_sdp
#(

 parameter WRITE_ADDR_WIDTH = 9,
 parameter READ_ADDR_WIDTH = 11,

 parameter WRITE_DATA_WIDTH = 32,
 parameter READ_DATA_WIDTH = 8,

 parameter INIT_FILE_NAME = ""
)

(
 // Clocks and resets

 input wire clk,

 // Enables
 input wire we,

 // Address and data
 input wire [WRITE_ADDR_WIDTH-1:0] wr_addr,

 input wire [READ_ADDR_WIDTH-1:0] rd_addr,
 input wire [WRITE_DATA_WIDTH-1:0] wr_data,

 // Output
 output reg [READ_DATA_WIDTH-1:0] rd_data

);

`define min(a,b) {(a) < (b) ? (a) : (b)}
`define max(a,b) {(a) > (b) ? (a) : (b)}

`define clamp(a, val, b) {((val) < (a)) ? (a) : (((val) > (b)) ? (b) : (val))}

localparam MIN_DATA_WIDTH = `min(WRITE_DATA_WIDTH, READ_DATA_WIDTH);

localparam MAX_DATA_WIDTH = `max(WRITE_DATA_WIDTH, READ_DATA_WIDTH);

localparam WIDTH_RATIO = MAX_DATA_WIDTH / MIN_DATA_WIDTH;

localparam WRITE_DATA_MULT = (WRITE_DATA_WIDTH < READ_DATA_WIDTH) ? 1 : WIDTH_RATIO;

localparam READ_DATA_MULT = (READ_DATA_WIDTH < WRITE_DATA_WIDTH) ? 1 : WIDTH_RATIO;

localparam WRITE_DEPTH = (2 ** WRITE_ADDR_WIDTH) * WRITE_DATA_MULT;
localparam READ_DEPTH = (2 ** READ_ADDR_WIDTH) * READ_DATA_MULT;

localparam MAX_DEPTH = `max(WRITE_DEPTH, READ_DEPTH);

reg [MIN_DATA_WIDTH-1:0] mem_ram[MAX_DEPTH-1:0] /* synthesis syn_ramstyle = "block_ram"

"no_rw_check" */;

initial begin
 if (INIT_FILE_NAME != "")

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 311

 $readmemh(INIT_FILE_NAME, mem_ram);

end

// Generate bitmask for overlapping wr_addr bit(s) in the rd_addr word(s). We

// assign x to colliding bits and 0 otherwise, then apply the mask with xor.
// Note that A ^ x = x and A ^ 0 = A

// synthesis synthesis_off

reg [(MIN_DATA_WIDTH*MAX_DEPTH)-1:0] min_wr_bit_addr;
reg [(MIN_DATA_WIDTH*MAX_DEPTH)-1:0] max_wr_bit_addr;

reg [(MIN_DATA_WIDTH*MAX_DEPTH)-1:0] min_rd_bit_addr;
reg [(MIN_DATA_WIDTH*MAX_DEPTH)-1:0] max_rd_bit_addr;

reg [READ_DATA_WIDTH-1:0] read_collision_mask;

assign min_wr_bit_addr = wr_addr * WRITE_DATA_WIDTH;
assign max_wr_bit_addr = (wr_addr + 1) * WRITE_DATA_WIDTH - 1;

assign min_rd_bit_addr = rd_addr * READ_DATA_WIDTH;

assign max_rd_bit_addr = (rd_addr + 1) * READ_DATA_WIDTH - 1;

localparam PADDED_READ_DATA_WIDTH = READ_DATA_WIDTH + 2;

reg [PADDED_READ_DATA_WIDTH-1:0] padded_read_collision_mask;
reg [$clog2(PADDED_READ_DATA_WIDTH)-1:0] min_padded_read_collision_mask_bit_addr;

reg [$clog2(PADDED_READ_DATA_WIDTH)-1:0] max_padded_read_collision_mask_bit_addr;

assign min_padded_read_collision_mask_bit_addr = `clamp(min_rd_bit_addr, min_wr_bit_addr+1,

max_rd_bit_addr+2) - min_rd_bit_addr;

assign max_padded_read_collision_mask_bit_addr = `clamp(min_rd_bit_addr, max_wr_bit_addr+1,

max_rd_bit_addr+2) - min_rd_bit_addr;

assign padded_read_collision_mask = ((2 ** (max_padded_read_collision_mask_bit_addr -

min_padded_read_collision_mask_bit_addr + 1))-1) << min_padded_read_collision_mask_bit_addr;

assign read_collision_mask = {READ_DATA_WIDTH{1'bx}} & (padded_read_collision_mask

[READ_DATA_WIDTH:1] & {READ_DATA_WIDTH{we}});

// synthesis synthesis_on

genvar i;
generate

 if (WRITE_DATA_MULT <= 1) begin
 always @(posedge clk)
 if(we)
 mem_ram[wr_addr] <= wr_data;
 end
 else begin
 for (i=0; i < WRITE_DATA_MULT; i=i+1) begin : gen_write
 localparam write_stride = MIN_DATA_WIDTH*i;
 always @(posedge clk)
 if(we)
 mem_ram[{wr_addr, i[$clog2(WRITE_DATA_MULT)-1:0]}] <= wr_data[(write_stride)+:

MIN_DATA_WIDTH];
 end
 end
endgenerate

genvar j;

generate

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 312

 if (READ_DATA_MULT <= 1) begin

 always @(posedge clk)
 // synthesis synthesis_off

 if (1)
 rd_data <= (mem_ram[rd_addr] ^ read_collision_mask);

 else
 // synthesis synthesis_on

 rd_data <= mem_ram[rd_addr];
 end

 else begin
 for (j=0; j < READ_DATA_MULT; j=j+1) begin : gen_read

 localparam read_stride = MIN_DATA_WIDTH*j;
 always @(posedge clk)

 // synthesis synthesis_off
 if (1)

 rd_data[(read_stride)+:MIN_DATA_WIDTH] <= (mem_ram[{rd_addr, j[$clog2

(READ_DATA_MULT)-1:0]}] ^ read_collision_mask[(read_stride)+:MIN_DATA_WIDTH]);

 else

 // synthesis synthesis_on
 rd_data[(read_stride)+:MIN_DATA_WIDTH] <= mem_ram[{rd_addr, j[$clog2

(READ_DATA_MULT)-1:0]}];
 end

 end
endgenerate

endmodule : bram_sdp

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 313

Instantiation Template

Verilog

ACX_BRAMSDP #(

.read_width(40),

.write_width(40),

.write_clock_polarity("rise"),

.en_out_reg(1'b0),

.regce_priority("rstreg"),

.write_peval(1'b1),

.read_peval(1'b1),

.reg_rstval(1'b1),

.latch_rstval(1'b1),

.read_initval(40'h0),

.read_srval(40'h0),

.read_clock_polarity("rise"),

.encoder_enable(1'b0),

.decoder_enable(1'b0),

.mem_init_file(""),

.initd_00(256'h0),

.initd_01(256'h0),

.initd_02(256'h0),

.initd_03(256'h0),

.initd_04(256'h0),

.initd_05(256'h0),

.initd_06(256'h0),

.initd_07(256'h0),

.initd_08(256'h0),

.initd_09(256'h0),

.initd_10(256'h0),

.initd_11(256'h0),

.initd_12(256'h0),

.initd_13(256'h0),

.initd_14(256'h0),

.initd_15(256'h0),

.initd_16(256'h0),

.initd_17(256'h0),

.initd_18(256'h0),

.initd_19(256'h0),

.initd_20(256'h0),

.initd_21(256'h0),

.initd_22(256'h0),

.initd_23(256'h0),

.initd_24(256'h0),

.initd_25(256'h0),

.initd_26(256'h0),

.initd_27(256'h0),

.initd_28(256'h0),

.initd_29(256'h0),

.initd_30(256'h0),

.initd_31(256'h0),

.initd_32(256'h0),

.initd_33(256'h0),

.initd_34(256'h0),

.initd_35(256'h0),

.initd_36(256'h0),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 314

.initd_37(256'h0),

.initd_38(256'h0),

.initd_39(256'h0),

.initd_40(256'h0),

.initd_41(256'h0),

.initd_42(256'h0),

.initd_43(256'h0),

.initd_44(256'h0),

.initd_45(256'h0),

.initd_46(256'h0),

.initd_47(256'h0),

.initd_48(256'h0),

.initd_49(256'h0),

.initd_50(256'h0),

.initd_51(256'h0),

.initd_52(256'h0),

.initd_53(256'h0),

.initd_54(256'h0),

.initd_55(256'h0),

.initd_56(256'h0),

.initd_57(256'h0),

.initd_58(256'h0),

.initd_59(256'h0),

.initd_60(256'h0),

.initd_61(256'h0),

.initd_62(256'h0),

.initd_63(256'h0),

.initp_0(256'h0),

.initp_1(256'h0),

.initp_2(256'h0),

.initp_3(256'h0),

.initp_4(256'h0),

.initp_5(256'h0),

.initp_6(256'h0),

.initp_7(256'h0),

.initpx_0(256'h0),

.initpx_1(256'h0),

.initpx_2(256'h0),

.initpx_3(256'h0),

.initpx_4(256'h0),

.initpx_5(256'h0),

.initpx_6(256'h0),

.initpx_7(256'h0)
)

instance_name
(

.wraddr(user_wraddr),

.din(user_din),

.dinp(user_dinp),

.dinpx(user_dinpx),

.we(user_we),

.wren(user_wren),

.rstlatch(user_rstlatch),

.rstreg(user_rstreg),

.outregce(user_outregce),

.wrclk(user_wrclk),

.dout(user_dout),

.doutp(user_doutp),

.doutpx(user_doutpx),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 315

.sbit_error(user_sbit_error),

.dbit_error(user_dbit_error),

.rdaddr(user_rdaddr),

.rdclk(user_rdclk),

.rden(user_rden)

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 316

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

------------- DONE ACHRONIX LIBRARY ---------
-- Component Instantiation

ACX_BRAMSDP_instance_name : ACX_BRAMSDP
generic map (

read_width => 40,
write_width => 40,

write_clock_polarity => "rise",
en_out_reg => 0,

regce_priority => "rstreg",
write_peval => 1,

read_peval => 1,
reg_rstval => 1,

latch_rstval => 1,
read_initval => X"0000000000",

read_srval => X"0000000000",
write_clock_polarity => "rise",

encoder_enable => 0,
decoder_enable => 0,

mem_init_file => "",
initd_00 => X"00",

initd_01 => X"00",
initd_02 => X"00",

initd_03 => X"00",
initd_04 => X"00",

initd_05 => X"00",
initd_06 => X"00",

initd_07 => X"00",
initd_08 => X"00",

initd_09 => X"00",
initd_10 => X"00",

initd_11 => X"00",
initd_12 => X"00",

initd_13 => X"00",
initd_14 => X"00",

initd_15 => X"00",
initd_16 => X"00",
initd_17 => X"00",
initd_18 => X"00",
initd_19 => X"00",
initd_20 => X"00",
initd_21 => X"00",
initd_22 => X"00",
initd_23 => X"00",
initd_24 => X"00",
initd_25 => X"00",
initd_26 => X"00",
initd_27 => X"00",
initd_28 => X"00",
initd_29 => X"00",
initd_30 => X"00",
initd_31 => X"00",
initd_32 => X"00",

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 317

initd_33 => X"00",

initd_34 => X"00",
initd_35 => X"00",

initd_36 => X"00",
initd_37 => X"00",

initd_38 => X"00",
initd_39 => X"00",

initd_40 => X"00",
initd_41 => X"00",

initd_42 => X"00",
initd_43 => X"00",

initd_44 => X"00",
initd_45 => X"00",

initd_46 => X"00",
initd_47 => X"00",

initd_48 => X"00",
initd_49 => X"00",

initd_50 => X"00",

initd_51 => X"00",
initd_52 => X"00",

initd_53 => X"00",
initd_54 => X"00",

initd_55 => X"00",
initd_56 => X"00",

initd_57 => X"00",
initd_58 => X"00",

initd_59 => X"00",
initd_60 => X"00",

initd_61 => X"00",
initd_62 => X"00",

initd_63 => X"00",
initp_0 => X"00",

initp_1 => X"00",
initp_2 => X"00",

initp_3 => X"00",
initp_4 => X"00",

initp_5 => X"00",
initp_6 => X"00",

initp_7 => X"00",
initpx_0 => X"00",

initpx_1 => X"00",
initpx_2 => X"00",

initpx_3 => X"00",
initpx_4 => X"00",

initpx_5 => X"00",
initpx_6 => X"00",

initpx_7 => X"00")
port map (

wraddr => user_wraddr,
din => user_din,

dinp => user_dinp,
dinpx => user_dinpx,

we => user_we,
wren => user_wren,

rstlatch => user_rstlatch,
rstreg => user_rstreg,

outregce => user_outregce,
wrclk => user_wrclk,

dout => user_dout,

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 318

doutp => user_doutp,

doutpx => user_doutpx,
sbit_error => user_sbit_error,

dbit_error => user_dbit_error,
rdaddr => user_rdaddr,

rdclk => user_rdclk,
rden => user_rden

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 319

ACX_BRAMTDP (20-kb True Dual-Port Memory)

Figure 119: 20-kb True Dual-Port Memory

The block RAM (ACX_BRAMTDP) implements a 20-kb true-dual-ported (TDP) memory block where each port
can be independently configured with respect to size and function. The BRAM can be configured as a single-port
(one R/W port), dual-port (two R/W ports with independent clocks), or ROM memory. Each memory port can be
configured as follows:

1k × 20

1k × 18

1k × 16

2k × 10

2k × 9

2k × 8

4k × 5

4k × 4

8k × 2

16k × 1

The read and write operations are both synchronous. For higher performance operation, an additional output
register can be enabled. Enabling the output register requires an additional cycle of read latency. Write Enable (

/) controls provide 8-bit, 9-bit, or 10-bit write granularity for port widths above 16 bits.wea web

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 320

The initial value of the memory contents may be user specified from either parameters or a memory initialization
file. The initial/reset values of the output registers may also be user specified. The /porta_write_mode

 parameters define the behavior of the output data port during a write operation. When portb_write_mode
/ is set to , the / port gets the value porta_write_mode portb_write_mode "write_first" douta doutb

that was present on the / port during each write operation. Setting /dina dinb porta_write_mode
 to keeps the / port unchanged during a write operation.portb_write_mode "no_change" douta doutb

Note

The mode requires that both the read and write ports of the same side must be set to "write_first"
the same width.

Conflict arises when the same memory cell is accessed by both ports within a narrow window and one or both
ports are writing to memory. If this condition occurs, the contents of the memory for the colliding address is
undefined, but no damage occurs to the memory.

Figure 120: ACX_BRAMTDP Block Diagram (Per Port)

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 321

Table 226: ACX_BRAMTDP Pin Descriptions

Name Type Description

clka, clkb Input

Port A (B) clock input. Read and write operations are fully synchronous to the active
edge of () when the () signal is high. The active edge of (clka clkb pea peb clka

) is determined by the () clkb porta_clock_polarity portb_clock_polarity
parameter.

pea, peb Input
Port A (B) port enable. The () signal must be asserted to perform a read or pea peb
write operation. The and parameters determine porta_peval portb_peval
whether they are active-high (default) or active-low.

addra[13:0],
addrb[13:0]

Input

Port A (B) address input. The () signal determines which memory addra addrb
location is being written to or read from. When the port width is greater than 1, the low-
order address bits must be tied to 0. See Table: BRAM Address Bus Mapping (Per
Port). (see page 327)

wea[1:0],
web[1:0]

Input

Port A (B) write enable. Each bit of a port write enable input enables an 8-bit, 9-bit, or
10-bit byte to be written to memory, depending on the (porta_write_width

) parameter value. A write to memory occurs when both the portb_write_width
corresponding () bit is high and the port enable () signal is active. If wea web pea peb

 () is inactive while the () is active, a read operation occurs, and the wea web pea peb
output is updated with the contents of the addressed memory cells.
For data widths of 16 or larger, corresponds to , , and we[1] din[15:8] dinp[1]

, while corresponds to , , and . For dinpx[1] we[0] din[7:0] dinp[0] dinpx[0]
data widths less than 16, and must be the same.we[0] we[1]

dina[15:0],
dinb[15:0]

Input Port A (B) data input.

dinpa[1:0],
dinpb[1:0]

Input Port A (B) additional data input. Used to extend / .dina dinb

dinpxa[1:0],
dinpxb[1:0]

Input Port A (B) extended data input. Used to further extend / .dina dinb

outregcea,
outregceb

Input

Port A (B) output register clock enable (active-high). When the (porta_en_out_reg
) parameter is set, de-asserting the () portb_en_out_reg outregcea outregceb

signal causes the BRAM output to keep the , , and (, douta doutpa doutpxa doutb
, and) signals unchanged, independent of a read or write operation.doutpb doutpxb

rstlatcha,
rstlatchb

Input

Port A (B) output latch synchronous reset. When () is rstlatcha rstlatchab
asserted, the value of ({porta_read_width{1'b0}} {portb_read_width

) is written to the port A (B) output latch upon the next active edge of ({1'b0}} clka
). The and parameters clkb porta_latch_rstval portb_latch_rstval

determine whether they are active-high (default) or active-low.

Port A (B) output register reset. The (porta_sr_assertion_reg
) parameter determines if the reset is synchronous portb_sr_assertion_reg

(default) or asynchronous, and the () porta_reg_rstval portb_reg_rstval

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 322

Name Type Description

rstrega,
rstregb

Input parameter determines if the reset is active-high (default) or active-low. When reset is
asserted, the port A (B) output register is assigned the value of the (porta_srval

) parameter. The priority of () relative to the clock portb_srval rstrega rstregb
enable input () is determined by the value of the outregcea outregceb

 () parameter.porta_regce_priority portb_regce_priority

douta[15:0],
doutb[15:0]

Output

Port A (B) data output. During read operations, the () outputs are douta doutb
updated with the memory contents addressed by () if the () port addra addrb pea peb
enable is active and () inputs are low. For write operations, the behavior of wea web
the () outputs depends on the (douta doutb porta_write_mode

) parameter.portb_write_mode

doutpa[1:0],
doutpb[1:0]

Output
Port A (B) addtional data output. The port A (B) () output behaves the doutpa doutpb
same as outputs () and is used when the (douta doutb porta_read_width

) is set to 5, 9, 10, 18, or 20 bits.portb_read_width

doutpxa[1:0],
doutpxb[1:0]

Output
Port A (B) extended data output. The port A (B) () extended data doutpxa doutpxb
output behaves the same as outputs () and is used when the douta doutb

 () is set to 10 or 20 bits.porta_read_width portb_read_width

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 323

Table 227: ACX_BRAMTDP Parameters

Parameter Defined Values Default Value Description

porta_read_width,
portb_read_width

1, 2, 4, 5, 8, 9,
10, 16, 18, 20 20 Sets the read width for port A (B).

porta_write_width,
portb_write_width

1, 2, 4, 5, 8, 9,
10, 16, 18, 20 20

Sets the write width for port A (B). The read port width may vary from the write
port width, but it must be within the allowable combinations defined in Memory

.Organization and Data I/O Pin Assignments (see page 325)

porta_write_mode,
portb_write_mode

"write_first",
,"read_first"(1)

"no_change"

"write_first"

Defines the response of the port A (B) output to write operations. The output in
a write response appears at the () output with the same timing as douta doutb
a read operation. The modes are:

"write_first" – the data present on the () input during dina dinb
the write operation appears on the output of port A (B) for words in
which the write enable bit in () is asserted. The output data wena wenb
for words in which the write enable bit is de-asserted is undefined. This
mode is only supported when the porta_read_width
() and portb_read_width porta_write_width
() parameters of the port are the same.portb_write_width

"read_first" - The data previously stored at the specified write
address appears on the output of port A (B)
"no_change" – () remains unchanged during write douta doutb
operations

porta_clock_polarity,
portb_clock_polarity

"rise", "fall" "rise" Sets the active edge of the port A (B) clock.

porta_peval,
portb_peval

1'b0, 1'b1 1'b1
Defines the active level of the () port enable input. A value of pea peb 1'b0
sets active low, while sets active high.1'b1

porta_latch_rstval,
portb_latch_rstval

1'b0, 1'b1 1'b1
Defines the active level of the () input. A value of rstlatcha rstlatchb 1'b0
sets active low, while sets active high.1'b1

porta_en_out_reg,
portb_en_out_reg

1'b0, 1'b1 1'b0
Determines whether the port A (B) output register is enabled. A value of 1'b0
disables the output register and results in a read latency of one cycle, while

 enables the output register and results in a read latency of two cycles.1'b1

porta_reg_rstval,
portb_reg_rstval

1'b0, 1'b1 1'b1
Defines the active level of the () input. A value of sets rstrega rstregb 1'b0
active low, while a value of sets active high.1'b1

porta_regce_priority,
portb_regce_priority

"rstreg", "regce" "rstreg"

Defines the priority of the () clock enable input relative outregcea outregceb
to the () reset:rstrega rstregb

"rstreg" – allows the port A (B) output register to be reset by
asserting () without requiring rstrega rstregb outregcea
() to be assertedoutregceb

"regce" – allows the port A (B) output register to be reset by only
asserting both () and ()rstrega rstregb outregcea outregceb

porta_initval,
portb_initval

20-bit hex number 20'h0

Defines the power-up default value of the data on the output of port A (B) latch
and output register, if enabled. The 20-bit parameter assignment is dependent
on the () parameter as shown inporta_read_width portb_read_width
Table: initval, srval, and meminit File Mapping to Output Signals (see page 337)
.

porta_srval,
portb_srval

20-bit hex number 20'h0

Defines the reset value of the data on the output port A (B) latch and output
register, if enabled, when () and/or (rstlatcha rstlatchb rstrega rstreg

) is asserted. The 20-bit parameter assignment is dependent on the b porta_r
 () parameter as shown in ead_width portb_read_width Table: initval,

.srval, and meminit File Mapping to Output Signals (see page 337)

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 324

1.

Parameter Defined Values Default Value Description

porta_sr_assertion_reg,
portb_sr_assertion_reg

"clocked",
"unclocked"

"clocked"

Sets whether the assertion of the reset of the port A (B) output register is
synchronous or asynchronous with respect to the () input. A value clka clkb
of corresponds to a synchronous reset where the port A (B) output "clocked"
register is reset on the next rising edge of the clock if () is rstrega rstregb
asserted. A value of corresponds to an asynchronous reset "unclocked"
where the port A (B) output register is reset immediately following the assertion
of the () input.rstrega rstregb

mem_init_file <path to HEX file> ""

Provides a mechanism to set the initial contents of the BRAM memory. If
defined, the BRAM is initialized with the values defined in the file pointed to by
the parameter according to the format defined in Memory Initialization (see

. If left at the default value, the initial contents are defined by the page 336)
values of the – , – , and theinitd_00 initd_63 initp_0 initp_7

– parameters. If the memory initialization parameters and initpx_0 initpx_7
the parameters are not defined, the contents of the BRAM mem_init_file
remain uninitialized.

initd_00–initd_63 256-bit hex number 256'hx
Define the initial contents of the memory associated with anddouta[15:0]

. Each 256-bit parameter is associated with the BRAM as doutb[15:0]
defined in .Memory Initialization (see page 336)

initp_0–initp_7 256 bit hex number 256’hx
Define the initial contents of the memory associated with anddoutpa[1:0]

. Each 256-bit parameter is associated with the BRAM is as doutpb[1:0]
defined in .Memory Initialization (see page 336)

initpx_0–initpx_7 256 bit hex number 256'hx
Define the initial contents of the memory associated with anddoutpxa[1:0]

. Each 256-bit parameter is associated with the BRAM is doutpxb[1:0]
defined in .Memory Initialization (see page 336)

Table Notes

ACX_BRAMTDP supports mode only when directly instantiating the ACX_BRAMTDP primitive. Synthesis is not able to infer a "read-first"
"read-first" mode from RTL, and this mode is not supported through the IP configuration GUI. If a memory with this behavior is described by
behavioral RTL, a warning is issued during synthesis, and a register file is synthesized.

Note

The ACE BRAM IP Configuration GUI and ACX_BRAM_GEN macros only support a single-bit write
enable () for the entire data word. Byte-wise write enables are not supported via the GUI or in Verilog we
macros. Non-zero reset values are similarly not supported. Access to the full capabilities of the BRAM is
available by instantiating the ACX_BRAMTDP primitive directly.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 325

Memory Organization and Data I/O Pin Assignments
The BRAM supports memory widths from one bit to twenty bits. The width of the () data input is dina dinb
determined by the () parameter while the width of the (porta_write_width portb_write_width douta

) data output is determined by the () parameter. Port A width doutb porta_read_width portb_read_width
may be different than the port B width, and the width of each read port may be set differently from the width of
each write port. The supported port width combinations are as described in the following table. "X" indicates a
supported configuration.

Table 228: Supported Port Width Combinations

Port A Read
Width Port A Write Width, Port B Read Width, Port B Write Width

1k ×
20

2k ×
10

4k ×
5

1k ×
18

2k ×
9

1k ×
16

2k ×
8

4k ×
4

8k ×
2

16k ×
1

1k × 20 X X X – – – – – – –

2k × 10 X X X – – – – – – –

4k × 5 X X X – – – – – – –

1k × 18 – – – X X – – – – –

2k × 9 – – – X X – – – – –

1k × 16 – – – – – X X X X X

2k × 8 – – – – – X X X X X

4k × 4 – – – – – X X X X X

8k × 2 – – – – – X X X X X

16k × 1 – – – – – X X X X X

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 326

1.

2.

3.

Data Widths Using Extended Data Interfaces
The ACX_BRAMTDP memory has three buses for both data in and data out:

The and interfaces.din dout

The and extended data interfaces.dinp dinpx

The and extended data interfacesdoutp doutpx

The extended interfaces are used to support the wide range of data bus widths shown in Supported Port Width
. The extended interfaces are assigned to the respective data buses as shown in Combinations (see page 325)

the following table.

Table 229: Extended Data Interface Assignment, (Per Port)

Data
Width dinpx/doutpx dinp/doutp din/dout

20 {data[19], data[9]} {data[14], data[4]} {data[18:15], data[13:10], data[8:5], data[3:0]}

18 – {data[17], data[8]} {data[16:9], data[7:0]}

16 – – {data[15:0]}

10 {1'b0, data[9]} {1'b0, data[4]} {8'h0, data[8:5], data[3:0]}

9 – {1'b0, data[8]} {8'h0, data[7:0]}

8 – – {8'h0, data[7:0]}

5 – {1'b0, data[4]} {12'h0, data[3:0]}

4 – – {12'h0, data[3:0]}

2 – – {14'h0, data[1:0]}

1 – – {15'h0, data[0]}

Caution!

Pay close attention to non power-of-two sized data widths and how the data bits are assigned.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 327

Address Bus Mapping
When the port width is greater than 1, the memory address must be left-justified to the most-significant bit (MSB)
of the () input, meaning that the low-order address bits must be tied to 0. The following table shows addra addrb
the address bits that must be tied to zero for the various memory organization options.

Table 230: ACX_BRAMTDP Address Bus Mapping (Per Port)

Memory Organization Used Address bits Tied to 0 Address bits

1k × 20 13:4 3:0

1k × 18 13:4 3:0

1k × 16 13:4 3:0

2k × 10 13:3 2:0

2k × 9 13:3 2:0

2k × 8 13:3 2:0

4k × 5 13:2 1:0

4k × 4 13:2 1:0

8k × 2 13:1 0

16k × 1 13:0 –

Warning

A common error is to assign the address bus incorrectly justified. It must be assigned , not left-justified
right-justified.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 328

Read and Write Operations

Timing Options
The BRAM has two options for interface timing, controlled by the () porta_en_out_reg portb_en_out_reg
parameter:

Latched mode – when () is , the port is in latched mode. porta_en_out_reg portb_en_out_reg 1'b0
In this mode, the read address is registered, and the stored data is latched into the output latches on the
following clock cycle, providing a read operation with one cycle of latency.

Registered mode – when () is , the port is in registered porta_en_out_reg portb_en_out_reg 1'b1
mode. In this mode, there is an additional register after the latch, supporting higher-frequency designs and
providing a read operation with two cycles of latency.

Read Operation
Read operations are signaled by driving the () signal with the address to be read, asserting the addra addrb pea
() port enable signal and not asserting the () write enable signal. The requested read data arrives on peb wea web
the (), (), and () signals on the following clock cycle or the douta doutb doutpa doutpb doutpxa doutpxb
cycle after, depending on the () parameter.porta_en_out_reg portb_en_out_reg

Write Operation
Write operations are signaled by driving the (), (), and () signals with dina dinb dinpa dinpb dinpxa dinpxb
the data to be written, () with the address to write to, asserting the () port enable signal, addra addrb pea peb
and asserting the () write enable signal. The input data is stored in the memory array at the indicated wea web
address on the next active clock edge.

There are two options for the behavior of the data output signals during a write operation, as controlled by the
 () parameter:porta_write_mode portb_write_mode

"write_first" – the write data is reflected on the (), (), and douta doutb doutpa doutpb doutpxa
() signals.doutpxb

"no_change" – the (), (), and () signals remain douta doutb doutpa doutpb doutpxa doutpxb
unchanged during a write operation on port A (B).

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 329

Table 231: Latched Mode BRAM Output Function (Rising-Edge Clock and Active-High Port Enable)

Operation porta_write_mode
(portb_write_mode)

clka
(clkb)

rstlatcha
(rstlatchb)

pea
(peb)

wea
(web) douta (doutb)

Hold "write_first" or
"no_change"

X X X X Hold previous value.

Reset
Latch

"write_first" or
"no_change"

↑ 1 X X porta_srval
()portb_srval

Hold "write_first" or
"no_change"

↑ 0 0 X Hold previous value.

Read "write_first" or
"no_change"

↑ 0 1 0 mem[addra]
()mem[addrb]

Write "write_first" ↑ 0 1 1 dina ()dinb

Write "no_change" ↑ 0 1 1 Hold previous value.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 330

Table 232: Registered Mode BRAM Output Function (Rising-Edge Clock and Active-high Port Enable)

Operation regce_priority rdclk rstreg outregce dout

Hold – X X X douta_previous ()doutb_previous

Reset Output "rstreg" ↑ 1 X porta_srval ()portb_srval

Reset Output "regce" ↑ 1 1 porta_srval ()portb_srval

Hold "regce" ↑ X 0 douta_previous ()doutb_previous

Hold "rstreg" or "regce" ↑ 0 0 douta_previous ()doutb_previous

Update
Output "rstreg" or "regce" ↑ 0 1 Latch output.

