Software Development Kit
User Guide (UG107)

All Achronix Devices

Achronix

Data Acceleration

http://www.achronix.com

Software Development Kit User Guide (UG107)

Copyrights, Trademarks and Disclaimers

Copyright © 2022 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedster and VectorPath
are registered trademarks, and Speedcore and Speedchip are trademarks of Achronix Semiconductor
Corporation. All other trademarks are the property of their prospective owners. All specifications subject to
change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

www.achronix.com

http://www.achronix.com

Software Development Kit User Guide (UG107)

Table of Contents

Chapter - 1. Introduction ... e 9
SOfIWArE StaCK . ..o e 9
Chapter - 2: Installation i 10
P gUISI S .\ttt e e 10
Achronix SDK installation e e 11
DIreCtOry StrUCTUIE o ottt e ettt e 1
Compiling the AChronix SDK oo e e 12
Testing the AChronix SDK ... e e e e e e e e e 12
Chapter - 3: Developing Applicationso i 14
MiNiMUM ReQUITEMENES ..o et e ettt e ettt 14
COMIPIlaT 0N Lo e e 14
RUNEIME Lt e e e 14
Chapter - 4: Memory AddresSing . ..ottt ettt 15
FPGA AQAresSiNg . o ettt e e et e e e e e 15
HOSt AdAresSiNg ..ottt e e e e e e e 16
BAR ASSIBNMENt .o 16
DBV ottt e 16

SO AN L o e 18
ReCOMMENdatioNS ... o 18
Address Translation Unit (ATU)t 18
Bar MatCh Mode e 20
Address MatCh Modeo e e 20
DAY I = T 1S3 1= PR 20
2D NoC Physical Address Calculations e ettt 20
BasiC OPeration ... e 21
LinKed LiSt MOGE . e et e e e e e e e e 22
DesSig8N ReqUINEMENTS . . oo e 24
ACNIONIX DD R P ottt ettt 24
ACHIONIX _G D DR, CPP .« ottt ittt ittt 24
ACHIONIX P PP .« ittt e e 24

www.achronix.com 3

http://www.achronix.com

Software Development Kit User Guide (UG107)

D11 AN ==] o[- o 25
Chapter - 5: SDK FUNCLIONS ... e et 26
Quick Reference Table o 26
util_calc_nap_absolute_addr() ...t 27
DS I Pt ON . e 27
Call oo 27
AU NS .ttt e e 27
RETUIN ValUE ... et e e e e e 27
util_wait_microseconds() ...t 28
DS I P ON e e e 28
Call e e e 28

A UM NS e e 28
RetUIN ValUE . . o e 28

Ut _Wait _SeCONAS(...ttt 29
DES I PION oot e 29
Call e 29

N =T [g =T 1 29
REtUIN ValUE . .. e e e e e e e e e e 29
PCi_reg_write_offset()o 30
DS I P ON .« ottt e e e 30
Call e 30

AT UM NS ..t e 30
REtUIN ValUE . .. e e 30
pei_reg_read _offset()t 31
D=1 o] T 14 o o 31
Call e 31

AN =T [g =Y L 31
REtUIN ValUE ... e 31
pei_reg_set_bits_offset(........o.iniini i e 32
DS I P ON oot e 32
Call e e 32
AU NS .ottt ettt ettt e 32
RETUIN ValUE . . e et e e e e 32
pci_reg_clear_bits_offSet() ..ot 33
DS I P ON ..t e e 33
Call e 33

www.achronix.com 4

http://www.achronix.com

Software Development Kit User Guide (UG107)

N =T [g =T 01 33
RetUIN ValUe . e 33
pei_read_reg_ctrl_version()ooiriniii 34
DS I P ON ..t e e 34
Call e 34
AT UM NS Lot e 34
RetUIN ValUe . .. e 34
P _lINK IS _UPO vt 35
DS P ON o e 35
Call o 35
N =T [g =T 1 35
REtUIN ValUE . .o 35
dma_build_data_descriptor()ouonriri i 36
DS PN . 36
Call e e 36
AN =0 0 0T o 36
RetUIN ValUe . . . 36
dma_build_link_descriptor()ottt 37
DS I P ON .ottt e e 37
Gl o e 37
AT UM S L oottt e e 37
RetUIN ValUE .. o e 37
AMa NIt .« 38
DS I P I ON oottt e 38
Call e e 38
N =T [g =T L 38
RetUIN ValUe . . . e e 38
AMa_CONTIB0 .ottt 39
DS I P I ON Lottt ettt e e e 39
AT UM BN S .ttt e e e e e 39
RetUIN ValUe . .. e 39
AMa_Start] .o 40
DS PN e e 40
Call e 40
AU NS L oottt ettt e e 40
RETUIN ValUe . . .o e 40

www.achronix.com 5

http://www.achronix.com

Software Development Kit User Guide (UG107)

AME_Nalt0 ..o e 4
DS I Pt ON oottt e e 41
Call e e 41
AN =0 0 1= o 41
RetUIN ValUe ... e 11

AMa_get_Status()oo it 42
DS I P ON oottt e e e 42
Gl e 42
AT UM NS Lot e e 42
RetUIN ValUe . . e 42

AMa_WaIt]) .o 43
DS P ON L ot e 43
Call e 43
N =T [g =T 1 43
RetUIN ValUe . oo e 43

AtU_get_CONtEXt() ..ot 44
DS I P ON .t e e e 44
Call e 44
AT UM NS Lo e 44
RetUIN ValUe . .. e 44

AtU_TiNd_regions() .. .oori i 45
DS P ON o ittt e e 45
Call o 45
N =T [g =T 1 45
REtUIN ValUE . .o e 45

AtU_ Bt _rION0 . ettt 46
DS PN ..t 46
Call e e 46
AU NS L oottt e e 46
RetUIN ValUe . .. e 46

AtU_PUt_re@IoN0 ..ottt 47
D T= 1Yo T o) 1 T o TR 47
Gl e e 47
AT UM NS . .t 47
RetUIN ValUe .. o e e 47

Chapter - B: SDK StrUuCTUresS e 48

www.achronix.com 6

http://www.achronix.com

Software Development Kit User Guide (UG107)

DMaAaCommMaNnd _t .. 48
DS P ON e e 48

D it ON L. e 48
= Lo £ 48
DM ADATaDESCIIPIOr vttt 50
D=1 o3 T 1 ¥ 0 o P 50

31 V1o o 50
= Lo £ 50
DM A LINKDESCIIPIOr oo 51
DS I P ON oottt e e e 51

D iNIION L e 51
=Y o 51
Chapter - 7: SDK ClasSeS . . . oo vt et 52
P DBVICE oottt 52
DS I P ON oot e 52

31 V1 52
MeEmMbBEr FUNCEIONS ... e e e ettt e 52
DM AHOSIBUI e . 54
DS I P ON ..t e e 54
DEfiNItION . oo 54
MeEmMbEr FUNCHIONS oo ettt ettt e 54
DM A DD ESCHIPEOr LISt o ettt e 56
DS P ON e e 56

D NI 0N Lo e 58
MeEMBEr FUNCEIONS ... et e e e e e et et e 58
AU O Xt ettt e 60
DS I P ON e e 60
DT NI 0N L oo e e 60
MembEr FUNCHIONS .o ettt et e e e 60
ATURBEION . .ottt et e e e e e e e e e 61
DS I P ON . e e 61
DN ON Lo 61
MeEmMbEr FUNCHIONS oo ettt et e 62
REVISION HiStOrY ..ot e e e 65

www.achronix.com 7

http://www.achronix.com

Software Development Kit User Guide (UG107)

www.achronix.com

http://www.achronix.com

Software Development Kit User Guide (UG107)

Chapter - 1: Introduction

The Achronix Software Development Kit (SDK) is a set of functions and data structures which enable users of the
Speedster®7t family of devices to write applications that communicate with and control their designs using the
PCle interface.

The SDK consists of pre-compiled binary (private) libraries, source code for common public libraries, and source
code for several example applications showing how common features can be implemented.

Note

(i) The Achronix SDK is currently only available for the Linux platform with an installed Achronix
VectorPath® S7t-VG6 accelerator card. For Microsoft Windows, or non-VectorPath support, please
contact support@achronix.com.

Software Stack

The Achronix SDK is built on top of the BittWare SDK. The BittWare SDK supplies the low-level routines
performing PCle device enumeration and recognition, buffer allocation, and memory-mapped reads and writes
via the PCle device.

A conceptual diagram of the software stack is shown in the following figure.

Example Application 1

Achronix SDK

BittWare SDK

BittWare PCle Driver

Operating System

113824702-01.2022.27.08

Figure 1: Software Stack

www.achronix.com

http://www.achronix.com

Software Development Kit User Guide (UG107)

Chapter - 2: Installation

Prerequisites

Before compiling code using the Achronix SDK, install the BittWare SDK available from the BittWare VectorPath
developer portal at https://developer.bittware.com. See the Support Article for help getting started. Access to the
portal and SDK download is available only to verified purchasers of the VectorPath card. Please contact BittWare
Support to obtain a developer account.

The default locations for installation of the BittVWWare SDK are shown below:

BittWare SDK Flle Locations

BittWare include files : /usr/share/bittware-sdk/include
BittWare library files : /usr/lib/x86_64-1inux-gnu

If the BittWare SDK is installed to a different location, the appropriate entries in each of the Achronix makefiles
must be updated.

The Linux GCC compiler must also be installed and available in the path. The SDK requires C++ 14 support,
available in GCC versions 5.2 and later.

www.achronix.com 10

http://www.achronix.com
https://developer.bittware.com/products/s7t-vg6.php
https://support.achronix.com/hc/en-us/articles/4415140267156-Where-Can-I-Download-the-Software-Development-Kit-for-a-VectorPath-Card-

Software Development Kit User Guide (UG107)

Achronix SDK installation

Directory Structure

The Achronix SDK has the following directory structure:

Directory

Description

b <achronix SDK>

—=
—=
—=
—=

100

—P=7 /10

10

ﬁ /src

1000

;b /examples

/ATU example
/buffer alloc
/DMA _example

/PCI_read write

ﬁ /include

Achronix DDR4.h
Achronix GDDR6.h

Achronix PCI.h

libacxsdk-priv.so

libacxsdk-pub. so

Achronix DDR4.cpp
Achronix GDDR6.cpp
Achronix PCI.cpp

Makefile

The root directory where the SDK is installed.

Contains source code for various example applications built with the SDK.
Demonstrates how to read and write configuration settings to the PCle Address Translation Unit.
Demonstrates how to allocate a PCle buffer. Supports initiating a DMA transaction using JTAG

commands instead of a C++ application.

Full DMA example. Supports GDDR6, DDR4 and fabric NAP as DMA targets. Options to configure
buffer sizes and measure performance. Optional descriptor lists.
Demonstrates how to perform memory-mapped reads and writes over PCle.

Include files to be added to the user makefile.

Header for the functions in Achronix DDR4.cpp.
Header for the functions in Achronix_ GDDR6. cpp.
Header for the functions in Achronix PCI.cpp.

