
www.achronix.com

Snapshot User Guide
(UG016)

All Achronix Devices

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 2

Copyrights, Trademarks and Disclaimers
Copyright © 2023 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedster and VectorPath
are registered trademarks, and Speedcore and Speedchip are trademarks of Achronix Semiconductor
Corporation. All other trademarks are the property of their prospective owners. All specifications subject to
change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 3

Table of Contents

Chapter - 1: Overview . 6

Chapter - 2: Snapshot General Description . 7
Features . 7

Triggers . 8
Trigger Examples . 8

Names.snapshot File . 10

Chapter - 3: Snapshot Interface . 11
Snapshot Macros . 11

JTAG Pins . 11

Snapshot User Port List . 12

Snapshot Parameter List . 13

Startup Trigger Parameters . 14

Parameter Impact on Core Logic Utilization . 15

Verilog Template . 17

VHDL Template . 18

Snapshot Interface with Device Manager . 19
Overview . 19

Snapshot Unit Verilog Template . 20

Instantiation Template . 21

Chapter - 4: Snapshot Example (Verilog) . 23
Overview . 23

Clock Constraints (SDC File) . 24

Synplify Constraints (SDC File) . 24

Example Code: . 25

Chapter - 5: Snapshot Example (VHDL) . 28
Overview . 28

Clock Constraints (SDC File) . 29

Synplify Constraints (SDC File) . 29

Example Code: . 30

Chapter - 6: Probing in a Hierarchical Design . 33

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 4

Chapter - 6: Probing in a Hierarchical Design . 33
Overview . 33

Module Declarations . 34

Example . 35

Chapter - 7: Running the Snapshot User Interface . 39
Accessing the Snapshot Debugger . 40

Open the ACE GUI and Select the Project . 40

Open the Snapshot Debugger . 40

Configuring the Trigger Pattern . 41
Configuring the Trigger Mode . 41

Configuring Trigger Patterns . 42

Configuring the Monitor Signals . 45
Naming Captured Signal Data . 45

Configuring the Test Stimuli . 46
Setting Stimuli Values Using the Table . 46

Setting Multiple Stimuli Values as a Bus . 47

Configuring Advanced Options . 48
Pre-Store . 48

Trigger Pattern Match Behavior . 49

User Clock Frequency . 49

Configure Output File Locations . 49

Collecting Samples of the User Design . 50
Using the Startup Trigger . 50

Arming the Snapshot Debugger . 50

Saving/Loading Snapshot Configurations . 51

Running Snapshot in Batch Mode . 52

Revision History . 55

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 5

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 6

Chapter - 1: Overview
Snapshot is the real-time design debugging tool for Achronix FPGAs and cores. The Snapshot debugger, which
is embedded in the ACE software, delivers a practical platform to observe the signals of a user design in real-
time. To use the Snapshot debugger, the Snapshot macro must be instantiated inside the user RTL. After
instantiating the macro and programming the device, design debugging can proceed through the Snapshot
Debugger GUI within ACE, or via the TCL command API.run_snapshot

The Snapshot macro can be connected to any logic signal mapped to the Achronix core, to monitor and
potentially trigger on that signal. Monitored signal data is collected in real time in regular BRAMs, prior to being
transferred to the ACE Snapshot GUI. The Snapshot macro has configurable monitor width and depth, as well as
other configuration parameters, to allow user control over resource usage. The ACE Snapshot GUI interacts with
the hardware via the JTAG interface: interactively specified trigger conditions are transferred to the design, and
collected monitor data is transferred back to the GUI, which displays the data using a built-in waveform viewer.

The following figure shows the components involved in a Snapshot debug session.

Figure 1: Snapshot Overview

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 7

Chapter - 2: Snapshot General Description

Features
The Snapshot macro samples user signals in real time, storing the captured data in one or more BRAMs. The
captured data is then communicated through the JTAG interface to the ACE Snapshot GUI.

The implementation supports the following features:

Monitor channel capture width of 1 to 4064 bits of data.

Monitor channel capture depth of 512 to 16384 samples of data at the user clock frequency.

Trigger channel width of 1 to 40 bits.

Supports up to three separate sequential trigger conditions. Each trigger condition allows for the selection
of a subset of the trigger channel, with AND or OR functionality.

Bit-wise support for edge- (rise/fall) or level-sensitive triggers.

The ACE Snapshot GUI allows specification of trigger conditions and circuit stimuli at runtime.

An optional initial trigger condition, specified in RTL parameters, to allow capture of data immediately after
startup, before interaction with the ACE Snapshot GUI.

A stimuli interface, 0 to 512 bits wide, that allows driving values into the Achronix core logic from
Snapshot. Stimulus values are specified with the ACE Snapshot GUI and made available before data
capture.

Optionally, the data capture can include values before the trigger occurred. This "pre-store" amount can
be specified in increments of 25% of the depth.

Captured data is saved to a standard VCD waveform file. The ACE Snapshot GUI includes a waveform
viewer for immediate feedback.

The VCD waveform file includes a timestamp indicating when the Snapshot was taken.

ACE automatically extracts the names of the monitored signals from the netlist, for easy interpretation of
the waveform.

A repetitive trigger mode, in which repeated Snapshots are taken and collected in the same VCD file.

The JTAG interface can be shared with the user design.

A Tcl batch/script mode interface is provided via the Tcl commandrun_snapshot

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 8

Triggers
The Snapshot macro has a trigger channel input featuring a width from 1 to 40 bits. Any subset of these inputs
can be used to trigger a Snapshot. While the set of potential trigger bits is determined at design time, the choice
of actual trigger condition is made at runtime using the ACE Snapshot GUI. All monitor and trigger inputs are
sampled at the rising edge of . Trigger conditions are evaluated based on these sampled values.user_clk

A specifies one of the following for each of the trigger input bits:trigger condition

don't-care ("X") – the value of the bit is ignored

0 – the bit matches if the input is 0

1 – the bit matches if the input is 1

rising edge ("R") – the bit matches when it changes from 0 to 1 in consecutive samples

falling edge ("F") – the bit matches when it changes from 1 to 0 in consecutive samples

Each bit is evaluated independently to determine whether it is a match or not. The results are then either ANDed
(all bits, except don't-cares, must match at the same time) or ORed (the trigger matches if any bit matches).

A simple state diagram for Snapshot follows. The arm action is initiated from the ACE Snapshot GUI (after
specifying the trigger conditions). When armed, Snapshot waits for the trigger condition to become true. When
triggered, monitor data is collected until the internal buffer is filled. The trigger point is always part of the
Snapshot waveform but, if requested, a certain amount of pre-store data preceding the trigger point is collected
as well. This storage is useful for seeing the events leading up to the trigger occurrence.

Figure 2: Snapshot Macro State Transitions

Up to three sequential trigger conditions can be specified. Snapshot waits until the first trigger condition
evaluates to true. When that occurs, it waits for the second condition, etc. The earliest time at which the second
trigger can be detected is the clock cycle following the occurrence of the first trigger. The occurrence of the last
condition is the Snapshot trigger point, at which the state changes to "triggered". The final trigger point is always
part of the Snapshot waveform, but whether the earlier triggers are part of the waveform depends on the pre-
store amount.

Trigger Examples

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 9

Trigger Examples

Figure 3: Trigger Example Waveform

This waveform shows two user signals, p and q. The following table provides several examples of trigger
conditions, with the time of the corresponding trigger point. Unless otherwise specified, assume only one trigger
condition is specified, and all unmentioned trigger signals are "X". Snapshot is armed at time t= 1.

Table 1: Trigger Examples

Trigger Condition Trigger
Point Explanation

p=X and q=X 1 The trigger condition with all signals X (don't-care) is always true. This condition
is equivalent to "immediate mode" in the Snapshot GUI.

p=0 and q=0 1 The condition is already true when Snapshot is armed so that the trigger point is
the arm point.

p=1 and q=1 (1) 3 The trigger point is the time at which the condition becomes true.

p=R and q=R 6 Rising edge triggers. Although p = R occurs at t = 2 and q = R at t = 3, they only
occur simultaneously at t = 6.

p=R and q=0 2 This condition describes a rising edge of p when q = 0. This occurs at t = 2.

p=R and q=1 6 This condition describes a rising edge of p when q = 1. This occurs at t = 6: a
rising edge of q qualifies as q = 1.

p=1 or q=1 2 This trigger uses an "OR" instead of an "AND" condition.

trigger1: p=1 and q=1
trigger2: p=0 and q=0 4 Trigger1 occurs at t = 3, then trigger2 occurs at t = 4. The latter is the trigger

point.

trigger1: p=1 and q=1
trigger2: p=1 and q=1 6 Trigger1 occurs at t = 3, meaning the earliest time for trigger2 is t = 4. Since at

that time p = 0, trigger2 only occurs at t = 6.

trigger1: p=1 and q=1
trigger2: p=X and q=X 4 Although trigger2 is always true, it still must occur after trigger1, so at t = 4, not

at t = 3.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 10

1.

Trigger Condition Trigger
Point Explanation

Table Notes

The trigger point is the time at which the condition becomes true, not the time at which a flop might
sample the condition.

Names.snapshot File
The Snapshot macro connects to the user design with buses , , and . i_monitor i_trigger i_stimuli
However, it would be cumbersome to debug a design if all signals were referred to as simply , i_monitor[0]

, etc. Therefore, during the ACE flow step, ACE analyzes the netlist to determine i_monitor[1] run_prepare
the user signal names. The result is saved in a Snapshot configuration file, generated in the names.snapshot

 directory. The Snapshot GUI loads this configuration file <ace_project_dir>/impl_*/output/
automatically if there is an active project.

Because the name extraction occurs after RTL synthesis, sometimes names may have been modified by
Synplify. It might help to use the or synthesis attributes to prevent names from being syn_preserve syn_keep
changed. The ACE Snapshot GUI also enables editing of the signal names and has the option to load and save
configuration files.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 11

Chapter - 3: Snapshot Interface

Snapshot Macros
There are two variants of the Snapshot macro, and . Both variants ACX_SNAPSHOT ACX_SNAPSHOT_JTAP_UNIT
have the same interface to the user design, but differ in the way they connect to the JTAG interface. Most
designs simply use . However, designs that already use the JTAG TAP controller functions for ACX_SNAPSHOT
other reasons, should use the instead to allow sharing of the JTAG interface ACX_SNAPSHOT_JTAP_UNIT
between Snapshot and the user design. For details on the JTAG TAP controller functions, see the "Speedster7t
JTAG TAP Controller Functions" chapter in the . (UG086)Speedster7t Component Library User Guide

The following figure shows the relation between and , as well as ACX_SNAPSHOT ACX_SNAPSHOT_JTAP_UNIT
the interface ports.

Figure 4: Snapshot Macro Block Diagram

JTAG Pins
The JTAG interface pins of map directly to hardware pins. In the user design, these must ACX_SNAPSHOT
connect to top-level ports of the RTL insertion of IPINs or OPINs.without

Table 2: JTAG Pin Description for ACX_SNAPSHOT

Pin Name Direction Type Description

i_jtag_in Input t_JTAG_INPUT JTAG input signals.

o_jtag_out Output t_JTAG_OUTPUT JTAG output signals.