Table 233: Port a/b Registered Mode BRAM Output Function (Rising-Edge Clock and Active-high Port
Enable)

Operation porta_regce_priority
(portb_regce_priority)

rstrega
(rstregb)

outregcea
(outregceb)

clka
(clkb)

douta
(doutb)

Hold X X X X douta_previous
()doutb_previous

Hold rstreg 0 0 ↑ douta_previous
()doutb_previous

Update output rstreg 0 1 ↑ latcha_output
()latchb_output

Reset output rstreg 1 X ↑ porta_srval ()portb_srval

Hold regce X 0 ↑ douta_previous
()doutb_previous

Update output regce 0 1 ↑ latcha_output
()latchb_output

Reset output regce 1 1 ↑ porta_srval ()portb_srval

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 331

Simultaneous Memory Operations
Memory operations may be performed simultaneously from both sides of the memory; however, there is a
restriction with memory collisions. A memory collision is defined as the condition where both of the ports access
the same memory location within the same clock cycle (both ports connected to the same clock), or within a fixed
time window (if each port is connected to a different clock). Simultaneous read operations to the same memory
location by both ports is allowed and produces valid data on each of the ports. If one of the ports is writing an
address while the other port is reading the same address, the write operation occurs, but the read data is invalid.
The data may be reliably read on the next cycle if there is no longer a write collision. If both ports write the same
memory location(s) at the same time, the memory contents for that memory address are invalid. While
simultaneously writing the same address from both ports invalidate the data, no damage to the hardware occurs.

Note

For the special case of the BRAM having both ports configured for mode, a write-"write_first"
write collision corrupts the memory contents, but the correct data is seen at both output ports. In this
case, the data corruption is not noticed by the circuit until the the corrupted memory location is later
reread.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 332

Timing Diagrams
The timing diagrams for the two () parameter values follow. The first porta_en_out_reg portb_en_out_reg
timing diagram illustrates the behavior of a ACX_BRAMTDP port with the output register disabled.

Figure 121: Latched Mode Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 333

The following table describes the behavior of the ACX_BRAMTDP on each clock cycle of the diagram, where
each row represents a transaction that spans the two indicated clock cycles.

Table 234: ACX_BRAMTDP Timing Diagram Clock Cycle Behavior With Output Register Disabled

Clock
Cycle Transaction Description

0–1 Hold None of the control signals are asserted. The output remains unchanged.

1–2 Reset latch The () signal is asserted. () is set to the as rstlatcha rstlatchb douta doutb srval
provided by the () parameter.porta_srval portb_srval

2–3 Read pea () is asserted and () is de-asserted. The memory is read and peb wea web douta
() is set to the data read from the addressed location.doutb

3–4 Hold None of the control signals are asserted. The output remains unchanged.

4–5 Read with
reset latch

Read operation, with the except that () is asserted, causing the rstlatcha rstlatchb
output to be set to the value provided by the () parameter.porta_srval portb_srval

5–6 Read pea () is asserted and () is de-asserted. The memory is read and peb wea web douta
() is set to the data read from the addressed location.doutb

6–7 Write

pea () and () are both asserted. The data on the () pins is peb wea web dina dinb
committed to memory. If () is , porta_write_mode portb_write_mode "write_first"
the output data reflects the data provided on the () port. If , the dina dinb "no_change"
output data remains unchanged.

7–8 Write with
reset latch

pea () and () are both asserted. the data on the () pins is committed peb wea web dina dinb
to memory. Since () is asserted, the output register is set to the rstlatcha rstlatchb
value provided by the () parameter.porta_srval portb_srval

8–9 Hold None of the control signals are asserted. The output remains unchanged.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 334

The second timing diagram illustrates the behavior of a ACX_BRAMTDP port with the output register enabled.

Figure 122: Registered Mode Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 335

The following table describes the behavior of the ACX_BRAMTDP on each clock cycle, where each line
represents a single transaction that spans the three indicated clock cycles.

Table 235: ACX_BRAMTDP Timing Diagram Clock Cycle Behavior With Output Register Enabled

Clock
Cycle Transaction Description

0–2 Reset latch
None of the control signals are asserted. This is neither a read nor a write. On cycle 1,

 is asserted and the output is set to the value provided by the rstlatch porta_srval
() parameter.portb_srval

1–3 Read pea () is asserted and () is de-asserted. The memory is read and peb wea web douta
() is set two cycles later to the data read from the addressed location.doutb

2–4 Hold None of the control signals are asserted. The output remains unchanged.

3–5 Read with
reset latch

Read operation, with the exception that () is asserted on the rstlatcha rstlatchb
second cycle of the transaction, causing the output to be set to the value provided by the

 () parameter.porta_srval portb_srval

4–6 Read pea () is asserted and () is de-asserted. The memory is read and peb wea web douta
() is set to the data read from the addressed location.doutb

5–7 Write

pea () and () are both asserted. The data on the () pins is peb wea web dina dinb
committed to memory. If () is ", porta_write_mode portb_write_mode "write_first
the output data (cycle 7) reflects the data provided on the () port. If dina dinb

, the output data remains unchanged."no_change"

6–8 Write with
reset latch

pea () and () are both asserted. the data on the () pins is committed peb wea web dina dinb
to memory. Since () is asserted, on the second cycle the output rstlatcha rstlatchb
register is set to the value provided by the () parameter.porta_srval portb_srval

7–9 Read pea () is asserted and () is de-asserted. The memory is read and peb wea web douta
() is set to the data read from the addressed location.doutb

8–10 Hold
pea () is asserted and () is de-asserted. The memory is read. On the second peb wea web
cycle (cycle 9), () is de-asserted. The output data is unchanged outregcea outregceb
from the previous cycle.

9–11 Reset
register

pea () is asserted and () is de-asserted. the memory is read. On the second peb wea web
cycle (cycle 9), () is asserted, and () is de-rstrega restregb outregcea outregceb
asserted. The output data is either unchanged, or is set to the value provided by the

 () parameter, depending on whether the () porta_srval portb_srval rstrega rstregb
signal has priority over the () signal, as determined by the the outregcea outregceb
value of the () parameter. If porta_regce_priority portb_regce_priority

, asserting () resets the output register independent of the "rstreg" rstrega rstregb
 () signal. If , both () and outregcea outregceb "regce" rstrega rstregb outregcea

() must be asserted to reset the output register.outregceb

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 336

Memory Initialization
The contents of the memory array can be initialized at power-up with one of the following two methods. This
initialization is only performed when the FPGA is configured after power-up. The memory is not re-initialized
when user logic is reset.

Initializing With Parameters
The data portion of initial memory contents may be defined by setting the 64 256-bit parameters, initd_00
through . The data memory is organized as little-endian with bit 0 mapped to bit zero of parameter initd_63

 and bit 16383 mapped to bit 255 of parameter .initd_00 initd_63

When the BRAM is configured with port widths of 9 or 18 bits, the parity portion of the initial memory contents
may be defined by setting the eight 256-bit parameters, through . The parity memory is also initp_0 initp_7
organized as little-endian with the first parity bit location mapped to bit 0 of and the last parity bit initp_0
mapped to the bit 255 of .initp_7

When the BRAM is configured with port widths of 5, 10 or 20 bits, the parity and extended parity portions of the
initial memory contents may be defined by setting the eight 256-bit parameters through and initp_0 initp_7
the eight 256-bit parameters through . The parity and extended parity memories are both initpx_0 initpx_7
organized as little-endian with the first parity bit location mapped to bit 0 of / and the last initp_0 initpx_0
parity bit mapped to bit 255 of / .initp_7 initpx_7

Initializing With a Memory Initialization File
Alternatively, the BRAM may be initialized with a memory file by setting the parameter to the mem_init_file
path of a memory initialization file. The file format must be hexadecimal entries separated by white space, where
the white space is defined by spaces or line separation. Each entry is a hexadecimal number of width equal to
the maximum of the , , , and porta_read_width porta_write_width portb_read_width

 parameters.portb_write_width

A number entry may contain underscore () characters within the digits (i.e.,). Commenting is _ "A234_4567_33"
allowed beginning with a double-slash (). C-like commenting is also allowed with the comment placed between //

 and characters. The memory is initialized starting with the first entry of the file initializing the memory "/*" "*/"
array starting with address zero and moving upward.

If is defined, the BRAM is initialized with the values in the file referenced by the mem_init_file
 parameter. If is left at the default value of "", the initial contents are defined mem_init_file mem_init_file

by the values of the parameters through , though and initd_00 initd_63 initp_0 initp_7 initpx_0
through . If neither the memory initialization parameters nor the parameters are initpx_7 mem_init_file
defined, the contents of the BRAM remain uninitialized and unknown until the memory locations are written.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 337

The following tables show how the init values in the (), porta_initval portb_initval porta_srval
() parameters and the memory initialization file entries map to (), (), portb_srval douta doutb doutpa doutpb
and ():doutpx doutpxb

Table 236: srval and initval to Output Signals Mapping for datawidth = 1, 2, 4, 8, and 16

initval datawidth

16 8 4 2 1

init[15:8] dout[15:8] –

init[7:4] dout[7:4] –

init[3:2] dout[3:2] –

init[1] dout[1] –

init[0] dout[0]

Table 237: srval and initval to Output Signals Mapping for datawidth = 9 and 18

initval datawidth

18 9

init[17] doutp[1]

–
init[16:9] dout[15:8]

init[8] doutp[0]

init[7:0] dout[7:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 338

1.

2.

3.

Table 238: srval and initval to Output Signals Mapping for datawidth = 5, 10, and 20

initval datawidth

20 10 5

init[19] doutpx[1]

–
init[18:15] dout[15:12]

init[14] doutp[1]

init[13:10] dout[11:8]

init[9] doutpx[0]

–
init[8:5] dout[7:4]

init[4] doutp[0]

init[3:0] dout[3:0]

Create an Instance
To create memories within a design, there are three available methods:

Infer the memory – this method provides the greatest code portability and is the recommended approach.
The following are examples of ACX_BRAMTDP (single port) and ACX_BRAMTDP (dual port) inference.

Directly instantiated – this method gives access to the full feature set of the memory. However, any code
is less portable to other technology nodes. See Instantiation Templates (see page 344)

Use the ACE BRAM IP generator to create the appropriate memory structure – Refer to ACE User Guide
 for details.(UG070)

https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 339

Inference Templates

ACX_BRAMTDP Single-Port Inference

//---

//
// Copyright (c) 2022 Achronix Semiconductor Corp.

// All Rights Reserved.
//

//
// This software constitutes an unpublished work and contains

// valuable proprietary information and trade secrets belonging
// to Achronix Semiconductor Corp.

//
// This software may not be used, copied, distributed or disclosed

// without specific prior written authorization from
// Achronix Semiconductor Corp.
//
// The copyright notice above does not evidence any actual or intended
// publication of such software.
//
//

//---
// Design: BRAMTDP Single-Port Inference

// An example to infer a single-ported BRAMTDP (1 shared R/W port)
// in Speedcore designs

//---

`timescale 1ps / 1ps

module bram_tdp_single_port

#(
 parameter ADDR_WIDTH = 10,

 parameter DATA_WIDTH = 8,
 parameter INIT_FILE_NAME = "",

 parameter READ_MODE = "NO_CHANGE"
)

(
 // Clocks and resets

 input wire clk,

 // Enables

 input wire we,

 // Address and data
 input wire [ADDR_WIDTH-1:0] addr,

 input wire [DATA_WIDTH-1:0] wr_data,

 // Output

 output reg [DATA_WIDTH-1:0] rd_data
);

localparam DATA_DEPTH = (2 ** ADDR_WIDTH);

reg [DATA_WIDTH-1:0] mem_ram[DATA_DEPTH-1:0] /* synthesis syn_ramstyle = "block_ram"

"no_rw_check" */;

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 340

initial begin

 if (INIT_FILE_NAME != "")
 $readmemh(INIT_FILE_NAME, mem_ram);

end

always @(posedge clk) begin
 if(we) begin

 mem_ram[addr] <= wr_data;
 if (READ_MODE == "WRITE_FIRST") begin

 rd_data <= wr_data;
 end

 end
 else begin

 rd_data <= mem_ram[addr];
 end

end

endmodule : bram_tdp_single_port

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 341

ACX_BRAMTDP Symmetric Dual-Port Inference

//---

//
// Copyright (c) 2022 Achronix Semiconductor Corp.

// All Rights Reserved.
//

//
// This software constitutes an unpublished work and contains

// valuable proprietary information and trade secrets belonging
// to Achronix Semiconductor Corp.

//
// This software may not be used, copied, distributed or disclosed

// without specific prior written authorization from
// Achronix Semiconductor Corp.

//
// The copyright notice above does not evidence any actual or intended

// publication of such software.
//

//

//---
// Design: BRAMTDP Symmetric Inference

// An example to infer a symmetric true dual-port BRAM in Speedcore designs
//---

`timescale 1ps / 1ps

module bram_tdp_symmetric
#(
 parameter ADDR_WIDTH = 10,
 parameter DATA_WIDTH = 16,
 parameter INIT_FILE_NAME = "",
 parameter READ_MODE = "WRITE_FIRST"
)
(
 // Clocks and resets
 input wire clk_a,
 input wire clk_b,

 // Enables

 input wire we_a,
 input wire we_b,

 // Address and data
 input wire [ADDR_WIDTH-1:0] addr_a,

 input wire [ADDR_WIDTH-1:0] addr_b,
 input wire [DATA_WIDTH-1:0] wr_data_a,

 input wire [DATA_WIDTH-1:0] wr_data_b,

 // Output
 output reg [DATA_WIDTH-1:0] rd_data_a,

 output reg [DATA_WIDTH-1:0] rd_data_b
);

localparam DATA_DEPTH = (2 ** ADDR_WIDTH);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 342

reg [DATA_WIDTH-1:0] mem_ram[DATA_DEPTH-1:0] /* synthesis syn_ramstyle = "block_ram"

"no_rw_check" */;

initial begin

 if (INIT_FILE_NAME != "")
 $readmemh(INIT_FILE_NAME, mem_ram);

end

// synthesis synthesis_off
reg addr_collision;

assign addr_collision = (addr_a == addr_b);
// synthesis synthesis_on

always @(posedge clk_a) begin
 if(we_a) begin

 // synthesis synthesis_off
 if (addr_collision && we_b)

 mem_ram[addr_a] <= {DATA_WIDTH{1'bx}};
 else

 // synthesis synthesis_on
 mem_ram[addr_a] <= wr_data_a;

 if (READ_MODE == "WRITE_FIRST") begin
 rd_data_a <= wr_data_a;
 end
 end
 else begin
 // synthesis synthesis_off
 if (addr_collision && we_b)
 rd_data_a <= {DATA_WIDTH{1'bx}};
 else
 // synthesis synthesis_on
 rd_data_a <= mem_ram[addr_a];
 end
end

always @(posedge clk_b) begin
 if(we_b) begin

 // synthesis synthesis_off
 if (addr_collision && we_a)

 mem_ram[addr_b] <= {DATA_WIDTH{1'bx}};
 else

 // synthesis synthesis_on
 mem_ram[addr_b] <= wr_data_b;

 if (READ_MODE == "WRITE_FIRST") begin
 rd_data_b <= wr_data_b;

 end
 end

 else begin
 // synthesis synthesis_off

 if (addr_collision && we_a)
 rd_data_b <= {DATA_WIDTH{1'bx}};

 else
 // synthesis synthesis_on

 rd_data_b <= mem_ram[addr_b];
 end

end

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 343

endmodule : bram_tdp_symmetric

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 344

Instantiation Templates

Verilog

ACX_BRAMTDP #(

.porta_read_width(20),

.porta_write_width(20),

.porta_write_mode("write_first"),

.porta_clock_polarity("rise"),

.porta_en_out_reg(1'b0),

.porta_regce_priority("rstreg"),

.porta_peval(1'b1),

.porta_reg_rstval(1'b1),

.porta_latch_rstval(1'b1),

.porta_initval(20'h0),

.porta_srval(20'h0),

.portb_read_width(20),

.portb_write_width(20),

.portb_write_mode("write_first"),

.portb_clock_polarity("rise"),

.portb_en_out_reg(1'b0),

.portb_regce_priority("rstreg"),

.portb_peval(1'b1),

.portb_reg_rstval(1'b1),

.portb_latch_rstval(1'b1),

.portb_initval(20'h0),

.portb_srval(20'h0),

.mem_init_file(""),

.initd_00(256'h0),

.initd_01(256'h0),

.initd_02(256'h0),

.initd_03(256'h0),

.initd_04(256'h0),

.initd_05(256'h0),

.initd_06(256'h0),

.initd_07(256'h0),

.initd_08(256'h0),

.initd_09(256'h0),

.initd_10(256'h0),

.initd_11(256'h0),

.initd_12(256'h0),

.initd_13(256'h0),

.initd_14(256'h0),

.initd_15(256'h0),

.initd_16(256'h0),

.initd_17(256'h0),

.initd_18(256'h0),

.initd_19(256'h0),

.initd_20(256'h0),

.initd_21(256'h0),

.initd_22(256'h0),

.initd_23(256'h0),

.initd_24(256'h0),

.initd_25(256'h0),

.initd_26(256'h0),

.initd_27(256'h0),

.initd_28(256'h0),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 345

.initd_29(256'h0),

.initd_30(256'h0),

.initd_31(256'h0),

.initd_32(256'h0),

.initd_33(256'h0),

.initd_34(256'h0),

.initd_35(256'h0),

.initd_36(256'h0),

.initd_37(256'h0),

.initd_38(256'h0),

.initd_39(256'h0),

.initd_40(256'h0),

.initd_41(256'h0),

.initd_42(256'h0),

.initd_43(256'h0),

.initd_44(256'h0),

.initd_45(256'h0),

.initd_46(256'h0),

.initd_47(256'h0),

.initd_48(256'h0),

.initd_49(256'h0),

.initd_50(256'h0),

.initd_51(256'h0),

.initd_52(256'h0),

.initd_53(256'h0),

.initd_54(256'h0),

.initd_55(256'h0),

.initd_56(256'h0),

.initd_57(256'h0),

.initd_58(256'h0),

.initd_59(256'h0),

.initd_60(256'h0),

.initd_61(256'h0),

.initd_62(256'h0),

.initd_63(256'h0),

.initp_0(256'h0),

.initp_1(256'h0),

.initp_2(256'h0),

.initp_3(256'h0),

.initp_4(256'h0),

.initp_5(256'h0),

.initp_6(256'h0),

.initp_7(256'h0),

.initpx_0(256'h0),

.initpx_1(256'h0),

.initpx_2(256'h0),

.initpx_3(256'h0),

.initpx_4(256'h0),

.initpx_5(256'h0),

.initpx_6(256'h0),

.initpx_7(256'h0))
instance_name (.addra(user_addra),

.dina(user_dina),

.dinpa(user_dinpa),

.dinpxa(user_dinpxa),

.wea(user_wea),

.pea(user_pea),

.rstlatcha(user_rstlatcha),

.rstrega(user_rstrega),

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 346

.outregcea(user_outregcea),

.clka(user_clka),

.douta(user_douta),

.doutpa(user_doutpa),

.doutpxa(user_doutpxa),

.addrb(user_addrb),

.dinb(user_dinb),

.dinpb(user_dinpb),

.dinpxb(user_dinpxb),

.web(user_web),

.peb(user_peb),

.rstlatchb(user_rstlatchb),

.rstregb(user_rstregb),

.outregceb(user_outregceb),

.clkb(user_clkb),

.doutb(user_doutb),

.doutpb(user_doutpb),

.doutpxb(user_doutpxb));

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 347

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

------------- DONE ACHRONIX LIBRARY ---------
-- Component Instantiation

ACX_BRAMTDP_instance_name : ACX_BRAMTDP
generic map (

porta_read_width => 20,
porta_write_width => 20,

porta_write_mode => "write_first",
porta_clock_polarity => "rise",

porta_en_out_reg => 0,
porta_regce_priority => "rstreg",

porta_peval => 1,
porta_reg_rstval => 1,

porta_latch_rstval => 1,
porta_initval => X"00000",

porta_srval => X"00000",
portb_read_width => 20,

portb_write_width => 20,
portb_write_mode => "write_first",

portb_clock_polarity => "rise",
portb_en_out_reg => 0,

portb_regce_priority => "rstreg",
portb_peval => 1,

portb_reg_rstval => 1,
portb_latch_rstval => 1,

portb_initval => X"00000",
portb_srval => X"00000",

mem_init_file => "",
initd_00 => X"00",

initd_01 => X"00",
initd_02 => X"00",

initd_03 => X"00",
initd_04 => X"00",

initd_05 => X"00",
initd_06 => X"00",

initd_07 => X"00",
initd_08 => X"00",
initd_09 => X"00",
initd_10 => X"00",
initd_11 => X"00",
initd_12 => X"00",
initd_13 => X"00",
initd_14 => X"00",
initd_15 => X"00",
initd_16 => X"00",
initd_17 => X"00",
initd_18 => X"00",
initd_19 => X"00",
initd_20 => X"00",
initd_21 => X"00",
initd_22 => X"00",
initd_23 => X"00",
initd_24 => X"00",

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 348

initd_25 => X"00",

initd_26 => X"00",
initd_27 => X"00",

initd_28 => X"00",
initd_29 => X"00",

initd_30 => X"00",
initd_31 => X"00",

initd_32 => X"00",
initd_33 => X"00",

initd_34 => X"00",
initd_35 => X"00",

initd_36 => X"00",
initd_37 => X"00",

initd_38 => X"00",
initd_39 => X"00",

initd_40 => X"00",
initd_41 => X"00",

initd_42 => X"00",

initd_43 => X"00",
initd_44 => X"00",

initd_45 => X"00",
initd_46 => X"00",

initd_47 => X"00",
initd_48 => X"00",

initd_49 => X"00",
initd_50 => X"00",

initd_51 => X"00",
initd_52 => X"00",

initd_53 => X"00",
initd_54 => X"00",

initd_55 => X"00",
initd_56 => X"00",

initd_57 => X"00",
initd_58 => X"00",

initd_59 => X"00",
initd_60 => X"00",

initd_61 => X"00",
initd_62 => X"00",

initd_63 => X"00",
initp_0 => X"00",

initp_1 => X"00",
initp_2 => X"00",

initp_3 => X"00",
initp_4 => X"00",

initp_5 => X"00",
initp_6 => X"00",

initp_7 => X"00",
initpx_0 => X"00",

initpx_1 => X"00",
initpx_2 => X"00",

initpx_3 => X"00",
initpx_4 => X"00",

initpx_5 => X"00",
initpx_6 => X"00",

initpx_7 => X"00")
port map (

addra => user_addra ,
dina => user_dina ,

dinpa => user_dinpa ,

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 349

dinpxa => user_dinpxa ,

wea => user_wea ,
pea => user_pea ,

rstlatcha => user_rstlatcha ,
rstrega => user_rstrega ,

outregcea => user_outregcea ,
clka => user_clka ,

douta => user_douta ,
doutpa => user_doutpa ,

doutpxa => user_doutpxa ,
addrb => user_addrb ,

dinb => user_dinb ,
dinpb => user_dinpb ,

dinpxb => user_dinpxb ,
web => user_web ,

peb => user_peb ,
rstlatchb => user_rstlatchb ,

rstregb => user_rstregb ,

outregceb => user_outregceb ,
clkb => user_clkb ,

doutb => user_doutb ,
doutpb => user_doutpb ,

doutpxb => user_doutpxb);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 350

ACX_BRAMFIFO (20-kb FIFO Memory with Optional Error
Correction)

Figure 123: 20Kb FIFO Memory With Optional Error Correction

The BRAMFIFO component implements a 20Kb FIFO memory block using the embedded BRAM blocks with
dedicated pointer and flag logic. The BRAMFIFO can be configured to support a variety of widths and depths,
ranging from 512-word depth with 40-bit data to 16k depth with 1-bit data. Additionally, the read and write ports
may be set to different widths. The read and write clocks may be either synchronous or asynchronous with
respect to each other. If the user read and write clocks are the same, the parameter may be set to sync_mode

 to enable faster and synchronous generation of the status flags and FIFO pointer outputs.1'b1

When the and parameters are both set to 40, the error correction code (ECC) logic write_width read_width
may be enabled to allow single-bit error correction with single and double-bit error detection on 32 bits of data.
The embedded error correction encoder generates seven parity bits and stores them alongside each 32-bit word
written into the memory. During the read operations, the error correction decoder reads the seven parity bits and
the 32 data bits to provide error correction for all single-bit errors and error detection without correction for all two-
bit errors.

An optional output register, complete with reset and clock enable inputs, is available to increase the speed of
memory accesses. The use of the output register incurs a single additional cycle of read latency.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 351

Figure 124: BRAMFIFO Block Diagram

Table 239: BRAMFIFO Pin Description

Name Type Clock
Domain Description

Write Interface

wrrst Input prog
Write port FIFO reset (programmable, default active-high). Resets the FIFO to
clear the read-side and/or write-side logic. The contents of the output register,
if enabled, are not affected by the signal.wrrst

wrclk Input wrclk Write clock (rising edge).

wren Input wrclk

Write enable signal. When asserted, data is written to the next unused
memory location in the FIFO, at the next active edge of the write clock, as
long as is not also asserted. The parameter full wren_polarity_sel
determines whether is active-high (default) or active-low.wren

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 352

Name Type Clock
Domain Description

din[31:0] Input wrclk Write port data input.

dinp[3:0] Input wrclk
Write port parity input (may be used for data). Used if the write data width is 9,
10, 18, 20, 36, or 40.

dinpx[3:0] Input wrclk
Write port extended parity input (may be used for data). Used if the write data
width is 10, 20, or 40.

full Output wrclk
Full flag (active-high). Asserted when no more memory locations are available
in the FIFO.

almost_full Output wrclk
Almost full flag (active-high). Asserted when fewer memory locations are
available in the FIFO than the value of the parameter.afull_offset

write_err Output wrclk Write error flag (active-high). Asserted after attempting to write to a full FIFO.

Read Interface

rdrst Input prog
Read port FIFO reset (programmable, default active-high). Asserting rdrst
resets the FIFO to clear the read-side and/or write-side logic. The contents of
the output register, if enabled, are not affected by the signal.wrrst

rdclk Input rdclk Read clock (rising edge).

rden Input rdclk

Read enable. Causes the the next data element to be read from the FIFO at
the next active edge of the clock, if the empty signal is not asserted. The

 parameter determines whether is active-high rden_polarity_sel rden
(default) or active-low.

outregce Input rdclk

Output register clock enable (active-high). When the output register is
enabled, controls when the output data from the FIFO is presented on the

, , and ports. In most cases, this input should be held dout doutp doutpx
high. When the output register is enabled, the signal should outregce
always be asserted during a read operation.

rstreg Input rdclk

Output register reset. The parameter determines sr_assertion_reg
whether the reset is synchronous (default) or asynchronous, and the

 parameter determines whether is active-high (default) reg_rstval rstreg
or active-low. When reset is asserted, the output register is assigned the value
of the parameter.reg_srval

dout[31:0] Output rdclk Read port output.dout

doutp[3:0] Output rdclk
Read port parity output (used for data). Used if the read data width is 9, 10,
18, 20, 36, or 40.

doutpx[3:0] Output rdclk
Read port extended parity output (used for data). Used if the read data width
is 10, 20, or 40.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 353

Name Type Clock
Domain Description

empty Output rdclk
Empty flag (active-high). Asserted whenever there is less than one word of
data available to be read.

almost_empty Output rdclk
Almost-empty flag (active-high). Asserted when there are fewer words to be
read than the value of the parameter.aempty_offset

read_err Output rdclk
Read-error flag (active-high). Asserted after attempting to read from an empty
FIFO.

sbit_error Output rdclk

Single-bit error (active-high). The signal is asserted during a sbit_error
read operation when a single-bit error is detected and the corrected word is
output on the pins. Memory contents are not corrected by the error dout
correction logic. The signal is aligned with the associated read sbit_error
data word.

dbit_error Output rdclk

Dual-bit error (active-high). Asserted during a read operation when a dual-bit
error is detected. In the case of a dual-bit error condition, the uncorrected read
data word is output on the pins. The signal is asserted dout dbit_error
one cycle after the associated read data word.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 354

Table 240: BRAMFIFO Parameters

Parameter Defined
Values

Default
Value Description

sync_mode 1'b0, 1'b1 1'b0

Bypasses the synchronization logic between the read and
write ports. For use when the and clock inputs wrclk rdclk
are connected to the same clock. Reduces the latency
through the FIFO and provides faster de-assertion of the
status flags (empty, full, etc.). If the read and write clocks are
connected to different clock sources, the synchronization logic
must be used, and must be set to .sync_mode 1'b0

write_width

1, 2, 5, 4, 8,
9, 10,
16, 18, 20,
32, 36, 40

40

Defines the width of the data input bus. The Width Versus
 table shows the maximum depth FIFO Depth (see page 359)

of the FIFO for each valid value of the write_width
parameter.

read_width

1, 2, 5, 4, 8,
9, 10,
16, 18, 20,
32, 36, 40

40

Defines the width of the data output bus. The allowed value is
subject to the combinations defined in the Valid Read Width

 Versus Write Width Combinations per Port (see page 357)
table. The table Width Versus FIFO Depth (see page 359)
shows the depth of the FIFO for each value of the

 parameter.write_width

fwft 1'b0, 1'b1 1'b0

Defines whether the FIFO is in first-word-fall-through mode.
Only effects the availability of the first word written to the
FIFO when empty. Operation of the two modes is the same
after the first read operation. May only be set to when 1'b1
the parameter is set to . The two settings sync_mode 1'b0
operate as follows:

 1'b1 – the first value written to the FIFO appears at
the (and , if applicable) output dout doutp doutxp
without the need to perform a read operation.