Pre-compiled shared object library files.

Pre-compiled (private) shared object library to link into the application software binaries.
Shared object library for the public APIs created by compiling files in the /szrc directory.
Source code for the public SDK APIs. User compiled into a shared library in the /1ib directory.
Source code for a set of examples for initializing and driving DDR4 transactions.

Source code for a set of examples that monitor GDDR6 initialization.

Source code for a set of public APIs related to PCle operation.

Makefile to build 1ib/libacxsdk-pub. so.
113824702-03.2022.18.10

Figure 2: Achronix SDK Directory Structure

The Achronix SDK may be copied and installed to any location that best suits the user application. When
installed, it is necessary to set the LD_LI BRARY_PATH environment variable to include the <achr oni x_SDK>

/1'i b directory.

www.achronix.com 11

http://www.achronix.com

Software Development Kit User Guide (UG107)

Compiling the Achronix SDK

Compiling the Achronix SDK is optional and only required if the source code has been modified. Pre-compiled
versions of the shared libraries and the demo application executables are included with the SDK. Before
compiling an application using the Achronix SDK, it is necessary to compile the | i bsdk- pub. so shared object
file as shown below:

To conpile the |ibsdk-pub shared object file

$ cd <achroni x_SDK>/src - Change to the source code directory.
$ make cl ean - Delete all object (.0) and /lib/libacxsdk-pub.so files.
$ make - Compile /lib/libacxsdk-pub. so.

The Achronix SDK libraries (I i bacxsdk- priv. so and | i bacxsdk- pub. so) comprise all of the functions
defined in the header files in the / i ncl ude directory. These functions are then available to any application by
linking the shared object files into any application build.

It is then necessary to compile the supplied example applications. Instructions for compiling the DMA_example
are shown below. These steps can be repeated for the other example applications.

To conpile the DVA _exanpl e application

$ cd <achroni x_SDK>/ exanpl es/ DMA_exanpl e - Change to the application directory.

$ nmake clean - Delete all object (.0) and any executable files.
$ nmake - Conpile the application.

This builds an executable named <achr oni x_SDK>/ sw/ exanpl es/ dma_exanpl e that can be used as a
model for developing your own applications.

Note

©@ Whenthe application is compiled, it might be necessary to set execute permissions on the file. This is
achieved with the command: chnod +x <appl i cati on>.

Testing the Achronix SDK

To verify that the software and the VectorPath card are installed properly, run the DMA example as follows:

1. Run the following command to see the available command line options:

$ <achroni x_SDK>/ sw/ exanpl es/ dma_exanpl e --hel p

www.achronix.com 12

http://www.achronix.com

Software Development Kit User Guide (UG107)

2. Run the following command to perform a small DMA test:

$ <achr oni x_SDK>/ sw/ exanpl es/ dma_exanpl e -b 0x400000 -d H2D2H -e DDR4 -f random

The test does the following:

Allocates two 4MB buffers on the host server.
Fills the first buffer with random data.

Transfers the contents of the buffer from the host to the device (the H2D direction) into the DDR4
memory space.

Transfers the same data back from device to the host (the D2H direction) into the second memory

buffer.
Compares the two buffers to verify that the data made the round trip without errors.

Computes the achieved bandwidth in each direction.

www.achronix.com

13

http://www.achronix.com

Software Development Kit User Guide (UG107)

Chapter - 3: Developing Applications

To develop your own applications with the SDK, it is recommended to follow the same format as one of the
existing example applications. It is necessary to include the same BittWare and Achronix SDK header files, and
to link with the same set of BittWare and Achronix shared library files. Consult the included Makefiles for more
detail.

Minimum Requirements

Compilation
The following are the minimum requirements necessary to compile the Achronix SDK into user software:
® The environment variable LD _LI BRARY_PATH must include <achr oni x_SDK>/1i b
® Include the Achronix SDK header files in the <achr oni x_SDK>/ i ncl ude directory into C/C++ code

® Include the Achronix SDK shared object files in the <achr oni x_SDK>/ | i b directory when linking

Runtime

® Ensure that the BittWare library files are installed in / usr/ 1 i b/ x86_64-11i nux- gnu

www.achronix.com

14

http://www.achronix.com

Software Development Kit User Guide (UG107)

Chapter - 4: Memory Addressing

In order to determine the correct address for an FPGA memory space, whether within the interface subsystems
or the fabric, it is necessary to understand the differences between how the FPGA and the software map the

address space.

FPGA Addressing

The FPGA maps all addresses as a 42-bit linear address space as described in the Speedster7t Network on
Chip User Guide (UG089). In this linear space, each interface subsystem can be address as a hierarchy of
addresses, sub-divided as follows:

® Space — major different memory areas such as CSR_SPACE (interface subsystem registers), NAP_SPACE
(NAPs in the programmable fabric) and DDR4_ SPACE, GDDR6_ SPACE (external memories).

® Target — either interface subsystem IP blocks normally within the CSR_SPACE, e.g., PCl E_ 0, PCI E_1,
ETHERNET O, etc., or individual external memory controllers, e.g., GDDR6_0, GDDR6_1, efc.

¢ [P ID — within an interface subsystem, individual blocks. So, for example, with Ethernet, the CORE
registers, then SERDES_0 and SERDES_1 register areas.

® Address — the memory address.

The overall size within each of these areas varies. However, the two most common to be accessed by external
software are CSR_SPACE and NAP_SPACE. They have the following addressing:

Table 1: CSR_SPACE Addressing

Name Space Target IP_ID Register Address
CSR_SPACE | Bits [41:34] | Bits [33:28] | Bits [27:24] | Bits [23:0]
Table 2: NAP_SPACE Addressing
Name Space NAP Column NAP Row Register Address
NAP_sPACe(") (@) Bits [41:35] Bits [34:31] Bits [30:28] Bits [27:0]

Table Notes

0.

1. The NAPs are numbered from 1 for placement and within the device. However, they are addressed from

2. The functionuti | _cal c_nap_absol ut e_addr ess() returns bits [41:28] of the NAP address when
given the NAP column and row locations (numbered from 1).

In summary, the FPGA memory space is a 42-bit linear address space giving access to all registers and external

memory locations.

www.achronix.com

15

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089

Software Development Kit User Guide (UG107)

Host Addressing

PCle devices such as the VectorPath card are memory-mapped, meaning that they present their capabilities to
the host CPU as one or more regions of memory that are mapped into the host memory space. Reads and writes
to registers or memories on the FPGA are performed by reading or writing to the appropriate address on the
host.

In order to implement this memory-mapping scheme, PCle uses BARs (Base Address Registers) to specify the
mapping from the host machine address space to the PCle device address space(s). Each BAR defines the size
of an address space and the local (device) base address. During PCle enumeration, the host assigns a memory
region of the same size as each BAR, and maps this to the host (usually 64-bit) physical memory space. The
local, or device, base address is the start of a memory region of the same size in the FPGA 42-bit address space
(as described in FPGA Addressing (see page 15)). When host software reads from, or writes to, a physical
address covered by one of the BARs, that transaction is intercepted by the host PCle controller and routed to the
correct location on the FPGA.

The PCle controller on the Speedster7t FPGA contains six 32-bit (or three 64-bit) BAR registers, each of which
supports up to a 64MB address space. It is therefore clear that the 42-bit address space within the device cannot
be mapped to the host in its entirety. It is necessary to configure the BARs and their sizes to match the individual
user design requirements. The size of, and FPGA base addresses assigned to, each BAR are defined in the
PCle IP configurator. Refer to the Speedster7t PCle User Guide (UG098), available under NDA. The base
addresses in the host address space are assigned by the host during PCle device enumeration. For more
information about how to access the BAR registers from the host, refer to the BittWare SDK User Guide.

It is important to understand that BAR register configuration is specific to a design. The capabilities of a user
application must match the design BAR register selection. When selecting CSR register spaces, or the NAP to
address, the design and user application BAR definitions must be aligned.

p Warnin
e g

The BAR register selection is specific to a design. The user application must match the BAR register
selection.

Note

@ DMA accesses do not use BAR registers. DMA transfers use the physical address within the device and
host.

BAR Assignment

To understand the alignment between the design and the user application BAR assignment, the combined
demonstration design (pci e_gddr 6_ddr4_vp_denp) is used as an example. This design demonstrates PCle
DMA to and from external memory, (DDR4 and GDDRG6), and also to a NAP in the fabric, using the
DMA_exanpl e application provided within the Achronix SDK.

Device

The PCle IP definitions, including the BAR assignments, are specified in the ACE 1/0 Designer, which is
accessed from the IP Configuration Perspective in the ACE GUI. The BAR assignments, along with other PCle
configurations for the above demonstration design, are contained within / sr ¢/ acxi p/ pci e_express_x16.
acxi p. The BARs are configured in the I/O Designer as shown in the following table.

www.achronix.com 16

http://www.achronix.com

Software Development Kit User Guide (UG107)

Table 3: Example BAR Mappings

BAR | Type | Size (Bytes) Address FPGA memory space

0 Memory | 64M 0x042_4000_0000 NAP located in column 5, row 5.

1 Memory | 1M 0x043_e000_0000 NAP located in column 8, row 7.

2 Interrupt | 1M 0x000_0000_0000 | Used by PCle core for MSIX interrupts.

3 Memory | 1M 0x081_9100_0000 Base of CSR_SPACE PCI E_1 BASE | P.
4 Memory | 1M 0x002_0000_0000 GDDR controller 0, channel 1.

5 Memory | 1M 0x100_0000_0000 Base of DDR4 memory.

The two mandatory BAR mappings in this design are BAR 0 and BAR 3.

BAR 0 maps to a NAP located in column 5, row 5. Referencing / sr ¢/ constr ai nt s/ ace_pl acenent s. pdc,

it can be seen that this mapping relates to the fabric-based register control block. This block controls the design,
operating the DDRA4 training and transactions, and monitoring the GDDRG training status:

Excerpt From ace_pl acenents. pdc

Regi ster control

set _pl acenment
noc. nap_ni

bl ock NAP placed in 5,5
-fixed {i:i_reg_control _block.i_axi_master.i_axi_master} {s:x_core.NOC5][5].!ogic.

BAR 3 is mapped to the Control and Status Register (CSR) space within the PCle core. This mapping is required
so the software can access the registers that configure and control the DMA transfers. Without this mapping, the
application would not be able to perform DMA.

(1]

Note

It is strongly recommended that all designs have one BAR mapped to the PCle core register space
(address 0x081_9100_0000). The number of that BAR must then be used in the application to access

any DMA or PCle core functions.

www.achronix.com

17

http://www.achronix.com

Software Development Kit User Guide (UG107)

Software

Referencing the DMA_example in / deno/ sw/ exanpl es/ DMA_exanpl e/ DMA_exanpl e. cpp, it can be seen
how BAR 0 and BAR 3 are used to access the register control block, and the PCle core registers:

Excer pt From DVA_exanpl e. cpp

/1 Configure mapping for each BAR

/1 1 MPORTANT - These can change on a per-design basis.