ACX_SNAPSHOT_JTAP_UNIT has the same user interface as , but allows the sharing of the ACX_SNAPSHOT
JTAG interface with the user design through the JTAG TAP controller functions.

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086

Snapshot User Guide (UG016)

www.achronix.com 12

Table 3: JTAP Pin Description for ACX_SNAPSHOT_JTAP_UNIT

Pin Name Direction Type Description

i_jtap_bus Input t_JTAP_BUS
Input from shared with other ACX_JTAP_INTERFACE ACX_JTAP_UNIT
instances.

i_tdo_bus Input wire Input matching the output of an instance o_tdo_bus ACX_JTAP_UNIT
to allow the chaining of units (tie low when not used).

o_tdo_bus Output wire Output to drive of or i_tdo_bus ACX_JTAP_UNIT
.ACX_JTAP_INTERFACE

Snapshot User Port List
The Snapshot user-side interface consists of the pins that connect directly to the user design to be monitored.
This interface is identical for and .ACX_SNAPSHOT ACX_SNAPSHOT_JTAP_UNIT

Table 4: Pin Descriptions of Snapshot Macro

Pin Name Type Description

i_monitor[MONITOR_WIDTH-1:0] Input
1–4064 bit monitor channel. These input signals can be any signal present in the user
design. They are captured when a trigger occurs and their values are stored in the
output VCD waveform file.

i_trigger[TRIGGER_WIDTH-1:0] Input

1–40 bit trigger channel. These inputs can be used to trigger a capture event (the
trigger condition is specified at runtime using these signals). This input is used and
must be connected to the user design logic if the parameter is STANDARD_TRIGGERS
set to 0. If is set to 1, the input is ignored, and the STANDARD_TRIGGERS i_trigger
Snapshot trigger detect logic is connected internally to i_monitor[TRIGGER_WIDTH-

.1:0]

i_user_clk Input
User clock (same as user design clock). All monitor and trigger inputs are sampled at
the rising edge of this clock. This clock must be running for Snapshot to work, and the
design must meet timing with respect to this clock.

o_stimuli[STIMULI_WIDTH-1:0](1) Output

0–512 bits of test stimuli. The value of this bus can be driven via the Snapshot GUI
when arming Snapshot. These signals can be used as test inputs to the user design.
The outputs are only valid when is high. At other o_stimuli o_stimuli_valid
times they can change arbitrarily.

o_stimuli_valid(1) Output

Asserted high when the signals are valid and stable. The signal o_stimuli o_stimu
 is raised just before a Snapshot capture is started and remains high at li_valid

least until all data has been captured. This signal is de-asserted and reasserted again
before the next Snapshot capture. The user design can detect the rising edge of o_sti

 to determine when new input stimuli are available.muli_valid

o_arm(1) Output
Asserted high when Snapshot starts waiting for the trigger condition. This signal
asserts at least cycles after to give the user design ARM_DELAY o_stimuli_valid
time to react to the stimuli.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 13

1.

Pin Name Type Description

o_trigger(1) Output

The output is rarely used. It asserts high + 5 cycles o_trigger INPUT_PIPELINING
after the trigger condition occurs. This signal is provided as an optional trigger for
external instruments, for example, an oscilloscope. No is OUTPUT_PIPELINING
added.

Table Notes

These outputs are in the domain and can be used in the design under test (DUT) to create desired events to be i_user_clk
observed.

Snapshot Parameter List
These parameters define the size and functionality of Snapshot.

Table 5: Parameter Definitions

Parameter Default Value Defined Value

DUT_NAME none_specified

Field provided to help distinguish Snapshot logic instances in
different designs. This string is printed in the Snapshot log file
whenever a Snapshot capture is taken. Maximum length is 128
characters.

MONITOR_WIDTH 40 Monitor channel width. Sets the number of signals to be monitored
by Snapshot. The valid range is 1–4064 bits.

MONITOR_DEPTH 1024

The number of consecutive data samples (cycles) in a user_clk
single Snapshot, captured from the bus. Valid values i_monitor
range from 512–16384. The implementation rounds this number up
as required by the supported BRAM sizes.

TRIGGER_WIDTH 40 Trigger channel width. The valid range is 1–40 bits.

NUM_TRIGGERS 3

The maximum number of sequential triggers to compile into the
Snapshot circuit. Setting this parameter to a lower number
decreases the Achronix core logic resources needed for Snapshot.
During a Snapshot debug session, up to NUM_TRIGGERS
sequential triggers may be configured. Valid values range from 1–
3.

STANDARD_TRIGGERS 1

If the parameter value is set to 1, then the STANDARD_TRIGGERS
 input is ignored, and instead i_trigger i_monitor

 is used as trigger signals. If the [TRIGGER_WIDTH-1:0]
 parameter value is set to 0, then the STANDARD_TRIGGERS

 input is used as trigger i_trigger[TRIGGER_WIDTH-1:0]
signals.

STIMULI_WIDTH 20 Number of stimuli output to the user design. The valid range is 0–
512 bits.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 14

Parameter Default Value Defined Value

INPUT_PIPELINING 3

Adds the specified number of pipeline stages to the i_monitor
and signals to enable faster speeds. i_trigger i_user_clk
This parameter has no effect on the collected data (the file), .vcd
or on the point where the trigger occurs.

OUTPUT_PIPELINING 0

Adds the specified number of pipeline stages to the , o_arm
, and outputs to enable faster o_stimuli o_stimuli_valid

 speeds. This parameter has no effect on the i_user_clk
collected data (the file), or on the point where the trigger .vcd
occurs.

ARM_DELAY 1

Delay between assertion of and . The o_stimuli_valid o_arm
 output signal indicates when Snapshot begins waiting for o_arm

the trigger condition. This signal asserts at least ARM_DELAY
cycles after to allow the user design time to o_stimuli_valid
react to the stimuli.

ENABLE_EDGE_TRIGGERS 1

When set to 1, both edge-sensitive (rise/fall) and level-sensitive (1
/0) trigger conditions may be used during a Snapshot debug
session. When set to 0, only level-sensitive trigger conditions may
be used. Setting to 0 decreases the Achronix core logic resources
needed for Snapshot.

Startup Trigger Parameters
Normally, trigger conditions are specified via the ACE Snapshot GUI prior to taking a capture. However, that
makes it hard to observe conditions that occur immediately after startup. As an alternative, an initial trigger
condition can be specified using parameters. When is set, Snapshot is armed immediately INITIAL_TRIGGER
after startup and waits for the initial trigger condition. The ACE Snapshot GUI has a separate startup trigger
button to collect the captured data.

Since initial triggers have virtually no circuit overhead, they are enabled by default with a don't-care trigger. With
these defaults, the startup trigger button collects data from the start of user mode (or as close to the start as
possible). Snapshot requires a number of clock cycles to initialize before it can collect data or detect trigger
conditions. For Speedcore instances, this delay is three cycles if ≤ 1024; otherwise it is six MONITOR_DEPTH
cycles. Signals are not monitored during those few cycles unless is used. If INPUT_PIPELINING

 is at least 3 (for small depth) or 6 (for larger depth), data is collected from the start of user INPUT_PIPELINING
mode.

Table 6: Snapshot Startup Trigger Parameters

Parameter Default
Value Defined Value

INITIAL_TRIGGER 1

Enables a startup trigger condition. Set the other parameters to INITIAL_*
specify the trigger condition. When is 1, Snapshot INITIAL_TRIGGER
automatically arms immediately after startup. If is 0, the INITIAL_TRIGGER

 parameters are ignored, and Snapshot waits in the Idle state INITIAL_*
until Snapshot is armed via the ACE GUI or Tcl interface.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 15

Parameter Default
Value Defined Value

INITIAL_NUM_TRIGGERS 1 Number of sequential triggers to use for the startup trigger. Valid range is
from 1 to .NUM_TRIGGERS

INITIAL_TRIGGER1 Xs

INITIAL_TRIGGER1 is specified as a sequence of characters with one
character per trigger bit, similar to the binary value specified for a bus in the
ACE GUI:
"0" for level 0
"1" for level 1
"R" for rising edge
"F" for falling edge
"X" for don't care
For example, if is set to 5, could be TRIGGER_WIDTH INITIAL_TRIGGER1
set to "11XR0" to define the trigger pattern.

INITIAL_TRIGGER2 Xs

Specifies the second startup trigger using the same format as
. Snapshot waits for after INITIAL_TRIGGER1 INITIAL_TRIGGER2
 has occurred. This parameter is ignored if INITIAL_TRIGGER1

 < 2.INITIAL_NUM_TRIGGERS

INITIAL_TRIGGER3 Xs

Specifies the third startup trigger using the same format as
. Snapshot waits for after INITIAL_TRIGGER1 INITIAL_TRIGGER3
 has occurred. This parameter is ignored if INITIAL_TRIGGER2

 < 3.INITIAL_NUM_TRIGGERS

INITIAL_USE_AND_1 1

When set to 1, the pattern matches the input trigger INITIAL_TRIGGER1
data if of the trigger bits match the trigger pattern (AND logic). When set ALL
to 0, the pattern matches the input trigger data if INITIAL_TRIGGER1 ANY
of the trigger bits matches the trigger pattern (OR logic). In both cases, don't-
care bits (marked "X") are ignored. However, if all bits INITIAL_TRIGGER1
are "X" (don't-care), this parameter be set to 1.must

INITIAL_USE_AND_2 1 Similar to , but for .INITIAL_USE_AND_1 INITIAL_TRIGGER2

INITIAL_USE_AND_3 1 Similar to , but for .INITIAL_USE_AND_1 INITIAL_TRIGGER3

INITIAL_PRE_STORE 1

Amount of pre-store data to cache and output prior to the trigger event. Valid
values are 0 (no pre-store), 1 (25% pre-store), 2 (50% pre-store), and 3 (75%
pre-store). If the startup trigger occurs before clock INITIAL_PRE_STORE
cycles have occurred, by necessity, less pre-store data is collected.

Parameter Impact on Core Logic Utilization
Based on defaults, the logic utilization for the is as follows:Verilog Snapshot example (see page 23)

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 16

Figure 5: Verilog Example Utilization Details

An estimate of the number of gates required based on these parameters:

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 17

An estimate of the number of gates required based on these parameters:

The number of BRAMs/BRAMFIFOs must be sufficient to store × bits.MONITOR_WIDTH MONITOR_DEPTH

Input pipelining consumes roughly (+) × flip-MONITOR_WIDTH TRIGGER_WIDTH INPUT_PIPELINING
flops.

Output pipelining consumes roughly × flip-flops.STIMULI_WIDTH OUTPUT_PIPELINING

The trigger circuit requires roughly × 5 × flip-flops. The number of flip-NUM_TRIGGERS TRIGGER_WIDTH
flops can be reduced by setting to 1 or 2, by reducing the width, or by disabling edge NUM_TRIGGERS
triggers. Edge triggers account for roughly 40% of the trigger circuit.

Note

For high-speed circuits, input or output pipelining might be required to meet performance.

Verilog Template
// - MONITOR_DEPTH will be rounded up to the next value supported by

// this implementation.
// - If STANDARD_TRIGGERS is 1, the i_trigger input is ignored and instead

// i_monitor[TRIGGER_WIDTH - 1 : 0] are used as trigger signals.
// - Stimuli are valid only when o_stimuli_valid is true; at other times

// o_stimuli are not stable.
// - o_arm indicates when Snapshot starts waiting for the trigger condition.