 1'b0 – the first data word written to the FIFO is
available at the FIFO output one clock cycle rdclk
after the first read operation.

en_out_reg 1'b0, 1'b1 1'b1

Enables the FIFO output register. A value of disables 1'b0
the output register. When enabled, there is an additional cycle
of latency for each read operation. The signal en_out_reg
may only be when the FIFO is in single clock mode 1'b0
(sync_mode =).1'b1

reg_initval(1)
40-bit
hexadecimal
number

40'h0
Defines the power-up default value of the output register data,
if enabled.

reg_srval(1)
40-bit
hexadecimal
number

40'h0
If the output register is enabled, defines the reset value of the
output register data when is asserted.rstreg

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 355

Parameter Defined
Values

Default
Value Description

reg_rstval 1'b0, 1'b1 1'b1

Defines the active level of the input:rstreg

1'b0 – sets active low.
1'b1 – sets active high.

sr_assertion_reg
clocked,
unclocked

clocked

Sets whether the assertion of the output register reset is
synchronous or asynchronous with respect to . A value rdclk
of corresponds to a synchronous reset where the clocked
output register is reset upon the next rising edge of the clock
if is asserted. A value of corresponds to rstreg unclocked
an asynchronous reset where the output register is reset
immediately following the assertion of .rstreg

wrrst_input_mode(2)

2'b00,
,2'b01
, 2'b10

2'b11

2'b10 Defines how the write pointer is reset.

rdrst_input_mode(2)

2'b00,
,2'b01
, 2'b10

2'b11

2'b10 Defines how the read pointer is reset.

wrrst_rstval(3) 1'b0, 1'b1 1'b1 Defines the active level of the input.wrrst

rdrst_rstval(3) 1'b0, 1'b1 1'b1 Defines the active level of the input.rdrst

afull_offset
15-bit
hexadecimal
number

15'h0004

Defines the word depth at which the output almost_full
changes. may be used to determine the almost_full
number of FIFO blind writes that can be made without
monitoring the flag. For example, if the full afull_offset
parameter is set to and the signal 15'h0004 almost_full
is de-asserted, there are at least five empty FIFO locations.
All five words may be written without overflowing the FIFO
and causing assertion of . The write_err almost_full Flag

 Assertion Based on afull_offset Parameter (see page 362)
table provides details.

aempty_offset
15-bit
hexadecimal
number

15'h0004

Defines the word depth at which changes. almost_empty
 may be used to determine the number of almost_empty

blind FIFO reads that can be performed without monitoring
the flag. For example, if the empty aempty_offset
parameter is set to and is de-15'h0004 almost_empty
asserted, there are at least five words in the FIFO. All five
words may be read without FIFO underflow, causing

 to be asserted. Refer to the read_err almost_empty Flag
 Assertion Based on afull_offset Parameter (see page 362)

table.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 356

1.

2.

3.

Parameter Defined
Values

Default
Value Description

wren_polarity_sel 1'b0, 1'b1 1'b1
Determines the active level of . When set to , the wren 1'b0

 input is active-low. When set to it is active-high.wren 1'b1

rden_polarity_sel 1'b0, 1'b1 1'b1
Determines the active level of . When set to the rden 1'b0

 input is active-low. When set to it is active-high.rden 1'b1

encoder_enable 1'b0, 1'b1 1'b1

Defines whether the ECC encoder logic is enabled or
bypassed. When set to , enables the ECC encoder for 1'b1
normal operation. When set to , disables the ECC 1'b0
encoder logic and allows the , , and inputs to din dinp dinpx
be connected directly to the memory write port.

decoder_enable 1'b0, 1'b1 1'b1

Defines whether the ECC decoder logic is enabled or
bypassed. When set to , enables the ECC decoder for 1'b1
normal operation. When set to , disables the ECC 1'b0
decoder logic and allows the , , and dout doutp doutpx
memory outputs to be routed to the output ports without error
correction.

Table Notes

This 40-bit parameter assignment is dependent on the parameter as shown in the read_width srval &
 table.initval to Output Signals Mapping (see page 366)

The reset may be synchronized outside the FIFO or internal to the FIFO, and can be reset by the wrrst
input or the input. Refer to for details.rdrst FIFO Reset (see page 360)
A value of sets active low, sets active high.1'b0 1'b1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 357

Memory Organization and Data Pin Assignments
The BRAMFIFO block supports port widths from one to forty bits. The widths of the , , and inputs din dinp dinpx
are determined by the parameter while the widths of the , , and outputs are write_width dout doutp doutpx
determined by the parameter. The width of the read port may differ from the width of the write port. read_width
The table shows the legal Valid Read Width Versus Write Width Combinations per Port (see page 357)
combinations of read and write widths. "X" indicates a supported configuration.

Table 241: Valid Read Width Versus Write Width Combinations Per Port

Write Width

Read
Width

512 ×
40

1k ×
20

2k ×
10

4k ×
5

512 ×
36

1k ×
18

2k ×
9

512 ×
32

1k ×
16

2k ×
8

4k ×
4

8k ×
2

16k ×
1

512 × 40 X X X X – – – – – – – – –

1k × 20 X X X X – – – – – – – – –

2k × 10 X X X X – – – – – – – – –

4k × 5 X X X X – – – – – – – – –

512 × 36 – – – – X X X – – – – – –

1k × 18 – – – – X X X – – – – – –

2k × 9 – – – – X X X – – – – – –

512 × 32 – – – – – – – X X X X X X

1k × 16 – – – – – – – X X X X X X

2k × 8 – – – – – – – X X X X X X

4k × 4 – – – – – – – X X X X X X

8k × 2 – – – – – – – X X X X X X

16k × 1 – – – – – – – X X X X X X

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 358

Data Widths Using Parity Pins
The ACX_BRAMFIFO memory has three buses for both data in and data out consisting of the respective din
and interfaces, along with the , , and parity interfaces. When ECC is used, the dout dinp dinpx doutp doutpx
parity interfaces are unused, allowing the ECC encoder and decoder to make use of the respective memory pins
for ECC operation. When ECC is disabled, the parity interfaces are assigned to the respective data buses as
shown in the following table.

Table 242: Parity Pins Assignment Per Port

Dat
a

Wid
th

dinpx/doutpx dinp/doutp din/dout

40 {data[39], data[29],
data[19], data[9]}

{data[34], data[24],
data[14], data[4]}

{data[38:35], data[33:30],data[28:25], data[23:20],
data[18:15], data[13:10],data[8:5], data[3:0]}

36 – {data[35], data[26],
data[17], data[8]}

{data[34:27], data[25:18],data[16:9], data[7:0]}

32 – – data[31:0]

20 {2'b00, data[19],
data[9]}

{2'b00, data[14],
data[4]}

{16'h0, data[18:15],data[13:10], data[8:5],data[3:0]}

18 – {2'b00, data[17],
data[8]}

{16'h0, data[16:9], data[7:0]}

16 – – {16'h0, data[15:0]}

10 {3'b000, data[9]} {3'b000, data[4]} {24'h0, data[8:5], data[3:0]}

9 – {3'b000, data[8]} {24'h0, data[7:0]}

8 – – {24'h0, data[7:0]}

5 – {3'b000, data[4]} {28'h0, data[3:0]}

4 – – {28'h0, data[3:0]}

2 – – {30'h0, data[1:0]}

1 – – {31'h0, data[0]}

Caution!

Pay close attention to non power-of-two sized data widths and how the data bits are assigned.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 359

Read and Write Depth
The FIFO write depth is the number of elements that can be written to the input side of an empty FIFO before the
FIFO is full. Similarly, the FIFO read depth is the number of elements that can be read from a full FIFO before the
FIFO is empty. The effective FIFO depth for the read or write port is determined by the width of each port. The
following table shows the effective read depth and write depth as determined by the and read_width

 parameters.write_width

Table 243: Port Width Versus FIFO Depth

write_width/read_width
Parameter Value

Write/Read Depth
fwft = 1'b0

Write/Read Depth
fwft = 1'b1

40 512 513

36 512 513

32 512 513

20 1024 1025

18 1024 1025

16 1024 1025

10 2048 2049

9 2048 2049

8 2048 2049

5 4096 4097

4 4096 4097

2 8192 8193

1 16384 16385

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 360

FIFO Operation
The BRAMFIFO operations are described in detail in this section.

FIFO Reset
A FIFO reset is performed by asserting the and/or inputs as described in rdrst wrrst FIFO Resets (see page

, causing the internal FIFO state to be reset such that the FIFO is empty. After a reset, it is not possible to 380)
retrieve any data contained in the FIFO prior to the reset. The entire FIFO is available to be accept new data.

FIFO Write
A FIFO write is performed by asserting the input when the FIFO is not full. Asserting causes the data wren wren
present on the , , and inputs (depending on the data width) to be stored in the FIFO for later din dinp dinpx
retrieval with a read operation. If a write operation fills the last remaining location in the FIFO, the signal is full
asserted on the following clock cycle. If is asserted when the FIFO is full, the write fails, and wren write_error
is asserted on the next clock cycle.

FIFO Read
A FIFO read is performed by asserting the input when the FIFO is not empty. Asserting the presents rden rden
the next data word from the FIFO memory array on the , and outputs (depending on the dout doutp doutpx
data width). Data is always read in the same order as it was written and is no longer stored in the FIFO after it
has been read. If the last remaining location in the FIFO is read, the signal is asserted on the following empty
clock cycle. If is asserted when the FIFO is empty, the read fails, and is asserted on the next rden read_error
clock cycle.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 361

FIFO Status Signals
The following table describes the FIFO status signals output by the BRAMFIFO component.

Table 244: FIFO Pointers and Status Flag Clock Domain Assignments

Status Signal Clock
Domain Description

empty rdclk

Asserted when either the FIFO is reset or all data has been read from the FIFO. This
flag is synchronous to the domain. Asserting when is asserted rdclk rden empty
does not change the contents of the FIFO nor does it affect the data output, but does
cause the output to be asserted in the following cycle. When read_err rdclk

 is , meaning that read and write ports are not in the same clock sync_mode 1'b0
domain, a few clock cycles are required after writing data to the FIFO before is empty
de-asserted. The signal is always asserted immediately when the FIFO empty
becomes empty.

almost_empty rdclk

Asserted when there are or fewer words remaining in the FIFO (refer aempty_offset
to the almost_empty Flag Assertion Based on afull_offset Parameter (see page 362)
table). The flag may be used to determine the number of reads that almost_empty
can be performed without causing FIFO underflow and assertion of . For rd_err
example, if the parameter is , and the flag aempty_offset 15'h0004 almost_empty
is not asserted, at least five words remain in the FIFO. When is , sync_mode 1'b0
meaning that the read and write ports are not in the same clock domain, a few clock
cycles are required after writing data to the FIFO before is de-almost_empty
asserted. is always asserted immediately when almost_empty aempty_offset
words remain in the FIFO.

read_err rdclk Asserted in the cycle following assertion of while the FIFO is empty.rden

full wrclk

Asserted whenever all FIFO locations are in use. Asserting when is wren full
asserted does not change the FIFO contents and causes the output to be write_err
asserted in the following clock cycle. The inputs are ignored in this case. wrclk din
When is , meaning that read and write ports are not in the same sync_mode 1'b0
clock domain, a few clock cycles are required after reading FIFO data before is full
de-asserted. is always asserted immediately when the FIFO becomes full.full

almost_full wrclk

Asserted when or fewer unused FIFO locations remain. afull_offset almost_full
may be used to determine the number of writes that can be performed without causing
FIFO overflow and assertion of . For example, if is write_err afull_offset

, and is not asserted, there are at least five empty FIFO 15'h00004 almost_full
locations. When is , meaning that the read and write ports are not in sync_mode 1'b0
the same clock domain, a few clock cycles are required after reading from the FIFO
before is de-asserted. is always asserted immediately almost_full almost_full
when locations remain in the FIFO.afull_offset

write_err wrclk Asserted in the cycle following assertion while the FIFO is full.wren

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 362

The following two tables describe the conditions for asserting and de-asserting and almost_full
.almost_empty

Table 245: almost_full Flag Assertion Based on afull_offset Parameter

sync_mode fwft almost_full Assertion Condition almost_full De-assertion Condition

1'b0 1'b0

afull_offset or fewer empty FIFO
locations remain.

At least (+ 1) empty FIFO afull_offset
locations remain.1'b0 1'b1

1'b1 1'b0

1'b1 1'b1 Illegal combination.

Table 246: almost_empty Flag Assertion Based on afull_offset Parameter

sync_mode fwft almost_empty Assertion
Condition almost_empty De-assertion Condition

1'b0 1’b0
aempty_offset or fewer FIFO
words remain.

At least (+ 1) FIFO words present.aempty_offset

1'b0 1'b1
(+ 1) or fewer aempty_offset
FIFO words remain.

At least (+ 1) FIFO words present, plus aempty_offset
the word fallen through to output.

1'b1 1'b0
aempty_offset or fewer FIFO
words remain.

At least (+ 1) FIFO words present.aempty_offset

1'b1 1'b1 Illegal combination.

Before flag calculations can be made, the flag logic must ensure that both pointers are in the same clock domain
as the flag for which the calculation is performed. The write pointer and read pointer synchronizers transfer each
of the pointers into the other clock domain. A given pointer is synchronized to the opposite clock domain using a
series of registers. The transfer of a pointer through these registers adds additional delay to the flag calculation.
The following table shows the versions of the pointers used for flag calculations.

Table 247: Pointers Used for FIFO Flag Calculations

Flag Flag Calculation
Write Pointer

Flag Calculation
Read Pointer

empty
Synchronized
Write Pointer Read Pointer

almost_empty

full

Write Pointer Synchronized
Read Pointer

almost_full

The flag is computed from the synchronized write and read pointers. The write pointer incurs an additional empty

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 363

The flag is computed from the synchronized write and read pointers. The write pointer incurs an additional empty
delay of two cyles before being used to calculate the flag. Therefore, the flag does not rdclk empty empty
transition from empty to non-empty state for a minimum of two cycles after the first write to the FIFO rdclk
occurs. A similar delay occurs for the flag. Also, for the and flags, there are almost_empty full almost_full
two cycles of delay in the actual FIFO status due to the synchronized read pointer. For an asynchronous wrclk
FIFO, the calculation of the flags does not immediately reflect the state of the FIFO (not typical behavior for an
asynchronous FIFO). A synchronous FIFO has only a single clock, so no clock domain crossing is required. A
synchronous FIFO has the advantage that the flag calculation is immediate and precise.

FIFO Operational Modes
The BRAMFIFO is a highly configurable IP component supporting a number of modes of operation, including
either synchronous or asynchronous (dual-clock) operation:

Synchronous – the same clock must be connected to the and inputs, and there cannot be a wrclk rdclk
phase offset between them.

Asynchronous – two different clocks can be connected to the and inputs. The BRAMFIFO wrclk rdclk
does not require any phase or frequency relationship between the two clocks. The two clock inputs are
treated as being completely asynchronous to one another. There is no requirement regarding the relative
frequencies of the two clocks. Either clock can be faster or slower than the other.

Synchronous Operation

The synchronous FIFO mode is selected by setting the parameter to . In synchronous mode, sync_mode 1'b1
there is no latency in updating the and signals after a write operation, or updating the empty almost_empty

 and signals after a read operation. This lack of latency means that the status outputs full almost_full
always represent the exact state of the FIFO.

In this mode, first-word-fall-through (fwft, described in) is not supported, Asynchronous Operation (see page 372)
and the parameter must be .fwft 1'b0

Optional Output Register

An optional output register may be enabled at the output of the FIFO to improve the clock-to-out timing when in
single clock mode (=). Enabling the output register adds an a additional cycle of latency to the sync_mode 1'b1
output data for each read operation. It should be considered as an optional pipeline stage at the data output of
the FIFO. The timing of the , , , and signals are not changed when empty almost_empty full almost_full
the output register is enabled.

The output register is enabled by setting the parameter to . The output register has en_out_reg 1'b1
independent clock enable () and synchronous reset () inputs. The output register may be outregce rstreg
configured to have an active-high or active-low reset input as determined by the parameter. When reg_rstval

 is asserted, the value of the is placed on the output of the register at the next active edge of rstreg reg_srval
. The initial power-up value of the output register is defined by the parameter. The rdclk reg_initval

following table shows the functions of the optional output register and assumes the following:

Active-high rdclk

Active-high outregce

Active-high rstreg

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 364

Table 248: Optional Output Register Function Table

Operation rstreg outregce rdclk dout

Hold X X X dout_previous

Reset output 1 X ↑ reg_srval

Hold 0 0 ↑ dout_previous

Update output 0 1 ↑ fifo_output

When the output register is enabled, the , , and signals take on the value specified in the dout doutp doutpx
 parameter when the FPGA is first configured. When the input is asserted, the , reg_initval rstreg dout

, and signals take on the value specified in the parameter. The following tables show doutp doutpx reg_srval
how the and parameters map to , , and .reg_init reg_srval dout doutp doutpx

Table 249: srval and initval to Output Signals Mapping for datawidth = 1, 2, 4, 8, 16, and 32

initval datawidth

32 16 8 4 2 1

init[31:16] dout[31:16] –

init[15:8] dout[15:8] –

init[7:4] dout[7:4] –

init[3:2] dout[3:2] –

init[1] dout[1] –

init[0] dout[0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 365

Table 250: srval and initval to Output Signals Mapping for datawidth = 9, 18, and 36

initval datawidth

36 18 9

init[35] doutp[3]

–
init[34:27] dout[31:24]

init[26] doutp[2]

init[25:18] dout[23:16]

init[17] doutp[1]

–
init[16:9] dout[15:8]

init[8] doutp[0]

init[7:0] dout[7:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 366

Table 251: srval and initval to Output Signals Mapping for datawidth = 5, 10, 20, and 40

initval datawidth

40 20 10 5

init[39] doutpx[3]

–

init[38:35] dout[31:28]

init[34] doutp[3]

init[33:30] dout[27:24]

init[29] doutpx[2]

init[28:25] dout[23:20]

init[24] doutp[2]

init[23:20] dout[19:16]

init[19] doutpx[1]

–
init[18:15] dout[15:12]

init[14] doutp[1]

init[13:10] dout[11:8]

init[9] doutpx[0]

–
init[8:5] dout[7:4]

init[4] doutp[0]

init[3:0] dout[3:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 367

Timing Diagrams

The following diagram shows the operation of the FIFO in synchronous mode when the FIFO is empty, and the
 parameter is 3. This diagram assumes that all signals not shown, such as and , aempty_offset rdrst wrrst

are not asserted.

Figure 125: Synchronous Mode Empty FIFO Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 368

The events of each clock cycle in the preceding diagram are described in the following table.

Table 252: Synchronous Mode Empty FIFO Timing Diagram Events

Event Description

1

The signal is asserted, writing the first data word to the FIFO, causing to be de-asserted on the wren empty
following clock cycle (FIFO is no longer empty). Simultaneously, is asserted, indicating a read attempt rden
from the FIFO. Since the FIFO is still empty, is asserted on the following clock cycle, and the rd_err dout
output does not change.

2
The signal is asserted, writing the second data word to the FIFO. Simultaneously, is asserted, wren rden
reading the first data word from the FIFO. The data arrives on the output on the following cycle or the dout
one after, depending on the parameter.en_out_reg

3 The signal is asserted, writing the third data word to the FIFO. The signal is not asserted in this wren rden
cycle, so nothing is read from the FIFO. Asserting when is de-asserted has no effect.outregce rden

4 The signal is asserted, writing the fourth data word to the FIFO.wren

5

The signal is asserted, writing the fifth data word to the FIFO, leaving four words in the FIFO (the first wren
word has already been read). The number of words is greater than the value of 3, so aempty_offset

 is de-asserted on the following clock cycle. Simultaneously, is asserted, resetting almost_empty rstreg
the value of the output register on the following clock cycle to the value provided by the reg_srval
parameter, if enabled. Enabling the output register has no effect on timing. If the output aempty_offset
register is not enabled, has no effect.rstreg

6 The signal is asserted, writing the sixth data word to the FIFO.wren

7 The signal is asserted, writing the seventh data word to the FIFO.wren

8 No control signals are asserted.

9 The signal is asserted, reading the second data word from the FIFO. The data arrives on on the rden dout
following cycle or the one after, depending on the parameter.en_out_reg

10 The signal is asserted, reading the third data word from the FIFO. The data arrives on on the rden dout
following cycle or the one after, depending on the parameter.en_out_reg

11

The signal is asserted, reading the fourth data word from the FIFO, is de-asserted on the rden outregce
following cycle. Since this leaves only three words in the FIFO, the signal is asserted on the almost_full
next clock cycle.

If the parameter is , data arrives on on the following cycle, and de-asserting en_out_reg 1'b0 dout
 has no effect.outregce

If the parameter is , de-asserting causes the output register to hold en_out_reg 1'b1 outregce
the previous value instead of the data just read from the FIFO. Even though the data was not present
on the pins, it has been read from the FIFO, and it can not be read again.dout

The signal is asserted, reading the fifth data word from the FIFO. is asserted on the following rden rstreg
cycle.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 369

Event Description

12 If the parameter is , the data arrives on on the following cycle, and the en_out_reg 1'b0 dout
assertion of has no effect.rstreg

If the parameter is , asserting causes the output register to receive the en_out_reg 1'b1 rstreg
value provided in the parameter. Even though the data was not presented on , it reg_srval dout
was read from the FIFO, and it can not be read again.

13

The signal is asserted, reading the sixth data word from the FIFO. The signals and rden outregce rstreg
are both asserted on the following cycle.

If the parameter is , the data arrives on on the following cycle, and en_out_reg 1'b0 dout
 and have no effect.outregce rstreg

If the parameter is , asserting causes the output register to receive the en_out_reg 1'b1 rstreg
value provided in the parameter regardless of the value. Even though the reg_srval outregce
data was not presented on , it was read from the FIFO, and it can not be read again.dout

14

The signal is asserted, reading the seventh and last data word from the FIFO. The data arrives on rden
 on the following cycle or the one after, depending on the parameter. Since the FIFO is dout en_out_reg

empty, the signal is asserted on the next cycle.empty

If is , the data arrives on on the following cycle, and and en_out_reg 1'b0 dout outregce rstreg
have no effect.
If parameter is , asserting causes the output register to receive the value en_out_reg 1'b1 rstreg
provided in the parameter, regardless of the value. Even though the data reg_srval outregce
was not presented on , it was read from the FIFO, and it can not be read again.dout

15 The signal is asserted even though the FIFO is empty. is asserted on the following rden read_error
clock edge, and the FIFO contents are unchanged.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 370

The following diagram shows the operation of the FIFO in synchronous mode, starting when there are 5 locations
remaining in the FIFO, and the parameter is 3. This diagram assumes that all signals not shown, afull_offset
such as and , are de-asserted, and that the parameter is . If was rdrst wrrst en_out_reg 1'b0 en_out_reg

, the signal would be delayed by one cycle.1'b1 dout

Figure 126: Synchronous Mode Full FIFO Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 371

The events of each clock cycle in the preceding diagram are described in the following table.

Table 253: Synchronous Mode Full FIFO Timing Diagram Events

Event Description

1–5
The signal is asserted, writing a data word to the FIFO. After the second write, only three locations are wren
free, so is asserted on the next clock cycle. The fifth write fills the last FIFO element, and the almost_full

 signal is asserted on the following clock cycle.full

6 The signal is asserted. Since the FIFO is already full, the write operation does not take place, and wren
 is asserted on the following clock cycle.write_error

7–8 No operation.

9
The and signals are both asserted at the same time as both a read and a write operation is wren rden
desired. Since the signal is asserted, the write fails, and is asserted on the following full write_error
cycle. The read is successful, and the output data is presented on on the following cycle.dout

10
The and signals are both asserted at the same time, and the input word is written to the FIFO wren rden
while the next output word is read and presented on . Since is not asserted, both operations are dout full
successful.

11–13
The signal is asserted, and the next output data is read from the FIFO and presented on . After rden dout
the third read, there are more than three unused locations in the FIFO, so is de-asserted on almost_full
the next cycle.

14 The signal is not asserted, so the output remains constant.rden

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 372

Asynchronous Operation

When the FIFO is configured for asynchronous operation (=), no phase or frequency sync_mode 1'b0
relationship is assumed between between the write and the read clocks. The two clock inputs are treated as
being completely asynchronous to one another. There is no requirement regarding the relative frequencies of the
two clocks. Either clock can be faster or slower than the other.

Compared to synchronous mode, asynchronous mode causes an additional delay when updating and empty
 after a write operation, or updating and after a read operation, as it takes almost_empty full almost_full

time for the status to cross safely from one clock domain to the other. All status signals are asserted without
delay having only their de-assertion requiring additional time. For asynchronous operation, the en_out_reg
parameter must be set to .1'b1

When using the FIFO with two clocks, the first-word-fall-through (fwft) parameter controls when data is made
available on the output signals:

fwft = (request mode) – when in request mode, asserting requests that the data be 1'b0 rden
presented on the pins on the following cycle. This mode is identical to when = , dout sync_mode 1'b1
and the clocks are synchronous to one another. In this mode, the output of the FIFO remains unchanged
after the first write in the empty state. After the first write operation, the flag is de-asserted, empty
indicating that data is available. The FIFO is read by asserting and the first word written is then rden
available at the outputs on the next cycle. Each subsequent read operation updates the FIFO rdclk
outputs with the next stored data word if it is available (= 0).empty

fwft = 1'b1 (acknowledge mode) – when in acknowledge mode, the FIFO behaves as a first-word-fall-
through FIFO, meaning that when empty, the first data word written to the FIFO is presented on the output
pins as soon as possible, without waiting for to be asserted. After a reset (or after the last word has wren
been read), the FIFO is in an empty state as indicated by assertion of . The output of the FIFO is empty
updated after the next write and is de-asserted indicating that data is available to be read. empty
Asserting effectively acknowledges the output data currently on the pins, allowing the FIFO to rden dout
move to the next data word if not empty. Each subsequent read operation updates the outputs with the
next stored data word if available (flag =). First-word-fall-through mode has the effect of empty 1'b0
making the FIFO one element deeper.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 373

Timing Diagrams

The following diagram shows the operation of the FIFO in asynchronous mode when the FIFO is empty, and the
 parameter is 3. This diagram assumes that all signals not shown, such as and , aempty_offset rdrst wrrst

are de-asserted.

Figure 127: Asynchronous Mode Empty FIFO Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 374

The events of each clock cycle in the preceding digram are described in the following table.

Table 254: Asynchronous Mode Empty FIFO Timing Diagram Events

Event Description

0–6

The signal is asserted synchronous to , writing seven data words to the FIFO.wren wrclk

Two or three clock cycles after the first write, is de-asserted synchronous to . If = empty rdclk fwft
, the first data word is presented on when is de-asserted.1'b1 dout empty

After the fifth write, the FIFO has four words (since the first word has already been read). The amount
of words is greater than the aempty_offset value of 3, so almost_empty is asserted two or three clock
cycles later, synchronous to .rdclk

2
The signal is asserted indicating that a read from the FIFO is desired. Since the output rden empty
remains asserted, the read fails, and is asserted on the following clock cycle. The data on rd_err dout
does not change.

3

The signal is also asserted, reading the first data word from the FIFO.rden

If = , the data arrives on on the following clock cycle.fwft 1'b0 dout

If = , the first data word on is replaced by the second data word.fwft 1'b1 dout

4 The signal is not asserted in this cycle. Nothing is read from the FIFO. Asserting when rden outregce
 is de-asserted has no effect.rden

6 The signal is asserted, resetting the value of the output register to that provided by the rstreg reg_srval
parameter. The effect of is not dependent on the parameter.rstreg fwft

7–8 No control signals are asserted.

9

The signal is asserted, reading the second data word from the FIFO.rden

If = , the data arrives on on the following cycle.fwft 1'b0 dout

If = , the previous data word on is replaced by the next data word.fwft 1'b1 dout

10

The signal is asserted, reading the third data word from the FIFO.rden

If = , the data arrives on on the following cycle.fwft 1'b0 dout

If = , the previous data word on is replaced by the next data word, leaving only four fwft 1'b1 dout
more words in the FIFO. is de-asserted.almost_empty

11

The signal is asserted, reading the fourth data word from the FIFO.rden

If = , the data arrives on on the following cycle, leaving only four more words in the fwft 1'b0 dout
FIFO. is de-asserted.almost_empty

If = , the previous data word on is replaced by the next data word.fwft 1'b1 dout

12
The signal is asserted, reading the fifth data word from the FIFO. The signal is de-rden outregce
asserted, causing the output register to hold the previous value instead of providing the data just read. Even
though the data is not presented on , it has been read from the FIFO and cannot be read again.dout

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 375

Event Description

13
The signal is asserted, reading the sixth data word from the FIFO. asserting causes the rden rstreg
output register to receive the value provided in the parameter. Even though the data is not reg_srval
presented on , it has been read from the FIFO and cannot be read again.dout

14

The signal is asserted, reading the seventh and last data word from the FIFO. The and rden outregce
 signals are both asserted. asserting causes the output register to receive the value rstreg rstreg

provided in the parameter, regardless of the value. Since the FIFO is empty, the reg_srval outregce
 signal is asserted on the next cycle. Even though the data was not presented on , it has empty rdclk dout

been read from the FIFO, and it can not be read again.

15 The signal is asserted even though the FIFO is empty. The signal is asserted on the rden rd_error
following clock edge, and the FIFO contents are unchanged.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 376

The following diagram shows the operation of the FIFO in asynchronous mode, starting when there are five
locations remaining in the FIFO where the parameter is 3. This diagram assumes that all signals afull_offset
not shown, such as and , are de-asserted, and the parameter is .rdrst wrrst en_out_reg 1'b1

Figure 128: Asynchronous Mode Full FIFO Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 377

The events of each clock cycle in the preceding diagram are described in the following table.

Table 255: Asynchronous Mode Full FIFO Timing Diagram Events

Event Description

1–5

The signal is asserted, writing five data words to the FIFO.wren

After the second write, the FIFO has only three locations free, so is asserted on the almost_full
next clock cycle.
After the fifth write, the last FIFO element has been used, and is asserted on the following full
clock cycle.

6 The signal is asserted. Since the FIFO is already full, the write operation does not take place, and wren
 is asserted on the following clock cycle.write_error

7–8 No operation.

9

The signal is asserted, and the next output data is read from the FIFO and presented on . Two rden dout
or three cycles later, is de-asserted synchronously to .full wrclk

If = , the first data arrives on on the following cycle.fwft 1'b0 dout

If = , the first data word remains present on the output since it was first written. This data fwft 1'b1
word is replaced by the next data word being read from the FIFO.

10 The signal is asserted, and the next output data is read from the FIFO and presented on .rden dout

11

The signal is asserted synchronously to and is asserted synchronously to , rden rdclk wren wrclk
meaning that the both a read and write operation is desired. Since is asserted, the write fails, and full

 is asserted on the following cycle. The read is successful, and the output data is write_error wrclk
updated on the following cycle.rdclk

12

The signal is asserted synchronously to and is asserted synchronously to . The rden rdclk wren wrclk
input word is written to the FIFO while the next output word is read from the FIFO and presented on . dout
Since is not asserted, both operations are successful. Now there are more than three unused full
locations in the FIFO, so is de-asserted two or three cycles later, synchronously to .almost_full wrclk

13 The signal is asserted, and the next output data is read from the FIFO and presented on .rden dout

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 378

Mixed-Width Modes

The BRAMFIFO allows the read port width to be different than the write port width. The port widths affect how the
signals , , , and are asserted. The signals and empty almost_empty almost_full full empty

 are relative to the read data width and are only de-asserted when one or more almost_empty aempty_offset
read operations can be performed at the read data width. Similarly, the and signals are full almost_full
relative to the write data width and are only de-asserted when one or more write operations can afull_offset
be performed at the write data width.