Bwpci Ms reg_ctrl _bar BW Ms_BARO; // Mapped to the register control block in the fabric
Bwpci Ms csr_bar BW MS BAR3; // Mapped to the Control Status Registers

// DDR4 training is controlled and nonitored by the reg ctrl block, which will be
/| accessed by one of the BARs
if (acx::ddr4_run_training(device, reg_ctrl_bar, false) '=0) {

/] Initialize the DVA core. Resets both engines (read and wite) and sets arbitrati on weights.
Only need to do this once.
acx::dme_init(device, csr_bar, part, pcie_core);

Recommendations

To ensure alignment between the device and the software, the following is recommended:

® Assign a BAR to the PCle core registers (0x081_9100_0000) and use this BAR for all PCle core
accesses in the software.

® [f the design contains a register control block with a NAP, define a BAR with an address that matches the
location defined in the ace_pl acenent s. pdc file. In the software use this BAR for all accesses to the
register control block.

®* DMA transfers do not use BARs. To obtain the absolute address of a NAP for DMA access, use acx: :
util _cal c_nap_absol ut e_address().For GDDR6 or DDR4 absolute addresses use the
<t ar get > SPACE define from / i ncl ude/ Achr oni x_SDK. h, and add in the required memory offset.

® To perform memory-mapped reads and writes to device registers or memories without using DMA
(sometimes called BAR reads and writes), define a BAR with a base address and size that covers the
region of memory to access. For example, see BAR1, BAR4, and BARS defined in the table above.

Address Translation Unit (ATU)

Mapping between the host 64-bit physical address space, and the device 42-bit NoC address space, is
performed by the Address Translation Unit (ATU) part of the PCle interface subsystem. When a user design
accesses an address that has been assigned by the host OS to one of the device BARs, that address is passed
to the ATU for translation from host address to device NoC address. If the ATU is unconfigured, the host
addresses would be truncated or zero-padded to 42-bits (depending on whether the design uses 64-bit or 32-bit
BARs) and then passed directly on into the NoC without translation. This would create an invalid address which
would cause NoC access failures. The ATU is configured, using ACE, whenever a PCle IP is configured and
assigned BARs with an address offset and size.

www.achronix.com 18

http://www.achronix.com

Software Development Kit User Guide (UG107)

The ATU consists of 100 regions, each of which can be individually configured with a mapping between one
contiguous region of host memory addresses, and a corresponding region of addresses (of the same size) on the
device.

Warning

If ATU regions are defined to be overlapping (either on the device code or the host side), the behavior is
undefined.

Each ATU region can be in one of two modes, BAR Match Mode or Address Match Mode, as illustrated in the
following diagrams.

Host Memory (64 bits) 2D NoC (42 bits)
BAR ATU
~— = Region P
> -
~ N N P 7
R
e s ~
| »” 7 ~ < -
- Target
BAR Match Mode
Host Memory (64 bits) 2D NoC (42 bits)
ATU
Regions
, = Target 2 + (Limit 2 - Base 2)
7 .
7
L BAR 4 = .
Limit 2 S / - Target 2
* 7
7
L e
Do] L - - Target 1+ (Limit 1 - Base 1)
R1
Base 1 -~ L
Limit 0 - =~ - Target 1
~N
N ~N
Base 0 - 4 . Target O + (Limit O - Base 0)
AN RO
N\
3 - Target 0

Address Match Mode

Figure 3: ATU Region Examples

www.achronix.com

19

http://www.achronix.com

Software Development Kit User Guide (UG107)

Bar Match Mode

The ATU translates all of the addresses covered by one BAR (either 32-bit or 64-bit BARs) into a single block of
device memory of the same size. Therefore, since there are only six 32-bit BARs, a maximum of six ATU regions
can be configured in Bar Match Mode. In this mode, only the device-side Target address for the BAR must be
specified by the user, as the host-side Base and Limit addresses are assigned by the host operating system
during enumeration.

Address Match Mode

Address match mode supports the full 100 ATU regions. Each region specifies a base address in host memory, a
base address in device memory, and a region size. This scheme allows the addresses covered by a single BAR
to be split up into a large number of individual slices that each map to any region of device memory. For
example, a single BAR could be made to cover 80 different BRAMs, each connected to its own NAP in the
Speedster7t FPGA 2D NoC. It is necessary to ensure that the regions are non-overlapping.

Note

(1] Currently the ACE 1/0O Designer tool only supports BAR Match Mode. Address Match Mode can only be
configured by using the Achronix SDK capabilities described below.

DMA Transfers

Direct Memory Access (DMA) transfers do require the use of BAR registers (other than for configuring the DMA
engine itself), and are therefore not limited by the number of BARs or the BAR sizes. The DMA engine built into
the PCle controller can efficiently transfer blocks of data of any size directly between the host remote 64-bit
address space and the device local 42-bit address space. To perform a DMA transfer, the software must allocate
a buffer on the host to source or receive the data, then configure DMA controller registers with the source and
destination addresses and the number of bytes. When reading or writing the buffer from software the buffer must
be referred to using its virtual address. However, when programming the DMA controller with the host buffer
source or destination address, the buffer physical address must be used. The acxsdk: : DnmaHost Buf f er object
makes it convenient to obtain both the virtual and physical addresses for the buffer.

2D NoC Physical Address Calculations

Note

It is not necessary to have a BAR register map the memory location in the device for a DMA transfer.

To obtain the 42-bit NoC device physical address for a DMA transfer, the following methods are available:

® For a NAP in the fabric, call acx: : uti| _cal c_nap_absol ut e_addr ess() with the NAP row and
column index

®* For DDR4, use the define DDR4_SPACE to provide the base address, and add any necessary offset
® For GDDR®, use the define GDDR6_ SPACE to provide the base address and add any necessary offset.

Note

@ Each GDDR6 channel (two per controller) is addressed with addr [36: 33] . It is therefore necessary to
add 0x2_0000_0000 for each GDDR6 channel selected.

www.achronix.com 20

http://www.achronix.com

Software Development Kit User Guide (UG107)

The following DMA example shows the use of these functions and defines for determining the device physical
(local) address for a DMA transfer:

DVA Exanpl e

/1 Calculate the DVMA target address in the device
uint64_t devi ce_phys_base_addr = 0xO0;
if (options.endpoint == acx::DDR4) {
/1 Leave room for descriptor lists at the base of DDR4. The DDR4 space starts from of fset
0x0.
devi ce_phys_base_addr = DDR4_SPACE + (uint64_t)0x10000;
} else if (options.endpoint == acx:: GDDR6) {
devi ce_phys_base_addr = GDDR6_SPACE;
} else if (options.endpoint == acx::NAP) {
/1 AXI BRAM responder NAP |ocation is set in project pdc file
devi ce_phys_base_addr = util _cal c_nap_absol ute_addr(part, axi_bramresp_col,
axi _bramresp_row);

}

Basic Operation

In order to perform a DMA transfer, the software must first open the PCle device and obtain a handle to it. With
the Achronix SDK, this is achieved using the underlying BittWare SDK functions. Alternately, this handle can be
obtained directly by using low-level OS system calls (out of the scope of this document). The Achronix SDK
provides a C++ class named acxsdk: : PCl Devi ce. The device is opened by calling the class constructor with
the PCle devi ce_i d. By default, devi ce_i d equals zero if there is only a single VectorPath card installed. In
the event that multiple VectorPath cards are installed, the BittWare bw_card_| i st utility is used to determine
the appropriate devi ce_i d. After the device is opened, the PCl Devi ce class is used as the device handle. The
device is automatically closed in the class destructor when it goes out of scope or the application exits.

For DMA, the software is required to allocate a host buffer and, if performing host-to-device DMA, copy the host
data to the host buffer. The Achronix SDK utilizes the BittWare SDK functions to allocate that buffer providing a
C++ class named acxsdk: : DMAHost Buf f er . Again, if necessary, it is possible to use direct low-level operating
system calls. Using acxsdk: : DMAHost Buf f er, the buffer is created by calling the class constructor with a
pointer to the PCl Devi ce and the size of the buffer in bytes. The buffer is automatically deallocated when the
DMAHost Buf f er object goes out of scope, or when the application exits.

o Note
Maximum buffer size is currently limited to 4MB.
p Warnin
e g

It is not possible to allocate the buffer with a simple mal | oc() call. The reason is that the
DMAHost Buf f er: : get _phys_addr () function is required to obtain the buffer physical (not virtual)
address.

The example below illustrates using the PCI Devi ce and DMAHost Buf f er constructors. The function buf f er .
fill _randon() is used to fill the buffer with random data. The source for fi || _random() is contained within
/ src/ Achroni x_PCl . cpp. This function may be edited to fill the buffer with application-specific data using the
buffer virtual address. The source code for PCl Devi ce and DMAHost Buf f er are also both available in / sr ¢

/ Achroni x_PCl . cpp; They can be customized if required.

www.achronix.com 21

http://www.achronix.com

Software Development Kit User Guide (UG107)

acxsdk: : PCl Devi ce devi ce(options. device_id);
acxsdk: : DMAHost Buf f er buf f er (&devi ce, buffer_size_in_bytes);
buffer.fill_random();

Having opened the PCle device and writing the required data into the DMAHost Buf f er , the software must call
acxsdk: : dma_i ni t () to initialize the DMA controller. This initialization only needs to be called once at the
start of the application as long as only a single process is using the DMA engine. The function requires the

following:

® Bwpci Devi ce pointer obtained by calling acxsdk: : DMAHost Buf f er: : get _devi ce()
®* Bwpci Ms object for a BAR that maps to the CSR space in the FPGA

® Defines for the desired Achronix part name and PCle controller number.

acxsdk: : dma_i ni t (devi ce. get _devi ce(), csr_bar, acxsdk:: AC7t 1500ESO, acxsdk::PC E_1);

Next, for each individual DMA transaction, an instance of a acxsdk: : DnaCommand struct must be populated
with parameters that describe the transaction. The most important parameters are:

. The transfer direction.

1
2. The 42-bit devi ce_addr ess (calculated in the code example above).

3. The 64-bit host _addr ess, obtained by calling DVMAHost Buf f er : : get _phys_addr () .
4. The buffer size in bytes, obtained from the DMAHost Buf f er class.

acxsdk: : DraConmand nyDmaConmrand;

ny DmaConmand.
my DmaCommrand.
nmy DmaConmrand.
ny DmaConmand.
my DmaCommrand.
my DmaConmmand.
ny DmaConmand.
my DmaCommrand.

csr_bar = csr_bar;
pci e_core acxsdk: : PClI E_1;
drme_direction acxsdk: : HOST_TO DEVI CE;

dma_channel
devi ce_address

options. channel ;

devi ce_phys_base_addr;

host _address buf f er - >get _phys_addr () ;
size_i n_bytes buf fer->get_si ze_i n_bytes();
descriptor_list_address = 0xO;

Finally, for each transfer, the DMA engine is configured with acxdsk: : dma_confi g(), then the transfer started
with acxsdk: : dma_start ().