// This happens at least ARM_DELAY cycles after o_stimuli_valid, to give
// the user design time to react to the stimuli.

// - INPUT_PIPELINING is added to i_monitor and i_trigger, to make it easier
// to collect high-frequency signals from various locations. Likewise,

// OUTPUT_PIPELINING is added to o_stimuli, o_stimuli_valid, and o_arm.
// Note that these parameters have *no impact* on the collected data

// (the vcd file) or on the point where the trigger occurs.
// - To set a startup trigger condition, set INITIAL_TRIGGER to 1, then

// set the INITIAL_ parameters to specify the trigger condition.
// INITIAL_TRIGGER1 is a sequence of characters "0", "1", "R", "F", "X", one

// character per bit, similar to the binary value specified for a bus
// in the ACE GUI.
// - The o_trigger output is seldom used. It goes high INPUT_PIPELINING + 5
// cycles after the trigger condition occurred. This signal is provided

// as a trigger for external equipment such as a scope. No output
// pipelining is added.

// - SNAPSHOT_MODE is used for development.

`default_nettype none
`timescale 1 ps / 1 ps

module ACX_SNAPSHOT #(
 localparam integer max_dut_name_chars = 128,

 parameter [8*max_dut_name_chars-1 : 0] DUT_NAME = "none_specified",
 parameter integer MONITOR_WIDTH = 40, // >= 1

 parameter integer MONITOR_DEPTH = 1024, // 1024 .. 16384
 parameter integer TRIGGER_WIDTH = 40, // 1..40

 parameter integer NUM_TRIGGERS = 3, // 1..3
 parameter bit STANDARD_TRIGGERS = 1, // use i_monitor instead of i_trigger

 parameter integer STIMULI_WIDTH = 20, // <= 512
 parameter integer INPUT_PIPELINING = 3, // for i_monitor and i_trigger

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 18

 parameter integer OUTPUT_PIPELINING = 0, // for o_stimuli(_valid) and o_arm

 parameter integer ARM_DELAY = 1, // between o_stimuli_valid and o_arm
 parameter bit ENABLE_EDGE_TRIGGERS = 1,

 parameter bit INITIAL_TRIGGER = 0, // set startup trigger condition
 parameter [1:0] INITIAL_NUM_TRIGGERS = 1, // 1..NUM_TRIGGERS

 parameter [8*TRIGGER_WIDTH-1 : 0] INITIAL_TRIGGER1 = {TRIGGER_WIDTH{8'h58}},
 parameter [8*TRIGGER_WIDTH-1 : 0] INITIAL_TRIGGER2 = {TRIGGER_WIDTH{8'h58}},

 parameter [8*TRIGGER_WIDTH-1 : 0] INITIAL_TRIGGER3 = {TRIGGER_WIDTH{8'h58}},
 parameter bit INITIAL_USE_AND_1 = 1, // 1 = AND, 0 = OR

 parameter bit INITIAL_USE_AND_2 = 1,
 parameter bit INITIAL_USE_AND_3 = 1,

 parameter [1:0] INITIAL_PRE_STORE = 1, // 0, 1, 2, 3 (= 0, 25%, 50% 75%)

 parameter integer SNAPSHOT_MODE = 0
) (

 // jtag connections, must be connected to top-level ports
 input wire t_JTAG_INPUT i_jtag_in,

 output wire t_JTAG_OUTPUT o_jtag_out,

 // signals to/from user design

 input wire i_user_clk,
 input wire [MONITOR_WIDTH-1 : 0] i_monitor,

 input wire [TRIGGER_WIDTH-1 : 0] i_trigger, // if !STANDARD_TRIGGERS
 output wire [STIMULI_WIDTH-1 : 0] o_stimuli,

 output wire o_stimuli_valid,
 output wire o_arm,

 output wire o_trigger // for external devices
);

VHDL Template
component ACX_SNAPSHOT is

 generic (
 DUT_NAME : string := "none_specified";

 MONITOR_WIDTH : natural := 40; -- >= 1
 MONITOR_DEPTH : natural := 1024; -- 1024 ... 16384
 TRIGGER_WIDTH : natural := 40; -- 1 ... 40
 NUM_TRIGGERS : natural := 3; -- 1, 2, 3

 STANDARD_TRIGGERS: std_logic := '1'; -- use "i_monitor" instead of "i_trigger"
 STIMULI_WIDTH : natural := 20; -- <= 512

 INPUT_PIPELINING: natural := 3; -- FOR i_monitor AND i_trigger
 OUTPUT_PIPELINING: natural := 0; -- FOR o_stimuli(_valid) AND o_arm

 ARM_DELAY : natural := 1; -- BETWEEN o_stimuli_valid AND o_arm
 ENABLE_EDGE_TRIGGERS : std_logic := '1';

 INITIAL_TRIGGER : std_logic := '0'; -- SET STARTUP TRIGGER CONDITION
 INITIAL_NUM_TRIGGERS : std_logic_vector (1 downto 0) := "01"; -- 1, 2, 3

 --- NUMBER OF CHARACTERS SHOULD BE TRIGGER_WIDTH ---
 --- VALID CHARACTERS ARE X, 0, 1, R, AND F ---

 INITIAL_TRIGGER1 : string := "XX";
 INITIAL_TRIGGER2 : string := "XX";

 INITIAL_TRIGGER3 : string := "XX";
 INITIAL_USE_AND_1 : std_logic : = '1'; -- 1 = AND, 0 = OR

 INITIAL_USE_AND_2 : std_logic : = '1'; -- 1 = AND, 0 = OR
 INITIAL_USE_AND_3 : std_logic : = '1'; -- 1 = AND, 0 = OR

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 19

1.

2.

3.

 INITIAL_PRE_STORE : std_logic_vector (1 downto 0) := "00"; -- 0, 1, 2, 3 (= 0,

25%, 50%, 75%)
 SNAPSHOT_MODE : natural := 0 -- reserved

);
 port (--- JTAG connections, must be connected to TOP-LEVEL ports ---

 i_jtag_in : in std_logic_vector (7 downto 0);
 o_jtag_out : out std_logic_vector (1 downto 0);

 --- SIGNALS to/from USER DESIGN ---
 i_user_clk : in std_logic;

 i_monitor : in std_logic_vector (MONITOR_WIDTH-1 downto 0);
 i_trigger : in std_logic_vector (TRIGGER_WIDTH-1 downto 0);

 o_stimuli : out std_logic_vector (STIMULI_WIDTH-1 downto 0);
 o_stimuli_valid : out std_logic;

 o_arm : out std_logic;
 o_trigger : out std_logic

);

end component;

Snapshot Interface with Device Manager
Overview
The component can provide automatic control of the device IP components such as ACX_DEVICE_MANAGER
GDDR6 and DDR4, where the hardened control is complex for typical production systems. A more detailed
description of the component is provided in the "Speedster7t Device Manager" section ACX_DEVICE_MANAGER
of the . (UG103)Speedster7t Soft IP User Guide

Sharing the JTAG Interface with Snapshot
The component is independent of the Snapshot debug tool and used to observe signals ACX_DEVICE_MANAGER
in a design, but also uses the JTAG interface to interact with ACE. The component has two ports (o_jtap_bus
and) that pass the JTAG signals through so that the interface can be shared. The i_tdo_bus

 component has matching ports (and) that should be ACX_SNAPSHOT_JTAP_UNIT i_jtap_bus o_tdo_bus
connected to the as shown in the following figure.ACX_DEVICE_MANAGER

Caution!

It is necessary to use the when using the . ACX_SNAPSHOT_JTAP_UNIT ACX_DEVICE_MANAGER
The component cannot be used in this instance.ACX_SNAPSHOT

o_jtap_bus is not a simple wire, but instead, is type . This type must be used in t_JTAP_BUS
the wire declaration. When connected in this manner, Snapshot operates normally but with the
caveat in the following point (This caveat may change in future versions of ACE).

To use Snapshot, the ACE JTAG connection must be closed using the
 Tcl command. This is because Snapshot establishes its <device_namespace>::close_jtag

own connection to the JTAG driver in a different way, and the driver cannot have both
connections open simultaneously. When a Snapshot has been taken, the connected JTAG
interface can be opened again with , to allow use of Tcl <device_namespace>::open_jtag
commands via JTAG. The JTAG connection can be opened and closed repeatedly without
affecting the running design.

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

Snapshot User Guide (UG016)

www.achronix.com 20

Figure 6: Sharing the JTAG Connection Between ACX_DEVICE_MANAGER and
Snapshot

Snapshot Unit Verilog Template
The following example shows the template to be used in conjunction with the ACX_SNAPSHOT_JTAP_UNIT

.ACX_DEVICE_MANAGER

// ACX_SNAPSHOT_JTAP_UNIT has the same parameters and user inputs and outputs
// (i_monitor etc.) as ACX_SNAPSHOT (see above), but ACX_SNAPSHOT connects

// directly to the JTAG pins, whereas ACX_SNAPSHOT_JTAP_UNIT connects to an
// instance of ACX_JTAP_INTERFACE instead. The latter is used to share

// the JTAP/JTAG interface with other parts of the user design.

`default_nettype none

`timescale 1 ps / 1 ps
(* syn_hier="hard" *)

module ACX_SNAPSHOT_JTAP_UNIT #(
 localparam integer max_dut_name_chars = 128,

 parameter bit [8*max_dut_name_chars-1 : 0] DUT_NAME = "none_specified",
 parameter integer MONITOR_WIDTH = 40, // >= 1

 parameter integer MONITOR_DEPTH = 1024, // 512 .. 16384
 parameter integer TRIGGER_WIDTH = 40, // 1..40

 parameter integer NUM_TRIGGERS = 3, // 1..3
 parameter bit STANDARD_TRIGGERS = 1, // use i_monitor instead of i_trigger

 parameter integer STIMULI_WIDTH = 20, // <= 512
 parameter integer INPUT_PIPELINING = 3, // for i_monitor and i_trigger

 parameter integer OUTPUT_PIPELINING = 0, // for o_stimuli(_valid) and o_arm

 parameter integer ARM_DELAY = 1, // between o_stimuli_valid and o_arm
 parameter bit ENABLE_EDGE_TRIGGERS = 1,

 parameter bit INITIAL_TRIGGER = 1, // set startup trigger condition
 parameter bit [1:0] INITIAL_NUM_TRIGGERS = 1, // 1..NUM_TRIGGERS
 parameter bit [8*TRIGGER_WIDTH-1 : 0] INITIAL_TRIGGER1 = {TRIGGER_WIDTH{8'h58}},
 parameter bit [8*TRIGGER_WIDTH-1 : 0] INITIAL_TRIGGER2 = {TRIGGER_WIDTH{8'h58}},
 parameter bit [8*TRIGGER_WIDTH-1 : 0] INITIAL_TRIGGER3 = {TRIGGER_WIDTH{8'h58}},
 parameter bit INITIAL_USE_AND_1 = 1, // 1 = AND, 0 = OR
 parameter bit INITIAL_USE_AND_2 = 1,
 parameter bit INITIAL_USE_AND_3 = 1,
 parameter bit [1:0] INITIAL_PRE_STORE = 1, // 0, 1, 2, 3 (= 0, 25%, 50% 75%)

 parameter bit [5:0] UNIT_ID = 0, // for jtap sharing; 0 is reserved for Snapshot
 parameter integer SNAPSHOT_MODE = 0