To illustrate, the following diagram shows the operation of the FIFO in synchronous mode, starting when the
FIFO is empty, and the parameter is 3. The write data width is 4 bits, and the read data width aempty_offset
is 8 bits. This diagram assumes that all signals not shown, such as and , are de-asserted, and the rdrst wrrst

 parameter is . If the parameter had been set to , would be delayed en_out_reg 1'b0 en_out_reg 1'b1 dout
by one cycle.

Figure 129: Synchronous Mode Mixed-Width FIFO Operation Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 379

The events of each clock cycle in the preceding diagram are described in the following table.

Table 256: Synchronous Mode Mixed-Width FIFO Operation Timing Diagram Events

Event Description

1-8 The signal is asserted, writing a total of eight 4-bit words to the FIFO.wren

3 The signal is de-asserted after two 4-bit writes have been completed, providing enough data for a empty
single 8-bit read.

9 The signal is de-asserted after eight 4-bit writes to the FIFO since there are now four 8-bit almost_empty
words available to the read side of the FIFO, which is larger than the value of 3.aempty_offset

9-17 The signal is asserted, causing the data to be read from the FIFO in 8-bit words. Each read returns rden
data that was written in two write operations.

10 The signal is asserted again since there are no longer four 8-bit words available to be read almost_empty
from the FIFO.

10-17 The signal is asserted, writing a total of eight 4-bit words to the FIFO.wren

16 The signal is asserted since at this time the FIFO contains only 4 bits of data, and there is no longer empty
enough data for a complete 8-bit read operation.

17 The signal is asserted as a result of assertion while empty on the previous clock cycle.rd_err rden

18 The signal is asserted as a result of the last data word being read from the FIFO.empty

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 380

1.

2.

3.

4.

FIFO Resets
Several FIFO reset options are available. The basic option allows the FIFO to be reset without the need to
synchronize the reset signals externally. The reset synchronization performed within the component requires two
clock cycles. A lower-latency reset can be achieved using one of the following advanced reset modes.

For the basic FIFO reset, do the following:

Set both the and parameters to , the default setting.wrrst_input_mode rdrst_input_mode 2'b11

Connect the user reset signal to both the and input pins.wrrst rdrst

To reset the FIFO, assert the reset signal for a minimum of three cycles of the slower of and wrclk rdclk
which performs the following:

Resets the internal write and read pointers

Sets the and flagsempty almost_empty

Clears the and flagsfull almost_full

Do not attempt to read or write the FIFO while the reset is asserted or before three cycles after the de-
assertion of the reset signal

For basic FIFO operation, the parameters associated with reset should remain at their default settings as shown
in the table.Reset Parameter Mapping (see page 382)

Advanced FIFO Reset Modes
The BRAMFIFO provides several reset options from either the read or write clock domains. The reset may be
either sychronous with respect to the read and/or write clock domains or the internal reset synchronization logic
may be enabled to synchronize the reset inputs. The capability for synchronous resets is provided to allow the
fastest response between the reset assertion and when the FIFO is ready to be written. Internal to the FPGA, the
read and write pointers have synchronous reset inputs. The BRAMFIFO macro provides the necessary logic to
perform the synchronization of pointer resets without requiring the implementation of synchronization logic
external to the FIFO.

The write pointer reset logic is configured via the parameter while reset logic for the read wrrst_input_mode
pointer is configured via the parameter. The reset operation of the read and write pointers rdrst_input_mode
is configured independently so that in addition to optionally synchronizing the reset inputs, each side of the FIFO
can be configured to respond to one or both of the or input signals.wrrst rdrst

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 381

It is important to ensure that the resets are synchronized to the proper clock domain. If the read or write pointer
synchronizers are bypassed, synchronization of and must be performed external to the FIFO. The rdrst wrrst
following figure shows the block diagram of the FIFO reset selection logic, with a table that describes the
behavior of each mode. The logic to configure the read and write pointer resets is identical.

Figure 130: Read and Write Pointer Reset Input Selection Block Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 382

1.

2.

3.

Table 257: wrrst_input_mode (rdrst_input_mode) Parameter Mapping

wrrst_input_mode
(rdrst_input_mode)

Write-side (Read-side) Reset
Selected Input

2'b00
wrrst () resets the write (read) interface logic. The () signal must be rdrst wrrst rdrst
synchronized to the () clock external to the FIFO.wrclk rdclk

2'b01
rdrst () resets the write (read) interface logic. The () signal must be wrrst rdrst wrrst
synchronized to the () clock external to the FIFO.wrclk rdclk

2'b10
wrrst () is ORed with the internally synchronized () input to reset the rdrst rdrst wrrst
write (read) interface logic. and must be synchronous to and , wrrst rdrst wrclk rdclk
respectively.

2'b11
rdrst () is internally synchronized and is then used to reset the write (read) interface wrrst
logic.

Table Notes

For a synchronous (single clock) FIFO, the lowest reset latency is achieved by selecting reset input mode
 on both interfaces and connecting the same reset wire to both the wrrst and rdrst inputs.2'b00

For an asynchronous FIFO, the lowest reset latency is achieved by using a reset input that is
synchronous to . The write pointer should be configured with a synchronous reset (wrclk

), and the read pointer should be configured to synchronize the wrrst_input_mode = 2'b00 wrrst
input (). The user reset signal should be connected to , and rdrst_sync_mode = 2'b11 wrrst rdrst
should be de-asserted.
When resetting the FIFO, the reset input(s) should be held asserted for at least three clock cycles of the
slowest clock domain.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 383

The following table describes some example reset mode use cases.

Table 258: Reset Usage Model for wrrst and rdrst Inputs

wrrst_input_mode rdrst_input_mode Description

2'b11 2'b00

For an asynchronous FIFO, a single reset in the domain resets rdclk
both read and write pointers, with the FIFO synchronizing the write
pointer logic. The user reset should be connected to the input. rdrst
The signal should be de-asserted.wrrst

2'b00 2'b11

For an asynchronous FIFO, a single reset in the domain resets wrclk
both read and write pointers, with the FIFO synchronizing the read
pointer logic. The user reset should be connected to the input. wrrst
The signal should be de-asserted.rdrst

2'b11 2'b11
For an asynchronous FIFO, a single asynchronous reset resets both
the read and write pointers. The user reset should be connected to
both the and inputs.wrrst rdrst

2'b10 2'b10
For an asynchronous FIFO, or resets both the read and wrrst rdrst
write pointers. Each reset input must be synchronous to its own clock
domain, and is synchronized by the FIFO for the other clock domain.

2'b00 2'b00
For a synchronous FIFO, resets the write pointer, and wrrst rdrst
resets the read pointer. Both reset inputs must be synchronized
externally to the FIFO single clock domain.

Error Detection and Correction
There are four modes of operation for the BRAMFIFO defined by the and encoder_enable decoder_enable
parameters described in the following table. The ECC encoder and decoder can only be used if both the read
width and the write width are 40.

Table 259: BRAMFIFO ECC Modes of Operation

encoder_enable decoder_enable BRAMECC Operation Mode

1'b0 1'b0 ECC mode disabled, standard BRAMSDP operation is available.

1'b0 1'b1 ECC decode-only mode.

1'b1 1'b0 ECC encode-only mode.

1'b1 1'b1 Normal ECC encode/decode mode

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 384

ECC Encode/Decode Mode
The ECC encode/decode mode uses both the ECC encoder and the ECC decoder. 32-bit user data is written
into the memory via the inputs. The ECC encoder generates the 7-bit error correction syndrome and din[31:0]
writes it into the memory alongside the data word, using the parity () and extended parity () bit dinp dinpx
positions. During read operations, the ECC decoder reads the 32-bit user data and the 7-bit syndrome to
generate an error correction mask.

The ECC decoder corrects any single-bit error and detects, but does not correct, any dual-bit error. If the ECC
decoder detects a single-bit error, it automatically corrects the error, places the corrected data on the dout[31:

 pins, and asserts the flag. The memory location containing the error is not corrected. If the ECC 0] sbit_error
decoder detects a dual-bit error, it places the uncorrected data on the pins and asserts the dout[31:0]

 flag one cycle after the the data word is read.dbit_error

ECC Encode-Only Mode

In the ECC encode-only mode, the ECC encoder is enabled and the ECC decoder is disabled. This mode allows
writing the user 32-bit data while the 7-bit error correction syndrome is calculated by the FIFO. The syndrome is
presented on and . Read operations allow the 32-bit user data and the error doutpx[2:0] doutp[3:0]
syndrome to be read directly out of the memory without correcting the data. The encode-only mode can be used
as a building block to provide error correction for off-chip memories.

ECC Decode-Only Mode

In the ECC decode-only mode, the ECC encoder is disabled and the ECC decoder enabled. This mode
bypasses the ECC encoder and allows writing 40-bit data directly into the FIFO during write operations. Read
operations use the memory and locations as a 7-bit syndrome for error correction. doutp[3:0] doutpx[2:0]
The ECC decoder corrects any single-bit error and detects, but does not correct, any dual-bit error.

If the ECC decoder detects a single-bit error, it automatically corrects the error and places the corrected data on
the pins as well as asserts the flag. The memory location containing the error is not dout[31:0] sbit_error
corrected. If the ECC decoder detects a dual-bit error, it places the uncorrected data on the pins dout[31:0]
and assert the flag one clock cycle after the the data word is read. The decode-only mode can be dbit_error
used as a building block to provide error correction for off-chip memories.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 385

Instantiation Template

Verilog

BRAMFIFO #(

.sync_mode(1'b0),

.read_width(40),

.write_width(40),

.fwft(1'b0),

.en_out_reg(1'b0),

.reg_initval(40'h0),

.reg_srval(40'h0),

.reg_rstval(1'b1),

.wrrst_input_mode(2'b11),

.rdrst_input_mode(2'b11),

.wrrst_rstval(1'b1),

.rdrst_rstval(1'b1),

.afull_offset(15'h4),

.aempty_offset(15'h4),

.wren_polarity_sel(1'b1),

.rden_polarity_sel(1'b1),

.encoder_enable(1'b0),

.decoder_enable(1'b0)
) instance_name (
.wrclk(user_wrclk),
.wrrst(user_wrrst),
.wren(user_wren),
.din(user_din),
.dinp(user_dinp),
.dinpx(user_dinpx),
.full(user_full),
.almost_full(user_almost_full),
.write_err(user_write_err),
.rdclk(user_rdclk),
.rdrst(user_rdrst),
.rden(user_rden),
.rstreg(user_rstreg),
.outregce(user_outregce),
.dout(user_dout),

.doutp(user_doutp),

.doutpx(user_doutpx),

.empty(user_empty),

.almost_empty(user_almost_empty),

.read_err(user_read_err),

.sbit_error(user_sbit_error),

.dbit_error(user_dbit_error)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 386

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

------------- DONE ACHRONIX LIBRARY ---------
-- Component Instantiation

instance_name : BRAMFIFO
generic map (

 sync_mode => 0,
 read_width => 40,

 write_width => 40,
 fwft => 0,

 en_out_reg => 0,
 reg_initval => 0,

 reg_srval => 0,
 reg_rstval => 1,

 wrrst_input_mode => 11,
 rdrst_input_mode => 11,

 wrrst_rstval => 1,
 rdrst_rstval => 1,

 afull_offset => 4,
 aempty_offset => 4,

 wren_polarity_select => 1,
 rden_polarity_select => 1,

 encoder_enable => 0,
 decoder_enable => 0)

port map (
 wrclk => user_wrclk,

 wrrst => user_wrrst,
 wren => user_wren,

 din => user_din,
 dinp => user_dinp,

 dinpx => user_dinpx,
 full => user_full,

 almost_full => user_almost_full,
 write_err => user_write_err,

 rdclk => user_rdclk,
 rdrst => user_rdrst,

 rden => user_rden,
 rstreg => user_rstreg,
 outregce => user_outregce,
 dout => user_dout,
 doutp => user_doutp,
 doutpx => user_doutpx,
 empty => user_empty,
 almost_empty => user_almost_empty,
 read_err => user_read_err,
 sbit_error => user_sbit_error,
 dbit_error => user_dbit_error
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 387

ACX_BRAM72K_SDP (72-kb Simple Dual-Port Memory with
Error Correction)

Figure 131: ACX_BRAM72K_SDP Logic Symbol

The ACX_BRAM72K_SDP block RAM primitive implements a 72-Kb simple dual-port (SDP) memory block with
one write port and one read port. Each port can be independently configured with respect to bit-width. Both ports
can be configured as any one of 512 × 144, 512 × 128, 1024 × 72, 1024 × 64, 2048 × 36, 2048 × 32, 4096 × 18,
4096 × 16, 8192 × 9, 8192 × 8, or 16384 × 4, (depth × data width). The read and write operations are both
synchronous.

For higher performance operation, an additional output register can be enabled at the cost of an additional cycle
of read latency.

When writing, there is one write enable bit () for each 8 or 9 bits of input data, depending on the byte_width we[]
parameter.

The initial value of the memory contents may be user-specified from either parameters or a memory initialization
file.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 388

The following block diagram shows the data flow through the ECC modules, memories, and optional output
registers.

Figure 132: ACX_BRAM72K_SDP Block Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 389

Parameters
Table 260: ACX_BRAM72K_SDP Parameters

Parameter Supported Values Default
Value Description

read_width(1) 4, 8, 9, 16, 18, 32,
36, 64, 72, 128, 144 72 Data width of read port. Read port widths of 36 or narrower are not supported for

 settings of 72 or 144.write_width

write_width(1) 4, 8, 9, 16, 18, 32,
36, 64, 72, 128, 144 72 Data width of write port.

rdclk_polarity "rise", "fall" "rise"
Determines whether the signal uses the falling or rising edge:rdclk

"rise" – rising edge.
"fall" – falling edge.

wrclk_polarity "rise", "fall" "rise"
Determines whether the signal uses the falling or rising edge:wrclk

"rise" – rising edge.
"fall" – falling edge.

outreg_enable 0, 1 0
Determines whether the output register is enabled:
0 – disables the output register and results in a read latency of one cycle.
1 – enables the output register and results in a read latency of two cycles.

outreg_sr_assertion
"clocked",
"unclocked" "clocked"

Determines whether the assertion of the output register reset is synchronous or
asynchronous with respect to the input.rdclk

"clocked" – synchronous reset. The output register is reset upon the next rising edge of the
clock when is asserted.outreg_rstn
"unclocked" – asynchronous reset. The output register is reset immediately following the
assertion of the input.outreg_rstn

byte_width(2) 8, 9 9

Determines whether the the signal applies as 8-bit bytes or 9-bit bytes:we[]

The setting is required for and settings byte_width=8 read_width write_width
of 4, 8, 16, 32, 64 or 128. The 144-bit signal should be viewed as eighteen 8-din[]
bit bytes. During a write operation, selects which of the 8-bit bytes to be we[17:0]
written, where implies that is written to memory, and we[0] din[7:0] we[17]
implies that is written.din[143:136]

The setting is required for and settings byte_width=9 read_width write_width
of 9, 18 or 36. The 144-bit signal should be viewed as sixteen 9-bit bytes. din[]
During a write operation, selects which of the lower 9-bit bytes to be written we[7:0]
and selects which of the higher 9-bit bytes to be written, where we[16:9] we[0]
implies that is written to memory, and implies thatdin[8:0] we[16]

 is written. In this mode, and are ignored.din[143:135] we[8] we[17]

mem_init_file Path to HEX file ""

Provides a mechanism to set the initial contents of the ACX_BRAM72K_SDP memory:

If the parameter is defined, the BRAM is initialized with the values mem_init_file
defined in the file pointed to by the parameter according to the mem_init_file
format defined in .Memory Initialization (see page 399)
If the is left at the default value of "", the initial contents are defined mem_init_file
by the values of the through parameters.initd_0 initd_1023

If the memory initialization parameters and the parameters are not mem_init_file
defined, the contents of the BRAM remain uninitialized.

initd_0–initd_1023 72 bit hex number 72'hX
The through parameters define the initial contents of the memory initd_0 initd_1023
associated with as defined in .dout[71:0] Memory Initialization (see page 399)

ecc_encoder_enable 0, 1 0

Determines if the ECC encoder circuitry is enabled. A value of 1 is only supported for a write
width of 64 or 128:
0 – disables the ECC encoder.
1 – enables the ECC encoder such that and are ignored and din[71:64] din[143:136]
bits [71:64] and [143:136] of the memory array are populated with ECC bits.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 390

1.

2.

Parameter Supported Values Default
Value Description

ecc_decoder_enable 0, 1 0

Determines if the ECC decoder circuitry is enabled. A value of 1 is only supported for a read
width of 64 or 128:
0 – disables the ECC decoder.
1 – enables the ECC decoder.

read_remap 0, 1 0

Enable read port to be remapped:
0 - disable remap. In , the port presents up to 1024 locations.byte_mode=8
1 - enable remap. With or , when andread_width=4, 8, 16, 32 64 rdmsel=1'b1

, the port presents up to 1152 locations, reading the higher order data rdaddr[11]=1'b0
bits as extended memory address locations.
Refer to for full details.Advanced Modes (see page 405)

write_remap 0, 1 0

Enable write port to be remapped:
0 - disable remap. In , the port presents up to 1024 locations.byte_mode=8
1 - enable remap. With or , when andwrite_width=4, 8, 16, 32 64 wrmsel=1'b1

, the port presents up to 1152 locations, writing the extended memory wraddr[11]=1'b0
address locations to the higher order data bits.
Refer to for full details.Advanced Modes (see page 405)

Table Notes

Setting or to 128 or 144 consumes the adjacent MLP site by using it as a route-through to accommodate the transfer read_width write_width
of wide data.
Write and read port widths of 72 or 144 are allowed to use either 8 or 9.byte_width

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 391

Ports
Table 261: ACX_BRAM72K_SDP Pin Descriptions

Name Direction Description

wrclk Input
Write clock input. Write operations are fully synchronous and occur upon the active edge of the

 clock input when is asserted. The active edge of is determined by thewrclk wren wrclk
 parameter.wrclk_polarity

wren Input Write port enable. Assert high to perform a write operation.wren

we[17:0] Input
Write enable mask. There is one bit of for each byte of (byte width can be set to either 8 or we[] din
9 bits). Asserting each bit causes the corresponding byte of to be written to memory. we[] din
When using 72-bit width or smaller, only the lower 9 bits must be connected.

wraddr[13:0] Input The signal determines which memory location is being written to. See the following write wraddr
port address and data bus mapping tables for details.

wrmsel Input

Write support for advanced modes. Used in conjunction with to set the following wraddr[11]
modes, { , }:wrmsel wraddr[11]

1'b0, – normal mode. BRAM write-side operation.1'bx
, – remap depth mode. 9-bit bytes remapped to 8-bit bytes.1'b1 1'b0
, – reserved.1'b1 1'b1

Refer to for full details of the operation.Advanced Modes (see page 405)

din[143:0] Input The signal determines the data to write to the memory array during a write operation. See the din
following write port address and data bus mapping tables for details.

rdclk Input
Read clock input. Read operations are fully synchronous and occur upon the active edge of the

 input when the signal is asserted. The active edge of is determined by therdclk rden rdclk
 parameter.rdclk_polarity

rden Input Read port enable. Assert high to perform a read operation.rden

rdaddr[13:0] Input The signal determines which memory location to read from. See the following read port rdaddr
address and data bus mapping tables for details.

rdmsel Input

Read support for advanced modes. Used in conjunction with to set the following rdaddr[11]
modes, { , }:rdmsel rdaddr[11]

1'b0, – normal mode. BRAM read-side operation.1'bx
, – remap mode. 9-bit bytes remapped to 8-bit bytes.1'b1 1'b0
, – reserved.1'b1 1'b1

Refer to for full details of the operation.Advanced Modes (see page 405)

outlatch_rstn Input Output latch synchronous reset. When is asserted low, the value of the output outlatch_rstn
latches are reset to 0.

outreg_rstn Input Output register synchronous reset. When is asserted low, the value of the output outreg_rstn
registers are reset to 0.

outreg_ce Input
Output register clock enable (active high). When , de-asserting outreg_enable=1 outreg_ce
causes the BRAM to keep the signal unchanged, independent of a read operation. Whendout

, input is ignored.outreg_enable=0 outreg_ce

dout[143:0] Output
Read port data output. For read operations, the output is updated with the memory contents dout
addressed by if the port enable is active. See the following read port address and data rdaddr rden
bus mapping tables for details.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 392

1.

Name Direction Description

sbit_error[1:0](1) Output

Single-bit error (active high). The signal is asserted during a read operation whensbit_error
 and a single-bit error is detected. In this case, the corrected word is ecc_decoder_enable=1

output on the pins. The memory contents are not corrected by the error correction circuitry. Thedout
 signal is aligned with the associated read data word. When using 64-bit width, onlysbit_error

 should be used. is unused.sbit_error[0] sbit_error[1]

dbit_error[1:0](1) Output

Dual-bit error (active high). The signal is asserted during a read operation whendbit_error
 and two or more bit errors are detected. In the case of two or more bit ecc_decoder_enable=1

errors, the uncorrected read data word is output on the pins. The signal is dout dbit_error
aligned with the associated read data word. When using 64-bit width, only should dbit_error[0]
be used.

 is unused.dbit_error[1]

Table Notes

ECC modes are only applicable with read and write widths of 64 and 128 bits. In these modes, bits [71:64] and [143:136] of the
memory array are used to store the ECC parity bits. If ECC is enabled with other settings, the respective data read_width
input and output on these memory array bits are ignored. Refer to for full details of ECC Modes of Operation (see page 401)
ECC operation and configuration.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 393

1.

Memory Organization and Data Input/Output Pin Assignments

Supported Width Combinations
The ACX_BRAM72K_SDP block supports a variety of memory width combinations, as shown in the following
table.

Table 262: ACX_BRAM72K_SDP Supported Data Widths

Write Data Width

Read Data
Width 144 72 36 18 9 128 64 32 16 8 4

144 (w)(1)

72 (w)(1)

36 (w)(1)

18 (w)(1)

9 (w)(1)

128

64 (r)(1) (r)(1) (r)(1) (r)(1) (r)(1)

32

16

8

4

Table Notes

Requires remap mode:
(w) – .write_remap=1'b1
(r) – .read_remap=1'b1

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 394

Write Data Port Usage

Table 263: ACX_BRAM72K_SDP Write Port Address and Data Bus Mapping

Write Port Configuration Data Input Assignment Write Word Address Assignment

144 × 512 din[143:0] <= user_din[143:0]
wraddr[13:5] <= user_wraddr[8:0]
wraddr[4:0] <= 5'b0

128 × 512

din[143:136] <= 8'b0
din[135:72] <= user_din[127:64]
din[71:64] <= 8'b0
din[63:0] <= user_din[63:0]

wraddr[13:5] <= user_wraddr[8:0]
wraddr[4:0] <= 5'b0

72 × 1024 din[143:72] <= 72'b0
din[71:0] <= user_din[71:0]

wraddr[13:4] <= user_wraddr[9:0]
wraddr[3:0] <= 4'b0

64 × 1024 din[143:64] <= 80'b0
din[63:0] <= user_din[63:0]

wraddr[13:4] <= user_wraddr[9:0]
wraddr[3:0] <= 4'b0

36 × 2048 din[143:36] <= 108'b0
din[35:0] <= user_din[35:0]

wraddr[13:3] <= user_wraddr[10:0]
wraddr[2:0] <= 3'b0

32 × 2048 din[143:32] <= 112'b0
din[31:0] <= user_din[31:0]

wraddr[13:3] <= user_wraddr[10:0]
wraddr[2:0] <= 3'b0

18 × 4096 din[143:18] <= 126'b0
din[17:0] <= user_din[17:0]

wraddr[13:2] <= user_wraddr[11:0]
wraddr[1:0] <= 2'b0

16 × 4096 din[143:16] <= 128'b0
din[15:0] <= user_din[15:0]

wraddr[13:2] <= user_wraddr[11:0]
wraddr[1:0] <= 2'b0

9 × 8192 din[143:9] <= 135'b0
din[8:0] <= user_din[8:0]

wraddr[13:1] <= user_wraddr[12:0]
raddr[0] <= 1'b0

8 × 8192 din[143:8] <= 136'b0
din[7:0] <= user_din[7:0]

wraddr[13:1] <= user_wraddr[12:0]
wraddr[0] <= 1'b0

4 × 16384 din[143:4] <= 140'b0
din[3:0] <= user_din[3:0]

wraddr[13:0] <= user_wraddr[13:0]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 395

1.

Table 264: ACX_BRAM72K_SDP Read Port Address and Data Bus Mapping

Read Port Configuration Data Output Assignment Read Word Address Assignment

144 × 512 user_dout[143:0] <= dout[143:0]
rdaddr[13:5] <= user_rdaddr[8:0]
rdaddr[4:0] <= 5'b0

128 × 512 user_dout[127:64] <= dout[135:72]
user_dout[63:0] <= dout[63:0]

rdaddr[13:5] <= user_rdaddr[8:0]
rdaddr[4:0] <= 5'b0

72 × 1024 user_dout[72:0] <= dout[72:0]
rdaddr[13:4] <= user_rdaddr[9:0]
rdaddr[3:0] <= 4'b0

64 × 1024 user_dout[63:0] <= dout[63:0]
rdaddr[13:4] <= user_rdaddr[9:0]
rdaddr[3:0] <= 4'b0

36 × 2048 (1) user_dout[35:0] <= dout[35:0]
rdaddr[13:3] <= user_rdaddr[10:0]
rdaddr[2:0] <= 3'b0

32 × 2048 (1) user_dout[31:0] <= dout[31:0]
rdaddr[13:3] <= user_rdaddr[10:0]
rdaddr[2:0] <= 3'b0

18 × 4096 (1) user_dout[17:0] <= dout[17:0]
rdaddr[13:2] <= user_rdaddr[11:0]
rdaddr[1:0] <= 2'b0

16 × 4096 (1) user_dout[15:0] <= dout[15:0]
rdaddr[13:2] <= user_rdaddr[11:0]
rdaddr[1:0] <= 2'b0

9 × 8192 (1) user_dout[8:0] <= dout[8:0]
rdaddr[13:1] <= user_rdaddr[12:0]
rdaddr[0] <= 1'b0

8 × 8192 (1) user_dout[7:0] <= dout[7:0]
rdaddr[13:1] <= user_rdaddr[12:0]
rdaddr[0] <= 1'b0

4 × 16384 (1) user_dout[3:0] <= dout[3:0] rdaddr[13:0] <= user_rdaddr[13:0]

Table Notes

Not supported for setting of 72 or 144 because is 36 bits or less.write_width read_width

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 396

Read and Write Operations

Timing Options
The ACX_BRAM72K_SDP has two options for interface timing, controlled by the outreg_enable parameter:

Latched mode – when , the port is in latched mode. In latched mode, the read outreg_enable=0
address is registered and the stored data is latched into the output latches on the following clock cycle
providing a read operation with one cycle of latency.

Registered mode – when , the port is in registered mode. In registered mode, there is outreg_enable=1
an additional register after the latch to support higher-frequency designs providing a read operation with
two cycles of latency.

Read Operation
Read operations are signaled by driving the signal with the address to be read and asserting the rdaddr[] rden
signal. The requested read data arrives on the signal on the following clock cycle or the cycle after dout[]
depending on the parameter value.outreg_enable

Table 265: ACX_BRAM72K_SDP Latched Mode Output Function Table

Operation rdclk outlatch_rstn rden dout[]

Reset latch ↑ 0 X 0

Hold ↑ 1 0 Hold previous value

Read ↑ 1 1 mem[rdaddr]

Table Notes

Operation assumes rising-edge clock and active-high port enable, otherwise previous value is held.

Table 266: ACX_BRAM72K_SDP Registered Mode Output Function Table

Operation rdclk outreg_rstn outregce dout[]

Reset Output ↑ 0 1 0

Hold ↑ 1 0 Previous dout[]

Update Output ↑ 1 1 Registered from latch output

Table Notes

Operation assumes active-high clock, output register clock enable, and output register reset, otherwise
previous is held.dout[]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 397

Write Operation
Write operations are signaled by asserting the signal. The value of the signal is stored in the wren din[]
memory array at the address indicated by the signal on the next active clock edge.wraddr[]

Simultaneous Memory Operations
Memory operations may be performed simultaneously from both sides of the memory. However, there is a
restriction regarding memory collisions. A memory collision is defined as the condition where both ports access
the same memory location(s) within the same clock cycle (both ports connected to the same clock), or within a
fixed time window (if each port is connected to a different clock). If one of the ports is writing an address while the
other port is reading the same address (qualified with overlapping write enables per bit), the write operation takes
precedence, but the read data is invalid. The data may be reliably read on the next cycle if there is no longer a
write collision.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 398

Timing Diagrams
The following timing diagram illustrates the behavior of a ACX_BRAM72K_SDP instance with the output register
both disabled and enabled via the parameter.outreg_enable

Figure 133: ACX_BRAM72K_SDP Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 399

The behavior of the ACX_BRAM72K_SDP on each clock cycle of the preceding diagram is described in the
following table.

Table 267: ACX_BRAM72K_SDP Timing Diagram Events

Event Transaction Description

Write Clock

1 No-Op wren is asserted but is not asserted. Nothing is written to the memory array.we

2–4 Write wren and are both asserted. Data on is committed to the location.we din[] wraddr[]

Read clock

4 Read
Reset latch

outlatch_rstn is asserted, causing the output of the latch to be set to 0.
 – the data is reset to zero on the following cycle.outreg_enable = 0
 – the output of the latch is reset to zero on the following cycle. The outreg_enable = 1

value is visible at the output of the memory on the second cycle because is outreg_ce
asserted.

6 Read

rden is asserted. The memory is read from the memory array.
 – the value is output on the following cycle.outreg_enable = 0
 – the value is output two cycles later, because is outreg_enable = 1 outreg_ce

asserted on the next cycle.

7
Read with
latch/register
reset

rden is asserted. The memory is read from the memory array.
 – is set to 0 since is asserted.outreg_enable = 0 dout[] outlatch_rstn
 – is set to 0 after two cycles since is outreg_enable = 1 dout[] outreg_rstn

asserted on the following cycle.