To wait for a DMA to complete, call the function acxsdk: : dma_wai t () . This function returns after the DMA has
completed. In the event that the DMA transaction does not complete correctly, or times-out, the function
acxsdk: : dma_hal t () must be called to abort the transaction before starting a new DMA transfer.

acxsdk: : dma_confi g(device. get _device(), nyDmaConmmand);
acxsdk: : dma_start (devi ce. get _devi ce(), nyDnaConmand);
acxsdk: : DSt at us status = acxsdk::dma_wait (devi ce. get _devi ce(), nyDmaConmand, /*tineout_in_second

s*/2);

if (status == acxsdk:: DMA_RUNNI NG {
acxsdk: : dma_hal t (devi ce. get _devi ce(), nmyDmaCommand);
/'l code to recover and re-issue the conmand

www.achronix.com 22

http://www.achronix.com

Software Development Kit User Guide (UG107)

Linked List Mode

In addition to the basic DMA operation described above, the more advanced linked list mode is available to
handle larger DMA transfers or streaming transactions more efficiently. In this mode, the DMA context (source
address, target address, buffer size) is loaded into a data structure called a DMA Descriptor instead of being
passed directly to dma_confi g() through the DnaCommrand struct. Multiple buffers can be transferred in a
single call to dma_st art () by creating a descriptor for each buffer, and then combining the descriptors into a
linked list. The descriptor list is then transferred into device memory, and the physical address of the list is
passed into the dma_confi g() call through the DraComrand struct. The descriptor list my be placed anywhere
in device memory (DDR4, GDDRG, or a BRAM connected to a NAP). The descriptor list may be transferred into
device memory using individual BAR writes, or (recommended) a small DMA transaction.

To aid in constructing a DMA descriptor list, the Achronix SDK provides a small class named acxsdk: :
DVADescr i pt or Li st . After creating the DMADescr i pt or Li st , the descriptor data is populated by calling the
acxsdk: : buil d_data_descri ptor () function once for each DMAHost Buf f er . In the example below, an
array of host buffers, all of the same size have been allocated. The source code for the DMADescr i pt or Li st
class is available in / sr ¢/ Achr oni x_PCI . cpp and can be customized if required to suit the application.

Every block of descriptors in a DMADescr i pt or Li st consists of one or more DVADat aDescr i pt or s and ends
with a single DMALI nkDescr i pt or that might link to another DMADescr i pt or Li st . The use of multiple linked
DMVADescr i pt or Li st s is beyond the scope of this document. The DMADescr i pt or Li st constructor
populates the terminating DMALI nkDescr i pt or with a pointer back to the first DMADat aDescr i pt or in the list,
which is the default configuration for a single unlinked descriptor list.

Note
The function dma_bui | d_I i nk_descri pt or () is available to populate the DMALi nkDescr i pt or .

acxsdk: : DMADescri ptorLi st descriptors(&device, options.numdescriptors, GDDR6_SPACE);
for (uint64_t i = 0; i < options.numdescriptors; i++) {
acxsdk: : dma_bui | d_data_descri ptor(descriptors[i],
options. buffer_size_in_bytes,
buf fer_vec[i]->get_phys_addr (),
devi ce_phys_base_addr + (options.buffer_size_ in_bytes * (uint64_t)i));

After building the DMADescr i pt or Li st , the list must be transferred into device memory, which can be
performed using the DMA Basic Operation (see page 21) procedure outlined above. For convenience, the
DVADescr i pt or Cl ass makes available the get _devi ce_phys_addr () function which returns an address
that is then passed to the class constructor. In the example above, the physical address of token GDDR6__ SPACE
is used. This address equates to the lowest of GDDR6 memory addresses in the 42-bit NoC address space. For
more information, see the DMA_exanpl e source code.

After the descriptor list is complete, the DnaConmrand structure is populated with the DMA transfer parameters.
Comparing the linked list mode example below with the Basic Operation (see page 21) example above, it can
been seen that the physical address of the descriptor list in device memory is used in place of the

devi ce_addr ess, host _address, and si ze_i n_byt es elements.

www.achronix.com 23

http://www.achronix.com

Software Development Kit User Guide (UG107)

acxsdk: : DmaConmand nyDmaConmmrand;

nmy DmaComrand. csr _bar csr_bar;

nmy DmaCommrand. pci e_core pci e_core;

nmy DmaConmmand. dma_di recti on acxsdk: : HOST_TO DEVI CE;
ny DmaConmand. drma_channel options. channel ;

nmy DmaComrand. ver bosi ty options.verbosity;

nmy DmaConmmand. devi ce_addr ess 0x0;
nyDmaConmand. host _addr ess 0x0;
nmy DmaComrand. si ze_i n_bytes 0x0;

nmyDmaConmmand. descri ptor _| i st_address = descriptors->get_devi ce_phys_addr();

To initiate, start and wait the the DMA, the same commands, dnma_confi g(),dnma_start(),anddnma_wait ()
, are used. The DMA controller performs all of the transfers specified in the descriptor list before returning from
the dma_wai t () function.

Design Requirements

This section documents the minimum requirements for designs that use various components of the SDK. See the
referenced demo design for more information and an example of the following.

Achronix_DDR4.cpp

The DDR4 functions manage training of the DDR4 controller (using the ddr 4_t r ai ni ng_pol | i ng_bl ock in
the fabric) and, in addition, control sending and reception of data along with performance monitoring of the
throughput to and from the DDR4 (using the axi _pkt gen, axi _pkt chk and axi _perfornance_noni t or
blocks in the fabric). In order to use these functions, the fabric must contain the preceding instances. The header
file /i ncl ude/ Achr oni x_DDR4. h specifies the register control block addresses for the various DDR4 control
blocks. These addresses should be modified to match the fabric design.

Achronix_GDDRG6.cpp

The GDDR®6 functions read the status of the Achronix Device Manager (ADM) that is configured to perform
GDDRE6 training. In order to use these functions, the fabric must contain an instance of the ADM configured to
train at least one GDDRG6 controller. The header file / i ncl ude/ Achr oni x_GDDR6. h specifies the register
control block addresses for the ADM. These addresses should be modified to match the fabric design.

Achronix_PCl.cpp

The PCle functions require at least one PCle core to be enabled and configured within the device. Normally (on a
VectorPath card) this is PCI E_1 which connects to the primarily PCle connector. In addition, the functions
require one BAR that maps to the PCle core registers. If DMA transfers are required to GDDR6 or DDR4, the
appropriate training blocks for these interfaces must be instantiated within the fabric and suitable control must be
available to ensure that the interfaces are correctly initialized and ready for read and write operations before any
DMA or PCle BAR access is made. See the functions above for control and monitoring of these external
memories.

If DMA descriptors are required to be stored in a BRAM attached to a NAP, for internal fast storage, an
axi _bram responder instance is required in the fabric.

www.achronix.com 24

http://www.achronix.com

Software Development Kit User Guide (UG107)

DMA_example.cpp

The DMA example code has the same requirements as Achr oni x_PCl . cpp in that a single core must be
present and configured, and that any external memory interfaces have been correctly initialized before use.

www.achronix.com

25

http://www.achronix.com

Software Development Kit User Guide (UG107)

Chapter - 5: SDK Functions

The SDK library includes the following functions. Function prototypes are defined in <achr oni x_SDK>/ i ncl ude
/ Achroni x_PCl . h.

Quick Reference Table

A list of all current functions, with their arguments is shown below.

/] Ceneral utility functions

uint64_t util_cal c_nap_absol ute_addr (PartName part, int col, int row);

voi d util _wait_m croseconds (int num.m croseconds);

voi d util_wait_seconds (i nt num seconds);

/1 PCle CSR regi ster access functions

int pci _reg_wite_of fset (Bwpci Devi ce *device, Bwpci Ms csr_bar, uint32_t addr_offset,
uint32_t val ue);

uint32_t pci_reg_read_of fset (Bwpci Devi ce *devi ce, Bwpci Ms csr_bar, uint32_t addr_of fset
)

int pci _reg_set_bits_of fset (Bwpci Devi ce *device, Bwpci Ms csr_bar, uint32_t addr_offset,
int start_bit, int stop_bit);

int pci _reg_cl ear_bits_offset (Bwpci Devi ce *device, Bwpci Ms csr_bar, uint32_t addr_offset,
int start_bit, int stop_bit);

/'l PCl specific functions

voi d pci _read_reg_ctrl _version (Bwpci Devi ce *device, BwpciMs reg_ctrl _bar);

bool pci _link_is_up (Bwpci Devi ce *device);

/1 DMA specific functions

voi d dme_bui | d_dat a_descriptor (DMADataDescri ptor *desc, uint32_t size, uint64_t sar,
uint64_t dar);

voi d dme_bui I d_I i nk_descriptor (DWMALi nkDescriptor *desc, uint64_t ptr_phys_addr);

int dme_init (Bwpci Devi ce *devi ce, Bwpci Ms csr_bar, PartNane part,

PCl eCor eNum core) ;

voi d dma_config (Bwpci Devi ce *devi ce, DmaCommand_t &p_dme_i nst);

voi d dme_start (Bwpci Devi ce *devi ce, DnmaCommand_t &p_dma_inst);

voi d drme_hal t (Bwpci Devi ce *devi ce, DmaCommand_t &p_dme_i nst);

DmaSt at us dma_get _st at us (Bwpci Devi ce *devi ce, DmaCommrand_t &p_dme_i nst);

DmaSt at us dma_wai t (Bwpci Devi ce *devi ce, DmaConmmand_t &conmand, int

timeout _i n_seconds);

/1 ATU specific functions

voi d at u_get _cont ext (Bwpci Devi ce *device, Bwpci Ms csr_bar, PCleCoreNum

pci e_core, ATUContext &context);

voi d atu_find_regions (Bwpci Devi ce *devi ce, Bwpci Ms csr_bar, PCl eCoreNum
pcie_core, int bar_num std::vector<ATURegi on> &r egi ons);

voi d at u_get _region (Bwpci Devi ce *device, Bwpci Ms csr_bar, PCl eCoreNum
pcie_core, int region_num ATURegi on ®ion);

voi d atu_put _regi on (Bwpci Devi ce *devi ce, Bwpci Ms csr_bar, PCl eCoreNum

pci e_core, ATURegi on ®ion);

www.achronix.com

26

http://www.achronix.com

Software Development Kit User Guide (UG107)

util_calc_nap_absolute_addr()

Description

Calculate the absolute 42-bit address of a NAP, placed in the NoC, given the row and column coordinates. This

function is primarily intended for use when a DMA transfer is required between a NAP and a host using absolute

addresses. The source code for this function is available in / sr ¢/ Achr oni x_PCl . cpp.

Call

ui nt 64 _t

util _cal c_nap_absol ute_addr (PartNane part,

Arguments

int col,

Type

Argument

Description

Part nane

part

Device partname. Supported values are AC7t 1500ESO.

int

col

Column address. Column values start from 1 (not 0).

int

row

Row address. Row values start from 1 (not 0).