) (

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 21

 // jtap connections

 input var t_JTAP_BUS i_jtap_bus, // from ACX_JTAP_INTERFACE
 input wire i_tdo_bus, // from neighbor ACX_JTAP_UNIT (or 1'b0)

 output wire o_tdo_bus, // to ACX_JTAP_INTERFACE or next ACX_JTAP_UNIT

 // signals to/from user design

 input wire i_user_clk,
 input wire [MONITOR_WIDTH-1 : 0] i_monitor,

 input wire [TRIGGER_WIDTH-1 : 0] i_trigger, // if !STANDARD_TRIGGERS
 output wire [STIMULI_WIDTH-1 : 0] o_stimuli,

 output wire o_stimuli_valid,
 output wire o_arm,

 output wire o_trigger // for external devices
);

Instantiation Template
The following example shows how the ACE-generated device manager template can be utilized in a design with
snapshot:

`include "speedster7t/common/speedster7t_snapshot_v3.sv"

module top_level

(
 // JTAG Interface

 input t_JTAG_INPUT i_jtag_in, // Should be connected to top-level ports with the same

declaration

 output t_JTAG_OUTPUT o_jtag_out, // Should be connected to top-level ports with the same

declaration

 // User Design

 input i_clk // 100 MHz Clock input for Device Manager block.
);

 // signals for shared JTAG bus

 wire t_JTAP_BUS jtap_bus; // shared JTAG bus
 wire tdo_bus; // tie to 0 if unused

 // Other ADM signals
 logic [32 -1:0] adm_status; // Status from the ADM

 device_manager_test # ()
 i_acx_device_manager

 (
 // JTAG Interface

 .i_jtag_in (i_jtag_in), // Should be connected to top-level ports with the same

declaration

 .i_tdo_bus (tdo_bus), // Pass-through the JTAG bus to connect to Snapshot. If

not used, this input should be tied to 1'b0

 .o_jtag_out (o_jtag_out), // Should be connected to top-level ports with the same

declaration

 .o_jtap_bus (jtap_bus), // Pass-through of the JTAG bus to connect to Snapshot

(or other JTAG components)

 // User Design

 .i_clk (i_clk), // 100 MHz Clock input for Device Manager block.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 22

 .i_start (1'b1), // A high input starts the Device Manager. In most cases

this signal is tied to 1'b1,
 // but it can also be tied to a PLL lock signal if

necessary.
 .o_status (adm_status) // Progress indication, error status, alarms

);

 ACX_SNAPSHOT_JTAP_UNIT #(....)
 x_snapshot

 (
 .i_jtap_bus (jtap_bus),

 .i_tdo_bus (1'b0), // Tie to 1'b0 if not used
 .o_tdo_bus (tdo_bus),

 ... other Snapshot ports ...
);

endmodule : top_level

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 23

1.

2.

3.

Chapter - 4: Snapshot Example (Verilog)

Overview
The following is a complete example of a simple user design with Snapshot. The user design consists of two
counters and has the following features:

counter_a[7:0] counts from 0 to repeatedlylimit_a

limit_a[7:0] can be set dynamically with the Snapshot stimuli

counter_b[15:0] 16-bit counter (wraps around)

Features external reset or can be reset via Snapshot stimuli

In order to use the Snapshot logic in a user design, the technology-specific Snapshot Verilog file from the
Achronix libraries must be included:

`include "speedster<technology>/common/speedster<technology>_snapshot_v3.sv"

Where is replaced with the target technology library name (e.g., Speedster7t).<technology>

Note

The path described above is also applicable for Speedcore devices.

Two clocks are required by the Snapshot macro:

i_user_clk – this clock is provided by the user design to sample the user design signals.

JTAG clock – used to communicate between the host and the Snapshot macro. This signal is part of the
 input.i_jtag_in

Snapshot evaluates triggers and collects data at the rate of the , whose frequency must be declared in user_clk
the SDC file.

The design must meet timing with respect to the . Even if timing failures in the user design are user_clk
deemed acceptable, their existence might hide timing failures in the Snapshot logic. Instead, "acceptable" timing
failures must be made explicit with exceptions in the SDC file. If the Snapshot logic itself does not meet timing,
consider increasing the and parameters.INPUT_PIPELINING OUTPUT_PIPELINING

The JTAG clock () for Snapshot must be declared as a 25 MHz clock (period 40 ns). It is i_jtag_in[0]
recommended that this frequency is also specified during synthesis, otherwise Synplify may over-optimize this
slow logic.

Instantiate the Snapshot macro in the user design, as shown in the following example, and connect it to
the signals that may need to be observed.

Synthesize the design with Synplify and run it through the ACE flow to generate a bitstream.

When the Achronix device has been programmed with the bitstream, use the Snapshot debugger tool
from the ACE GUI or in batch mode via the ACE Tcl interface.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 24

The design requires a clock input, typically generated by a PLL. The PLL instance and corresponding reference
clock pad must be specified with the IP Configuration Perspective in the ACE GUI.

Note

When the user design is run through the ACE place-and-route flow, a Snapshot configuration file is
generated in . This file <ace_project_dir>/<active_impl_dir>/output/names.snapshot
contains all of the signal names connected to Snapshot (automatically extracted from the user design),
along with monitor, trigger, stimuli width settings based on the user RTL, and clock frequency based on
the user SDC constraints, etc. This file is automatically loaded in the Snapshot debugger view in the
ACE GUI to configure Snapshot whenever the active implementation in the ACE session changes.

Clock Constraints (SDC File)
Both the JTAG TCK clock and the Snapshot user clock must be defined in the user SDC clock constraints:

Snapshot JTAG clock: 25MHz

create_clock -period 40 [get_ports {i_jtag_in[0]}] -name tck
set_clock_groups -asynchronous -group {tck}

User design clock; example: 100MHz
set clk_period 10
create_clock -period $clk_period [get_ports i_clk] -name clk
set_clock_groups -asynchronous -group {clk}Example Verilog RTL

Synplify Constraints (SDC File)
Synplify requires the output clock from the Snapshot unit to be defined explicitly. If the clock is not defined, then
Synplify creates an auto-generated clock assigned to the project default frequency.

JTAG CLK_IPIN pass-through:

When using ACX_SNAPSHOT
create_clock [get_pins x_snapshot.x_jtap_interface.x_acx_jtap.clk_ipin_tck/dout] -period 40 -name

tck_core
set_clock_groups -asynchronous -group {tck_core}

When using ACX_SNAPSHOT_JTAP_UNIT with ADM, the clock comes from the ADM

create_clock -name tck_core \
 [get_pins x_acx_dev_mgr.x_dev_mgr.u.u.genblk2\.x_acx_jtap_interface.x_acx_jtap.

clk_ipin_tck.dout] \
 -period 40

set_clock_groups -asynchronous -group {tck_core}

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 25

Example Code:
// Copyright (c) 2021 Achronix Semiconductor Corp.

// All Rights Reserved.
`include "speedster7t/common/speedster7t_snapshot_v3.sv"

`timescale 1ps/1ps

module snapshot_example (
 // jtap ports:

 input t_JTAG_INPUT i_jtag_in,
 output t_JTAG_OUTPUT o_jtag_out,

 // user design ports:

 input wire i_clk
);

/********** clock **/

 wire clk = i_clk;

/********** stimuli **/

 // Snapshot stimuli are only valid when stimuli_valid is high.
 wire stimuli_valid;

 reg [2:0] stimuli_valid_d = '0; // for edge detection/stretching

 always @(posedge clk)

 begin
 stimuli_valid_d <= (stimuli_valid_d << 1) | stimuli_valid;

 end

/********** reset **/

 wire do_reset; // set via stimuli[8] (active-high)

 // at stimuli_valid edge, do_reset is (active-high) reset

 reg reset_n = 1;
 always @(posedge clk)

 begin
 if (stimuli_valid && !stimuli_valid_d[2])

 reset_n <= !do_reset;
 else

 reset_n <= 1'b1;
 end

/********** user circuit ***/

 // The main user design consists of two counters.
 // counter_a : 8-bit counter with configurable period. The period is set
 // by setting limit_a via the Snapshot stimuli[7:0]. Default
 // limit_a = 62 (hence counter_a has default period 63).
 // counter_b : 16-bit counter

 reg [7:0] limit_a = 62;

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 26

 reg [7:0] counter_a = 0; // counts 0..limit_a

 reg [15:0] counter_b = 0;

 always @(posedge clk)

 begin
 if (!reset_n)

 begin
 counter_a <= 0;

 counter_b <= 0;
 end

 else
 begin

 if (counter_a == limit_a)
 counter_a <= 0;

 else
 counter_a <= counter_a + 1;

 counter_b <= counter_b + 1;
 end
 end

 wire [7:0] limit_a_in; // set via stimuli; if not 0, value for limit_a
 always @(posedge clk)

 begin
 if (stimuli_valid && limit_a_in != 0)

 limit_a <= limit_a_in;
 end

/********** snapshot ***/

 localparam integer MONITOR_WIDTH = 38;
 localparam integer MONITOR_DEPTH = 2000; // will be rounded up
 localparam TRIGGER_WIDTH = MONITOR_WIDTH < 40? MONITOR_WIDTH : 40;
 wire [MONITOR_WIDTH-1 : 0] monitor;
 wire arm;

 assign monitor = {
 counter_b,

 counter_a,
 limit_a,

 arm,
 stimuli_valid,

 reset_n
 };

 // stimuli[7:0] : wrap-around value (limit_a) for counter_a

 // stimuli[8] : when set to 1, resets counter_a and counter_b
 localparam STIMULI_WIDTH = 9;

 wire [STIMULI_WIDTH-1 : 0] stimuli;
 assign {

 do_reset,
 limit_a_in

 } = stimuli;

 ACX_SNAPSHOT #(

 .DUT_NAME("snapshot_example"),
 .MONITOR_WIDTH(MONITOR_WIDTH), // 1..4080

 .MONITOR_DEPTH(MONITOR_DEPTH), // 1..16384

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 27

 .TRIGGER_WIDTH(TRIGGER_WIDTH), // 1..40

 .STANDARD_TRIGGERS(1), // use i_monitor[39:0] as trigger input
 .STIMULI_WIDTH(STIMULI_WIDTH), // 0..512

 .INPUT_PIPELINING(3), // for i_monitor and i_trigger
 .OUTPUT_PIPELINING(0), // for o_stimuli(_valid) and o_arm

 .ARM_DELAY(2) // between o_stimuli_valid and o_arm
) x_snapshot (

 .i_jtag_in(i_jtag_in),
 .o_jtag_out(o_jtag_out),

 .i_user_clk(clk),

 .i_monitor(monitor),
 .i_trigger(), // not used if STANDARD_TRIGGERS = 1

 .o_stimuli(stimuli),
 .o_stimuli_valid(stimuli_valid),

 .o_arm(arm),
 .o_trigger()

);

endmodule

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 28

1.

2.

3.