8 Read

rden is asserted. The memory is read from the memory array.
 – the value is output on the following cycle.outreg_enable = 0
 – the value is output two cycles later, because is outreg_enable = 1 outreg_ce

asserted on the next cycle.

7–8 Read rden is asserted. The memory is read from the memory array and presented on on dout[]
the following cycle.

8–9 Hold rden and are both de-asserted. retains its previous value.outlatch_rstn dout[]

Memory Initialization

Initializing with Parameters
The data portion of initial memory contents may be defined by setting the 1024 72-bit parameters initd_0
through . The data memory is organized as little-endian with bit zero mapped to bit zero of initd_1023
parameter and bit 73727 mapped to bit 71 of parameter .initd_0 initd_1023

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 400

Initializing with Memory Initialization File
A ACX_BRAM72K_SDP may alternatively be initialized with a memory file by setting the mem_init_file
parameter to the path of a memory initialization file. The file format must be hexadecimal entries separated by
white space where the white space is defined by spaces or line separation. Each number is a hexadecimal
number of width equal to 72 bits.

The ACX_BRAM72K_SDP memory organization is configured with the parameter as either byte_width
 or . For read and write data widths, the contains 1024 lines byte_width=8 byte_width=9 mem_init_file

with 72 bits of init data per line, organized as follows:

Table 268: 9-bit Byte Mode (byte_width == 9)

 Bits

Line in
mem_init_file

Corresponding
 Parameterinitd_*

71:63 62:54 53:45 44:36 35:27 26:18 17:9 8:0

1st line initd_0 9byte7 9byte6 9byte5 9byte4 9byte3 9byte2 9byte1 9byte0

2nd line initd_1 9byte15 9byte14 9byte13 9byte12 9byte11 9byte10 9byte9 9byte8

...

1024th line initd_1023 9byte8191 9byte8190 9byte8189 9byte8188 9byte8187 9byte8186 9byte8185 9byte8184

Table 269: 8-bit Byte Mode (byte_width == 8)

 Bits

Line in
mem_init_file

Corresponding
 Parameterinitd_*

71 70:63 62 61:54 53 52:45 44 43:36

35 34:27 26 25:18 17 16:9 8 7:0

1st line initd_0

1'b0 byte7 1'b0 byte6 1'b0 byte5 1'b0 byte4

1'b0 byte3 1'b0 byte2 1'b0 byte1 1'b0 byte0

2nd line initd_1

1'b0 byte15 1'b0 byte14 1'b0 byte13 1'b0 byte12

1'b0 byte11 1'b0 byte10 1'b0 byte9 1'b0 byte8

...

1024th line initd_1023

1'b0 byte8191 1'b0 byte8190 1'b0 byte8189 1'b0 byte8188

1'b0 byte8187 1'b0 byte8186 1'b0 byte8185 1'b0 byte8184

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 401

Table 270: 8-bit Byte Mode (byte_width == 8, write_width is 72 or 144)

Bits

Line in
mem_init_file

Corresponding
 Parameterinitd_*

71 70:63 62 61:54 53 52:45 44 43:36

35 34:27 26 25:18 17 16:9 8 7:0

1st line initd_0

byte8[7] byte7 byte8[6] byte6 byte8[5] byte5 byte8[4] byte4

byte8[3] byte3 byte8[2] byte2 byte8[1] byte1 byte8[0] byte0

2nd line initd_1

byte17[7] byte16 byte17[6] byte15 byte17[5] byte14 byte17[4] byte13

byte17[3] byte12 byte17[2] byte11 byte17[1] byte10 byte17[0] byte9

...

1024th line initd_1023

byte9215[7] byte9214 byte9215[6] byte9213 byte9215[5] byte9212 byte9215[4] byte9211

byte9215[3] byte9210 byte9215[2] byte9209 byte9215[1] byte9208 byte9215[0] byte9207

A number entry can contain underscore (_) characters among the digits, for example, A234_4567_33.
Commenting is allowed following a double-slash (//) through to the end of the line. C-like commenting is also
allowed where the characters between the /* and */ are ignored. The memory is initialized starting with the first
entry of the file initializing the memory array starting with address zero, moving upward.

If is defined, the ACX_BRAM72K_SDP is initialized with the values in the file referenced by the mem_init_file
 parameter. If the paramter is left at the default value of "", the initial contents mem_init_file mem_init_file

are defined by the values of the through parameters. If neither the memory initialization initd_0 initd_1023
parameters nor the parameters are defined, the contents of a BRAM remain uninitialized and mem_init_file
the contents are unknown until the memory locations are written.

ECC Modes of Operation
There are four modes of operation for a ACX_BRAM72K_SDP defined by the and enable_ecc_encoder

 parameters shown in the table below.enable_ecc_decoder

Table 271: ACX_BRAM72K_SDP ECC Modes of Operation

enable_ecc_encoder enable_ecc_decoder ECC Operation Mode

0 0 ECC encoder and decoder disabled. Standard
ACX_BRAM72K_SDP operation available.

0 1 ECC decode-only mode. Applies only to of 64 read_width
or 128.

1 0 ECC encode-only mode. Applies only to of 64 write_width
or 128.

1 1 Normal ECC encode/decode mode. Applies only to
 and of 64 or 128.read_width write_width

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 402

ECC Encode/Decode Operation Mode
The ECC encode/decode operation mode utilizes both the ECC encoder and the ECC decoder. The 64-bit user
data is written into a ACX_BRAM72K_SDP via the inputs. The ECC encoder generates the 8-bit din[63:0]
error correction syndrome and writes it into the memory array bits . During read operations, the ECC [71:64]
decoder reads the 64-bit user data and the 8-bit syndrome data to generate an error correction mask. The ECC
decoder corrects any single-bit error and only detects, but does not correct, any dual-bit error.

If the ECC decoder detects a single-bit error, it corrects the error and places the corrected data on the dout[63:
 pins and asserts the output. The memory location containing the error is not corrected.0] sbit_error

If the ECC decoder detects a dual-bit error, it places the uncorrected data on the pins and asserts dout[63:0]
the output. The and outputs are asserted aligned with the output data.dbit_error sbit_error dbit_error

ECC Encode-Only Operation Mode
The ECC encode-only operation has the ECC encoder enabled and the ECC decoder disabled. This mode
allows writing 64 bits of data with the 8-bit error correction syndrome automatically written to bits of the [71:64]
memory array during write operations. Read operations provide the 64-bit user data and the error syndrome
without correcting the data. Encode-only mode can be used as a building block to provide error correction for off-
chip memories.

ECC Decode-Only Operation Mode
The ECC decode-only operation has the ECC encoder disabled and the ECC decoder enabled. This mode
bypasses the ECC encoder and allows writing 72-bit data directly into the memory array during write operations.
If the ECC decoder detects a single-bit error, it corrects the error and places the corrected data on the dout[63:

 pins and asserts the output. The memory location containing the error is not corrected. If the 0] sbit_error
ECC decoder detects a dual-bit error, it places the uncorrected data on the pins and asserts the dout[63:0]

 output one cycle after the the data word is read. For read operations in this mode, dbit_error dout [71:64]
is unknown. Decode-only mode can be used as a building block to provide error correction for off-chip memories.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 403

1.

2.

Additional Requirements for ECC Mode With ACE GUI Memory Generator
When initializing memory with the ACE GUI Memory Generator, there are additional requirements when ECC
mode is enabled:

If the box is checked, the / parameters must be 64 or Enable ECC Encoder write_width read_width
128.

If the box is checked and the is defined, each line of the Enable ECC Encoder Memory Initialization File
memory initialization file must be:

72 bits if the is 64 (8 bits of parity and bits of data)write_width [63:0]

144 bits if the is 128 (8 bits of parity and bits of data, or 8 bits of parity write_width [127:64]
and bits of data)[63:0]

If it is chosen to initialize the memory, not only must the data bits be initialized, but the parity bits must
also be assigned. The parity information is required in the memory initialization file so that if the initialized
values are read from memory, the error flags are not set. Eight parity bits are required to be generated for
each 64 bits of user data, and must be placed in the top eight bits of each 72-bit segment of the
initialization words.

If = 64, eight parity bits are assigned to bits , generated write_width mem_init_word [71:64]
from bits user_initialization [63:0]

If = 128, eight parity bits are assigned to bits , write_width mem_init_word [71:64]
generated from bits , and eight parity bits are assigned to user_initialization [63:0]

 bits , generated from bits mem_init_word [143:136] user_initialization [127:64]

The parity bits are generated according to the following Verilog equations.

Note

The same parity equations are used for each segment of 64 bits. The user_initialization i_din
 references are with respect to the index into each 64-bit data segment.[]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 404

ECC Parity Equations

assign parity[0] = i_din[0] ^ i_din[1] ^ i_din[3] ^ i_din[4] ^ i_din[6] ^ i_din[8] ^ i_din

[10] ^ i_din[11] ^ i_din[13] ^ i_din[15] ^ i_din[17] ^ i_din[19] ^ i_din[21] ^ i_din[23] ^ i_din

[25] ^ i_din[26] ^ i_din[28] ^ i_din[30] ^ i_din[32] ^ i_din[34] ^ i_din[36] ^ i_din[38] ^ i_din

[40] ^ i_din[42] ^ i_din[44] ^ i_din[46] ^ i_din[48] ^ i_din[50] ^ i_din[52] ^ i_din[54] ^ i_din

[56] ^ i_din[57] ^ i_din[59] ^ i_din[61] ^ i_din[63];

assign parity[1] = i_din[0] ^ i_din[2] ^ i_din[3] ^ i_din[5] ^ i_din[6] ^ i_din[9] ^ i_din

[10] ^ i_din[12] ^ i_din[13] ^ i_din[16] ^ i_din[17] ^ i_din[20] ^ i_din[21] ^ i_din[24] ^ i_din

[25] ^ i_din[27] ^ i_din[28] ^ i_din[31] ^ i_din[32] ^ i_din[35] ^ i_din[36] ^ i_din[39] ^ i_din

[40] ^ i_din[43] ^ i_din[44] ^ i_din[47] ^ i_din[48] ^ i_din[51] ^ i_din[52] ^ i_din[55] ^ i_din

[56] ^ i_din[58] ^ i_din[59] ^ i_din[62] ^ i_din[63];

assign parity[2] = i_din[1] ^ i_din[2] ^ i_din[3] ^ i_din[7] ^ i_din[8] ^ i_din[9] ^ i_din

[10] ^ i_din[14] ^ i_din[15] ^ i_din[16] ^ i_din[17] ^ i_din[22] ^ i_din[23] ^ i_din[24] ^ i_din

[25] ^ i_din[29] ^ i_din[30] ^ i_din[31] ^ i_din[32] ^ i_din[37] ^ i_din[38] ^ i_din[39] ^ i_din

[40] ^ i_din[45] ^ i_din[46] ^ i_din[47] ^ i_din[48] ^ i_din[53] ^ i_din[54] ^ i_din[55] ^ i_din

[56] ^ i_din[60] ^ i_din[61] ^ i_din[62] ^ i_din[63];

assign parity[3] = i_din[4] ^ i_din[5] ^ i_din[6] ^ i_din[7] ^ i_din[8] ^ i_din[9] ^ i_din

[10] ^ i_din[18] ^ i_din[19] ^ i_din[20] ^ i_din[21] ^ i_din[22] ^ i_din[23] ^ i_din[24] ^ i_din

[25] ^ i_din[33] ^ i_din[34] ^ i_din[35] ^ i_din[36] ^ i_din[37] ^ i_din[38] ^ i_din[39] ^ i_din

[40] ^ i_din[49] ^ i_din[50] ^ i_din[51] ^ i_din[52] ^ i_din[53] ^ i_din[54] ^ i_din[55] ^ i_din

[56];

assign parity[4] = i_din[11] ^ i_din[12] ^ i_din[13] ^ i_din[14] ^ i_din[15] ^ i_din[16] ^ i_din

[17] ^ i_din[18] ^ i_din[19] ^ i_din[20] ^ i_din[21] ^ i_din[22] ^ i_din[23] ^ i_din[24] ^ i_din

[25] ^ i_din[41] ^ i_din[42] ^ i_din[43] ^ i_din[44] ^ i_din[45] ^ i_din[46] ^ i_din[47] ^ i_din

[48] ^ i_din[49] ^ i_din[50] ^ i_din[51] ^ i_din[52] ^ i_din[53] ^ i_din[54] ^ i_din[55] ^ i_din

[56];

assign parity[5] = i_din[26] ^ i_din[27] ^ i_din[28] ^ i_din[29] ^ i_din[30] ^ i_din[31] ^ i_din

[32] ^ i_din[33] ^ i_din[34] ^ i_din[35] ^ i_din[36] ^ i_din[37] ^ i_din[38] ^ i_din[39] ^ i_din

[40] ^ i_din[41] ^ i_din[42] ^ i_din[43] ^ i_din[44] ^ i_din[45] ^ i_din[46] ^ i_din[47] ^ i_din

[48] ^ i_din[49] ^ i_din[50] ^ i_din[51] ^ i_din[52] ^ i_din[53] ^ i_din[54] ^ i_din[55] ^ i_din

[56];

assign parity[6] = i_din[57] ^ i_din[58] ^ i_din[59] ^ i_din[60] ^ i_din[61] ^ i_din[62] ^ i_din

[63];

assign parity[7] = i_din[0] ^ i_din[1] ^ i_din[2] ^ i_din[3] ^ i_din[4] ^ i_din[5] ^ i_din[

6] ^ i_din[7] ^ i_din[8] ^ i_din[9] ^ i_din[10] ^ i_din[11] ^ i_din[12] ^ i_din[13] ^ i_din

[14] ^ i_din[15] ^ i_din[16] ^ i_din[17] ^ i_din[18] ^ i_din[19] ^ i_din[20] ^ i_din[21] ^ i_din

[22] ^ i_din[23] ^ i_din[24] ^ i_din[25] ^ i_din[26] ^ i_din[27] ^ i_din[28] ^ i_din[29] ^ i_din

[30] ^ i_din[31] ^ i_din[32] ^ i_din[33] ^ i_din[34] ^ i_din[35] ^ i_din[36] ^ i_din[37] ^ i_din

[38] ^ i_din[39] ^ i_din[40] ^ i_din[41] ^ i_din[42] ^ i_din[43] ^ i_din[44] ^ i_din[45] ^ i_din

[46] ^ i_din[47] ^ i_din[48] ^ i_din[49] ^ i_din[50] ^ i_din[51] ^ i_din[52] ^ i_din[53] ^ i_din

[54] ^ i_din[55] ^ i_din[56] ^ i_din[57] ^ i_din[58] ^ i_din[59] ^ i_din[60] ^ i_din[61] ^ i_din

[62] ^ i_din[63] ^ parity[0] ^ parity[1] ^ parity[2] ^ parity[3] ^ parity[4] ^ parity[5] ^ parity

[6];

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 405

Parity is user-assigned to either or depending [7:0] mem_init_word[143:136] mem_init_word[71:64]
on the specific 64-bit group of bits.user_initialization

Note

The inputs are ignored when the box is checked.byte_en Enable ECC Encoder

Using ACX_BRAM72K_SDP as a Read-Only Memory (ROM)
The ACX_BRAM72K_SDP macro can be used as a read-only memory (ROM) by providing memory initialization
data via a file or parameters (as described in) and tying the signal to Memory Initialization (see page 399) wren
its de-asserted value. All signals on the read-side of the ACX_BRAM72K_SDP operate as described above. This
configuration allows the reading from the memory, but not writing to it.

Advanced Modes
The ACX_BRAM72K_SDP supports two advanced modes that allow for remapping of the address space within
the memory to be accessed when in 8-bit byte mode and, additionally, for control of the tightly-coupled LRAM
within the ACX_MLP72, (refer to).ACX_MLP72 LRAM

The advanced modes are enabled in the read and write sides by asserting the and inputs wrmsel rdmsel
respectively. When asserted, and are combined with and wrmsel rdmsel wraddr[11] rdaddr[11]
respectively to configure the write and read side advanced mode.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 406

Remap Mode
(,)wrmsel/rdmsel=1'b1 wraddr[11]/rdaddr[11]=1'b0

The ACX_BRAM72K_SDP is natively configured as a 72x1024 bit memory, with 9-bit bytes. However, access to
the memory using traditional 8-bit byte access might be required, for example, when transferring data to and from
the NAPs or directly with the interface IP, the majority of which is configured for 8-bit bytes. In order to assist with
the conversion between these two formats, the ACX_BRAM72K_SDP uniquely offers a remap mode which
allows either of the two ports to operate in an 8-bit byte mode, but with the ability to still access the full memory
contents. This is achieved by the memory presenting an extended addressing depth, the extra 128 addresses
contain the memory content from the higher bits of the 72 bit memory array. In this mode, the memory supports
1024 + 128 = 1152 addresses at 64-bit width.

Note

If 8-bit byte mode is required for both ports, the memory can be conventionally configured using the
 and parameters set to either 4, 8, 16, 32 or 64. However, in this mode, the read_width write_width

extended addresses are not available and the memory only supports a maximum depth of 1024 words.

To enable the remap mode for either port, the respective parameter, and must be write_remap read_remap
set to .1'b1

With the appropriate parameter enabled, , and , the wrmsel/rdmsel=1'b1 wraddr[11]/rdaddr[11]=1'b0
relevant ACX_BRAM72K_SDP port operates as a 1152 x 64-bit memory. This mode remaps the extra data bits
between the full width of 72 bits and the reduced width of 64 bits, and arranging them as extended memory
locations. With set to , the further address bits wraddr[11]/rdaddr[11] 1'b0 wraddr[10:4]/rdaddr[10:

 are used to access the additional 128 words of memory.4]

Note

(,) is a reserved mode and not supported by wrmsel/rdmsel=1'b1 wraddr/rdaddr[11]=1'b1
ACX_BRAM72K_SDP.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 407

Inference
The ACX_BRAM72K_SDP is inferrable using RTL constructs commonly used to infer synchronous and RAMs
and ROMs, with a variety of clock enable and reset schemes and polarities. The ECC functionality is not
inferrable. All control inputs can be inferred as active low by placing an inverter in the netlist before the control
input.

To ensure a BRAM is inferred, as opposed to an LRAM, use the following synthesis attributes in the memory
declaration.

Verilog

// Infer BRAM memory array. Will create memory using ACX_BRAM72K_SDP set to a maximum width of 72-

bit
logic [DATA_WIDTH-1:0] mem [(2**ADDR_WIDTH)-1:0] /* synthesis syn_ramstyle = "block_ram" */;

// Alternatively infer wide BRAM memory array with ACX_BRAM72K_SDP primitives set to 144-bit width

logic [DATA_WIDTH-1:0] mem [(2**ADDR_WIDTH)-1:0] /* synthesis syn_ramstyle = "large_ram" */;

Example Template

//---
//

// Copyright (c) 2021 Achronix Semiconductor Corp.
// All Rights Reserved.

//
// This Software constitutes an unpublished work and contains

// valuable proprietary information and trade secrets belonging
// to Achronix Semiconductor Corp.

//
// Permission is hereby granted to use this Software including

// without limitation the right to copy, modify, merge or distribute
// copies of the software subject to the following condition:

//
// The above copyright notice and this permission notice shall

// be included in in all copies of the Software.
//

// The Software is provided “as is” without warranty of any kind
// expressed or implied, including but not limited to the warranties

// of merchantability fitness for a particular purpose and non-infringement,
// in no event shall the copyright holder be liable for any claim,

// damages, or other liability for any damages or other liability,
// whether an action of contract, tort or otherwise, arising from,

// out of or in connection with the Software
//

//
//---

// Design: SDP memory inference
// Decides between BRAM and LRAM based on the requested size

// Restriction that read and write ports must be of the same dimensions
//---

`timescale 1ps / 1ps

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 408

module sdpram_infer

#(
 parameter ADDR_WIDTH = 0,

 parameter DATA_WIDTH = 0,
 parameter OUT_REG_EN = 0,

 parameter INIT_FILE_NAME = ""
)

(
 // Clocks and resets

 input wire wr_clk,
 input wire rd_clk,

 // Enables
 input wire we,

 input wire rd_en,
 input wire rstreg,

 // Address and data

 input wire [ADDR_WIDTH-1:0] wr_addr,
 input wire [ADDR_WIDTH-1:0] rd_addr,

 input wire [DATA_WIDTH-1:0] wr_data,

 // Output

 output reg [DATA_WIDTH-1:0] rd_data
);

 // Determine if size is small enough for an LRAM
 localparam MEM_LRAM = (((DATA_WIDTH <= 36) && (ADDR_WIDTH <= 6)) ||
 ((DATA_WIDTH <= 72) && (ADDR_WIDTH <= 5)) ||
 ((DATA_WIDTH <= 144) && (ADDR_WIDTH <= 4))) ? 1 : 0;

 localparam WIDE_BRAM = (DATA_WIDTH > 72) ? 1 : 0;

 // Define combinatorial and registered outputs from memory array

 logic [DATA_WIDTH-1:0] rd_data_int;
 logic [DATA_WIDTH-1:0] rd_data_reg;

 logic read_collision;
 always @(posedge rd_clk)

 if (~rstreg)
 rd_data_reg <= {DATA_WIDTH{1'b0}};

 else
 rd_data_reg <= rd_data_int;

 // Need a generate block to apply the appropriate syn_ramstyle to the memory array
 // Rest of the the code has to be within the generate block to access that variable

 generate if (MEM_LRAM == 1) begin : gb_lram

 logic [DATA_WIDTH-1:0] mem [(2**ADDR_WIDTH)-1:0] /* synthesis syn_ramstyle = "logic" */;

 // If an initialisation file exists, then initialise the memory

 if (INIT_FILE_NAME != "") begin : gb_init
 initial

 $readmemh(INIT_FILE_NAME, mem);
 end

 // Writing. Inference does not currently support byte enables

 // Also generate the signals to detect if there is a memory collision
 logic [ADDR_WIDTH-1:0] wr_addr_d;

 always @(posedge wr_clk)

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 409

 if(we) begin

 mem[wr_addr] <= wr_data;
 wr_addr_d <= wr_addr;

 end

 // LRAM only supports the WRITE_FIRST mode. So if rd_addr = wr_addr then

 // write takes priority and read value is invalid
 // The value from the array is combinatorial, (this is different than for BRAM)

 // Write address is effective on the cycle it is writing to the memory, (i.e. it is

registered)

 assign read_collision = (wr_addr_d == rd_addr);

 assign rd_data_int = (read_collision) ? {DATA_WIDTH{1'bx}} : mem[rd_addr];

 end

 else if (WIDE_BRAM == 1) begin : gb_wide_bram

 logic [DATA_WIDTH-1:0] mem [(2**ADDR_WIDTH)-1:0] /* synthesis syn_ramstyle = "large_ram"

*/;

 // If an initialisation file exists, then initialise the memory
 if (INIT_FILE_NAME != "") begin : gb_init

 initial
 $readmemh(INIT_FILE_NAME, mem);

 end

 // Writing. Inference does not currently support byte enables
 always @(posedge wr_clk)

 if(we)

 begin
 mem[wr_addr] <= wr_data;

 end

 // BRAM supports WRITE_FIRST mode only, (write takes precedence over read)
 // Calculate if there will be a collision

 // write takes priority and read value is invalid
 // Both wr_addr and rd_addr have registered operations on the memory array

 assign read_collision = (wr_addr == rd_addr) && we;

 always @(posedge rd_clk)
 if(rd_en)

 begin
 // Read collisions cannot be modelled in synthesis, so use solely in simulation

 // synthesis synthesis_off
 if(read_collision)

 rd_data_int <= {ADDR_WIDTH{1'bx}};
 else

 // synthesis synthesis_on
 rd_data_int <= mem[rd_addr];

 end
 end

 else
 begin : gb_bram

 logic [DATA_WIDTH-1:0] mem [(2**ADDR_WIDTH)-1:0] /* synthesis syn_ramstyle = "block_ram"

*/;

 // If an initialisation file exists, then initialise the memory

 if (INIT_FILE_NAME != "") begin : gb_init

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 410

 initial

 $readmemh(INIT_FILE_NAME, mem);
 end

 // Writing. Inference does not currently support byte enables
 always @(posedge wr_clk)

 if(we)
 begin

 mem[wr_addr] <= wr_data;
 end

 // BRAM supports WRITE_FIRST mode only, (write takes precedence over read)

 // Calculate if there will be a collision
 // write takes priority and read value is invalid

 // Both wr_addr and rd_addr have registered operations on the memory array
 assign read_collision = (wr_addr == rd_addr) && we;

 always @(posedge rd_clk)

 if(rd_en)
 begin

 // Read collisions cannot be modelled in synthesis, so use solely in simulation
 // synthesis synthesis_off

 if(read_collision)
 rd_data_int <= {ADDR_WIDTH{1'bx}};

 else
 // synthesis synthesis_on

 rd_data_int <= mem[rd_addr];
 end

 end
 endgenerate

 // Select output based on whether output register is enabled
 assign rd_data = (OUT_REG_EN) ? rd_data_reg : rd_data_int;

endmodule : sdpram_infer

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 411

Instantiation Template

Verilog

ACX_BRAM72K_SDP #(

 .byte_width (9),
 .read_width (72),

 .write_width (72),
 .rdclk_polarity ("rise"),

 .wrclk_polarity ("rise"),
 .read_remap (0),

 .write_remap (0),
 .outreg_enable (1),

 .outreg_sr_assertion ("clocked"),
 .ecc_encoder_enable (0),

 .ecc_decoder_enable (0),
 .mem_init_file (""),
 .initd_0 (0),
 <...>
 .initd_1023 (0)
) instance_name (
 .wrclk (user_wrclk),
 .din (user_din),
 .we (user_we),
 .wren (user_wren),
 .wraddr (user_wraddr),
 .wrmsel (user_wrmsel),
 .rdclk (user_rdclk),
 .rden (user_rden),
 .rdaddr (user_rdaddr),
 .rdmsel (user_rdmsel),
 .outlatch_rstn (user_outlatch_rstn),
 .outreg_rstn (user_outreg_rstn),
 .outreg_ce (user_outreg_ce),
 .dout (user_dout),
 .sbit_error (user_sbit_error),
 .dbit_error (user_dbit_error)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 412

VHDL

-- VHDL Component template for ACX_BRAM72K_SDP

component ACX_BRAM72K_SDP is
generic (

 byte_width : integer := 9;
 ecc_decoder_enable : integer := 0;

 ecc_encoder_enable : integer := 0;
 initd_0 : integer := X"x";

 <...>
 initd_1023 : integer := X"x";

 mem_init_file : string := "";
 outreg_enable : integer := 0;

 outreg_sr_assertion : string := "clocked";
 rdclk_polarity : string := "rise";

 read_remap : integer := 0;
 read_width : integer := 72;

 wrclk_polarity : string := "rise";
 write_remap : integer := 0;

 write_width : integer := 72
);

port (
 wrclk : in std_logic;

 rdclk : in std_logic;
 din : in std_logic_vector(143 downto 0);

 we : in std_logic_vector(17 downto 0);
 wren : in std_logic;

 wraddr : in std_logic_vector(13 downto 0);
 wrmsel : in std_logic;

 rden : in std_logic;
 rdaddr : in std_logic_vector(13 downto 0);

 rdmsel : in std_logic;
 outreg_rstn : in std_logic;

 outlatch_rstn : in std_logic;
 outreg_ce : in std_logic;

 sbit_error : out std_logic_vector(1 downto 0);
 dbit_error : out std_logic_vector(1 downto 0);

 dout : out std_logic_vector(143 downto 0)
);

end component ACX_BRAM72K_SDP

-- VHDL Instantiation template for ACX_BRAM72K_SDP

instance_name : ACX_BRAM72K_SDP
generic map (

 byte_width => byte_width,
 ecc_decoder_enable => ecc_decoder_enable,

 ecc_encoder_enable => ecc_encoder_enable,
 initd_0 => initd_0,

 <...>
 initd_1023 => initd_1023,

 mem_init_file => mem_init_file,
 outreg_enable => outreg_enable,

 outreg_sr_assertion => outreg_sr_assertion,
 rdclk_polarity => rdclk_polarity,

 read_remap => read_remap,
 read_width => read_width,

 wrclk_polarity => wrclk_polarity,

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 413

 write_remap => write_remap,

 write_width => write_width
)

port map (
 wrclk => user_wrclk,

 rdclk => user_rdclk,
 din => user_din,

 we => user_we,
 wren => user_wren,

 wraddr => user_wraddr,
 wrmsel => user_wrmsel,

 rden => user_rden,
 rdaddr => user_rdaddr,

 rdmsel => user_rdmsel,
 outreg_rstn => user_outreg_rstn,

 outlatch_rstn => user_outlatch_rstn,
 outreg_ce => user_outreg_ce,

 sbit_error => user_sbit_error,

 dbit_error => user_dbit_error,
 dout => user_dout

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 414

ACX_BRAM72K_FIFO (72-kb FIFO Memory with Optional Error
Correction)
The ACX_BRAM72K_FIFO implements a 72kb FIFO. Each port width can be independently configured and each
port can use different clock domains. For higher performance operation, an additional output register can be
enabled.