Return Value
The function returns the absolute NoC 42-bit address of the NAP.

www.achronix.com

27

http://www.achronix.com

Software Development Kit User Guide (UG107)

util_wait_microseconds()

Description

Non-blocking function to sleep for a defined number of microseconds, (uS). The source code for this function is
available in / sr ¢/ Achr oni x_PCI . cpp.

Call

void util _wait_microseconds (int numnm croseconds);

Arguments

Type Argument Description

i nt num_mi cr oseconds Number of microseconds to sleep.

Return Value

The function has no return value.

www.achronix.com

http://www.achronix.com

Software Development Kit User Guide (UG107)

util_wait_seconds()

Description

Non-blocking function to sleep for a defined number of seconds. The source code for this function is available in

/ src/ Achroni x_PCl . cpp.

Call

void util_wait_seconds (int num seconds);

Arguments
Type Argument Description
i nt num seconds Number of seconds to sleep.

Return Value
The function returns the absolute NoC 42-bit address of the NAP.

www.achronix.com

29

http://www.achronix.com

Software Development Kit User Guide (UG107)

pci_reg_write_offset()

Description
Write to a register in the device, using a 32-bit offset to the required PCle BAR region
Call
int pci_reg_wite_offset (BwpciDevice *device, Bwpci Ms csr_bar, uint32_t
addr _offset, uint32_t value);
Arguments
Type Argument Description
Bwpci Devi ce* | devi ce Pointer to the PCle device.

PCle BAR that references the register location. This must be the BAR set to the

Bupci Vs csr_bar Configuration Status Registers in the PCle DBI space.
ui nt32_t a?dr —offset 32-bit offset to the BAR base address.
ui nt 32_t val ue Value to be written to the register.

Table Notes

1. Currently there is a restriction with the PCle BAR size to 64MB. Therefore, addr _of f set is limited to a
maximum value of Ox03ff _ffff.

Return Value

The function returns a positive value indicating the number of 32-bit writes (1) if it completed successfully.
Returns a negative value if unsuccessful.

www.achronix.com

30

http://www.achronix.com

Software Development Kit User Guide (UG107)

pci_reg_read_offset()

Description
Write to a register in the device, using a 32-bit offset to the required PCle BAR region.

Call

uint32_t pci_reg_read_of fset (PClDevice &device, Bwpci Ms csr_bar, uint32_t
addr _of fset);

Arguments
Type Argument Description
Bwpci Devi ce* | devi ce Pointer to the PCle device.
Bupci Ms csr bar PCle BAR that references the register location. This must be the BAR set to the
- Configuration Status Registers in the PCle DBI space.
ui nt32_t addr _of f set | 32-bit offset to the BAR base address.
Table Notes
1. Currently there is a restriction with the PCle BAR size to 64MB. Therefore, addr _of f set is limited to a
maximum value of Ox03ff _ffff.

Return Value

The function returns the 32-bit value of the register.

www.achronix.com

31

http://www.achronix.com

Software Development Kit User Guide (UG107)

pci_reg_set_bits_offset()

Description

Set a range of bits in a register in the device to 1' b1, using a 32-bit offset to the required PCle BAR region. The
function performs a read-modify-write sequence on the register.

Call

int pci_reg set_bits_offset (BwpciDevice *device, Bwpci Ms csr_bar, uint32_t
addr_offset, int start_bit, int stop_bit);

Arguments
Type Argument Description
BWoci Devi ce* | devi ce Pointer to the PCle device.
Bwpci M csr_bar PCle BAR that references the register location. This must be the BAR set to the

Configuration Status Registers in the PCle DBI space.

addr _of f set

uint 32_t (1) 32-bit offset to the BAR base address.

i nt start_bit Highest bit to be set. Must be in the range 0-31. Must be >= st op_bi t.

i nt stop_bit Lowest bit to be set. Must be in the range 0-31. Must be <= st op_bi t.
Table Notes

1. Currently there is a restriction with the PCle BAR size to 64MB. Therefore, addr _of f set is limited to a
maximum value of Ox03ff ffff.

Return Value

The function returns a positive value indicating the number of 32-bit writes (1) if it completed successfully.
Returns a negative value if unsuccessful.

www.achronix.com 32

http://www.achronix.com

Software Development Kit User Guide (UG107)

pci_reg_clear_bits_offset()

Description

Clear a range of bits in a register in the device to 1' b0, using a 32-bit offset to the required PCle BAR region.
The function performs a read-modify-write sequence on the register.

Call

int pci_reg clear_bits_offset (BwpciDevice *device, Bwpci Ms csr_bar, uint32_t
addr_offset, int start_bit, int stop_bit);

Arguments
Type Argument Description
Bwpci Devi ce* | devi ce Pointer to the PCle device.
Bwpci M csr_bar PCle BAR that references the register location. This must be the BAR set to the

Configuration Status Registers in the PCle DBI space.

addr _of f set

uint 32_t (1) 32-bit offset to the BAR base address.

i nt start_bit Highest bit to be cleared. Must be in the range 0-31. Must be >= st op_bi t.

i nt stop_bit Lowest bit to be cleared. Must be in the range 0-31. Must be <= st op_bi t.
Table Notes

1. Currently there is a restriction with the PCle BAR size to 64MB. Therefore, addr _of f set is limited to a
maximum value of Ox03ff ffff.

Return Value

The function returns a positive value indicating the number of 32-bit writes (1) if it completed successfully.
Returns a negative value if unsuccessful.

www.achronix.com

33

http://www.achronix.com

Software Development Kit User Guide (UG107)

pci_read_reg_ctrl_version()

Description

Utility function to display the values of the version registers within a register control block.

Call

void pci _read _reg ctrl _version (Bwpci Device *device, Bwpci Ms reg_ctrl _bar);

Arguments

Type

Argument

Description

Bwpci Devi ce* devi ce

Pointer to the PCle device.

Bwpci Ms reg_ctrl _bar

PCle BAR that references the register control block.

Return Value

The function returns 0.

www.achronix.com

34

http://www.achronix.com

Software Development Kit User Guide (UG107)

pci_link_is_up()

Description

Utility function to indicate if the PCle device is correctly enumerated and available for access. The function
confirms that the Vendor ID register returns the expected value.

Call

bool pci _link_ is up (Bwpci Device *device);

Arguments
Type Argument Description
Bwpci Devi ce* devi ce Pointer to the PCle device.

Return Value

The function returns true if the PCle core responds correctly, or false if an error is detected.

www.achronix.com

http://www.achronix.com

Software Development Kit User Guide (UG107)

dma_build_data_descriptor()

Description

Populates a DMA data descriptor in a DMADescr i pt or Li st . Used for linked-list-mode DMA operation. The
source code for this function is available in <achr oni x_SDK>/ sr ¢/ Achr oni x_PCl . cpp.

Call

void dma_buil d_data_descriptor (DVADataDescriptor *desc, uint32 t size, uint64_t

sar, uint64_t dar);

Arguments
Type Argument Description
DMADat aDescr i pt or * (1) (2) desc Pointer to the descriptor.
uint 32_t si ze Size of the transfer in bytes.
ui nt 64_t sar Source address (can be either host or device).
ui nt 64_t dar Destination address (can be either host or device).
Table Notes

1. The descriptor must have already been defined, normally as part of a DMADescriptorList.

2. The direction of the DMA transfer is not defined in the descriptor. The direction is set by dma_confi g() .
It is therefore important that sar and dar are set correctly in every descriptor with respect to host and
device addresses to be consistent with the subsequent direction set by dma_confi g() .

Return Value

The function does not have a return value.

www.achronix.com

36

http://www.achronix.com

Software Development Kit User Guide (UG107)

dma_build_link_descriptor()

Description

Populates the DMA link descriptor that terminates each DMADescr i pt or Li st . Used for linked-list DMA
operation. The DVALiI nkDescr i pt or that terminates each DMADescr i pt or Li st is filled in by the
DMADescr i pt or Li st constructor to point back to the first descriptor in list list. This function is only needed
when building multiple linked sets of DMADescr i pt or Li st s. The source code for this function is available in
/ src/ Achroni x_PCl . cpp.

Call

void dma_build |ink descriptor (DVALI nkDescriptor *desc, uint64_t ptr_phys_addr);

Arguments

Type Argument Description

DVALI nkDescri pt or* . _
M) desc Pointer to the descriptor.

Start address of the next block of link-list descriptors.

If the start of the current block of descriptors is used, this address acts
ui nt 64_t ptr _phys_addr | as an end-of-list for the current linked list. Causes DMA to complete.
Defined as device absolute physical address within the 42-bit NoC
memory space.

Table Notes
1. The descriptor must have already been defined, normally as part of a DMADescr i pt or Li st .

2. The direction of the DMA transfer is not defined in the descriptor. The direction is set by dna_confi g() .
It is therefore important that sar and dar are set correctly in every descriptor with respect to host and
device addresses to be consistent with the subsequent direction set by dma_confi g() .

Return Value

The function does not have a return value.

www.achronix.com

37

http://www.achronix.com

Software Development Kit User Guide (UG107)

dma_init()

Description

Initializes the PCle DMA engine. Sets the arbitration weights for each of the four DMA channels to the same
value. Must be called at least once before any DMA transactions are initiated.

Warning

Normally, this function should only be called once during program execution. Calling this during DMA
operation could cause the core to enter an unknown state.

Call

int dma_init (BwpciDevice *device, Bwpci Ms csr_bar, PartNane part, PCleCoreNum
core);

Arguments
Type Argument Description
Bwpci Devi ce* | device Pointer to the PCle device.
Bwpci Ms csr_bar BAR that references the Configuration Status Registers in the PCle DBI space.
Par t Nane part Device partname. Currently the only supported option is AC7t 1500ESO.
PCl eCor eNum core Selects the appropriate PCle core. Options are PCl E_0 and PCI E_1.

Return Value

The function returns 0.

www.achronix.com

38

http://www.achronix.com

Software Development Kit User Guide (UG107)

dma_config()

Description
Configure the PCle DMA for a transfer. The DmaConmraind structure passed to this function contains the source
and destination addresses, the size of the transfer and the direction. Alternately, if link-lists are being used, the
structure includes the address of the start of the linked list in the device 42-bit NoC address space.

Note

This function does not start a DMA transfer.

Call
voi d dma_config (Bwpci Device *devi ce, DnaCommand &dma_comand) ;

Arguments
Type Argument Description
Bwpci Devi ce* devi ce Pointer to the PCle device.

DmaComuand& dma_comrand Reference to a DMA command struct.

Return Value

The function does not have a return value.

www.achronix.com

http://www.achronix.com

Software Development Kit User Guide (UG107)

dma_start()

Description

Starts a DMA transfer previously configured with dma_confi g() .

Call

void dma_start (Bwpci Devi ce *devi ce, DmaCommand &dma_commrand) ;

Arguments
Type Argument Description
Bwpci Devi ce* | devi ce Pointer to the PCle device.
DraCommand&. | dma_command Refgrence to the DMA command strluct. This command struct must have been
previously processed by dma_confi g() .