Chapter - 5: Snapshot Example (VHDL)

Overview
The following is a complete example of a simple user design with Snapshot for VHDL users. The user design
consists of a single counter and has the following feature:

counter[7:0] counts from 0 to x'FF and then wraps around continuously

In order to use the Snapshot logic in a user design that is in VHDL, the technology-specific Snapshot Verilog file
from the Achronix libraries must be included in the Synplify Pro project file:

add_file -verilog "$ACE_INSTALL_DIR/libraries/speedster7t/common

/speedster<technology>_snapshot_v3.sv"

Where is the local path to your ACE installation, and is replaced with the $ACE_INSTALL_DIR <technology>
target technology library name (e.g., Speedster7t).

Note

The path described above is also applicable for Speedcore devices.

Two clocks are required by the Snapshot macro:

i_user_clk – provided by the user design to sample the user design signals.

JTAG clock – used to communicate between host and Snapshot macro. This signal is part of the
 input.i_jtag_in

Snapshot evaluates triggers and collects data at the rate of the , whose frequency must be declared in user_clk
the SDC file.

The design must meet timing with respect to . Even if timing failures in the user design are deemed user_clk
acceptable, their existence might hide timing failures in the Snapshot logic. Instead, "acceptable" timing failures
must be made explicit with exceptions in the SDC file. If the Snapshot logic itself does not meet timing, consider
increasing the and parameters.INPUT_PIPELINING OUTPUT_PIPELINING

The JTAG clock () for Snapshot must be declared as a 25 MHz clock (period 40 ns). It is i_jtag_in[0]
recommended that this frequency is also specified during synthesis, otherwise Synplify may over-optimize this
slow logic.

Instantiate the Snapshot macro in the user design, as shown in the following example, and connect it to
the signals that may need to be observed.

Synthesize the design with Synplify and run it through the ACE flow to generate a bitstream.

When the Achronix device has been programmed with the bitstream, use the Snapshot debugger tool
from the ACE GUI or in batch mode via the ACE TCL interface.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 29

The design requires a clock input, typically generated by a PLL. The PLL instance and corresponding reference
clock pad must be specified with the IP configuration perspective in the ACE GUI.

Note

When the user design is run through the ACE place-and-route flow, a Snapshot configuration file is
generated in . This file <ace_project_dir>/<active_impl_dir>/output/names.snapshot
contains all of the signal names connected to Snapshot (automatically extracted from the user design),
along with monitor, trigger, stimuli width settings based on the user RTL, and clock frequency based on
the user SDC constraints, etc. This file is automatically loaded in the Snapshot debugger view in the
ACE GUI to configure Snapshot whenever the active implementation in the ACE session changes.

Clock Constraints (SDC File)
Both the JTAG TCK clock and the Snapshot user clock must be defined in the user SDC clock constraints:

Snapshot JTAG clock: 25MHz

create_clock -period 40 [get_ports {i_jtag_in[0]}] -name tck
set_clock_groups -asynchronous -group {tck}

User design clock; example: 100MHz
set clk_period 10
create_clock -period $clk_period [get_ports i_clk] -name clk
set_clock_groups -asynchronous -group {clk}Example Verilog RTL

Synplify Constraints (SDC File)
Synplify does not know that clocks pass through the cells, so their outputs must be declared explicitly, CLK_IPIN
otherwise Synplify simply assumes all clocks are 200MHz.

JTAG CLK_IPIN pass-through:

create_clock [get_pins x_snapshot.x_jtap_interface.x_acx_jtap.clk_ipin_tck/dout] -period 40 -name

tck_core

set_clock_groups -asynchronous -group {tck_core}

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 30

Example Code:
The Snapshot macro should be instantiated in the user design, as shown in the following example, and
connected to the signals that may need to be observed. Declaring the component is required for ACX_SNAPSHOT
Synplify to recognize the Verilog macro.

library ieee;

 use ieee.std_logic_1164.all;
 use ieee.std_logic_unsigned.all;

entity snapshot_example is
port (

 i_jtag_in : in std_logic_vector(7 downto 0);
 o_jtag_out : out std_logic_vector(1 downto 0);

 i_clk : in std_logic);
end snapshot_example;

architecture rtl of snapshot_example is

 constant MONITOR_WIDTH : integer := 8;

 component ACX_SNAPSHOT is
 generic (

 DUT_NAME : string;
 MONITOR_WIDTH : natural;

 MONITOR_DEPTH : natural;

 TRIGGER_WIDTH : natural;
 NUM_TRIGGERS : natural;

 STANDARD_TRIGGERS : std_logic;
 STIMULI_WIDTH : natural;

 INPUT_PIPELINING : natural;
 OUTPUT_PIPELINING : natural;

 ARM_DELAY : natural;
 ENABLE_EDGE_TRIGGERS : std_logic;

 INITIAL_TRIGGER : std_logic;
 INITIAL_NUM_TRIGGERS : std_logic_vector(1 downto 0);

 INITIAL_TRIGGER1 : string(MONITOR_WIDTH-1 downto 0);
 INITIAL_TRIGGER2 : string(MONITOR_WIDTH-1 downto 0);

 INITIAL_TRIGGER3 : string(MONITOR_WIDTH-1 downto 0);
 INITIAL_USE_AND_1 : std_logic;

 INITIAL_USE_AND_2 : std_logic;
 INITIAL_USE_AND_3 : std_logic;

 INITIAL_PRE_STORE : std_logic_vector(1 downto 0);
 SNAPSHOT_MODE : natural);

 port (
 i_jtag_in : in std_logic_vector(7 downto 0);

 o_jtag_out : out std_logic_vector(1 downto 0);
 --- SIGNALS to/from USER DESIGN ---

 i_user_clk : in std_logic;
 i_monitor : in std_logic_vector(MONITOR_WIDTH-1 downto 0);

 i_trigger : in std_logic_vector(MONITOR_WIDTH-1 downto 0);
 o_stimuli : out std_logic_vector(19 downto 0);

 o_stimuli_valid : out std_logic;
 o_arm : out std_logic;

 o_trigger : out std_logic);
 end component;

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 31

 signal counter : std_logic_vector(MONITOR_WIDTH-1 downto 0);

 signal reset : std_logic := '0';
 signal reset_pipe : std_logic_vector(8 downto 0) := (others => '1');

begin

 acx_snapshot_i : ACX_SNAPSHOT
 generic map(

 DUT_NAME => "none_specified",
 MONITOR_WIDTH => MONITOR_WIDTH,

 MONITOR_DEPTH => 1024,
 TRIGGER_WIDTH => MONITOR_WIDTH,

 NUM_TRIGGERS => 3,
 STANDARD_TRIGGERS => '1',

 STIMULI_WIDTH => 20,
 INPUT_PIPELINING => 3,

 OUTPUT_PIPELINING => 0,
 ARM_DELAY => 1,

 ENABLE_EDGE_TRIGGERS => '1',
 INITIAL_TRIGGER => '1',

 INITIAL_NUM_TRIGGERS => "01",
 -- NUMBER OF CHARACTERS SHOULD BE TRIGGER_WIDTH.

 -- VALID CHARACTERS ARE X, 0, 1, R, AND F.
 INITIAL_TRIGGER1 => "XXXXXXXX",

 INITIAL_TRIGGER2 => "XXXXXXXX",
 INITIAL_TRIGGER3 => "XXXXXXXX",

 INITIAL_USE_AND_1 => '1',
 INITIAL_USE_AND_2 => '1',

 INITIAL_USE_AND_3 => '1',
 INITIAL_PRE_STORE => "00",

 SNAPSHOT_MODE => 0
)

 port map (
 --JTAG Connections

 i_jtag_in => i_jtag_in,
 o_jtag_out => o_jtag_out,

 -- SIGNALS to/from USER DESIGN
 i_user_clk => i_clk,

 i_monitor => counter,
 i_trigger => (others=>'0'),

 o_stimuli => open,
 o_stimuli_valid => open,
 o_arm => open,
 o_trigger => open
);

 -- simple counter for snapshot to monitor

 process(i_clk)
 begin

 if(rising_edge(i_clk)) then
 if(reset = '1') then

 counter <= (others=>'0');
 else

 counter <= counter + x"1";
 end if;

 end if;
 end process;

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 32

 -- self reset

 process(i_clk)
 begin

 if(rising_edge(i_clk)) then
 reset_pipe <= reset_pipe(7 downto 0) & '0';

 reset <= reset_pipe(8);
 end if;

 end process;

end rtl;

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 33

1.

2.

Chapter - 6: Probing in a Hierarchical Design

Overview
Snapshot provides the ability to probe signals deep within a hierarchical design without the need to modify every
level of RTL, i.e., pulling the signals though the hierarchy up to the top level.

A special macro allows defining which signals are to be probed within the deeply-embedded module. These
probe points are then matched at the top-level module where Snapshot is instantiated. Synplify or ACE
(depending on usage) aligns the deeply embedded and top-level signals, providing access to the embedded
signals without the need to explicitly route them to the top level through multiple levels of RTL.

This method uses modules and . There are two options for using ACX_PROBE_CONNECT ACX_PROBE_POINT
these modules:

Provide a user-defined tag to associate an with an ACX_PROBE_POINT ACX_PROBE_CONNECT

Provide a hierarchical pin name (with wildcards) to associate pins with an ACX_PROBE_CONNECT

When the selected association is provided, monitor the output with Snapshot.ACX_PROBE_CONNECT

Generally, the method with tags is preferred, because it is often hard to determine the full hierarchical name of a
pin. The pin name method is useful for tapping a signal from a macro that cannot be edited (for example, probing
inside the library macros or third-party IP).

Note

The method providing user-defined tags uses Synplify and syn_hyper_source syn_hyper_connect
instances. Error messages might refer to those terms.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 34

Module Declarations

module ACX_PROBE_POINT #(

 parameter integer width = 1, // set to input width
 parameter tag = "" // set to unique string

) (
 input [width-1:0] din

);
endmodule

An takes as input one or more signals that must be observed with Snapshot. The ACX_PROBE_POINT
 is instantiated in the hierarchy at the point where these signals are available.ACX_PROBE_POINT

module ACX_PROBE_CONNECT #(

 parameter integer width = 1, // must match width of source
 parameter tag = "", // must match tag of source

 parameter pin = "", // "instance/pin" or "instance/bus", wildcards allowed
 parameter must_connect = 1'b1 // whether missing source is error or warning

) (
 output [width-1:0] dout

);
endmodule

The output of an instance is monitored with Snapshot. This instance can be created in ACX_PROBE_CONNECT
the same module as the instance. The software uses the tag string to find a matching ACX_SNAPSHOT

, then replaces both modules with a direct connection between the input of the ACX_PROBE_POINT
 and the output of the .ACX_PROBE_POINT ACX_PROBE_CONNECT

Alternatively, for cases where it is not possible to insert an , an can ACX_PROBE_POINT ACX_PROBE_CONNECT
be used with a hierarchical pin name instead of a tag. The ACE command can be useful when determining find
hierarchical names.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 35

Example
The following code is similar to the design shown in , but places the Verilog Snapshot example (see page 23)
two counters (the user design) inside a separate module, . Compare this to a module designed to counters
compute some function (in this example) without necessarily exposing the counters themselves. But all_zero
during debugging, counter values must be observed to verify correctness. Rather than adding ports to expose
the counters, possibly for many levels of hierarchy, probe points can be used instead.