Figure 134: ACX_BRAM72K_FIFO Block Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 415

Parameters
Table 272: ACX_BRAM72K_FIFO Parameters

Parameter Supported Values Default
Value Description

read_width(1) 4, 8, 9, 16, 18, 32,
36, 64, 72, 128, 144 72 Controls the width of the read port.

write_width(1) 4, 8, 9, 16, 18, 32,
36, 64, 72, 128, 144 72 Controls the width of the write port.

rdclk_polarity "rise", "fall" "rise"
Detemines the clock edge used by the signal:rdclk

"rise" – rising edge.
"fall" – falling edge.

wrclk_polarity "rise", "fall" "rise"
Determines the clock edge used by the signal:wrclk

"rise" – rising edge.
"fall" – falling edge.

outreg_enable 0, 1 1
Controls whether the output register is enabled:
0 – disables the output register and results in a read latency of one cycle.
1 – enables the output register and results in a read latency of two cycles.

sync_mode 0,1 0

Controls whether the FIFO operates in synchronous or asynchronous mode. In synchronous
mode, the two input clocks must be driven by the same clock input, and the pointer
synchronization logic is bypassed, leading to lower latency for flag assertion.
0 – asynchronous mode.
1 – synchronous mode.

afull_threshold 0–14'h3FFF 14'h10

Defines the word depth at which the output changes. The almost_full almost_full
signal may be used to determine the number of blind writes to the FIFO made without
monitoring the flag. For example, if the parameter is set to full afull_threshold 14’

 and the signal is de-asserted, at least five empty locations exist in the h0004 almost_full
FIFO. All five words may be written without overflowing the FIFO and causing assertion of wr

.ite_error

aempty_threshold(2) 0–14'h3FFF 14'h10

Defines the word depth at which the output changes. May be used to almost_empty
determine the number of blind reads from the FIFO performed without monitoring the empty
flag. For example, if the parameter is set to and the aempty_threshold 14’h0004 almos

 flag is de-asserted, at least five words exist in the FIFO which may be read t_empty
without underflowing the FIFO and causing assertion of .read_error

fwft_mode(3) 0, 1 0

First-word fall through (FWFT). Controls the behavior of data at the output of the FIFO
relative to :rden

0 – data is presented at the output of the FIFO after is asserted whenrden
.outreg_enable = 1

1 – data is presented at the output of the FIFO as soon as it is available and coincident with
the de-assertion of . Data is held until is asserted. If empty (outreg_enable = 0) rden

, an additional one cycle of latency results causing the outreg_enable = 1 rdclk empty
flag to precede the output data by one cycle and should be externally delayed if flag rdclk
alignment is required.

ecc_encoder_enable(4) 0, 1 0

Enables the ECC encoder which calculates the ECC syndrome and stores it in memory in
data bits [71:64]. When enabled, is ignored:din[71:64]

0 – ECC encoder is disabled.
1 – ECC encoder is enabled.

ecc_decoder_enable(5) 0, 1 0

Enables the ECC decoder which uses the ECC syndrome in bits [71:64] to correct any
single-bit error and detect any 2-bit error:
0 – ECC decoder is disabled.
1 – ECC decoder is enabled.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 416

1.

2.

3.

4.

5.

Parameter Supported Values Default
Value Description

Table Notes

Parameters settings of 128 and 144 consume the adjacent MLP site by using it as a route through for the higher read_width/write_width
order bits of the respective data buses.
aempty_threshold does not consider the or . If , then there are fwft_mode outreg_enable outreg_enable = 1 aempty_threshold + 1
entries available when is deasserted. If , there are entries available when almost_empty fwft_mode = 1 aempty_threshold-1 almost_emp

 is asserted.ty

FWFT mode is not supported when the FIFO is in synchronous mode () while the output register is enabled (sync_mode = 1 outreg_enable =
).1

ECC encoding is only supported when or .write_width = 64 write_width = 128

ECC decoding is only supported when or .read_width = 64 read_width = 128

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 417

1.

2.

3.

Ports
Table 273: ACX_BRAM72K_FIFO Pin Descriptions

Name Direction Description

rstn Input Asynchronous reset input. Resets the entire FIFO.

wrclk Input Write clock input. Write operations are fully synchronous and occur upon the active edge of the wrclk
input when is asserted. The active edge of is determined by .wren wrclk wrclk_polarity

wren Input Write port enable. Assert high to write data to the FIFO.wren

din[143:0] Input

Write port data input. Input data () should be aligned as follows:data_in

write_width = 144: .din = data_in
: .write_width = 128 din = {8'h0, data_in[127:64], 8'h0, data_in[63:0]}
: (remaining upper bits should be write_width < 128 din[write_width-1:0] = data_in din

tied to).1'b0

full Output Asserted high when the FIFO is full.

almost_full Output Asserted high when remaining space in the FIFO is equal to or less than .afull_threshold

write_error Output Asserted the cycle after a write to the FIFO when the FIFO is already full.

rdclk Input
Read clock input. Read operations are fully synchronous and occur upon the active edge of the rdclk
input when the signal is asserted.rden

The active edge of is determined by .rdclk rdclk_polarity

rden Input Read port enable. Assert high to perform a read operation.rden

empty(1) Output Asserted high when the FIFO is empty.

almost_empty(2) Output Asserted high when the FIFO has less than, or equal to words remaining.aempty_threshold

read_error Output Asserted the cycle after a FIFO read when the FIFO is already empty.

sbit_error[1:0] Output Asserted high when the data on includes a single-bit error that was corrected.dout

dbit_error[1:0] Output Asserted high when the data on includes an error or errors that were not corrected.dout

dout[143:0](3) Output

Read port data output. The output data, , is aligned as follows (the organization is the same data_out
as and):din data_in

read_width = 144: .dout = data_out
: .read_width = 128 dout = {8'hX, data_out[127:64], 8'hX, data_out[63:0]}
: (remaining upper bits present read_width < 128 dout[read_width-1:0] = data_out dout

as .1'bX

Table Notes

When operating in synchronous mode (= 1), the falling transition of is delayed by one cycle. remains sync_mode empty empty
asserted for the cycle after the last entry in the FIFO is read.
When operating in synchronous mode (= 1), the falling transition of is delayed by one cycle.sync_mode almost_empty

 remains asserted for a cycle after is reached.almost_empty aempty_threshold

For bits marked X, these present as X in simulation and on silicon the values are undefined.data_out

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 418

Read and Write Operations

Write Operation
Write operations are signaled by asserting the signal. The value of is stored to the next available FIFO wren din
location on the rising edge of whenever is asserted, and is de-asserted.wrclk wren full

Read Operation
Read operations are signaled by asserting the signal. The next FIFO location contents are transferred to rden
the output latches on the rising edge of whenever is asserted and is de-asserted. If rdclk rden empty

, the FIFO contents are available on on the following rising edge of .outreg_enable = 1 dout rdclk

First Word Fall Through (FWFT)

The FIFO operates in a first word fall through mode, where the first word written to the FIFO is presented on the
output before is asserted, for the following configurations:rden

fwft_mode = 0 – FIFO operates as FWFT when . With , outreg_enable = 0 outreg_enable = 1
the first word is output on the rising edge after is asserted.rden

fwft_mode = 1 – FIFO always operates as FWFT, with the first word output either on the following
rising edge of () or the third rising edge of () rdclk outreg_enable = 0 rdclk output_enable = 1
after the first word is written to the FIFO.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 419

1.

1.

Output Latch and Register

Table 274: ACX_BRAM72K_FIFO Output Function Table for Latched Mode

Operation (1) rdclk outlatch_rstn rden dout

Reset latch ↑ 0 X 0

Hold ↑ 1 0 Hold previous value.

Read ↑ 1 1 Next FIFO value.

Table Notes

This function assumes rising-edge clock and active-high port enable, otherwise the previous value is
held.

Table 275: ACX_BRAM72K_FIFO Output Function Table for Registered Mode

Operation (1) rdclk outreg_rstn outregce dout

Reset Output ↑ 0 1 0

Hold ↑ 1 0 Previous .dout[]

Update Output ↑ 1 1 Registered from latch output.

Table Notes

This function assumes active-high clock, output register clock enable, and output register reset, otherwise
the previous is held.dout[]

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 420

Timing Diagrams

Synchronous Mode

Data output, , timing for all combinations of and is shown in the following dout outreg_enable fwft_mode
waveform.

Figure 135: Output Timing with sync_mode = 1

Asynchronous Mode

Data output, , timing for all combinations of and is shown in the following dout outreg_enable fwft_mode
waveform.

Figure 136: Output Timing with sync_mode = 0

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 421

Inference
The ACX_BRAM72K_FIFO is not inferrable.

Instantiation Template

Verilog

ACX_BRAM72K_FIFO #(

 .aempty_threshold (aempty_threshold),
 .afull_threshold (afull_threshold),

 .ecc_decoder_enable (ecc_decoder_enable),
 .ecc_encoder_enable (ecc_encoder_enable),

 .fwft_mode (fwft_mode),
 .outreg_enable (outreg_enable),

 .rdclk_polarity (rdclk_polarity),

 .read_width (read_width),
 .sync_mode (sync_mode),

 .wrclk_polarity (wrclk_polarity),
 .write_width (write_width)

) instance_name (
 .din (din),

 .wrclk (wrclk),
 .rdclk (rdclk),

 .wren (wren),
 .rden (rden),

 .rstn (rstn),
 .dout (dout),

 .sbit_error (sbit_error),
 .dbit_error (dbit_error),

 .almost_full (almost_full),
 .full (full),

 .almost_empty (almost_empty),
 .empty (empty),

 .write_error (write_error),
 .read_error (read_error)

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 422

VHDL

 -- VHDL Component template for ACX_BRAM72K_FIFO

 component ACX_BRAM72K_FIFO is

 generic (
 aempty_threshold : std_logic_vector(14 downto 0) := X"0010";

 afull_threshold : std_logic_vector(14 downto 0) := X"0010";
 ecc_decoder_enable : integer := 0;

 ecc_encoder_enable : integer := 0;
 fwft_mode : integer := 0;

 outreg_enable : integer := 0;
 rdclk_polarity : string := "rise";

 read_width : integer := 72;
 sync_mode : integer := 0;

 wrclk_polarity : string := "rise";
 write_width : integer := 72

);
 port (

 din : in std_logic_vector(143 downto 0);
 wrclk : in std_logic;

 rdclk : in std_logic;
 wren : in std_logic;

 rden : in std_logic;
 rstn : in std_logic;

 dout : out std_logic_vector(143 downto 0);
 sbit_error : out std_logic_vector(1 downto 0);

 dbit_error : out std_logic_vector(1 downto 0);
 almost_full : out std_logic;

 full : out std_logic;
 almost_empty : out std_logic;

 empty : out std_logic;
 write_error : out std_logic;

 read_error : out std_logic
);

 end component ACX_BRAM72K_FIFO;

 -- VHDL Instantiation template for ACX_BRAM72K_FIFO

 instance_name : ACX_BRAM72K_FIFO

 generic map (
 aempty_threshold => aempty_threshold,

 afull_threshold => afull_threshold,
 ecc_decoder_enable => ecc_decoder_enable,

 ecc_encoder_enable => ecc_encoder_enable,
 fwft_mode => fwft_mode,

 outreg_enable => outreg_enable,
 rdclk_polarity => rdclk_polarity,

 read_width => read_width,
 sync_mode => sync_mode,

 wrclk_polarity => wrclk_polarity,
 write_width => write_width

)
 port map (

 din => user_din,
 wrclk => user_wrclk,

 rdclk => user_rdclk,

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 423

 wren => user_wren,

 rden => user_rden,
 rstn => user_rstn,

 dout => user_dout,
 sbit_error => user_sbit_error,

 dbit_error => user_dbit_error,
 almost_full => user_almost_full,

 full => user_full,
 almost_empty => user_almost_empty,

 empty => user_empty,
 write_error => user_write_error,

 read_error => user_read_error
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 424

ACX_LRAM (4096-bit (128x32) Simple-Dual-Port Memory)

Figure 137: 4096-bit (128 × 32) Simple-Dual-Port Memory

The Logic RAM (ACX_LRAM) implements a 4096-bit memory block with one write port and one read port. The
ACX_LRAM can be configured as either a 128 × 32 simple dual-port (1 write port, 1 read port) RAM or a 128 ×
32 single port (1 read/write port) RAM. The ACX_LRAM has a synchronous write port. The read port is
asynchronous and has an optional output register. This memory block is distributed in the FPGA fabric.

Figure 138: ACX_LRAM Block Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 425

Table 276: ACX_LRAM Pin Descriptions

Name Type Description

wraddr[6:0] Input Write port address input.

din[31:0] Input Write port data input.

wren Input Write port enable (active-high). When asserted, the data present on is din[31:0]
written to the location addressed by at the next active edge of .wraddr[6:0] wrclk

wrclk Input Write port clock (programmable, default rising edge).

rdaddr[6:0] Input Read port address input.

rstregn Input

Read port output register reset (active-low). The parameter determines sr_assertion
whether the reset is synchronous (default) or asynchronous. When asserted, the read
port output register is assigned the value of the parameter. The priority of reg_rstval
the input relative to the read port output register clock enable () input rstregn outregce
is determined by the value of the parameter. The signal regce_priority rstregn
only resets the read port output register. It does not reset the memory contents.

outregce Input Read port output register clock enable (active-high).

rdclk Input Read port clock (programmable, default rising edge).

dout[31:0] Output

Read port data output. Configured to be either synchronous or asynchronous as
determined by the parameter. If is , reads the reg_dout reg_dout 1'b0 dout[31:0]
contents of the memory addressed by onto its pins. If the raddr[6:0] reg_dout
parameter is , the output is driven by the contents of the memory 1'b1 dout[31:0]
addressed by at the next active edge of if the read port output clock raddr[6:0] rclk
enable input is high.

Table 277: ACX_LRAM Parameters

Parameter Defined
Values

Default
Value Description

write_clock_polarity rise, fall rise
Sets the active edge of . A value of corresponds wrclk rise
to an active rising edge assignment while corresponds fall
to an active falling edge assignment.

read_clock_polarity rise, fall rise
Sets the active edge of . A value of corresponds rdclk rise
to an active rising edge assignment while corresponds fall
to an active falling edge assignment.

reg_dout 1'b0, 1'b1 1'b0

Defines whether the read port output register is used or
bypassed. bypasses the register while enables 1'b0 1'b1
the register. Enabling the output register incurs an additional
cycle of latency for the read operation.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 426

Parameter Defined
Values

Default
Value Description

reg_initval

32-bit binary
or
hexadecimal
value

32'h0
Defines the power-up default value of the read port output
register.

reg_rstval

32-bit binary
or
hexadecimal
value

32'h0
Defines the value assigned to the read port output register
when the input is asserted low and there is an rstregn
active edge on .rdclk

regce_priority
rstreg,
regce

rstreg

Defines the priority of the clock enable input outregce
relative to the reset input during its assertion on the rstregn
read port output register. Setting to regce_priority

 allows set/reset of the read port output register to rstreg
occur at the next active edge of without requiring the rdclk

 clock enable input to be active. Setting outregce
 to requires the clock regce_priority regce regce

enable input to be high for the reset operation to occur at the
next active edge of .rdclk

sr_assertion
clocked,
unclocked

clocked

Sets whether the assertion of the output register reset is
synchronous or asynchronous with respect to the rdclk
input. A value of sets synchronous reset where the clocked
output register is reset on the next rising edge of the clock if

 is asserted. A value of sets rstregn unclocked
asynchronous reset where the output register is reset
immediately following the assertion of the input.rstregn

mem_init_00–
mem_init_15

256-bit
hexadecimal
value

256'hx

The through parameters mem_init_00 mem_init_15
define the initial contents of the memory. Each of the 16 256-
bit parameters is associated with the 4096-bit LRAM memory
as defined in .LRAM Memory Initialization (see page 428)

mem_init_file
<path to
HEX file> ""

Provides a mechanism to set the initial contents of the LRAM
memory. If defined, the LRAM is initialized with the values
defined in the file specified by the mem_init_file
parameter according to the format defined in LRAM Memory

. If is the Initialization (see page 428) mem_init_file
default value (""), the initial contents are defined by the value
of the parameter. If the and mem_init mem_init_nn

 parameters are not defined, the contents mem_init_file
of the LRAM are also undefined.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 427

Simultaneous Memory Operations
Memory operations may be performed simultaneously from both sides of the memory, however there is a
restriction with memory collisions. A memory collision is defined as the condition where both of the ports access
the same memory address within the same clock cycle (with both ports connected to the same clock), or a
window less than one clock cycle of the faster clock (with each port connected to a different clock). The definition
of a memory collision depends on whether or not the read port output register is enabled.

If the read port output register in not enabled (=), a memory collision is defined by reading the reg_dout 1'b0
same address the cycle after a write command has occurred. If the read port output register is enabled (

 =), a memory collision is defined by reading the same address two cycles after a write reg_dout 1'b1
command has occurred. If a memory collision occurs, the write to memory is valid, but the read data might be
incorrect.

Timing Diagram

Figure 139: LRAM4K SDP Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 428

1.

2.

3.

ACX_LRAM Memory Initialization
By default, the contents of the LRAM memory are undefined. If the initial contents are to be defined, they may be
assigned from either a file specified to by the parameter or assigned from the values of the mem_init_file

 through parameters.mem_init_00 mem_init_15

The memory is organized as little-endian with bit zero mapped to bit zero of the parameter and bit mem_init_00
4095 mapped to bit 255 of the parameter.mem_init_15

The ACX_LRAM memory block may alternatively be initialized with a memory file by setting the mem_init_file
parameter to the path of a memory initialization file. The file format in the latter case is defined by hexadecimal
entries separated by white space, where the white space can be spaces or line separation. Each number is
written as a 32-bit hexadecimal number. Commenting is allowed with text following a double-slash ("//") through
to the end of the line. C-like commenting is also allowed where the characters between "/*" and "*/" are ignored.
The memory is initialized starting with the first entry of the file initializing the memory array at address zero,
moving upward. Each line consists of a hexadecimal number representing the entry itself.

Using ACX_LRAM as a Read-Only Memory (ROM)
The ACX_LRAM memory can be used as a read-only memory (ROM) by providing memory initialization data
with a file or via parameters (as described), and tying the LRAM Memory Initialization (see page 428) wren
signal to its de-asserted value. All signals on the read-side of the ACX_LRAM operate as described above. This
configuration allows reading from the memory, but not writing to it.

Create an Instance
To create an ACX_LRAM instance within a design, there are three available methods:

Infer the memory – this method provides the greatest code portability and is the recommended approach.
Examples follow of how to infer an ACX_LRAM with an output register.

Directly instantiated – this method gives access to the full feature set of the memory. However, any code
is less portable to other technology nodes. See Instantiation Template (see page 430)

ACE LRAM IP generator – Refer to the for details. (UG070)ACE User Guide

https://www.achronix.com/documentation/ace-user-guide-ug070

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 429

Inference Template
The following examples show how to infer an ACX_LRAM with an output register.

ACX_LRAM with Output Register

`timescale 1 ps / 1 ps
module ACX_LRAM_infer_meminitfile_16t (rdaddr, outregce, rstregn, rdclk, dout,

 wraddr, din, wren, wrclk);

// read port inputs & outputs
input [6:0] rdaddr;

input outregce;
input rstregn;

input rdclk;

output [31:0] dout;
// write port inputs & outputs

input [6:0] wraddr;
input [31:0] din;

input wren;
input wrclk;

// read port local variables
reg [31:0] dout_reg;

// 128x32 memory array

reg [31:0] mem_array [0:127] /* synthesis syn_ramstyle="logic_ram" */;
initial begin

 $readmemb("/<absolute_path>/memfile.txt", mem_array);
end

// read port
always @(posedge rdclk)

 if (outregce)
 if (~rstregn)

 dout_reg <= 10'b0;
 else

 dout_reg <= mem_array[rdaddr];
 else

 dout_reg <= dout_reg;
 assign dout = dout_reg;

// write port
always @(posedge wrclk)

 if (wren)
 mem_array[wraddr] <= din;

endmodule

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 430

Instantiation Template

Verilog

ACX_LRAM #(

 .write_clock_polarity ("rise"),
 .read_clock_polarity ("rise"),

 .reg_dout (1'b1),
 .reg_initval (32'h00),

 .reg_rstval (32'h00),
 .regce_priority ("rstreg"),

 .sr_assertion ("clocked"),
 .mem_init_00 (256'h0),

 .mem_init_01 (256'h0),
 .mem_init_02 (256'h0),

 .mem_init_03 (256'h0),
 .mem_init_04 (256'h0),
 .mem_init_05 (256'h0),
 .mem_init_06 (256'h0),
 .mem_init_07 (256'h0),
 .mem_init_08 (256'h0),
 .mem_init_09 (256'h0),
 .mem_init_10 (256'h0),
 .mem_init_11 (256'h0),
 .mem_init_12 (256'h0),
 .mem_init_13 (256'h0),
 .mem_init_14 (256'h0),
 .mem_init_15 (256'h0),
 .mem_init_file ("lram_init.hex")
) instance_name (
 .wrclk (lram_wrclk),
 .wren (lram_wren),
 .wraddr (lram_wraddr),
 .din (lram_wrdata),
 .rdclk (lram_rdclk),
 .rdaddr (lram_rdaddr),
 .outregce (lram_rdenable),
 .rstregn (lram_rstregn),
 .dout (lram_rddata)

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 431

ACX_LRAMFIFO (LRAM-Based 128-Word FIFO Memory)
The ACX_LRAMFIFO implements a 128-word deep by n-bit wide FIFO memory block utilizing embedded LRAM
blocks and LUTs. The ACX_LRAMFIFO can be configured to support a variety of widths in increments of one bit.
The read and write clocks may be either synchronous or asynchronous with respect to each other. If the user
read and write clocks are from the same source, the parameter may be set to to enable ptr_sync_mode 1'b1
lower-latency synchronous generation of the status flags.

Figure 140: ACX_LRAMFIFO Symbol

Figure 141: ACX_LRAMFIFO Block Diagram

Table 278: ACX_LRAMFIFO Pin Description

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 432

Table 278: ACX_LRAMFIFO Pin Description

Name Type Clock
Domain Description

rstn Input programmable FIFO reset (active-low). Asserted low resets the FIFO to clear both the
read and write pointers and set the FIFO to the empty condition.

Write Interface

wrclk Input wrclk Write clock (rising edge based).

wren Input wrclk
Write enable (active-high). Data is written into the FIFO at the next
activewrite clock edge when is driven high, if the flag is not wren full
asserted.

din[width-
1:0]

Input wrclk Write port data input.

full Output wrclk Full flag (active-high).

almost_full Output wrclk Almost-full flag (active-high).

write_err Output wrclk Write error flag (active-high).

Read Interface

rdclk Input rdclk Read clock (rising edge based).

rden Input rdclk
Read enable (active-high). Data is read from the FIFO at the next active
edge of the read clock when is driven high, if the flag is not rden empty
asserted.

dout[width-
1:0]

Output rdclk Read port data output.

empty Output rdclk Empty flag (active-high).

almost_empty Output rdclk Almost-empty flag (active-high).

read_err Output rdclk Read error flag (active-high).

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 433

Parameters
Table 279: ACX_LRAMFIFO Parameters

Parameter Defined Values Default
Value Description

read_width, write_width
32, 64, 96, 128,
160, 192, 224,
256

32 Define the width of the FIFO data input and output buses. Must have the
same value and must be a multiple of 32 bits.

read_depth, write_depth 4, 8, 16, 32, 64,
128 128

Define the depth of the FIFO, which may be up to 128 locations.
Choosing a depth less than 128 locations allows a smaller
implementation of the FIFO controller logic. Must have the same value,
and must be a power of 2.

ptr_sync_mode 1'b0, 1'b1 1'b0

Bypasses the synchronization circuitry between the read and write ports,
for use when the and inputs are connected to the same wrclk rdclk
source. Reduces the latency through the FIFO and provides faster de-
assertion of the status flags (, , etc.). If the read and write empty full
clocks are connected to different sources, the synchronization circuitry
must be used, and must be set to .ptr_sync_mode 1'b0

rst_sync_mode 1'b0, 1'b1 1'b0

Bypasses the reset synchronization circuit. When the rst_sync_mode
parameter is set to , both the read and write pointer resets utilize 1'b0
the reset synchronizer logic. When the parameter is rst_sync_mode
set to , the input must be synchronous to the / 1'b1 rstn wrclk rdclk
driving the FIFO. If the read and write clocks are connected to different
sources, the synchronization logic must be used, and rst_sync_mode
must be set to .1'b0

afull_offset
8-bit hexadecimal
number 8'h04

Defines the word depth at which the output changes. almost_full
The signal may be used to determine the number of almost_full
blind writes to the FIFO that can occur without monitoring the flag. full
For example, if is set to and the afull_offset 8'h04 almost_full
signal is de-asserted, there are at least five empty locations in the FIFO.
All five words may be written without overflowing the FIFO and causing w

 to be asserted. must be smaller than the rite_err afull_offset wr
 value.ite_depth

aempty_offset
8-bit hexadecimal
number 8'h04

Defines the word depth at which the output changes. almost_empty
The signal may be used to determine the number of almost_empty
blind reads from the FIFO that can occur without monitoring the empty
flag. For example, if is set to and the aempty_offset 8'h04
almost_empty flag is de-asserted, there are at least five words in the
FIFO. All five words may be read without underflowing the FIFO and
causing the flag to be asserted. must be read_err aempty_offset
smaller than the value.read_depth

fwft_mode 1'b0, 1'b1 1'b0

Defines whether the FIFO is in first-word-fall-through mode. This
parameter only effects the availability of the first word written to the
FIFO when empty. Operation of the two modes is the same after the first
read operation. may only be set to when fwft_mode 1'b1 ptr_sync_

 is set to .mode 1'b0

If is , the first value written to the FIFO appears fwft_mode 1'b1
at (and , if applicable) without having to dout doutp doutxp
perform a read operation. must be when hold_output 1'b1 fw

 is .ft_mode 1'b1

If is , the first data word written to the FIFO is fwft_mode 1'b0
available at the FIFO output one cycle after the first read rdclk
operation.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 434

Parameter Defined Values Default
Value Description

hold_output 1'b0, 1'b1 1'b1

Controls the read output value. When is set to , the hold_output 1'b1
read output holds its value until the next read. When is hold_output
set to , the read output data is valid for one clock cycle after the 1'b0
read and then becomes invalid, giving a slight performance advantage
in the circuit. Only disable this option if the user design can reliably pull
the data from the output within one clock cycle after the read. hold_out

 must be when is .put 1'b1 fwft_mode 1'b1

prevent_overunderflow 1'b0, 1'b1 1'b1

Enabling this option prevents data/pointer corruption caused by reading
or writing the FIFO when empty or full, respectively. Disabling this safety
check allows the FIFO to run faster, but results in data corruption if
reading from the FIFO when empty or writing to the FIFO when full.

FIFO Operation
This section describes the operations of ACX_LRAMFIFO.

FIFO Reset

A FIFO reset is performed by asserting the input signal for a minimum of four clock cycles of the slower of rstn
either or , causing the FIFO internal state to be reset such that the FIFO is empty. After a reset, it wrclk rdclk
is not possible to retrieve any of the data contained in the FIFO before the reset occurred. The entire FIFO is
available to be written with new data.

FIFO Write

A FIFO write is performed by asserting the input when the FIFO is not full. Asserting causes the data wren wren
present on the inputs to be stored in the FIFO to be retrieved later with a read operation. If a write operation din
fills the last remaining location in the FIFO, the signal is asserted on the following clock cycle. If is full wren
asserted when the FIFO is full, the write fails, and is asserted on the next clock cycle.write_error

FIFO Read

A FIFO read is performed by asserting the input when the FIFO is not empty. Asserting causes the rden rden
next data word from the FIFO memory array to be presented on the output. Data is always read in the dout
same order in which it was written and is no longer stored in the FIFO when it has been read. If a read operation
empties the last remaining FIFO location, the signal is asserted on the following clock cycle. If is empty rden
asserted when the FIFO is empty, the read fails, and is asserted on the next clock cycle.read_error

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 435

FIFO Status Signals
The following table describes the signals output by the ACX_LRAMFIFO component to communicate the status
of the FIFO.

Table 280: FIFO Pointers and Status Flag Clock Domain Assignments

Status Signal Clock
Domain Description

empty rdclk

Asserted whenever the FIFO does not have data available to read. Asserted when
either the FIFO is reset or all data has been read from the FIFO. The flag is empty
synchronous to the domain. Asserting when is asserted does not rdclk rden empty
change the contents of the FIFO in any way and does not affect the data output, but
does cause the output to be asserted in the following cycle. When read_err rdclk

 is , meaning that the read and write ports are not on the same ptr_sync_mode 1'b0
clock domain, it takes a few clock cycles after writing data into the FIFO before empty
is de-asserted. is always asserted immediately when the FIFO becomes empty.empty

almost_empty rdclk

Asserted when there are or fewer words remaining in the FIFO. May aempty_offset
be used to determine the number of reads that can be performed without causing the
FIFO to underflow and to be asserted. For example, if is rd_err aempty_offset

, and is not asserted, at least five words remain in the FIFO. 8'h04 almost_empty
When is , meaning the read and write ports are not in the same ptr_sync_mode 1'b0
clock domain, it takes a few clock cycles after writing data into the FIFO before

 is de-asserted. This signal is always asserted immediately when almost_empty
 words remain.aempty_offset

read_err rdclk Asserted in the cycle following assertion of while the FIFO is empty.rden

full wrclk

Asserted whenever all of the locations of the FIFO are in use. Asserting when wren
 is asserted does not change the contents of the FIFO in any way and causes the full

 output to be asserted in the following cycle. The inputs are write_err wrclk din
ignored in this case. When is , meaning the read and write ports ptr_sync_mode 1'b0
are not in the same clock domain, it takes a few clock cycles after reading data from the
FIFO before is de-asserted. is always asserted immediately when the FIFO full full
becomes full.

almost_full wrclk

Asserted when or fewer unused locations remain in the FIFO. May be afull_offset
used to determine the number of writes that can be performed without causing the FIFO
to overflow and to be asserted. For example, if is , write_err afull_offset 8'h04
and is not asserted, at least five empty locations remain in the FIFO. almost_full
When is , meaning the read and write ports are not in the same ptr_sync_mode 1'b0
clock domain, it takes a few clock cycles after reading data from the FIFO before

 is de-asserted. This signal is always asserted immediately when almost_full
 locations remain.afull_offset

write_err wrclk Asserted in the cycle following assertion of while the FIFO is full.wren

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 436

Status Signals in Asynchronous mode

Before flag calculations can be made, the status signal generation logic ensures that both pointers are in the
same clock domain as the status signal for which the calculation is performed. Write and read pointer
synchronizers are used to transfer each of the pointers into the other clock domain. In order to synchronize a
given pointer to the opposite clock domain, a series of registers are used, adding additional delay to the flag
calculation. The status signal generation logic ensures that and are asserted on the write full almost_full
clock domain immediately after the write that causes their assertion. The read that causes their de-assertion
takes a few clock cycles to propagate. Likewise, and are asserted on the read clock empty almost_empty
domain immediately after the read that causes their assertion, while the write that causes their de-assertion
requires a few cycles to propagate across the synchronization logic.

The versions of the pointers used for flag calculations are shown in the following table.

Table 281: Pointers Used for FIFO Flag Calculations

Flag Write Read

empty

Synchronized write pointer. Read pointer.
almost_empty

full

Write pointer. Synchronized read pointer.
almost_full

Status Signals in First-Word Fall Through Mode

First-word fall through (fwft) mode is implemented by placing an additional register at the output of the FIFO to
present data to the user before is asserted. The ACX_LRAMFIFO can be thought of as popping data from rden
the underlying FIFO into the output register whenever the output register is not occupied. This final register stage
effectively adds one additional storage element to the FIFO and affects the generation of the status signals, as
described in the following sections.

full and almost_full

The and signals serve to prevent the user from overflowing the FIFO, by both indicating full almost_full
when the FIFO cannot accept additional data and when there is only a user-configurable number of spaces
remaining, respectively.