Return Value

The function does not have a return value.

www.achronix.com

40

http://www.achronix.com

Software Development Kit User Guide (UG107)

dma_halt()

Description

Halts the currently running PCle DMA transfers defined by the DMA command instance. Use this only if the DMA
transaction has timed out and needs to be aborted.

Call
void dma_halt (Bwpci Device *devi ce, DmaConmand &dna_conmand) ;
Arguments
Type Argument Description
Bwpci Devi ce* devi ce Pointer to the PCle device.

DmaConmmand&

dma_comand

Reference to a DMA command.

Return Value

The function does not have a return value.

www.achronix.com

41

http://www.achronix.com

Software Development Kit User Guide (UG107)

dma_get_status()

Description
Get the status of the currently running PCle DMA defined by the DMA command structure.
Call
DmaSt at us dne_get _status (Bwpci Devi ce *devi ce, DmaConmand &dnme_conmmand) ;
Arguments
Type Argument Description
Bwpci Devi ce* devi ce Pointer to the PCle device.

DmaConmmand&

dma_comand

Reference to a DMA command struct.

Return Value

The function returns one of the values for DMA status defined in the DmaStatus enum.

www.achronix.com

42

http://www.achronix.com

Software Development Kit User Guide (UG107)

dma_wait()

Description

Begins polling the status of a currently running DMA transfer, initiatied with dma_st art (), at a set interval, and
return to the caller when the transfer is complete.

Note

This function is multi-threaded and non-blocking.

Call

DmaSt at us drme_wait (Bwpci Devi ce *devi ce, DmaConmand &dnma_conmand, int
ti meout _i n_seconds);

Arguments
Type Argument Description
Bwpci Devi ce* | devi ce Pointer to the PCle device.
DnaConmand& | command Reference to a DMA command struct.

Maximum time to wait for DMA to complete. If t i meout _i n_seconds
i nt timeout _i n_seconds | is exceeded, the function returns to the calling function with an error
return value.

Return Value

The function returns one of the predefined values for DmaStatus as defined in Acxronix_PCI.h. If the status is not
acxsdk: : DMA_COVPLETE, then the transaction did not complete successfully. Call dma_hal t () to force the
currently running transaction to end correctly.

www.achronix.com 43

http://www.achronix.com

Software Development Kit User Guide (UG107)

atu_get_context()

Description

Returns the complete context (configuration register values) of the Address Translation Unit. Results are
returned in the ATUCont ext class, which is a vector of 100 ATURegi on classes. This function can be used to
view the current ATU configuration, and then modify it with the at u_put _regi on() function.

Call

atu_get context (Bwpci Device *device, Bwpci Ms csr_bar, PCleCoreNum core,
ATUCont ext &cont ext);

Arguments
Type Argument Description
Bwpci Devi ce* | devi ce Pointer to the PCle device.
Bwpci Ms csr_bar BAR that references the Configuration Status Registers in the PCle DBI space.
PCl eCoreNum | core Selects the appropriate PCle core. Options are PCl E_0 and PCI E_1.
ATUCont ext & | cont ext A reference t(? an Al\TUCon.t ext class to be filled in with the current values of all of
the ATU configuration registers.

Return Value

The function does not have a return value.

www.achronix.com

44

http://www.achronix.com

Software Development Kit User Guide (UG107)

atu_find_regions()

Description

Finds all regions that cover a given BAR and returns their context in a vector of ATURegi on classes.

Call

atu_find_region (Bwpci Device *device, Bwpci Ms csr_bar, PCleCoreNum core, int
bar _num std::vector<ATURegi on> ®i ons);

Arguments
Type Argument Description
Bwpci Devi ce* devi ce Pointer to the PCle device.
. BAR that references the Configuration Status Registers in the PCle DBI
Bwpci Ms csr_bar
space.
PCl eCor eNum core Selects the appropriate PCle core. Options are PCl E_0 and PCI E_1.
int bar_num | Integer index (0-5) of the BAR number to be found.
std:: r egi ons A reference to a vector of all ATURegi ons that cover BAR number
vect or <ATURegi on>& g bar _num

Return Value

The function does not have a return value.

www.achronix.com

45

http://www.achronix.com

Software Development Kit User Guide (UG107)

atu_get_region()

Description

Gets a given ATU region, and returns its context in an ATURegi on class.

Call

atu_get _region (BwpciDevice *device, Bwpci Ms csr_bar, PCleCoreNum pcie_core, int
regi on_num ATURegi on ®ion);

Arguments
Type Argument Description
Bwpci Devi ce* | devi ce Pointer to the PCle device.
Bwpci Ms csr_bar BAR that references the Configuration Status Registers in the PCle DBI space.

PCl eCor eNum | pci e_core | Selects the appropriate PCle core. Options are PCI E_0 and PClI E_1.

i nt regi on_num| The index (0-99) of the region to be returned.

A reference to an ATURegi on class to be filled in with the context of the region

ATURegi on& | region specified by r egi on_num

Return Value

The function does not have a return value.

www.achronix.com

46

http://www.achronix.com

Software Development Kit User Guide (UG107)

atu_put_region()

Description

Modifies the ATU configuration registers of a given region using the context specified in a given ATURegi on
class.

Call

atu_put _region (Bwpci Device *device, Bwpci Ms csr_bar, PCleCoreNum pci e_core,
ATURegi on ®i on);;

Arguments
Type Argument Description
Bwpci Devi ce* | devi ce Pointer to the PCle device.
Bwpci Ms csr_bar BAR that references the Configuration Status Registers in the PCle DBI space.

PCl eCor eNum | r egi on_num| The index (0-99) of the region to be configured.

A reference to an ATURegi on class. The context of the class is copied into the

ATURegi on& regron configuration registers of the region specified by r egi on_num

Return Value

The function does not have a return value.

www.achronix.com

47

http://www.achronix.com

Software Development Kit User Guide (UG107)

Chapter - 6: SDK Structures

DmaCommand_t

Description

The DmaComrand_t structure is used to specify the parameters of a DMA transaction when calling
dma_config() and dma_st art (). The structure can be used in two modes: normal and linked-list. In normal
mode, all of the parameters are directly specified in the DraConmand, hence the devi ce_addr ess,

host address, and si ze_i n_byt es fields are populated and the descri ptor _|ist_address is set to
NULL. In linked-list mode those three parameters are read from the descriptors, so devi ce_addr ess,

host address, andsi ze i n_bytes are set to NULL and the descrptor _|i st _address elementis
populated. See the DMA example source code for more information.

Definition
struct DmaCommand_t {
Bwpci Ms csr_bar;
PCl eCor eNum pcie_core;
Dmabi r drme_di rection;
int dme_channel ;
ui nt 64_t devi ce_address;
ui nt 64_t host _addr ess;
ui nt 64_t si ze_i n_bytes;
ui nt 64_t descriptor_list_address;
bool verbosity;
b
Fields
Type Parameter Description
. A handle to a BAR register mapped to the base of CSR space in
Bupci Ms csr_bar the 42-bit NoC address space.
An enum that specifies which PCle core is being programmed.
PCl eCor eNum| pci e_core Normally, this is PCl E_1 which is the core connected to the host
PC.
. . . An enum describing the transfer direction. Either
Drabi r dma_direction HOST_TO DEVI CE (a read) or DEVI CE_TO_HOST (a write).
i nt dma channel Specifies which of the DMA channels to program. The Speedster7t
- FPGA has four independent full-duplex channels (0-3).
. . The 42-bit base address for the transfer on the device side (normal
ui nt 64_t devi ce_address
mode only).

www.achronix.com 48

http://www.achronix.com

Software Development Kit User Guide (UG107)

Type Parameter Description

The 64-bit address for the transfer on the host side. This must be

ui nt 64_t host _addr ess the physical (not virtual) address of a DMA buffer (normal mode
only).

ui nt 64._t size_in_bytes The size of the transfer specified as the number of bytes (normal
mode only).

ui nt 64._t descriptor_|ist_address 10'2;;)42—b|t base address of a DMA data descriptor (linked-list mode

. Setting this flag to a non-zero value increases the amount of

bool verbosity . .

verbose output debug information.

www.achronix.com 49

http://www.achronix.com

Software Development Kit User Guide (UG107)

DMADataDescriptor

Description

This struct consists of six 32-bit parameters specifying the meta-parameters for a DMA transaction. The
parameters can be allocated in blocks of contiguous descriptors using the DMADescr i pt or Li st class
described below.

Definition

struct DMADat aDescriptor {
uint32_t control;
uint32_t si ze;
uint32_t sar_| ow
uint32_t sar_high;
ui nt 32_t dar_I ow,
ui nt 32_t dar _high;

Fields

Type Parameter Description
uint32_t |control A 32-bit control register. Only bits [4:0] are currently in use. See the file Achr oni x_PCl .
cpp for usage.
uint32_t |size The size of the transaction specified as the number of bytes.
uint32_t [sar_l ow The lower 32 bits of the DMA source address.
ui nt 32_t [sar_hi gh | The upper 32 bits of the DMA source address.
uint32_t |[dar_I ow The lower 32 bits of the DMA destination address.
uint 32_t | dar _hi gh | The upper 32 bits of the DMA destination address.

www.achronix.com

50

http://www.achronix.com

Software Development Kit User Guide (UG107)

DMALinkDescriptor

Description

This struct consists of six 32-bit parameters used in DMA linked-list mode. When allocating a block of descriptors
using a DMADescr i pt or Li st class (described below), the last descriptor in a contiguous block must be a link
descriptor. The pt r field in a link descriptor points to the first descriptor in a neighboring descriptor list. The last
link descriptor list in a linked-list should point back to the beginning of the first data descriptor in the list. The
DMALI nkDescri pt or struct is the same size as the DVADat aDescr i pt or , however three of the 32-bit fields

are unused.

Definition

struct DMALi nkDescriptor {

ui nt 32_t
ui nt 32_t
ui nt 32_t
ui nt 32_t
ui nt 32_t
ui nt 32_t

Fields

control;
unused_0;
ptr_| ow,
ptr_hi gh;
unused_1;
unused_2;

Type Parameter

Description

uint32_t [control

A 32-bit control register. Only bits [2:0] are currently in use. See the file Achr oni x_PCl .
cpp for usage.

ui nt 32_t [unused_0O

This field is not currently in use.

uint32 t |ptr_Ilow

The lower 32 bits of the next DMADat aDescr i pt or in a linked list chain.

uint32_t [ptr_high

The upper 32 bits of the next DMADat aDescr i pt or in a linked list chain.

uint32_t [unused_1

This field is not currently in use.

ui nt 32_t [unused_2

This field is not currently in use.

www.achronix.com 51

http://www.achronix.com

Software Development Kit User Guide (UG107)

Chapter - 7: SDK Classes

The SDK library includes the following C++ classes. Classes are defined in <achr oni x_SDK>/ i ncl ude
/ Achroni x_PCl . h.