As mentioned, using probe points with tags is preferred, but for the sake of the example, a probe point was only
placed on . The pin name is used to identify .counter_a counter_b

Nested Module With Local Counters

`timescale 1ps/1ps
module counters (

 input wire i_clk,
 input wire i_rst_n,

 input wire [7:0] i_limit_a,
 output wire o_all_zero

);

/********** user circuit ***/

 // The main user design consists of two counters.
 // counter_a : 8-bit counter with configurable period.

 // counter_b : 16-bit counter

 // The main user design consists of two counters.
 // counter_a : 8-bit counter with configurable period. The period is set

 // by setting limit_a via the Snapshot stimuli. Default
 // limit_a = 62 (hence counter_a has default period 63).

 // counter_b : 16-bit counter

 reg [7 : 0] counter_a = 0; // counts 0..i_limit_a
 reg [15 : 0] counter_b = 0;

 always @(posedge i_clk)

 begin
 if (!i_rst_n)

 begin
 counter_a <= 0;

 counter_b <= 0;
 end

 else
 begin

 if (counter_a == i_limit_a)
 counter_a <= 0;

 else
 counter_a <= counter_a + 1;

 counter_b <= counter_b + 1;
 end

 end

 assign o_all_zero = (counter_a == 0 && counter_b == 0);

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 36

/********** probe points for Snapshot **/

 ACX_PROBE_POINT #(

 .width(8),
 .tag("counter_a")

) probe_counter_a (
 .din(counter_a)

);

endmodule // counters

At the top level where Snapshot is instantiated, matching instances are created that use ACX_PROBE_CONNECT
the same tags. For , the pin name method is used to create the connection. While and counter_b counter_a

 are seemingly driven by , internally they are connected to the actual counter_b ACX_PROBE_CONNECT
counters.

Top-Level Module With Snapshot

// Copyright (c) 2021 Achronix Semiconductor Corp.
// All Rights Reserved.

`include "speedster7t/common/speedster7t_snapshot_v3.sv"

`timescale 1ps/1ps
module snapshot_counter (

 // jtag ports:
 input wire jtag_input_tp i_jtag_in,

 output wire jtag_output_tp o_jtag_out,

 // user design ports:

 input wire i_clk,
 input wire i_pll_lock

);

/********** Snapshot stimuli ***/

 // Snapshot stimuli are only valid when stimuli_valid = 1

 wire stimuli_valid;
 reg stimuli_valid_d = 1'b0; // for edge detection

 always @(posedge i_clk)
 begin

 stimuli_valid_d <= stimuli_valid;
 end

/********** reset **/

 // Use a counter to assert rst_n for some number of cycles at startup.

 // If restart_rst_count = 1, restart the counter.
 localparam integer reset_cycles = 20;

 localparam integer rst_count_width = $clog2(reset_cycles);

 reg [rst_count_width-1 : 0] rst_count = { rst_count_width {1'b0} };
 reg rst_n;
 wire restart_rst_count;
 wire restart;

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 37

 always @(posedge i_clk)

 begin
 if (restart_rst_count)

 rst_count <= { rst_count_width {1'b0} };
 else if (!rst_n && i_pll_lock)

 rst_count <= rst_count + 1'b1;

 rst_n <= (rst_count >= reset_cycles);

 end

 // set 'restart' via Snapshot stimuli to cause a reset
 assign restart_rst_count = (restart && stimuli_valid && !stimuli_valid_d);

/********** counter limit **/

 reg [7:0] limit_a = 62;

 wire [7 : 0] limit_a_in; // set via stimuli: if not 0, value for limit_a
 always @(posedge i_clk)
 begin
 if (stimuli_valid && limit_a_in != 0)
 limit_a <= limit_a_in;
 end

/********** user circuit ***/

 wire all_zero;

 counters x_counters (
 .i_clk(i_clk),

 .i_rst_n(rst_n),
 .i_limit_a(limit_a),

 .o_all_zero(all_zero)
);

/********** snapshot ***/

 localparam integer MONITOR_WIDTH = 36;

 localparam integer MONITOR_DEPTH = 4000; // will be rounded up

 wire [MONITOR_WIDTH-1 : 0] monitor;
 wire arm;

 wire [7:0] counter_a;

 ACX_PROBE_CONNECT #(
 .width(8),

 .tag("counter_a")
) probe_counter_a (

 .dout(counter_a)
);

 wire [15:0] counter_b;

 ACX_PROBE_CONNECT #(
 .width(16),

 .pin("*.counter_b*/q")
) probe_counter_b (

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 38

 .dout(counter_b)

);

 assign monitor = {

 counter_b,
 counter_a,

 limit_a,
 all_zero,

 arm,
 stimuli_valid,

 rst_n
 };

 localparam integer STIMULI_WIDTH = 9;

 wire [STIMULI_WIDTH-1 : 0] stimuli;
 assign {

 restart,
 limit_a_in
 } = stimuli;

 ACX_SNAPSHOT #(

 .DUT_NAME("snapshot_counter"),
 .MONITOR_WIDTH(MONITOR_WIDTH),

 .MONITOR_DEPTH(MONITOR_DEPTH),
 .TRIGGER_WIDTH(MONITOR_WIDTH < 40? MONITOR_WIDTH : 40),

 .STIMULI_WIDTH(STIMULI_WIDTH),
 .ARM_DELAY(3)

) x_snapshot (
 .i_jtag_in(i_jtag_in),

 .o_jtag_out(o_jtag_out),

 .i_user_clk(i_clk),
 .i_monitor(monitor),

 .i_trigger(), // not used if STANDARD_TRIGGERS = 1
 .o_stimuli(stimuli),

 .o_stimuli_valid(stimuli_valid),
 .o_arm(arm),

 .o_trigger()
);

endmodule // snapshot_counter

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 39

1.

2.

3.

4.

5.

Chapter - 7: Running the Snapshot User Interface

Warning!

The JTAG connection must be configured before using the snapshot debugger.
ACE interacts with the FPGA using the JTAG interface through a Bitporter2 pod or FTDI FT2232H
device. This JTAG interface must be properly configured in ACE before using the Snapshot Debugger
view. The configuration is managed using the , which is Configure JTAG Connection preference page
easily accessible by clicking the () button in the Snapshot Debugger Configure JTAG Interface
view. See for more details.Configuring the JTAG Connection

Snapshot is the real-time design debugging tool for Achronix FPGAs. Snapshot, which is embedded in the ACE
software, delivers a practical platform to evaluate the signals of a user design in real-time and optionally send
stimuli to the user design.

To utilize the snapshot debugger tool, the snapshot macro must be instantiated inside the RTL for the design
under test (DUT). After instantiating the macro and programming the device, the design can be debugged in the
ACE GUI using the and the , found within the Snapshot Debugger view VCD Waveform Editor Programming and

.Debug perspective

Figure 7: Snapshot Communication with the Snapshot Debugger View within ACE
When instantiated in a design, the Snapshot macro can be used to interface with

any logic mapped to the Achronix FPGA core. The Snapshot macro provides a JTAG
/JTAP interface to control/observe debug logic mapped to the core. This interface

allows the ACE Snapshot Debugger view, which drives the JTAG interface, to
control/observe the signals associated with the debug logic.

Within the ACE GUI, the Snapshot Debugger view allows configuring an embedded Snapshot Debugger core,
interactively arm the core, and generate a VCD waveform output of the collected samples. By default, the
generated VCD waveform output is displayed in the ACE editor area using the . The VCD VCD Waveform Editor
output can also be read into a third-party waveform viewer.

At a high level, to utilize Snapshot, first:

Instantiate the Snapshot macro in the user design.ACX_SNAPSHOT

Set the required constraints in the files..sdc

Synthesize the design.

Place and route the design in ACE.

Generate the Bitstream for the design in ACE.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 40

5.

6.

7.

Generate the Bitstream for the design in ACE.

Configure the ACE JTAG connection to the FPGA (see)Configuring the JTAG Connection

Program the Achronix device with the Bitstream.

Use of the ACE GUI is documented in the section Download view Playing a STAPL File
(Programming a Device)

Use of the executable on the command-line is documented in the acx_stapl_player JTAG
 (UG004)Configuration User Guide

When these prerequisite steps are complete, the ACE GUI allows the evaluationSnapshot Debugger view
/interaction with the running design in real-time.

The following sections further explain Snapshot and provide a guide through the process.

Accessing the Snapshot Debugger
Open the ACE GUI and Select the Project
Open the ACE GUI tool, and load or activate the selected project in the Projects View as shown below. See:

Loading Projects,

Setting the Active Implementation

Working with Projects and Implementations

Figure 8: ACE Tool Load Project

Open the Snapshot Debugger

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 41

Open the Snapshot Debugger
Click the toolbar button to change to the () Programming and Debug Perspective as described in the Working

 section. The should be visible by default, as shown below. If not, with Perspectives Snapshot Debugger view
select from the main menu bar.Window → Show View → Snapshot Debugger
The should have automatically loaded the default Snapshot configuration file for the Snapshot Debugger view
project, generated when the design ran through place and route, located in <ace_project_dir>

. If the file loaded, the correct signal names from the user /<active_impl_dir>/output/names.snapshot
design appear in the , , and tables. If the file did not automatically Trigger Channels Monitor Channels Stimuli
load, click the () toolbar button in the to browse to Load Snapshot Configuration Snapshot Debugger view
the location of the preferred configuration file, or manually enter the signal names, channel widths, *.snapshot
etc. to match the design.

Figure 9: Snapshot Debugger View

Configuring the Trigger Pattern
Note

The Trigger Channel signal names are automatically configured to the correct values when the names.
snapshot file is loaded. The file is generated during design preparation (the names.snapshot Run

), which contains the user design signal names connected to Snapshot, along with Prepare Flow Step
the trigger width and the maximum number of sequential triggers.

Configuring the Trigger Mode
The option allows the user to select the trigger mode to use when the Arm action is run.Trigger Mode

Single

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 42

Single
The default trigger mode is , which means the trigger conditions are programmed in to the Single
ACX_SNAPSHOT macro and then the GUI waits for a single trigger event to occur which matches those trigger
conditions, and then a single VCD file is recorded. This option arms Snapshot and captures data only once.

Immediate
If trigger mode is selected, pressing the Arm button results in the same behavior as trigger Immediate Single
mode, except that all 3 trigger patterns are treated as "Don't Care" (X's) so that the trigger event will occur as
soon as the Arm button is pressed. This mode is useful to quickly capture the state of the running design without
waiting for any trigger pattern to be met.

Repetitive
If trigger mode is selected, the trigger conditions are programmed in to the ACX_SNAPSHOT macro Repetitive
and samples are captured repetitively until the upper limit of trigger event records is reached. When Repetitive
trigger mode is selected, an additional set of repetitive trigger mode options will appear to allow the user to
configure the number of sequential times Snapshot should be armed repetitively using the configured trigger
conditions, and the way in which the output VCD files are managed. This mode is useful when the trigger
conditions do not narrow in on the exact data pattern and the pattern you intend to observe occurs sporadically at
the trigger conditions. You can let the repetitive trigger mode run for a long period of time, taking several capture
records at the trigger conditions, to help find the pattern you are interested in. The user can optionally cancel the
remaining Snapshot session once the desired data is captured.