In the case of a small FIFO and/or with a write clock frequency faster than the read frequency, it is possible to fill
the FIFO to the almost full threshold, or even completely full, before the read-side logic has moved the first
element of data from the underlying FIFO into the output register. In this case, or may be almost_full full
asserted as the underlying FIFO fills, and then automatically de-asserted as the first element is moved to the
output register, without ever having performed a read. This behavior is intentional and guarantees that a user
design adhering to the and/or signals overflows the FIFO, even while the first data element full almost_full
is moving to the output. This behavior also implies that in the absence of transient effects, is almost_full
asserted when there are + 1 empty spaces in the ACX_LRAMFIFO.afull_offset

empty and almost_empty

The purpose of the and signals are to prevent underflowing the FIFO, by indicating when empty almost_empty
the FIFO is truly empty and when there is only a user-configurable number of data elements remaining,
respectively.

The generation of the signal is based on whether or not valid data is being presented to the user design empty

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 437

The generation of the signal is based on whether or not valid data is being presented to the user design empty
by the output register and can always be used to indicate when the output data is valid. The implementation of
the flag uses the underlying FIFO fill level to determine its status. As a result, is almost_empty almost_empty
asserted when there are less than data elements in the underlying FIFO, or less than (aempty_offset

 + 1) elements in the ACX_LRAMFIFO (including the output register).aempty_offset

If the system is designed so that the FIFO is only drained when the fill level is over a given threshold,
 must be set to one less than the desired threshold, to account for the output register not being aempty_offset

included in the calculation.almost_empty

FIFO Operational Modes
The ACX_LRAMFIFO is a highly configurable IP component that supports a number of modes of operation,
including either synchronous or asynchronous (dual-clock) operation:

Synchronous – the same clock must be connected to the and inputs, and there cannot be a wrclk rdclk
phase offset between them.

Asynchronous – two different clocks can be connected to the and inputs. The LRAM FIFO wrclk rdclk
does not require any phase or frequency relationship between the two clocks whatsoever; it treats the two
clock inputs as being completely asynchronous to one another. There is no requirement regarding the
relative frequencies of the two clocks. Either clock can be faster or slower than the other.

Synchronous Operation

The synchronous FIFO mode is selected by setting the parameter to . In synchronous ptr_sync_mode 1'b1
mode, there is no latency in updating the and signals after a write operation, or updating empty almost_empty
the and signals after a read operation. This lack of latency means that the status outputs full almost_full
always represent the exact state of the FIFO.

In this mode, first-word-fall-through (described below) is not supported, and the parameter must be .fwft 1'b0

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 438

Timing Diagrams

The following diagram shows the operation of the FIFO in asynchronous mode when the FIFO is empty, where
 = 3. This diagram assumes that all signals not shown, such as , are de-asserted.aempty_offset rstn

Figure 142: Synchronous Mode Empty FIFO Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 439

The events of each clock cycle in the preceding diagram are described in the following table.

Table 282: Synchronous Mode Empty FIFO Timing Diagram Events

Event Description

1

wren is asserted, writing the first data word to the FIFO, causing to be de-asserted on the following empty
clock cycle since the FIFO is no longer empty. At the same time, is asserted, indicating an attempt to rden
read from the FIFO. Since the FIFO remains empty, is asserted on the following clock cycle, and rd_err
the data output dout does not change.

2 wren is asserted, writing the second data word into the FIFO. At the same time, is asserted, reading rden
the first data word from the FIFO. The data arrives on on the following cycle.dout

3 wren is asserted, writing the third data word into the FIFO. is not asserted in this cycle, so nothing is rden
read from the FIFO.

4 wren is asserted, writing the fourth data word to the FIFO.

5
wren is asserted, writing the fifth data word to the FIFO, leaving four words in the FIFO (since the first word
has already been read). The number of words is greater than the value of 3, so aempty_offset

 is de-asserted on the following clock cycle.almost_empty

6 wren is asserted, writing the sixth data word to the FIFO.

7 wren is asserted, writing the seventh data word to the FIFO.

8 No control signals are asserted.

9 rden is asserted, reading the second data word from the FIFO. The data arrives on on the following dout
cycle.

10 rden is asserted, reading the third data word from the FIFO. The data arrives on on the following dout
cycle.

11
rden is asserted, reading the fourth data word from the FIFO. Since only three words remain in the FIFO,
the signal is asserted on the next clock cycle. The data arrives on on the following almost_full dout
cycle.

12 rden is asserted, reading the fifth data word from the FIFO. The data arrives on on the following dout
cycle.

13 rden is asserted, reading the sixth data word from the FIFO. The data arrives on on the following dout
cycle.

14 rden is asserted, reading the seventh and last data word from the FIFO. The data arrives on on the dout
following cycle. Since the FIFO is empty, the signal is asserted on the next cycle.empty

15 rden is asserted, even though the FIFO is empty. is asserted on the following clock edge, read_error
and the FIFO contents are unchanged.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 440

The following diagram shows the operation of the FIFO in synchronous mode, starting when there are five
locations remaining in the FIFO, where the parameter is 3. This diagram assumes that all afull_offset
signals not shown, such as , are de-asserted, and that the parameter is . If the rstn ptr_sync_mode 1'b1

 was , would be delayed by one cycle.ptr_sync_mode 1'b0 dout

Figure 143: Synchronous Mode Full FIFO Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 441

The events of each clock cycle in the preceding diagram are described in the following table.

Table 283: Synchronous Mode Full FIFO Timing Diagram Events

Event Description

1-5
wren is asserted, writing a data word to the FIFO. After the second write, only thee locations are free, so

 is asserted on the next clock cycle. The fifth write fills up the last element and the almost_full full
signal is asserted on the following clock cycle.

6 wren is asserted. Since the FIFO is already full, the write operation does not take place, and write_error
is asserted on the following clock cycle.

7-8 No operation.

9
wren and are both asserted at the same time as both a read and a write operation are to be rden
performed. Since is asserted, the write fails, and is asserted on the following cycle. full write_error
The read is successful, and the output data is presented on on the following cycle.dout

10 wren and are both asserted at the same time, and the input word is written while the next output word rden
is read and presented on . Since is not asserted, both operations are successful.dout full

11-13 rden is asserted, and the next output data is read and presented on . After the third read, more than dout
three unused locations remain in the FIFO, so is de-asserted on the next cycle.almost_full

14 rden is not asserted, so the output remains constant.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 442

Asynchronous Operation

When the FIFO is configured as an asynchronous FIFO (=), no phase or frequency ptr_sync_mode 1'b0
relationship is assumed between the write and the read clocks; the ACX_LRAMFIFO treats the two clock inputs
as being completely asynchronous to one another. There is no requirement regarding the relative frequencies of
the two clocks. Either clock can be faster or slower than the other.

Compared to synchronous mode, asynchronous mode causes additional delay when updating and empty
 after a write operation, or updating and after a read operation, as it takes almost_empty full almost_full

time for the status to cross safely from one clock domain to the other. All status signals are asserted without
delay; only their de-assertion requires additional time. For asynchronous operation, the ptr_sync_mode
parameter must be set to .1'b0

When using the FIFO with two clocks, the first-word fall-through () parameter controls when data is made fwft
available on the output signals:

fwft = 1'b0 (request mode) – When the parameter is , the FIFO is in request mode. Asserting fwft 1'b0
 requests that the data be presented on the pins on the following cycle. This mode is identical rden dout

to when the FIFO has = , and the clocks are synchronous to one another. In this ptr_sync_mode 1'b1
mode, the output of the FIFO remains unchanged after the first write to a FIFO in the empty state. After
the first write operation, the flag is de-asserted, indicating that data is present in the FIFO and may empty
be read. The FIFO must be read by asserting , and the first word written into the FIFO is available at rden
the FIFO outputs on the next clock cycle. Each subsequent read operation updates the FIFO rdclk
outputs with the next stored data word if it is available (= 0).empty

fwft = 1'b1 (acknowledge mode) - When the parameter is , the FIFO behaves as a first-word-fwft 1'b1
fall-through FIFO, meaning that when the FIFO is empty, the first data word written to the FIFO is
presented on the output pins as soon as possible, without waiting for to be asserted. After a reset rden
(or after the last word has been read from the FIFO) the FIFO is in an empty state as indicated by
assertion of . The output of the FIFO is updated after the next write to the FIFO, and is de-empty empty
asserted indicating that there is data in the FIFO that may be read. Asserting effectively rden
acknowledges the output data currently on the pins, allowing the FIFO to move to the next data dout
word if not empty. Each subsequent read operation updates the FIFO outputs with the next stored data
word if it is available (=). First-word fall-through mode effectively makes the FIFO one empty 1'b0
element deeper.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 443

Timing Diagrams

The following diagram shows the operation of the FIFO in asynchronous mode when the FIFO is empty, where
 = 3. This diagram assumes that all signals not shown, such as , are de-asserted.aempty_offset rstn

Figure 144: Asynchronous Mode Empty FIFO Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 444

The events of each clock cycle in the preceding diagram are described in the following table.

Table 284: Asynchronous Mode Empty FIFO Timing Diagram Events

Event Description

0-6

wren is asserted synchronous to , writing seven data words to the FIFO.wrclk

Two or three clock cycles after the first write, is de-asserted synchronous to . If = empty rdclk fwft
, the first data is presented on when is de-asserted.1'b1 dout empty

After the fifth write, four words remain in the FIFO (since the first word has already been read). The
amount of words is greater than (3), so is asserted two or three aempty_offset almost_empty
clock cycles later, synchronous to .rdclk

2 rden is asserted indicating an attempt to read from the FIFO. Since the output remains asserted, empty
the read fails, and is asserted on the following clock cycle. The data on does not change.rd_err dout

3

rden is also asserted, reading the first data word from the FIFO.

fwft = – the data arrives on on the following cycle.1'b0 dout

fwft = – the first data word on is replaced by the second data word.1'b1 dout

4 rden is not asserted in this cycle. Nothing is read from the FIFO.

6-8 No control signals are asserted.

9

rden is asserted, reading the second data word from the FIFO.

fwft = – the data arrives on on the following cycle.1'b0 dout

fwft = – the previous data word on is replaced by the next data word.1'b1 dout

10

rden is asserted, reading the third data word from the FIFO.

fwft = – the data arrives on on the following cycle.1'b0 dout

fwft = – the previous data word on is replaced by the next data word, with only four 1'b1 dout
more words remaining in the FIFO. is de-asserted.almost_empty

11

rden is asserted, reading the fourth data word from the FIFO.

fwft = – the data arrives on on the following cycle, with only four more words remaining 1'b0 dout
in the FIFO. is de-asserted.almost_empty

fwft = – the previous data word on is replaced by the next data word.1'b1 dout

12 rden is asserted, reading the fifth data word from the FIFO.

13 rden is asserted, reading the sixth data word from the FIFO.

14 rden is asserted, reading the seventh and last data word from the FIFO. Since the FIFO is empty, is empty
asserted on the next cycle.rdclk

15 rden is asserted even though the FIFO is empty. is asserted on the following clock edge, and rd_error
the FIFO contents are unchanged.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 445

The following diagram shows the operation of the FIFO in asynchronous mode, starting when there are five
locations remaining in the FIFO where is 3. This diagram assumes that all signals not shown, afull_offset
such as , are de-asserted, and is .rstn ptr_sync_mode 1'b0

Figure 145: Asynchronous Mode Full FIFO Timing Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 446

The events of each clock cycle in the preceding diagram are described in the following table.

Table 285: Asynchronous Mode Full FIFO Timing Diagram Events

Event Description

1-5

wren is asserted, writing five data words to the FIFO.

After the second write, only three locations remain, so is asserted on the next clock almost_full
cycle.
After the fifth write, the last element in the FIFO has been used, and is asserted on the full
following clock cycle.

6 wren is asserted. Since the FIFO is already full, the write operation does not take place, and write_error
is asserted on the following clock cycle.

7-8 No operation.

9

rden is asserted, and the next output data is read and presented on . Two or Three cycles later, dout full
is de-asserted synchronous to .wrclk

fwft = – the first data arrives on on the following cycle.1'b0 dout

fwft = – the first data has been present on the output since it was first written. This data is 1'b1
replaced by the next data being read from the FIFO.

10 rden is asserted, and the next output data is read from the FIFO and presented on .dout

11

rden is asserted synchronous to and is asserted synchronous to , meaning that both a rdclk wren wrclk
read and write are to be performed. Since is asserted, the write fails, and is asserted full write_error
on the following cycle. The read is successful, and the output data is updated on the following wrclk rdclk
cycle.

12

rden is asserted synchronous to and is asserted synchronous to , The input word is rdclk wren wrclk
written to the FIFO while the next output word is read from the FIFO and presented on . Since is dout full
not asserted, both operations are successful. Now more than three unused locations remain in the FIFO, so

 is de-asserted two or three cycles later, synchronous to .almost_full wrclk

13 rden is asserted, and the next output data is read and presented on .dout

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 447

Instantiation Template

Verilog

ACX_LRAMFIFO #(

 .ptr_sync_mode (1'b0),
 .read_width (32),

 .write_width (32),
 .read_depth (128),

 .write_depth (128),
 .fwft_mode (1'b0),

 .afull_offset (8'h4),
 .aempty_offset (8'h4),

 .hold_output (1'b0)
) instance_name (

 .rstn (user_rstn),
 .wrclk (user_wrclk),
 .wren (user_wren),
 .din (user_din),
 .full (user_full),
 .almost_full (user_almost_full),
 .write_err (user_write_err),
 .rdclk (user_rdclk),
 .rden (user_rden),
 .dout (user_dout),
 .empty (user_empty),
 .almost_empty (user_almost_empty)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 448

VHDL

------------- ACHRONIX LIBRARY ------------

library speedster7t;
use speedster7t.core.all;

------------- DONE ACHRONIX LIBRARY ---------
-- Component Instantiation

instance_name : ACX_LRAMFIFO
generic map

(
 ptr_sync_mode => 0,

 read_width => 32,
 write_width => 32,

 read_depth => 128,
 write_depth => 128,

 fwft_mode => 0,
 afull_offset => 4,

 aempty_offset => 4,
 hold_output => 0

)
port map

(
 rstn => user_rstn,

 wrclk => user_wrclk,
 wren => user_wren,

 din => user_din,
 full => user_full,

 almost_full => user_almost_full,
 write_err => user_write_err,

 rdclk => user_rdclk,
 rden => user_rden,

 dout => user_dout,
 empty => user_empty,

 almost_empty => user_almost_empty,
 read_err => user_read_err

);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 449

ACX_LRAM2K_FIFO
The ACX_LRAM2K_FIFO implements a 2Kb FIFO, configured as either 72 bits wide by 32 words deep, or 36 bits
wide by 64 words deep. Each port width can be independently configured and on different clock domains. For
higher performance operation, an additional output register can be enabled. Enabling the output register causes
an additional cycle of read latency.

Figure 146: ACX_LRAM2K_FIFO Block Diagram

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 450

Parameters
Table 286: ACX_LRAM2K_FIFO Parameters

Parameter Supported Values Default
Value Description

read_width 36, 72 72
Controls the width of the read port. Can be different from :write_width

read_width = 72 – depth = 32 words.
 = 36 – depth = 64 words.read_width

write_width 36, 72 72
Controls the width of the write port. Can be different from :read_width

write_width = 72 – depth = 32 words.
 = 36 – depth = 64 words.write_width

rdclk_polarity "rise", "fall" "rise"
Controls whether the signal uses the falling or the rising edge:rdclk

"rise" – rising edge.
"fall" – falling edge.

wrclk_polarity "rise", "fall" "rise"
Controls whether the signal uses the falling or the rising edge:wrclk

"rise" – rising edge.
"fall" – falling edge.

outreg_enable 0, 1 1

Controls whether the output register is enabled:
0 – disables the output register and results in a read latency of one cycle.
1 – enables the output register and results in a read latency of two cycles. Only effective when

 = 0. When = 1, the output defaults to = 0.fwft_mode fwft_mode outreg_enable

sync_mode 0, 1 0

Controls whether the FIFO operates in synchronous or asynchronous mode:
0 – asynchronous mode.
1 – synchronous mode.
In synchronous mode, the two input clocks must be driven by the same clock input and
pointer synchronization logic is bypassed resulting in lower latency for flag assertion.

afull_threshold 0–6'h3F 6'h4

The parameter defines the word depth at which the afull_threshold almost_full
output changes. The signal may be used to determine the number of blind almost_full
writes to the FIFO that can be issued without monitoring the flag. For example, if thefull

 parameter is set to and the signal is de-asserted, afull_threshold 6'h04 almost_full
there are at least five empty locations in the FIFO. All five words may be written without
overflowing the FIFO and causing to be asserted.write_error

aempty_threshold 0–6'h3F 6'h4

The parameter defines the word depth at which the aempty_threshold almost_empty
output changes. The signal may be used to determine the number of blind almost_empty
reads from the FIFO that can be performed without monitoring the flag. For example, if empty
the parameter is set to and the flag is de-aempty_threshold 6'h04 almost_empty
asserted, there are at least five words in the FIFO. All five words may be read without
underflowing the FIFO and causing the flag to be asserted.read_error

fwft_mode 0, 1 0

First-word fall through. Controls the behavior of data at the output of the FIFO relative to :rden

0 – first word data is presented at the output of the FIFO on the rising edge of except wrclk
for = 0 and = 1. For = 1 and = sync_mode output_enable sync_mode output_enable
1, data is present one cycle later.
1 – first word data is presented at the output of the FIFO on the rising edge of in all wrclk
modes. has no effect when = 1.outreg_enable fwft_mode

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 451

Ports
Table 287: ACX_LRAM2K_FIFO Pin Descriptions

Name Direction Description

rstn Input Asynchronous reset input. This signal resets the entire FIFO.

wrclk Input
Write clock input. Write operations are fully synchronous and occur upon the active edge of the wrclk
input when is asserted. The active edge of is determined by the wren wrclk wrclk_polarity
parameter.

wren Input Write port enable. Assert high to write data to the FIFO.wren

din[71:0] Input Write port data input. When is less than 72, the input data must be assigned fromwrite_width
 upwards (right justified).din[0]

full Output Asserted high when the FIFO is full.

almost_full Output Asserted high when remaining space in the FIFO is less than, or equal to, .afull_threshold

write_error Output Asserted the cycle after a write to the FIFO when the FIFO is already full.

rdclk Input
Read clock input. Read operations are fully synchronous and occur upon the active edge of the rdclk
input when the signal is asserted. The active edge of is determined by wren rdclk rdclk_polarity
parameter.

rden Input Read port enable. Assert high to perform a read operation.rden

outreg_rstn Input Output register synchronous reset. When is asserted low, the value of the output outreg_rstn
register is reset to 0.

outreg_ce Input
Active-high output register clock enable. When = 1, de-asserting outreg_enable outreg_ce
causes the LRAM to hold the signal unchanged, independent of a read operation. Whendout[]

 = 0, the input is ignored.outreg_enable outreg_ce

empty Output Asserted high when the FIFO is empty.

almost_empty Output Asserted high when the FIFO contains less than, or equal to, words.aempty_threshold

read_error Output Asserted on the cycle after a read request to the FIFO when the FIFO is already empty.

dout[71:0] Output Read port data output. If is less than 72, the output data is assigned from read_width dout[0]
upwards, (right justified).

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 452

1.

Read and Write Operations

Write Operation
Write operations are signaled by asserting the signal. The value of is stored to the next available FIFO wren din
location on the rising edge of whenever is asserted, and is deasserted.wrclk wren full

Read Operation
Read operations are signaled by asserting the signal. The next FIFO location contents are latched to the rden
output latches on the rising edge of whenever is asserted and is deasserted. If rdclk rden empty

 = 1 and = 0, the FIFO contents are available on on the following rising edge outreg_enable fwft_mode dout
of .rdclk

First Word Fall Through (FWFT)

The FIFO operates in a first-word fall-through mode (where the first word written to the FIFO is presented on the
output before is asserted) for the following configurations:rden

fwft_mode = 0 and = 1 – FIFO natively operates as FWFT. With = 1, the sync_mode outreg_enable
first word takes an additional cycle of to be present on the output.rdclk

fwft_mode = 0 and = 0 – FIFO operates as FWFT when = 0.sync_mode outreg_enable

fwft_mode = 1 – FIFO operates as FWFT. has no effect and the next data is output on outreg_enable
the rising edge of when is asserted.rdclk rden

Output Timing

The ACX_LRAM2K_FIFO has two options for interface timing controlled by the parameter:outreg_enable

Latched mode – = 0. In latched mode, when the FIFO contents are read, the data is outreg_enable
latched into the output latches on the rising edge of , providing a read operation with one cycle of rdclk
latency.

Registered mode – = 1. In registered mode, there is an additional register after the latch outreg_enable
supporting higher-frequency designs and providing a read operation with two cycles of latency.

Table 288: ACX_LRAM2K_FIFO Output Function Table for Latched Mode

Operation (1) rdclk outlatch_rstn rden dout[]

Hold X X X Hold previous value

Reset latch ↑ 0 X 0

Hold ↑ 1 0 Hold previous value

Read ↑ 1 1 Next FIFO entry

Table Notes

Operation assumes rising-edge clock and active-high port enable.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 453

1.

Table 289: ACX_LRAM2K_FIFO Output Function Table for Registered Mode

Operation (1) rdclk outreg_rstn outregce dout[]

Hold X X X Previous dout[]

Reset Output ↑ 0 1 0

Hold ↑ 1 0 Previous dout[]

Update Output ↑ 1 1 Registered from latch output

Table Notes

Operation assumes active-high clock, output register clock enable, and output register reset.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 454

Timing Diagrams

Synchronous Mode

Data output, , timing for all combinations of and is shown in the following dout outreg_enable fwft_mode
waveform.

Figure 147: Output Timing With sync_mode = 1

Asynchronous Mode

Data output, , timing for all combinations of and is shown in the following dout outreg_enable fwft_mode
waveform.

Figure 148: Output Timing With sync_mode = 0

Inference
The ACX_LRAM2K_FIFO is not inferrable.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 455

Instantiation Templates

Verilog

ACX_LRAM2K_FIFO #(

 .aempty_threshold (aempty_threshold),
 .afull_threshold (afull_threshold),

 .fwft_mode (fwft_mode),
 .outreg_enable (outreg_enable),

 .rdclk_polarity (rdclk_polarity),
 .read_width (read_width),

 .sync_mode (sync_mode),
 .wrclk_polarity (wrclk_polarity),

 .write_width (write_width)
) instance_name (

 .din (din),
 .rstn (rstn),
 .wrclk (wrclk),
 .rdclk (rdclk),
 .wren (wren),
 .rden (rden),
 .outreg_rstn (outreg_rstn),
 .outreg_ce (outreg_ce),
 .dout (dout),
 .almost_full (almost_full),
 .full (full),
 .almost_empty (almost_empty),
 .empty (empty),
 .write_error (write_error),
 .read_error (read_error)
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 456

VHDL

 -- VHDL Instantiation template for ACX_LRAM2K_FIFO

 instance_name : ACX_LRAM2K_FIFO

 generic map (
 aempty_threshold => aempty_threshold,

 afull_threshold => afull_threshold,
 fwft_mode => fwft_mode,

 outreg_enable => outreg_enable,
 rdclk_polarity => rdclk_polarity,

 read_width => read_width,
 sync_mode => sync_mode,

 wrclk_polarity => wrclk_polarity,
 write_width => write_width

)
 port map (

 din => user_din,
 rstn => user_rstn,

 wrclk => user_wrclk,
 rdclk => user_rdclk,

 wren => user_wren,
 rden => user_rden,

 outreg_rstn => user_outreg_rstn,
 outreg_ce => user_outreg_ce,

 dout => user_dout,
 almost_full => user_almost_full,

 full => user_full,
 almost_empty => user_almost_empty,

 empty => user_empty,
 write_error => user_write_error,

 read_error => user_read_error
);

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 457

1.

2.

Chapter - 7: JTAG TAP Controller Functions
The JTAG interface (IEEE Standard 1149.1) is a serial interface commonly used for device testing. This interface
is much simpler than others such as PCIe or Ethernet but has a significantly lower bandwidth. However, for
applications with low-throughput requirements, this simplicity is an advantage as it greatly reduces the time
needed for bring-up.

Achronix devices have a built in JTAG interface with the following uses:

Traditional device testing, such as with boundary scan

Programming the device with a configuration bitstream

A generic communication interface to a user design mapped to a Speedcore instance.

This section focuses on the latter application.

The built in JTAG controller is called a TAP controller, which is defined by the JTAG standard. The interface
between a TAP controller and a Speedcore instance is referred to as the JTAP interface. While the core has only
one JTAP interface in a Speedcore instance, the JTAP library enables multiplexing this interface between
different parts of the user design.

The following figure shows the components of a system using the JTAP interface.

Figure 149: JTAG System Overview

A common way of communicating over a JTAG interface is with the STAPL language. ACE includes a STAPL
interpreter, , accessible as a stand-alone program or with the ACE acx_stapl_player run_stapl_action
command. The ACE STAPL player accesses the JTAG interface through a Bitporter device, or through an FTDI
FT2232H interface cable. Other JTAG-compliant software and hardware may be substituted for the off-chip
environment.

In the Speedcore case, there are two types of instances:

One JTAP interface instance (ACX_JTAP_INTERFACE).

Any number of JTAP units.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 458

1.

2.

The Speedcore library has two variants of JTAP unit:

The ACX_JTAP_REG_UNIT with a parallel user interface.

The ACX_JTAP_UNIT with a serial user interface.

These JTAP units are independent of each other and share the JTAP interface as described in the following
section.

To access the macros described in this section, the JTAP library must be included:

`include "speedster<technology>/common/speedster<technology>_jtap.v"

<technology> is replaced with the target technology library name (i.e.,).16t

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 459

ACX_JTAP_INTERFACE
The ACX_JTAP_INTERFACE includes the hard TAP controller and must be connected directly to the top-level
JTAG ports without IPIN or OPIN instances. The macro also includes a 6-bit unit ID register used to select
between multiple connected JTAP units, each having a unique identifying ID. To use the JTAP interface, a
design must have one (and only one) ACX_JTAP_INTERFACE instance.

Figure 150: ACX_JTAP_INTERFACE Pins

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 460

1.

Ports
Table 290: ACX_JTAP_INTERFACE Pins

Pin Name Direction Description

JTAG Pins

i_tck Input JTAG test clock.

i_trstn Input JTAG test active-low reset.

i_tdi Input JTAG test data in.

i_tms Input JTAG test mode select.

o_tdo Output JTAG test data out.

o_tdo_oen(1) Output Active-low output enable for o_tdo

JTAP Bus Pins

o_jtap_bus Output Output to JTAP units. Abstract type named .jtap_bus_tp

i_tdo_bus Input Input from of JTAP units.o_tdo_bus

Table Notes

The signal only exists in Speedcore products to be combined with to drive a tri-state o_tdo_oen o_tdo
pad. Achronix stand-alone FPGAs already include the tri-state pad to drive .o_tdo

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 461

1.

2.

Connection to the JTAP Bus
The output is a Verilog struct of type combining several wires (as defined in o_jtap_bus jtap_bus_tp

). The struct fans out to all JTAP units. Simply use the struct speedster<technology>_jtap.v o_jtap_bus
by name as illustrated in the following code snippet (no need for concern with the contents).

jtap_bus_tp jtap_bus;

ACX_JTAP_INTERFACE x_jtap_interface (
 ...

 .o_jtap_bus(jtap_bus)
);

ACX_JTAP_REG_UNIT x_jtap_unit (

 .i_jtap_bus(jtap_bus)
 ...

);

Each JTAP unit has a single-bit signal, , that must be connected to the input of the o_tdo_bus i_tdo_bus
ACX_JTAP_INTERFACE. There are two methods to make this connection:

Multiple units can be chained together by connecting the of one unit to the of o_tdo_bus i_tdo_bus
another.

Multiple signals can be ORed together.o_tdo_bus

The following figure illustrates both methods.

Figure 151: JTAP Bus Example

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 462

ACX_JTAP_REG_UNIT
ACX_JTAP_REG_UNIT connects to the JTAP bus and presents a parallel interface to the user design. Each
JTAP unit (ACX_JTAP_REG_UNIT or ACX_JTAP_UNIT) has a unique, user-selected unit ID. The off-chip
environment specifies the ID of the unit to be selected. The unit control outputs are only asserted when the unit is
selected.

Figure 152: ACX_JTAP_REG_UNIT Pins

Parameters
Table 291: ACX_JTAP_REG_UNIT Parameters

Parameter Default Value Description

UNIT_ID[5:0] 1 Unique unit ID. ID 0 is reserved for Snapshot.

ADDR_WIDTH 0 Number of address bits, if any.

ADDR_INC 0 Address increment amount, if any.

INPUT_DELAY 0 Extra delay between and sampling of .o_capture_dr i_data

DATA_WIDTH 32 Number of data bits.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 463

Ports
Table 292: ACX_JTAP_REG_UNIT Pins

Signal Direction Description

JTAP Bus

i_jtap_bus Input JTAP bus input, driven by the ACX_JTAP_INTERFACE. Abstract type named
.jtap_bus_tp

i_tdo_bus Input Input from of another JTAP unit; used to chain units. Tie to if o_tdo_bus 1'b0
unused.

o_tdo_bus Output Output to of another JTAP unit (in a chain) or of the i_tdo_bus
ACX_JTAP_INTERFACE.

User Design Interface

o_tck_core Output JTAG clock. The frequency of this clock is typically <= 10 MHz and the clock
may stop between transactions.

o_jtag_reset_n Output

Active-low reset for user logic. This signal is asserted when the TAP controller
enters the reset state, but only if the ACX_JTAP_REG_UNIT instance was
selected at the time of reset. An effect of the reset is to deselect the unit
(because the JTAG instruction register is reset to).JTAG_IDCODE

o_unit_select Output

High when this unit has been selected and can receive transactions. This signal
usually can be ignored because the other control signals (, o_jtag_reset_n

, and) are only asserted when this unit is o_capture_dr o_update_dr
selected.

o_address
[ADDR_WIDTH-1:0]

Output Address for the transaction (valid when is asserted).o_capture_dr

o_write Output High when the write bit is set (valid when is asserted).o_capture_dr

o_capture_dr Output Asserted high to indicate the start of a transaction.

o_update_dr Output Asserted high to indicate that is valid. This signal is only asserted for o_data
write transactions. Transitions on the falling clock edge.

i_data
[DATA_WIDTH-1:0]

Input Input (read) value. This signal is registered + 0.5 cycles after INPUT_DELAY
assertion of .o_capture_dr

o_data
[DATA_WIDTH-1:0]

Output Output (write) value. This signal is valid when is asserted and o_update_dr
stable until assertion of .o_capture_dr

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 464

Each transaction has an address plus a write bit. Regardless of whether the write bit is set, all transactions return
data to the off-chip environment. The environment can choose to ignore this data during write operations.