PClDevice

Description

This is a convenience class that is a C++ wrapper around the Bwpci Devi ce and associated API from the
BittWare toolkit. When called, the constructor attempts to open the PCle device with the specified devi ce i d.
When the destructor is called, the device is closed before the class is deallocated. The function

get pci _status() is used to query whether the device was opened successfully. The devi ce_i d can be
obtained using the bw_card_| i st command.

Definition

class PCl Devi ce {
publi c:
enum Devi ceSt at us {
STATUS_OK,
STATUS_ERRCR
H
publi c:
PCI Devi ce(int device_id);
~PCl Devi ce();
Devi ceStatus get _pci _status() { return _pci_status; }
int get_device_id() { return _device_id; }
Bwpci Devi ce *get _device() { return _device; }
void print();
/'l PCl Reads
int read_uint8(Bwpci Ms nenobry_space, uint64_t offset, uint8_t *buffer, int count);
int read_uint16(Bwpci Ms nenory_space, uint64_t offset, uintl6_t *buffer, int count);
int read_uint32(Bwpci Ms nenory_space, uint64_t offset, uint32_t *buffer, int count);
int read_uint64(Bwpci Ms nenory_space, uint64_t offset, uint64_t *buffer, int count);
/1 PCl Wites
int wite_uint8(Bwpci Ms nenory_space, uint64_t offset, uint8_t *buffer, int count);
int wite_uintl1l6(Bwpci Ms nenory_space, uint64_t offset, uintl6_t *buffer, int count);
int wite_uint32(Bwpci Ms nenory_space, uint64_t offset, uint32_t *buffer, int count);
int wite_uint64(Bwpci Ms nenory_space, uint64_t offset, uint64_t *buffer, int count);

b

Member Functions

Return Type Function Description

Constructor. Opens the PCI device specified by the devi ce_i d and retains a

void PGl Devi ce handle to the device that can be obtained with the get _devi ce() function.

www.achronix.com 52

http://www.achronix.com

Software Development Kit User Guide (UG107)

Return Type Function Description
voi d ~PCl Devi ce Descructor. Closes the PCI device if it is open.
Devi ceSt at us | get _pci _st at us Returns an enum value indicating whether the device was opened
successfully or not.
int get _devi ce_i d | Returns the devi ce_i d passed into the constructor.
Bwoci Devi ce | get _devi ce Returns a handle to the underlying BittWare Bwpci Devi ce object if opened
successfully.
voi d rint Displays metadata about the device on the console, including the device and
P vendor ID strings and the BAR configurations.
i nt read_ui nt8 A wrapper around the bwpci _ns_r ead8s function callable through the class.
i nt read_ui nt 16 A wrapper around the bwpci _ns_r ead16s function callable through the
class.
i nt read uint32 A wrapper around the bwpci _ns_r ead32s function callable through the
- class.
int read uint 64 A wrapper around the bwpci _nms_r ead64s function callable through the
- class.
i nt write uints A wrapper around the bwpci _ns_wri t e8s function callable through the
class.
i nt Wite uintl6 A wrapper around the bwpci _ns_wr it e16s function callable through the
- class.
i nt Wite uint32 A wrapper around the bwpci _ns_wri t 32s function callable through the
- class.
i nt Wwrite_uint64 ,(’-:\la\/\;rsapper around the bwpci _nms_wri t 64s function callable through the

www.achronix.com

53

http://www.achronix.com

Software Development Kit User Guide (UG107)

DMAHostBuffer

Description

A convenience class consisting of a C++ wrapper around the bwpci _al | oc_nen{) function in the BittWare
SDK. When called, the constructor allocates a DMA buffer of the given size. When the destructor is called, the
buffer is deallocated. The function get _st at us() is used to query whether the buffer was allocated
successfully. The functions get _phys_addr () and get _virt _addr () are used to get the physical and virtual
addresses (respectively) of the buffer. Functions are provided to clear the buffer and to fill it with various data

patterns.

Definition

cl ass DVAHost Buffer {

publi c:

enum Buf f er Status {
STATUS_CX,
STATUS ERROR

H
public:

DMAHost Buf f er (PCl Devi ce *devi ce

~DVAHost Buf fer () ;
Buf fer Status get_status() { return _status; }

uint64_t get_size_in_bytes() { return _size_in_bytes; }
uint64_t get_phys_addr() { return (uint64_t)_phys_addr; }
uint64_t get_virt_addr() { return (uint64_t)_virt_addr; }
void clear();

void fill_randon();
void fill_deadbeef();

bool conpar e(DVAHost Buf f er &

Member Functions

uint64_t size_in_bytes);

int verbosity);

Return Type

Function

Description

voi d

DMAHost Buf f er

Constructor. Allocates a DMA buffer of the given size.

voi d

~DVAHost Buf f er

Destructor. Deallocates the DMA buffer.

Buf f er St at us

get _status

Returns an enum value indicating whether the buffer was allocated
successfully or not.

ui nt 64_t get _si ze_i n_byt es | Currently, buffers larger than 4MB are not supported.
Returns the physical address of the buffer in the host 64-bit memory
ui nt 64._t get _phys_addr space. Use this value when passing the buffer address to the

dma_i ni t () function through the DraCommand struct host _addr ess
field.

www.achronix.com

54

http://www.achronix.com

Software Development Kit User Guide (UG107)

Return Type Function Description

Returns the virtual address of the buffer in the 64-bit address space of the

ui nt 64 _t get _virt_addr calling process. Use this address to access the buffer from within the
application source code.

voi d cl ear Clears the contents of the buffer to all zero values.

voi d fill _random Fills the buffer with random values for testing.

voi d fill_deadbeef Fills the buffer with a predictable pattern for testing (OXx DEADBEEF + i).
Compares this buffer with another buffer of the same size. Verbosity=1

bool conpare displays differences on the screen. Verbosity=2 displays both buffers side-
by-side.

www.achronix.com 55

http://www.achronix.com

Software Development Kit User Guide (UG107)

DMADescriptorList

Description

This class defines descriptor lists for DMA transactions when using linked-list mode. A descriptor list is a group of
descriptors that are allocated in the same block of adjacent memory locations. Each list consists of (N+1)
descriptors, as shown in the figure below. The first N descriptors are DMADat aDescr i pt or s (defined above),
and the last descriptor is a DMALI nkDescr i pt or (also defined above). The link descriptor points to the base
address of another DMADescr i pt or list, or back to the start of the first DMADescr i pt or Li st in the chain if it is
the last list in the chain.

When operating in linked-list mode, each data descriptor contains the parameter settings for a single DMA
transaction from one block of host memory to device memory, or vice versa. The DMA engine steps through the
entire list, using the parameters in each descriptor to initiate DMA transactions one after another, following link
descriptors as necessary, until the entire list is consumed. Using this method, a large number of sequentual
transactions can be performed with only a single call to dma_i ni t () and dna_st art () . When the

DMADescr i pt or Li st constructor is called, a block of N data descriptors and one link descriptor is allocated in
host memory and initialized to all-zeros. Each descriptor can be accessed in turn using the square-bracket index
operator "[]", and a call to dma_bui | d_dat a_descri pt or () (described above) populates the descriptor with
data. The link descriptor is initialized to refer back to the first data descriptor in the same list, however the
dma_bui Il d_Iink_descri ptor() function can be used to build a chain of more than one list element.

The DMA engine consumes descriptors from device memory, not from the host. Therefore, the descriptors must
be transferred from the host to the device before DMA can begin. They can be stored anywhere in device
memory, (GDDR6, DDR4, or a BRAM). The descriptors can be written by either DMA or a sequence of BAR
writes. The DMADescr i pt or Li st provides get _phys_addr () and get _vi rt_addr () functions, similar to
the DMAHost Buf f er class, to make DMA transfers of the descriptors straightforward.

www.achronix.com 56

http://www.achronix.com

Software Development Kit User Guide (UG107)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

- Transfer Size
85
2 E SAR Low Source
2 ; Data Buffer
EY SAR High
WS

= DAR Low Destination

DAR High Data Buffer
>
RIE|LIE I;L; CcB

= Transfer Size
¥o
25 SAR Low Source
gm* SAR Hi Data Buffer
Sa igh
ug

= DAR Low Destination

DAR High Data Buffer
(LLPros| os

e
Z5
#* o LL Element Pointer Low
€ o< .
gu LL Element Pointer High " to new list
o C
nE

113824702-02.2022.11.10

Figure 4: DMADescriptorList Structure in Memory

www.achronix.com 57

http://www.achronix.com

Software Development Kit User Guide (UG107)

Definition

cl ass DMADescri ptorlList {

public:

enum Descri ptor Status {

STATUS_CX,
STATUS_ERROR
b
publ i c:

DMADescr i pt or Li st (PCl Devi ce *devi ce,
~DMADescri ptorLi st();
DescriptorStatus get_status() { return _status; }

uint64_t get_size_in_bytes() { return _size_in_bytes; }
uint64_t get_phys_addr() { return (uint64_t)_phys_addr; }
uint64_t get_virt_addr() { return (uint64_t)_virt_addr; }
uint64_t get_device_phys_addr() { return _device_phys_addr; }
DMADat aDescri ptor *operator[](int);

voi d print(const

char *header);

Member Functions

int num descriptors,

ui nt 64_t devi ce_phys_addr);

Return Type

Function

Description

voi d

DMADescr i pt or Li st

Constructor. Allocates a block of num descri pt ors,

DMADat aDescri pt or s and one DMALi nkDescri pt or. The
data descriptor is initialized to all zero values, and the link
descriptor is initialized to point back to the base address of the
list — this is a stopping criteria for the DMA engine. The

devi ce_phys_addr argument specifies the target address of
the descriptor list in host memory.

voi d

~DMADescr i pt or Li st

Destructor. Deallocates the data and link descriptors.

Descri pt or St at us

get _status

Returns an enum value indicating whether the descriptor list
was allocated successfully or not.

ui nt 64_t

get _size_in_bytes

Returns the size of the descriptor list in bytes. Use this value
when passing the list size to the dma_i ni t () function through
the DnraConmmand struct.

ui nt 64 _t

get _phys_addr

Returns the physical address of the descriptor list in the host
64-bit memory space. Use this value when passing the list
address to the drme_i ni t () function through the DmaCommrand
struct host_address field.

ui nt 64_t

get _virt_addr

Returns the virtual address of the descriptor list in the 64-bit
address space of the calling process. Use this address to
access the descriptors in the list from within your C++
application source code.

www.achronix.com 58

http://www.achronix.com

Software Development Kit User Guide (UG107)

Return Type Function Description
Returns the devi ce_phys_addr argument passed into the
constructor. It specifies the 42-bit NoC address of the list when
ui nt 64_t get _devi ce_phys_addr | transferred from host memory into device memory. Use this

value when passing the list address to the dima_i ni t ()
function through the DnaConmand struct device_address field.