The repetitive trigger Record Limit setting determines how many times (number of records) the GUI will
repeatedly Arm the Snapshot debugger and capture samples. The user may set this to automatically run
Snapshot up to 128 times.

The repetitive trigger VCD Record Limit setting determines how many Snapshot records to capture in a single
VCD file. This essentially concatenates the VCD files from consecutive runs of Snapshot (records) into a single
VCD file. The VCD file waveform contains a set of virtual signals to indicate the system timestamp at which each
Snapshot record was captured. The user may concatenate up to 10 Snapshot records in a single VCD file.

If the Overwrite VCD File option is selected, the VCD Waveform File name specified in the Advanced Options
section will be used to store the output VCD file. The file will be overwritten with the new VCD file each time the
VCD record limit is reach. If the Overwrite VCD File option is not selected, then multiple VCD files will be written
out and a unique VCD record number will be added to the VCD Waveform File name specified in the Advanced
Options section for each VCD. For example, if you set the Record Limit to 8 and set the VCD Record Limit to 2,
and set the VCD Waveform file path the "./snapshot.vcd", then Snapshot would output 4 VCD files to ".
/snapshot1.vcd", "./snapshot2.vcd", "./snapshot3.vcd", "./snapshot4.vcd", each containing 2 Snapshot capture
records.

Configuring Trigger Patterns
The Snapshot Debugger can be configured to use a of 1 to 40 bits. The value entered in Trigger Channel Width
the Snapshot Debugger View must match the value of the parameter set on the TRIGGER_WIDTH
ACX_SNAPSHOT module in the user design RTL. (This will be the width of the bus.)i_trigger

The Snapshot Debugger is capable of handling one to three sequential trigger patterns. The post-trigger data is
sampled once the last trigger pattern in the sequence is matched.

The user may specify the number of desired sequential trigger patterns using the Number of Sequential
 option in the . If is selected, Trigger 2 and Trigger 3 are ignored. If is Triggers Snapshot Debugger View 1 2

selected, Trigger 3 is ignored and Snapshot will trigger when Trigger 1 is matched, followed (on any subsequent
clock) by a match on Trigger 2. If is selected, then Snapshot will trigger after a match on Trigger 1, followed (on 3
any subsequent clock) by a match on Trigger2, followed (on any subsequent clock) by a match on Trigger3.

Each sequential trigger is hooked up to the trigger channels on the Snapshot Debugger core. The LSb of the

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 43

Each sequential trigger is hooked up to the trigger channels on the Snapshot Debugger core. The LSb of the
trigger pattern is hooked to trigger channel 0, and the MSB is hooked to upper most trigger channel bit
(TRIGGER_WIDTH - 1).

Each sequential trigger is made up of three parts: the pattern mask, the edge mask, and the don't care mask. In
the Snapshot Debugger View, these 3 masks are combined for ease of use into a single trigger pattern value,
which allows each bit to be specified as (don't care), (rising edge), (falling edge), (level 0), or (level 1). X R F 0 1
The trigger pattern defines the trigger channel signal conditions that are required to detect a match. If a given
trigger channel value is set to X (don't care), then this trigger channel is ignored when computing a match. If a
given trigger channel value is set to R (rising edge), then this trigger channel is is evaluated as a match when a
rising edge of this signal is seen by Snapshot. If a given trigger channel value is set to F (falling edge), then this
trigger channel is is evaluated as a match when a falling edge of this signal is seen by Snapshot. If a given
trigger channel value is set to 1 (level 1), then this trigger channel is is evaluated as a match as long as this
signal's level is seen as a 1 by Snapshot (it is not edge sensitive). If a given trigger channel value is set to 0
(level 0), then this trigger channel is is evaluated as a match as long as this signal's level is seen as a 0 by
Snapshot (it is not edge sensitive).

Warning!

If any active Trigger is configured with as all X's (don't care), the trigger pattern will be a match on the
first clock cycle that trigger is evaluated.

The values within a trigger pattern may cause a trigger match event either by AND'ing or OR'ing. If AND'ing, then
 signal values not masked (set to X) must match their pattern for the trigger match event to occur. If OR'ing, all

then the trigger match event will occur if of the non-masked (not set to X) signal values match the specified any
pattern. The AND/OR configuration is set per sequential trigger using the or Select using AND Select using OR
radio buttons. This selection can be different for each sequential trigger.

In the "Trigger Channels" table of the Snapshot Debugger View, the trigger patterns can be viewed and edited.

Setting Pattern Values Using the Table
For each channel, a value of (don't care), (rising edge), (falling edge), (level 0), or (level 1) can be X R F 0 1
specified via a pull-down menu under each "Trigger" column as shown below.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 44

1.

2.

Figure 10: Trigger Channels Setting Example

Setting Multiple Pattern Values as a Bus
The Assign Bussed Values Dialog wizard allows assigning a value to multiple signals from the Snapshot

 "Trigger Channels" or "Stimuli Channels" tables as a bus. After configuring the bus in the dialog, Debugger view
the values of each signal are propagated to all the selected signals in the . There are 2 Snapshot Debugger View
ways to launch this dialog to allow bus assignment of values:

With your mouse, left click to select a single row in the table which has a Snapshot Debugger View
bussed signal name (i.e. din[2]). Then right mouse click to edit the . This method will Value by Bus
automatically find all the other bits in the bus with the same signal name (i.e. din[0], din[1], din[2], etc.) and
open the dialog to allow editing of the entire bus of signals.

With your mouse, hold CTRL or SHIFT and left click to select multiple rows in the Snapshot Debugger
 table. Then right mouse click to edit the . This method will open the dialog to View Value by Selection

allow editing of all selected signals as a bussed value.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 45

Figure 11: Assign Bussed Values Dialog Example

See for more information on this dialog.Assign Bussed Values Dialog

Configuring the Monitor Signals
Note

The Monitor Signals are automatically configured to the correct values when the file names.snapshot
is loaded. The file is generated during design preparation (the) which contains Run Prepareflow Step
the user design signal names connected to Snapshot, along with the monitor width and number of
samples.

The value of in the must be configured to match the value of Monitor Channel Width SnapShot Debugger view
the parameter of the instance inside the RTL of the design being debugged MONITOR_WIDTH ACX_SNAPSHOT
(this is the width of the bus).i_monitor

The value of in the should be configured to match the value of Number of Samples SnapShot Debugger view
the parameter of the instance inside the RTL of the design being debugged. If MONITOR_DEPTH ACX_SNAPSHOT
the value in the GUI does not match the value in the RTL, the value from the RTL is used and a warning is
entered into the Snapshot log file.

Naming Captured Signal Data
Custom signal names for each channel can be entered under the heading within the "Monitor Signal Name
Channels" table. The signal/bus names in the table are then used as labels on the captured signal data in the
VCD waveform output, and are visible in the .VCD Waveform Editor

Multiple signals can be combined into a bus by selecting multiple rows in the "Monitor Channels" table, right-
clicking a selected signal row to bring up a popup context menu, and selecting () from the Assign Bus Name
context menu to bring up the . After configuring the bus in the dialog, the bus Assign Bussed Signal Names dialog
name and indices are propagated to all the previously-selected signals.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 46

1.

2.

1.

2.

To select a contiguous range of rows:

Select the first signal.

hold the Shift key and select the last signal.

To select a non-contiguous set of rows:

Select the first signal.

While holding down the Ctrl key, select the other signals.

Signal names may be returned to their defaults by clicking the button under the "Monitor Reset Signal Names
Channels" table.

Note

Reset Signal Names resets all signal names in the table at once, not just the currently selected rows
/signals.
The button loads the file generated Load Signal Names From Active Project names.snapshot
during design preparation (the) which renames all signals with their project-Run Prepare flow step
specific names, and also loads the project-specific default settings for monitor width, user clock
frequency, default and file path, etc..log .vcd

Configuring the Test Stimuli
The stimuli channel signal names are automatically configured to the correct values when the names.

 file is loaded. The file is generated during design preparation (the snapshot names.snapshot Run
), which contains the user design signal names connected to Snapshot, along with Prepare Flow Step

the stimuli width.

Snapshot has the capability to send 0 to 512 bits of test stimuli (the macro output signal ACX_SNAPSHOT
) to the Design Under Test (DUT). This data is sent once per arming session, is only valid while the o_stimuli

 signal is high.o_stimuli_valid

This output is optional, and need not be connected to the DUT — it may safely be left floating when o_stimuli
Snapshot is used to only read signals.

The value of in the must be configured to match the value of Stimuli Channel Width SnapShot Debugger view
the parameter of the ACX_SNAPSHOT instance inside the RTL of the design being debugged STIMULI_WIDTH
(this is the width of the bus).o_stimuli

In the table of the Snapshot Debugger View, the stimuli values can be viewed and edited.Stimuli Channels

Setting Stimuli Values Using the Table
For each channel, an output value of (level 0), or (level 1) can be specified via a pull-down menu under the 0 1

 column as shown.Value

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 47

1.

2.

Figure 12: Stimuli Channels Value Setting Example

Setting Multiple Stimuli Values as a Bus
The Assign Bussed Values Dialog wizard allows assigning a value to multiple signals from the SnapShot

 table as a bus. After configuring the bus in the dialog, the values of each Debugger view Stimuli Channels
signal are propagated to all the selected signals in the . There are two ways to launch SnapShot Debugger View
this dialog to allow bus assignment of values:

Left click to select a single row in the table which has a bussed signal name (i.SnapShot Debugger View
e.,).din[2]
Right click to edit the . This method automatically finds all other bits in the bus with the Value by Bus
same signal name (i.e., , , , etc.) and opens the dialog to allow editing of the entire din[0] din[1] din[2]
bus of signals.

Hold or and left click to select multiple rows in the table.CTRL SHIFT SnapShot Debugger View
Right click to edit the . This method opens the dialog to allow editing of all selected Value by Selection
signals as a bussed value.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 48

Figure 13: Assigned Bus Values Dialog Wizard Example

See for more information on this dialog.Assign Bussed Values Dialog

Configuring Advanced Options
Pre-Store
In the , the setting configures the portion of samples that are collected Snapshot Debugger View Pre-Store
before the trigger, and (indirectly) how many are collected after the trigger.

For example, assume that Snapshot is configured to use a monitor depth of 1024 samples. See the table below:

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 49

Table 7: Effect of "Pre-store" on samples collected before and after the trigger event

"Pre-Store" value Samples collected before trigger Samples collected after trigger

0% 0 1024

25% 256 768

50% 512 512

75% 768 256

When a value other than is selected, the file contains a signal that Pre-Store 0% .vcd snapshot_pre_store
transitions (goes low) at the point where the (last sequential) trigger event occurred. Thus, the trigger event may
easily be found without needing to actually count the samples.

Trigger Pattern Match Behavior
The values within a trigger pattern may cause a trigger match event either by AND'ing or OR'ing. If AND'ing, then

 signal values not masked (set to X) must match their pattern for the trigger match event to occur. If OR'ing, the all
trigger match event occurs if of the non-masked (not set to X) signal values match the specified pattern. The any
AND/OR configuration is set per sequential trigger using the or radio Select using AND Select using OR
buttons. This selection can be different for each sequential trigger.