Every transaction starts with assertion of ("capture data register"). By default is o_capture_dr i_data
sampled one half cycle after is asserted (t = 0.5 in the diagram). To allow more time for data to o_capture_dr
appear, a non-zero can be specified (data capture is delayed by cycles). The INPUT_DELAY INPUT_DELAY
following diagram illustrates = S = 1.INPUT_DELAY

The signal is only asserted for a write. Typically, the write data, , is sampled while o_update_dr o_data
is high (at t=7 or t=7.5 in the diagram), though it remains valid until the next assertion of o_update_dr
.o_capture_dr

The signal is valid at the same time as .o_write o_address

The following timing diagram illustrates the control and data signals, where D = , S = DATA_WIDTH INPUT_DELAY
.

Figure 153: ACX_JTAP_REG_UNIT Signal Timing.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 465

ACX_JTAP_UNIT
ACX_JTAP_UNIT connects to the JTAP bus and presents a serial interface to the user design. The serial
interface closely matches a traditional JTAG interface — the user design must implement a shift register
connected between the and pins of the ACX_JTAP_UNIT. During a transaction, read o_tdi_core i_tdo_core
data is shifted from the shift register to the off-chip environment, while simultaneously, write data is shifted from
the off-chip environment into the shift register. For convenience, the library provides a shift register module,
ACX_JTAP_SHIFT_REG, but other shift register designs may be used as well.

While this shift register interface is slightly more complex than the parallel interface of the
ACX_JTAP_REG_UNIT, the advantage of the serial interface is that it allows changing the data width on a per-
transaction basis. For instance, the user design can have two shift registers of different sizes and use the
address to select the appropriate register. The following figure provides an example of such an arrangement.

Note

The shift direction is from MSB to LSB, with the LSB of the shift register tied to the input i_tdo_core
of the ACX_JTAP_UNIT.

Figure 154: Example: ACX_JTAP_UNIT With Two Shift Registers of Different
Width

Each JTAP unit (ACX_JTAP_REG_UNIT or ACX_JTAP_UNIT) has a unique, user-selected unit ID. The off-chip
environment specifies the ID of the unit to be selected. The unit control outputs are only asserted when the unit is
selected.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 466

Figure 155: ACX_JTAP_UNIT Pins

Parameters
Table 293: ACX_JTAP_UNIT Parameters

Parameter Default Value Description

UNIT_ID[5:0] 1 Unique unit ID. ID 0 is reserved for Snapshot.

ADDR_WIDTH 0 Number of address bits, if any.

ADDR_INC 0 Address increment amount, if any.

SHIFT_DELAY 0 Extra delay between and .o_capture_dr o_shift_dr

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 467

Ports
Table 294: ACX_JTAP_UNIT Pins

Signal Direction Description

JTAP Bus

i_jtap_bus Input JTAP bus input, driven by the ACX_JTAP_INTERFACE. Abstract type named
.jtap_bus_tp

i_tdo_bus Input Input from of another JTAP unit; used to chain units. Tie to if o_tdo_bus 1'b0
unused.

o_tdo_bus Output Output to of another JTAP unit (in a chain) or of the i_tdo_bus
ACX_JTAP_INTERFACE.

User Design Interface

o_tck_core Output JTAG clock. The frequency of this clock is typically <= 10 MHz and the clock
may stop between transactions.

o_jtag_reset_n Output

Active-low reset for user logic. This signal is asserted when the TAP controller
enters the reset state, but only if the ACX_JTAP_UNIT instance was selected at
the time of reset. An effect of the reset is to deselect the unit (because the
JTAG instruction register is reset to).JTAG_IDCODE

o_unit_select Output

High when this unit has been selected and can receive transactions. This signal
usually can be ignored because the other control signals (, o_jtag_reset_n

, , and) are only asserted when o_capture_dr o_shift_dr o_update_dr
this unit is selected.

o_address
[ADDR_WIDTH-1:0]

Output Address for the transaction (valid when is asserted).o_capture_dr

o_write Output High when the write bit is set (valid when is asserted).o_capture_dr

o_capture_dr Output Asserted high to indicate the start of a transaction.

o_shift_dr Output Asserted high when the user shift register must shift. Asserted + SHIFT_DELAY
1 cycles after assertion of .o_capture_dr

o_update_dr Output
Asserted high to indicate that data was shifted into the user shift register, and is
now valid. This signal is only asserted for write transactions with transitions
occurring on falling clock edges.

i_tdo_core Input Serial data, tied to the LSB of the user shift register. Sampled at the falling clock
edge when is high.o_shift_dr

o_tdi_core Output Serial data, input to the MSB of the user shift register.

Each transaction has an address plus a write bit. Regardless of whether the write bit is set, all transactions return

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 468

Each transaction has an address plus a write bit. Regardless of whether the write bit is set, all transactions return
data to the off-chip environment. The off-chip environment can choose to ignore this data during write operations.

The signal indicates when the shift register should be initialized. The initial value of the register o_capture_dr
is returned to the off-chip environment as read data. The shift register must be initialized before the first shift. If

 = 0, initialization must take place on or before t = 1. Increasing postpones the first SHIFT_DELAY SHIFT_DELAY
shift and, thus, provides more time to initialize the register. The following diagram shows = S = 1.SHIFT_DELAY

While is high, the shift register must shift in the direction of the LSB. The LSB of the shift register o_shift_dr
must be connected to . This input is sampled at the negative edge of the clock while i_tdo_core o_shift_dr
is high. In the diagram, with = 1, the LSB of the read data, , is sampled at t = 2.5. While SHIFT_DELAY r0

 is always sampled on the negative edge of the clock, the register itself may be either a negative-i_tdo_core
edge or positive-edge shift register.

The shift register must have D bits, where D is the data width for this transaction. However, the actual number of
shifts may well be larger than D (for example, multiple hardware devices may be combined in a single JTAG
chain, which increases the number of shifts). Rather than counting shifts, the user design should rely on the

 signal to determine when the shift register contains valid data. is only asserted for o_update_dr o_update_dr
a write. The signal is valid at the same time as the address.o_write

The timing following diagram illustrates the control and data signals, where S = , and D is the data SHIFT_DELAY
width for this transaction.

Figure 156: ACX_JTAP_UNIT Signal Timing

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 469

ACX_JTAP_SHIFT_REG
ACX_JTAP_SHIFT_REG is a negative-edge shift register suitable for use with ACX_JTAP_UNIT.

Figure 157: ACX_JTAP_SHIFT_REG

Parameters
Table 295: ACX_JTAP_SHIFT_REG Parameters

Parameter Default Value Description

WIDTH 32 Number of data bits

INIT[WIDTH-1:0] 'x Startup register value, if specified.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 470

1.

Ports
Table 296: ACX_JTAP_SHIFT_REG Pins

Signal Direction Description

i_ckn Input Register clock (negative edge).

i_data[WIDTH-1:0] Input Data to be stored in shift register when is asserted.i_capture

o_data[WIDTH-1:0] Output Shift register value (changes on negative clock edges).

i_select Input Register select. The signals and are ignored if i_capture i_shift
 is low.i_select

i_capture(1) Input When asserted high during , the value is stored in the shift i_select i_data
register.

i_shift(1) Input When asserted high during , causes the register to shift.i_select

i_tdi Input Serial data in, sampled at the negative edge of the clock when i_select &&
.i_shift

o_tdi Output Serial data out, i.e., the value of the lsb.

Table Notes

i_capture and are mutually exclusivei_shift

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 471

1.

2.

1.

2.

1.

2.

1.

2.

3.

Communication
All interaction with the JTAP units is initiated by the off-chip environment by communicating through the JTAG
interface. JTAG communication consists of two parts:

Setting the JTAG instruction register.

One or more data transactions.

All JTAG transactions are shifts, shifting the same number of bits in and out, logically corresponding to a read
followed by a write. When only a read is needed, the input data consists of don't-care bits. When only a write is
needed, the output data is simply ignored.

To communicate with a JTAP unit, it must be selected using its unit ID. Following selection, any number of data
transactions can be performed. A data transaction has two parts:

An address action to specify the address.

A data action to transfer data.

Normally these actions alternate, but for efficiency, the address action can be skipped in some cases. The details
are described as follows.

Achronix devices have a 23-bit JTAG instruction register. The following instructions are used in this section.

Table 297: Achronix JTAG Instruction Codes

Name Value Function

JTAG_IDCODE 23'h7f_fffe Selects the device identification register.

JTAG_JUSR1 23'h02_013a Sets the JTAP unit ID.

JTAG_JUSR2 23'h02_003a For communication with JTAP units.

Selecting a JTAP Unit
A JTAP unit is selected when the following two conditions are both true:

The current unit ID matches the parameter.UNIT_ID

The JTAG instruction register is set to .JTAG_JUSR2

To write the unit ID:

Set the JTAG instruction register to .JTAG_JUSR1

Write 7 bits of data (a dummy LSB followed by the 6-bit unit ID).

The previous unit ID is returned.

After setting the unit ID, the instruction register must be set to to finish the selection. All JTAG_JUSR2
communication with the JTAP unit uses the instruction.JTAG_JUSR2

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 472

1.

1.

2.

Table 298: Setting the Unit ID (7 Bits)

Number of Bits 6 1 (LSB)

Write unit_id X (1)

Read prev unit_id X (1)

Table Notes

"X" indicates don't care.

JTAG Reset
The JTAG interface supports two methods to apply reset:

A hard reset with a reset wire (the JTAG standard specifies that the reset wire is optional).

A soft reset where the TAP state machine is given a control sequence that puts it in a reset state.

When asserted, reset stays asserted until the TAP state machine is explicitly moved to a different state, typically
by setting the instruction register.

Other than the method of application, both types of reset behave identically. If a JTAP unit was selected when
reset is applied, the unit output is asserted. A reset always changes the JTAG instruction o_jtag_reset_n
register to . As a result, a reset causes the unit to be de-selected (without affecting the duration of JTAG_IDCODE
the signal). Before the unit can be accessed again, the instruction register must be set back o_jtag_reset_n
to .JTAG_JUSR2

A reset does not change the current unit ID.

Address Action
An address action specifies an address, a write bit, and an inc bit. The returned data can be ignored. The
address width, A, must match the JTAP unit parameter. The address and write values are passed ADDR_WIDTH
to the design as and . o_address o_write

Table 299: Address action (A+2 bits)

Number of Bits 1 1 A

Write inc write address

When set, the inc bit causes the address to be incremented following a data action. The increment amount is the
JTAP unit parameter (even if = 0, the inc bit must be specified).ADDR_INC ADDR_INC

When a unit has been selected, the first action must be an address action. Following an address action, the next
action must be a data action (unless the unit is de-selected by changing the instruction register).

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 473

ADDR_WIDTH = 0
In the special case where = 0, both the address and the inc bit must be omitted. In that case, the ADDR_WIDTH
address action consists of just one bit, write.

Data Action
A data action transfers D bits. For an ACX_JTAP_REG_UNIT, D must equal the parameter. For an DATA_WIDTH
ACX_JTAP_UNIT, D must equal the width of the user shift register.

Note

Due to internal pipelining, the LSB is always a dummy bit. The user design only sees the D data bits.

The value S is the or parameter of the unit; S may be 0.INPUT_DELAY SHIFT_DELAY

Table 300: Data Action (D + S + 2 Bits)

Number bits 1 D S 1

Write skip_addr data S × X X

Read X data S × X X

If is 0, the next action must be an address action. If is 1, the next action must be a data skip_addr skip_addr
action. In this case, the next action uses the existing address and write bit, except that the previously specified
inc bit determines whether the address is incremented first.

If the JTAG instruction register is changed to something other than (possibly as the effect of a JTAG_JUSR2
JTAG reset), the unit is de-selected. If it is selected again, the next action must be an address action, regardless
of any previous .skip_addr

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 474

Revision History

Version Date Description

1.0 02 Aug 2016 Initial Achronix release.

1.1 19 Aug 2016
Added in sections for the DSP64 FIR filter implementation and the
LRAMFIFO.
Corrected tables for the BRAMSDP macro.

1.2 13 Oct 2016 Added in new clock enable and reset pins for IPIN/OPIN.

1.3 04 Nov 2016

Updated the title of the document.
Updates to ACX_BRAMTDP (20-kb True Dual-Port Memory) (see page 319)
, ACX_BRAMFIFO (20-kb FIFO Memory with Optional Error Correction)

 and (see page 350) ACX_LRAM (4096-bit (128x32) Simple-Dual-Port
.Memory) (see page 424)

1.4 04 Dec 2016

Memories (see page 289): Cleaned up BRAMTDP, BRAMSDP, and
BRAMFIFO timing diagrams, improved explanations of parameters and
functionality.
Memories: (see page 289) Added read_peval parameter to the BRAMSDP
macro.
Memories: (see page 289) Added ROM description to LRAM and
BRAMSDP macros.

1.5 01 Feb 2017

Logic Functions to be deleted: Added documentation for
ACX_SYNCHRONIZER, ACX_SYNCHRONIZER_N, and ACX_SHIFTREG.
Memories (see page 289): Cleaned up LRAMFIFO parameters, timing
diagrams, and improved explanations of parameters and functionality.

1.6 31 Mar 2017
Speedcore Component Library User Guide (see page 9): Re-named the
user guide and re-arranged sections to provide for a better organization.
Memories (see page 289): Updated figure, 20-kb True Dual-Port Memory.

1.7 16 Jul 2017
Clock Functions TO BE DELETED: Added descriptions, waveforms and
instantiation templates for the CLKSWITCH, CLKDIV, and CLKGATE
macros.

1.8 19 Jul 2017

Clock Functions TO BE DELETED:

Modified CLKDIV waveform to highlight that it's always 50% duty
cycle.
Corrected some of the waveforms, figure titles and descriptions in the
CLKSWITCH section.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 475

Version Date Description

1.9 14 Nov 2017

ACX_DSP_GEN (see page 102): Updated defaults value of addsub_bypass
parameter in .Table: DSP64 Parameters (see page 110)
JTAG TAP Controller Functions (see page 457): New chapter added.
ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction)
(see page 289): Changed tie-off requirements for we[3:0] port.

1.10 15 Nov 2017 JTAG TAP Controller Functions (see page 457): Corrected timing shown in
.Figure: ACX_JTAP_UNIT Signal Timing (see page 468)

1.11 02 Jan 2018

Clock Functions TO BE DELETED: Added CLKGATE timing diagram.
ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction)
(see page 289): Updated dbit_error to reflect that it's updated at the same
time as the output data.

1.12 04 Apr 2018
Clock Functions TO BE DELETED: Corrected CLKSWITCH
SYNCHRONIZE_SEL description, added warning about simulating
CLKSWITCH and CLKGATE.

1.13 17 May 2018 Memories: (see page 289) Noted that BRAM GUI & Wrapper don't support
multi-bit we.

1.14 19 Aug 2018

LRAMFIFO: (see page 431)

Added hold_output, rst_sync_mode and, prevent_overunderflow
parameter descriptions.
Updated FIFO reset description.

ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction)
(see page 289):

Added special note for BRAMSDP ECC Mode's limitation on
read_initval when the output register is disabled.

BRAMFIFO (see page 350)

Updated Outregce Input signal description.

1.15 05 Sep 2018

Logic Functions to be deleted: Highlighted that the use of
ACX_SYNCHRONIZER is strongly recommended and added the
advantages of using the macro versus constructing a synchronizer from two
flops.
LRAMFIFO (see page 431):

Added fwft_mode restriction.
Added afull_offset and aempty_offset parameter value restriction.

1.16 05 Apr 2019

ACX_DSP_GEN (see page 102): Updated description for , sel_addsub_a s
, , and el_addsub_b sel_48_dout sat_mode use_match_in

parameters to indicate restriction.
LRAMFIFO (see page 431): Added explanation of how fwft mode affects
status signals.

Speedcore Component Library User Guide (UG065)

Achronix Proprietary and Confidential 476

Version Date Description

2.0 08 Aug 2023

ACX_DSP_GEN (see page 102) Added inference templates, (moved from
Synthesis UG). Added sel_48_dout to instantiation template
ACX_BRAMTDP (see page 319),

 andACX_BRAMSDP (see page 289)
ACX_LRAM (see page 424)
Added inference templates (moved from Synthesis UG)
ACX_LRAM2K_SDP,

,ACX_LRAM2K_FIFO (see page 449)
 andACX_BRAM72K_SDP (see page 387)
 Added sectionsACX_BRAM72K_FIFO (see page 414)

Speedcore MLP72 (see page 159) Added sections
Clock Functions (see page 90) Updated constraint information
Speedcore Fabric Architecture (see page 11) Updated details for Gen4
and Gen5 Speedcore devices
Remove "IP" from document name
Add ACE Soft IP GUI flow details for generating DSP macros

	Introduction
	ACX_ Prefix

	Fabric Architecture
	Introduction
	RLB6 for Gen4 Speedcore eFPGAs
	Routing Between RLB6s
	RLB6 Detail
	Mutually Exclusive Operations
	Control Signals

	RLB6 for Gen5 Speedcore eFPGAs
	Routing Between RLB6s
	Lookup Table (LUT) Functions
	Six-Input Lookup Table (ACX_LUT6)
	Parameters
	Ports
	Function
	Instantiation Templates
	Verilog
	VHDL

	Dual Five-Input Lookup Table (ACX_LUT5x2)
	Parameters
	Ports
	Functions
	Instantiation Templates
	Verilog
	VHDL

	Speedcore Registers
	Naming Convention
	Register Primitives
	ACX_DFF (Positive Clock Edge D-Type Register)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFE (Positive Clock Edge D-Type Register With Clock Enable)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFER (Positive Clock Edge D-Type Register With Clock Enable and Asynchronous/Synchronous Reset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFES (Positive Clock Edge D-Type Register With Clock Enable and Asynchronous/Synchronous Set)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFN (Negative Clock Edge D-Type Register)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNER (Negative Clock Edge D-Type Register With Clock Enable and Asynchronous/Synchronous Reset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNES (Negative Clock Edge D-Type Register With Clock Enable and Asynchronous/Synchronous Set)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNR (Negative Clock Edge D-Type Register With Asynchronous Reset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNS (Negative Clock Edge D-Type Register With Asynchronous Set)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFR (Positive Clock Edge D-Type Register With Asynchronous Reset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFS (Positive Clock Edge D-Type Register With Asynchronous Set)
	Instantiation Template
	Verilog
	VHDL

	Register Macros
	ACX_DFFNEP (Negative Clock Edge D-Type Register With Clock Enable and Synchronous Preset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFEC (Positive Clock Edge D-Type Register With Clock Enable and Synchronous Clear)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFEP (Positive Clock Edge D-Type Register With Clock Enable and Synchronous Preset)
	Instantiation Templates
	Verilog
	VHDL

	ACX_DFFNEC (Negative Clock Edge D-Type Register With Clock Enable and Synchronous Clear)
	Instantiation Templates
	Verilog
	VHDL

	Boundary Pin Cells
	IPIN (Input Data Pin)
	Instantiation Templates
	Verilog – Combinational Mode
	Verilog – Flopped Mode
	VHDL – Combinational Mode
	VHDL – Flopped Mode

	ACX_OPIN (Output Data Pin)
	Instantiation Templates
	Verilog – Combinational Mode
	Verilog – Flopped Mode
	VHDL – Combinational Mode
	VHDL – Flopped Mode

	ACX_CLK_IPIN (Input Clock Pin)
	Instantiation Templates
	Verilog
	VHDL

	ACX_CLK_OPIN (Output Clock Pin)
	Instantiation Templates
	Verilog
	VHDL

	Logic Functions
	ACX_SYNCHRONIZER, ACX_SYNCHRONIZER_N
	Using ACX_SYNCHRONIZER to Synchronize Reset
	Instantiation Templates
	Verilog

	ACX_SHIFTREG
	Instantiation Templates
	Verilog

	Clock Functions
	ACX_CLKDIV (Clock Divider)
	Constraints
	Instantiation Templates
	Verilog
	VHDL

	ACX_CLKGATE (Clock Gate)
	Constraints
	Instantiation Templates
	Verilog
	VHDL

	ACX_CLKSWITCH (Clock Switch)
	Constraints
	Instantiation Templates
	Verilog
	VHDL

	Arithmetic and DSP Functions
	ACX_ALU8
	Description
	Parameters
	Ports
	Functions
	Instantiation Template
	Verilog

	ACX_DSP_GEN
	ACX_DSP_GEN Pins
	Parameters
	Add/Subtract/Round/Saturate Blocks
	ACX_DSP_GEN Rounding
	Round Towards Zero
	Rounding Towards Infinity
	Round Towards Plus Infinity
	Round Towards Minus Infinity
	Round Towards Nearest Integer
	Round Towards Nearest Even
	Round Towards Nearest Odd
	Round Half Up
	Round Half Down
	Round Half Away From Zero
	Round Half Towards Zero
	Saturation
	Pre-Adder Block

	ACX_DSP_GEN Verilog Instantiation Template
	ACX_DSP_GEN Verilog Inference Template
	Inferred Multiplier Example

	Implementing Finite Impulse Response (FIR) Filters
	Parallel Filter Implementation
	Symmetric FIR Filter Implementation
	Odd-Length Symmetric Impulse Response FIR Filters
	Odd-Length, Anti-Symmetric Impulse Response FIR Filters
	Even-Length Symmetric Impulse Response FIR Filters
	Even-Length, Anti-Symmetric Impulse Response FIR Filters

	ACX_DSP_MACC_GEN
	Timing

	ACX_DSP_ACCUMULATOR_GEN
	Timing

	ACX_DSP_COUNTER_GEN
	Timing

	ACX_DSP_SUM_SQUARES_GEN
	Timing

	ACX_MLP72
	Numerical Formats
	Parallel Multiplications
	Memories
	Instantiation
	Common Stages
	Stages
	Symmetrical Structure

	Modes
	Common Signals
	Parameters
	Ports

	Input Selection
	Parameters
	Ports

	Integer Modes
	Byte Selection
	Int8
	Int7
	Int6
	Int4
	Int3
	Int16
	Parameters

	Multiplier Stage
	Parallel Multiplications
	Number Formats
	Sign - No ADD (SNOADD)

	Format Consistency
	Parameters

	Output Stage
	Parameters
	Ports

	Integrated LRAM
	Standalone LRAM
	LRAM Operational Modes
	LRAM Virtual Ports
	Interconnection Diagram
	FIFO Address Generators
	Length Adjustment
	Mode 2 Pointer Reset
	Ignore Flags

	Parameters
	Ports

	Block Floating-Point Modes
	Input Selection
	Multiplication Operation

	Byte Selection
	BFP Int8
	BFP Int7
	BFP Int6
	BFP Int4 and Int3
	BFP Int16

	Ports
	Parameters

	Floating-Point Modes
	Byte Selection
	BFLOAT16
	FP16
	FP24
	Parameters

	Multiplication Stage
	Parameters

	Output Stage
	OUT_REG
	Parameters

	Instantiation Template
	Verilog

	MLP72_INT
	Parameters
	Ports
	Input Data Mapping
	Output Formatting and Error Conditions
	Asynchronous Reset Rules
	Inference
	Examples
	inreg_enable=0, outreg_enable=0, 4 inputs
	inreg_enable=0, outreg_enable=1
	inreg_enable=0, outreg_enable=1, Asynchronous Reset

	Instantiation Template
	Verilog

	MLP72_INT8_MULT_4X
	Parameters
	Ports
	Timing Diagrams
	Inference
	Examples
	inreg_enable = 0, outreg_enable=0
	inreg_enable = 0, outreg_enable=1
	inreg_enable = 0, outreg_enable=1, with reset
	inreg_enable=1, outreg_enable=1, with input clock enable and output clock enable

	Instantiation Template
	Verilog

	MLP72_INT16_MULT_2X
	Parameters
	Ports
	Timing Diagrams
	Inference
	Examples
	inreg_enable=0, outreg0_enable=0
	inreg_enable=0, outreg_enable=1
	inreg_enable=0, outreg0_enable=1, synchronous reset
	inreg_enable=1, outreg_enable=1, asynchronous resets

	Instantiation Template
	Verilog

	Integer Library
	MLP Registers
	Clock Enable and Reset

	Accumulation
	ACX_INT_MULT
	Parameters
	Ports
	Usage and Inference
	Architecture
	Output
	Instantiation Templates
	Verilog
	VHDL

	ACX_INT_MULT_N
	Parameters
	Ports
	Data Packing
	Clock Enables
	Maximum Parallel Multiplications

	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_INT_MULT_ADD
	Parameters
	Ports
	Input Packing
	Maximum Parallel Multiplications

	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	Floating-Point Library
	Introduction
	MLP Registers
	Clock Enable and Reset

	Accumulation
	Floating-Point Format
	Output Status
	ACX_FP_ADD
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_FP_MULT
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_FP_MULT_PLUS
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_FP_MULT_2X
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	ACX_FP_MULT_ADD
	Parameters
	Ports
	Usage and Inference
	Instantiation Templates
	Verilog
	VHDL

	Memories
	ACX_BRAMSDP (20-kb Simple Dual-Port Memory with Error Correction)
	Memory Organization and Data Input/Output Pin Assignments
	Data Widths Using Parity Pins
	Address Bus Mapping

	Read and Write Operations
	Timing Options
	Read Operation
	Write Operation
	Simultaneous Memory Operations

	Timing Diagrams
	Memory Initialization
	Initializing With Parameters
	Initializing With a Memory Initialization File

	ECC Modes of Operation
	ECC Encode/Decode Operation Mode
	ECC Encode-Only Operation Mode
	ECC Decode-Only Operation Mode

	Using ACX_BRAMSDP as a Read-Only Memory (ROM)
	Create an Instance
	Inference Template
	ACX_BRAMSDP Symmetric Inference
	ACX_BRAMSDP Inference

	Instantiation Template
	Verilog
	VHDL

	ACX_BRAMTDP (20-kb True Dual-Port Memory)
	Memory Organization and Data I/O Pin Assignments
	Data Widths Using Extended Data Interfaces
	Address Bus Mapping

	Read and Write Operations
	Timing Options
	Read Operation
	Write Operation
	Simultaneous Memory Operations

	Timing Diagrams
	Memory Initialization
	Initializing With Parameters
	Initializing With a Memory Initialization File

	Create an Instance
	Inference Templates
	ACX_BRAMTDP Single-Port Inference
	ACX_BRAMTDP Symmetric Dual-Port Inference

	Instantiation Templates
	Verilog
	VHDL

	ACX_BRAMFIFO (20-kb FIFO Memory with Optional Error Correction)
	Memory Organization and Data Pin Assignments
	Data Widths Using Parity Pins
	Read and Write Depth

	FIFO Operation
	FIFO Reset
	FIFO Write
	FIFO Read
	FIFO Status Signals
	FIFO Operational Modes
	Synchronous Operation
	Optional Output Register
	Timing Diagrams

	Asynchronous Operation
	Timing Diagrams

	Mixed-Width Modes

	FIFO Resets
	Advanced FIFO Reset Modes

	Error Detection and Correction
	ECC Encode/Decode Mode
	ECC Encode-Only Mode
	ECC Decode-Only Mode

	Instantiation Template
	Verilog
	VHDL

	ACX_BRAM72K_SDP (72-kb Simple Dual-Port Memory with Error Correction)
	Parameters
	Ports
	Memory Organization and Data Input/Output Pin Assignments
	Supported Width Combinations
	Write Data Port Usage

	Read and Write Operations
	Timing Options
	Read Operation
	Write Operation
	Simultaneous Memory Operations

	Timing Diagrams
	Memory Initialization
	Initializing with Parameters
	Initializing with Memory Initialization File

	ECC Modes of Operation
	ECC Encode/Decode Operation Mode
	ECC Encode-Only Operation Mode
	ECC Decode-Only Operation Mode
	Additional Requirements for ECC Mode With ACE GUI Memory Generator

	Using ACX_BRAM72K_SDP as a Read-Only Memory (ROM)
	Advanced Modes
	Remap Mode

	Inference
	Verilog
	Example Template

	Instantiation Template
	Verilog
	VHDL

	ACX_BRAM72K_FIFO (72-kb FIFO Memory with Optional Error Correction)
	Parameters
	Ports
	Read and Write Operations
	Write Operation
	Read Operation
	First Word Fall Through (FWFT)
	Output Latch and Register

	Timing Diagrams
	Synchronous Mode
	Asynchronous Mode

	Inference
	Instantiation Template
	Verilog
	VHDL

	ACX_LRAM (4096-bit (128x32) Simple-Dual-Port Memory)
	Simultaneous Memory Operations
	Timing Diagram
	ACX_LRAM Memory Initialization
	Using ACX_LRAM as a Read-Only Memory (ROM)
	Create an Instance
	Inference Template
	ACX_LRAM with Output Register

	Instantiation Template
	Verilog

	ACX_LRAMFIFO (LRAM-Based 128-Word FIFO Memory)
	Parameters
	FIFO Operation
	FIFO Reset
	FIFO Write
	FIFO Read

	FIFO Status Signals
	Status Signals in Asynchronous mode
	Status Signals in First-Word Fall Through Mode
	full and almost_full
	empty and almost_empty

	FIFO Operational Modes
	Synchronous Operation
	Timing Diagrams

	Asynchronous Operation
	Timing Diagrams

	Instantiation Template
	Verilog
	VHDL

	ACX_LRAM2K_FIFO
	Parameters
	Ports
	Read and Write Operations
	Write Operation
	Read Operation
	First Word Fall Through (FWFT)
	Output Timing

	Timing Diagrams
	Synchronous Mode
	Asynchronous Mode

	Inference
	Instantiation Templates
	Verilog
	VHDL

	JTAG TAP Controller Functions
	ACX_JTAP_INTERFACE
	Ports
	Connection to the JTAP Bus

	ACX_JTAP_REG_UNIT
	Parameters
	Ports

	ACX_JTAP_UNIT
	Parameters
	Ports

	ACX_JTAP_SHIFT_REG
	Parameters
	Ports

	Communication
	Selecting a JTAP Unit
	JTAG Reset
	Address Action
	ADDR_WIDTH = 0

	Data Action

	Revision History