DMADat aDescr i pt or

operator|[]

This operator allows access to each (num descriptors + 1
) of the list descriptors (num_descri pt or s, data descriptors,
and one link descriptor) using array semantics. Use this
operator when calling the dna_bui | d_dat a_descri ptor ()
and dma_bui I d_I i nk_descri pt or () functions.

voi d

print

displays the contents of the descriptor list on the console for
debugging purposes.

www.achronix.com 59

http://www.achronix.com

Software Development Kit User Guide (UG107)

ATUContext

Description

Contains the context (configuration register settings) of all of the ATU registers. The ATU consists of 100
different regions, each with its own set of six configuration registers. The context consists of a vector of 100
ATURegi on classes (described below).

Definition

cl ass ATUCont ext {
public:
void print();
public:
ATURegi on _regi on[100];
b

Member Functions

G Function Description
Type
. . Displays the context of each enabled region on the console for visualization and debugging.
void print . . .
Regions which are not enabled are skipped.

www.achronix.com

http://www.achronix.com

Software Development Kit User Guide (UG107)

ATURegion

Description

Contains the context (configuration register settings) of one ATU region. The context consists of nine individual
32-bit registers, each of which can be read with a set of get functions, or written with a set of set functions. The
control ("_ct rl _") registers consist of a large number of individual bitfields, each of which has its own (boolean
or integer) get and set functions.

Definition

cl ass ATURegi on {
public:
ATURegi on();
ATURegi on& oper at or =(const ATURegi on& ot her);
void print();
/1 bitfield getters
int get_region_num();
int get_function_nun();
bool get_enabl ed();
ATU_MODE get _node();
bool get_invert_node();
bool get_cfg_shift_node();
bool get_fuzzy type_match_code();
bool get_vfbar_match_nmpbde_en();
int get_response_code();
bool get_single_addr_loc_trans_en();
bool get_ph_match_en();
bool get_nsg_code_match_en();
bool get_vf_match_en();
bool get_func_num match_en();
bool get_at_match_en();
bool get_th_match_en();
bool get_addr_match_en();
bool get_td_match_en();
bool get_tc_match_en();
bool get_nsg_type_mat ch_node();
int get_bar_num();
uint64_t get_base_addr();
uint64_t get limt_addr();
uint64_t get_target_addr();
/] bitfield setters
voi d set_region_nun(int num;
voi d set_function_num(int nunj;
voi d set _enabl ed(bool val);
voi d set_node(ATU_MODE node) ;
voi d set_invert_node(bool val);
voi d set_cfg_shift_node(bool val);
voi d set_fuzzy type_match_code(bool val);
voi d set_vfbar_natch_node_en(bool val);
voi d set_response_code(int val);
voi d set_single_addr_loc_trans_en(bool val);
voi d set_ph_nat ch_en(bool val);
voi d set _nsg_code_mat ch_en(bool val);
voi d set_vf_natch_en(bool val);

www.achronix.com

http://www.achronix.com

Software Development Kit User Guide (UG107)

publ

b

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

voi d set_base_addr (uint64_t addr);

void set_limt_addr(uint64_t limt);
voi d set_target_addr(uint64_t addr);
ic:

int region_num

uint32_t iatu_region_ctrl_1_inbound;
uint32_t iatu_region_ctrl_2_inbound;
uint32_t iatu_region_ctrl_3_inbound,
uint32_t iatu_|lw_base_addr_i nbound;
uint32_t iatu_upper_base_addr_i nbound;
uint32_t iatu_lw _limt_addr_inbound;
uint32_t iatu_upper_limt_addr_inbound;
uint32_t iatu_lw_target_addr_i nbound;
uint32_t iatu_upper_target_addr_i nbound;

set _func_num mat ch_en(bool val);
set _at_nmatch_en(bool val);

set _th_match_en(bool val);

set _addr _match_en(bool val);

set _td_match_en(bool val);

set _tc_match_en(bool val);

set _nmsg_t ype_nmat ch_node(bool val);
set _bar_nun(int bar_num;

Member Functions

Return

Function Description
Type
. . Displays the region context on the console for visualization and
voi d print .
debugging.
i nt et region num Gets the integer region number of this region, which is also the
get_reg - index of the ATURegi on in the ATUCont ext class.
i nt get _function_num Gets the PCle physical function number of the region.
bool get _enabl ed Returns t r ue if this region is enabled, otherwise f al se.
Returns the region mode. Either ATU_BAR_NMATCH or
ATU_MCDE | get _rrode ATU_ADDRESS_MATCH.
bool get _invert_node Reserved for future use.
bool get _cfgshi ft_node Reserved for future use.
bool get _fuzzy_type_nmatch_node Reserved for future use.
bool get _vfbar_mat ch_node_en Reserved for future use.
i nt get _response_code Reserved for future use.
bool get _singl e_addr | oc_trans_en | Reserved for future use.

www.achronix.com

62

http://www.achronix.com

Software Development Kit User Guide (UG107)

RET Function Description
Type
bool get _ph_rmatch_en Reserved for future use.
bool get _msg_code_mat ch_en Reserved for future use.
bool get _vf_match_en Reserved for future use.
bool get _fun_num mat ch_en Reserved for future use.
bool get _at_match_en Reserved for future use.
bool get _th_match_en Reserved for future use.
bool get _addr _match_en Reserved for future use.
bool get _td_match_en Reserved for future use.
bool get _tc_match_en Reserved for future use.
bool get _nsg_t ype_nat ch_node Reserved for future use.
i nt et bar num Returns the integer index of the BAR. Only valid if the region is
get_bar_ in Bar Match Mode.
Returns the base (lower) address of the region in the host 64-bit
ui nt64_t | get_base_addr address space. This address must be in a region of host
memory assigned to a BAR. Only valid in Address Match Mode.
Returns the limit (top) address of the region in the host 64-bit
address space. This address must be in a region of host
uinté4_t [get_limt_addr memory assigned to a BAR. It must be a multiple of the
minimum region size (64K), so bits [15:4] must be OXFFF . Only
valid in Address Match Mode.
Returns the base (lower) address of the region in the device 42-
Uint64 t |get target addr bit NoC address space. The device region size must be the
~tjest_target_ same as on the host, so the device limit address is calculated
automatically.
. . Sets the region number being specified with this ATURegi on
voi d set _regi on_num
class.
voi d set _function_num Sets the physical function number in the region context.
voi d set _enabl ed Sets the enable bitto t r ue or f al se in the region context.
voi d set node Sets the mode in the region context. Either ATU_BAR_MATCH or
- ATU_ADDRESS_MATCH.
voi d set _invert_node Reserved for future use.

www.achronix.com 63

http://www.achronix.com

Software Development Kit User Guide (UG107)

RET Function Description
Type

voi d set_cfg_shift_node Reserved for future use.

voi d set _fuzzy type_match_code Reserved for future use.

voi d set _vfbar_match_node_en Reserved for future use.

voi d set _response_code Reserved for future use.

voi d set _singl e_addr_| oc_trans_en | Reserved for future use.

voi d set _ph_match_en Reserved for future use.

voi d set _nsg_code_match_en Reserved for future use.

voi d set _vf_match_en Reserved for future use.

voi d set _fun_num match_en Reserved for future use.

voi d set _at_match_en Reserved for future use.

voi d set _th_match_en Reserved for future use.

voi d set _addr_nmatch_en Reserved for future use.

voi d set _td_match_en Reserved for future use.

voi d set _tc_match_en Reserved for future use.

voi d set _msg_type_nmat ch_node Reserved for future use.

voi d set _bar_num Sets the BAR number in the region context.
Sets the base (lower) address of the region in the host 64-bit

voi d set _base_addr address space. This address must be in a region of host
memory assigned to a BAR. Only valid in Address Match Mode.
Sets the limit (top) address of the region in the host 64-bit
address space. This address must be in a region of host

voi d set _limt_addr memory assigned to a BAR. It must be a multiple of the
minimum region size (64K), so bits [15:4] must be OXFFF. Only
valid in Address Match Mode.
Sets the base (lower) address of the region in the device 42-bit

voi d set target addr NoC address space. The device region size must be the same

- get_ as on the host, so the device limit address is calculated

automatically.

www.achronix.com

64

http://www.achronix.com

Software Development Kit User Guide (UG107)

Revision History

Version

Date

Description

1.0

21 Oct 2022

® |nitial Achronix release.

www.achronix.com

65

http://www.achronix.com

	Introduction
	Software Stack

	Installation
	Prerequisites
	Achronix SDK installation
	Directory Structure

	Compiling the Achronix SDK
	Testing the Achronix SDK

	Developing Applications
	Minimum Requirements
	Compilation
	Runtime

	Memory Addressing
	FPGA Addressing
	Host Addressing
	BAR Assignment
	Device
	Software

	Recommendations
	Address Translation Unit (ATU)
	Bar Match Mode
	Address Match Mode

	DMA Transfers
	2D NoC Physical Address Calculations
	Basic Operation
	Linked List Mode

	Design Requirements
	Achronix_DDR4.cpp
	Achronix_GDDR6.cpp
	Achronix_PCI.cpp
	DMA_example.cpp

	SDK Functions
	Quick Reference Table
	util_calc_nap_absolute_addr()
	Description
	Call
	Arguments
	Return Value

	util_wait_microseconds()
	Description
	Call
	Arguments
	Return Value

	util_wait_seconds()
	Description
	Call
	Arguments
	Return Value

	pci_reg_write_offset()
	Description
	Call
	Arguments
	Return Value

	pci_reg_read_offset()
	Description
	Call
	Arguments
	Return Value

	pci_reg_set_bits_offset()
	Description
	Call
	Arguments
	Return Value

	pci_reg_clear_bits_offset()
	Description
	Call
	Arguments
	Return Value

	pci_read_reg_ctrl_version()
	Description
	Call
	Arguments
	Return Value

	pci_link_is_up()
	Description
	Call
	Arguments
	Return Value

	dma_build_data_descriptor()
	Description
	Call
	Arguments
	Return Value

	dma_build_link_descriptor()
	Description
	Call
	Arguments
	Return Value

	dma_init()
	Description
	Call
	Arguments
	Return Value

	dma_config()
	Description
	Call

	Arguments
	Return Value

	dma_start()
	Description
	Call
	Arguments
	Return Value

	dma_halt()
	Description
	Call
	Arguments
	Return Value

	dma_get_status()
	Description
	Call
	Arguments
	Return Value

	dma_wait()
	Description
	Call
	Arguments
	Return Value

	atu_get_context()
	Description
	Call
	Arguments
	Return Value

	atu_find_regions()
	Description
	Call
	Arguments
	Return Value

	atu_get_region()
	Description
	Call
	Arguments
	Return Value

	atu_put_region()
	Description
	Call
	Arguments
	Return Value

	SDK Structures
	DmaCommand_t
	Description
	Definition
	Fields

	DMADataDescriptor
	Description
	Definition
	Fields

	DMALinkDescriptor
	Description
	Definition
	Fields

	SDK Classes
	PCIDevice
	Description
	Definition
	Member Functions

	DMAHostBuffer
	Description
	Definition
	Member Functions

	DMADescriptorList
	Description
	Definition
	Member Functions

	ATUContext
	Description
	Definition
	Member Functions

	ATURegion
	Description
	Definition
	Member Functions

	Revision History