User Clock Frequency
The field must be configured to match the the frequency in the target user design, which Frequency user_clk
typically matches the timing constraint set in the SDC file of the design being debugged. The value from the user
design SDC file is set automatically in the file when an active implementation is available. names.snapshot
The frequency value entered in the Snapshot GUI (or configuration file) determines the time (in .snapshot
picoseconds) for all signals shown in the captured VCD file. All samples are captured at the rising edge of the
Snapshot signal.user_clk

Configure Output File Locations
The final Snapshot configuration steps specify the locations of the output files which contain the log messages
and sample data collected by Snapshot.

File Paths Relative To Chooses whether the and paths are understood to be relative Log File Waveform File
to the directory or to the (this only matters when the file paths provided are Active Project Working Directory
relative paths, and not absolute paths).

Log File configures the file name and path for the log file generated by the Snapshot Debugger run. The
associated button provides a directory/file selection dialog for the selection of a location different than Browse
the default (the default is , or if there is no <active_impl_dir>/log/snapshot.log Active Project and

,). If an error occurs during setup or while reading back the Implementation <user_home>/snapshot.log
sample information, the Snapshot log file contains the error messages.

Waveform File configures the file name and path for storing downloaded sample waveform information from the
SnapShot Debugger core in VCD format. The button allows for the selection of a location different than Browse
the default (the default is , or if there is no active <active_impl_dir>/output/snapshot.vcd
implementation,).<user_home>/snapshot.vcd

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 50

Collecting Samples of the User Design
Using the Startup Trigger
The Startup Trigger feature requires that the initial startup trigger parameters are configured on the

 macro to enable the Startup Trigger feature, and that the Arm Snapshot action has not been ACX_SNAPSHOT

executed since the bitstream has been programmed. By clicking the () button, the Capture Startup Trigger
Snapshot Debugger view connects to the running circuit over JTAG and waits for the startup ACX_SNAPSHOT
trigger condition to be met, retrieves the trace buffer contents, and outputs a VCD file. This feature is useful to
capture trigger events that happen very soon after the Achronix FPGA enters user mode. When the () Arm

 button is clicked, the startup trigger conditions and any existing trace buffer contents are cleared. The Snapshot
Startup Trigger feature may only be used once after programming the bitstream.

Arming the Snapshot Debugger
When all the fields in the are configured, and the design is running on the target Snapshot Debugger view
device, Snapshot is ready to be armed.

Select the button (or the () button in the SnapShot Debugger view toolbar), and the ACE Arm Arm Snapshot
Snapshot Debugger sends the configuration data (including the optional stimulus) to the circuit ACX_SNAPSHOT
running on the Achronix device, waits for the trigger condition(s) to be met, retrieves the trace buffer contents,
and outputs a VCD file as well as a LOG file.

When Armed, Snapshot begins to analyze the already-executing design in real-time.

The Snapshot log file and Snapshot waveform file are populated with the captured results, and the files are
opened in ACE (the log file opens in an ACE , while the waveform () file opens in the ACE text editor .vcd VCD

). If an error occurs during Snapshot Debugger configuration or while reading back the sampled waveform editor
information (trace buffer), the Snapshot log file contains the relevant error messages, and the Snapshot
waveform file is not created/updated.

The () button aborts the Snapshot arming process. The Snapshot log file is updated, but the Cancel
Snapshot waveform file is not created/updated if the cancel button is clicked. Cancel is useful if accidentally
sending in trigger conditions that are never matched.

If using trigger mode, Snapshot repetitively executes the arm action for the number of records Repetitive
specified, or until the cancel button is clicked. See for details on the Repetitive Configuring the Trigger Pattern
Trigger feature.

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 51

Figure 14: Snapshot Debugger Arming Example

Saving/Loading Snapshot Configurations
An existing known-good Snapshot configuration (the collection of settings in the) may Snapshot Debugger View
be re-used at a later date, or in batch mode.

Snapshot configurations may be saved to a Snapshot configuration file (with the file extension) .snapshot

using the () button found in the toolbar.Save SnapShot Configuration Snapshot Debugger view

These Snapshot configurations may then be loaded later by using the () Load SnapShot Configuration
button, found in the toolbar.Snapshot Debugger view

Note

Previously saved Snapshot configuration files are necessary to run .Snapshot in Batch mode

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 52

Tip

When a user design containing the macro completes the , a ACX_SNAPSHOT flow step Run Prepare
 configuration file is automatically generated. This file contains harvested information names.snapshot

from the design including the monitor width, monitor depth, monitored signal names, trigger width,
maximum number of triggers, trigger signal names, stimuli width, stimuli signal names, and user clock
frequency. When an is available, the Snapshot Debugger view active project and implementation
automatically loads the implementation file to pre-populate the relevant fields of the names.snapshot
view. When generated, the file contains only a subset of a complete Snapshot configuration, and thus a
generated file should not be used to drive via Tcl.names.snapshot Snapshot in batch mode
The names.snapshot configuration file can be loaded as a starting point to map the Snapshot RTL
configuration into the Snapshot Debugger View. The Snapshot settings can be further customized and
saved as custom Snapshot configuration files for later use.

Running Snapshot in Batch Mode
It is also possible to run Snapshot from ACE in batch mode. To do so, use the TCL command . run_snapshot
Note that requires the use of a Snapshot configuration file (), and run_snapshot previously-saved .snapshot
allows some values to be overridden from the TCL commandline. See the command in the TCL run_snapshot
Command Reference section for further details.

The Snapshot configuration file may be edited manually in a text editor, or by configuring the Snapshot Debugger
 in the ACE GUI and .view saving the Snapshot configuration

Example Snapshot Configuration File

#Snapshot Configuration File
#Tue Sep 12 13:52:54 PDT 2017

files_relative_to_project=1
frequency=322.0

log_file=./impl_1/log/snapshot.log
monitor_ch0.name=reset_n

monitor_ch1.name=stimuli_valid
monitor_ch10.name=limit_a[7]

monitor_ch11.name=counter_a[0]
monitor_ch12.name=counter_a[1]

monitor_ch13.name=counter_a[2]
monitor_ch14.name=counter_a[3]
monitor_ch15.name=counter_a[4]
monitor_ch16.name=counter_a[5]
monitor_ch17.name=counter_a[6]
monitor_ch18.name=counter_a[7]
monitor_ch19.name=counter_b[0]
monitor_ch2.name=arm
monitor_ch20.name=counter_b[1]
monitor_ch21.name=counter_b[2]
monitor_ch22.name=counter_b[3]
monitor_ch23.name=counter_b[4]
monitor_ch24.name=counter_b[5]
monitor_ch25.name=counter_b[6]
monitor_ch26.name=counter_b[7]
monitor_ch27.name=counter_b[8]
monitor_ch28.name=counter_b[9]
monitor_ch29.name=counter_b[10]

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 53

monitor_ch3.name=limit_a[0]

monitor_ch30.name=counter_b[11]
monitor_ch31.name=counter_b[12]

monitor_ch32.name=counter_b[13]
monitor_ch33.name=counter_b[14]

monitor_ch34.name=counter_b[15]
monitor_ch4.name=limit_a[1]

monitor_ch5.name=limit_a[2]
monitor_ch6.name=limit_a[3]

monitor_ch7.name=limit_a[4]
monitor_ch8.name=limit_a[5]

monitor_ch9.name=limit_a[6]
monitor_width=38

num_samples=4096
num_triggers=3

pre_store=0%
repetitive_trigger.overwrite_vcd=0

repetitive_trigger.record_limit=10

repetitive_trigger.vcd_record_limit=10
snapshot_version=3

stimuli=110010100
stimuli_ch0.name=stimuli[0]

stimuli_ch1.name=stimuli[1]
stimuli_ch2.name=stimuli[2]

stimuli_ch3.name=stimuli[3]
stimuli_ch4.name=stimuli[4]

stimuli_ch5.name=stimuli[5]
stimuli_ch6.name=stimuli[6]

stimuli_ch7.name=stimuli[7]
stimuli_ch8.name=do_reset

stimuli_ch9.name=stimuli_ch9
stimuli_width=9

trigger1=XXXXXXXXXXXXXXXXXXXXX00110101XXXXXXXXXXX
trigger1.select_using_and=1

trigger2=XXXXXXXXXXXXXXXXXXXXX1111R000XXXXXXXXXXX
trigger2.select_using_and=1

trigger3=XXXXXXXXXXXXXXXXXXXXXXXXXFXXXXXXXXXXXXXX
trigger3.select_using_and=1

trigger_ch0.name=reset_n
trigger_ch1.name=stimuli_valid

trigger_ch10.name=limit_a[7]
trigger_ch11.name=counter_a[0]

trigger_ch12.name=counter_a[1]
trigger_ch13.name=counter_a[2]

trigger_ch14.name=counter_a[3]
trigger_ch15.name=counter_a[4]

trigger_ch16.name=counter_a[5]
trigger_ch17.name=counter_a[6]

trigger_ch18.name=counter_a[7]
trigger_ch19.name=counter_b[0]

trigger_ch2.name=arm
trigger_ch20.name=counter_b[1]

trigger_ch21.name=counter_b[2]
trigger_ch22.name=counter_b[3]

trigger_ch23.name=counter_b[4]
trigger_ch24.name=counter_b[5]

trigger_ch25.name=counter_b[6]
trigger_ch26.name=counter_b[7]

trigger_ch27.name=counter_b[8]

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 54

trigger_ch28.name=counter_b[9]

trigger_ch29.name=counter_b[10]
trigger_ch3.name=limit_a[0]

trigger_ch30.name=counter_b[11]
trigger_ch31.name=counter_b[12]

trigger_ch32.name=counter_b[13]
trigger_ch33.name=counter_b[14]

trigger_ch34.name=counter_b[15]
trigger_ch4.name=limit_a[1]

trigger_ch5.name=limit_a[2]
trigger_ch6.name=limit_a[3]

trigger_ch7.name=limit_a[4]
trigger_ch8.name=limit_a[5]

trigger_ch9.name=limit_a[6]
trigger_mode=Single

trigger_width=38
vcd_file=./impl_1/output/snapshot.vcd

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 55

Revision History

Version Date Description

1.0 05 Apr 2013 Initial Achronix release.

1.1 17 Apr 2013 Updated module name to ACX_SNAPSHOT.

1.2 12 Jul 2016 Modified name of document to not be Speedster22i specific.

1.3 17 Jul 2016

Ported document to Confluence and re-drew figures.
Modified monitor/trigger bus widths to the original 36-bit variants.
Put in information on multiple Snapshot instances through a single JTAG
port and the new feature to display bus values in timing waveforms.

1.4 02 Aug 2016
Included section on .Probing in a Hierarchical Design (see page 33)
Updated parameter list and corrected wording in various sections.

2.0 24 Sep 2017

Extensive reworking and updating of the content to reflect newly available
features as part of the Snapshot version 3 release, including startup trigger,
edge triggering, repetitive trigger mode, configurable monitor and stimuli
widths.

2.1 23 Oct 2018

Snapshot General Description: (see page 7) Minor updates to the Triggers
 section.(see page 8)

Snapshot Interface (see page 11): Corrections to the parameter table and
additional descriptions.

3.0 18 Apr 2023

Changed to and to jtag_input_tp t_JTAG_INPUT jtag_output_tp t_
JTAG_OUTPUT

Change in the verilog interface on "snapshot interface" page.
Change in the "jtag pins" section on "snapshot interface" page.
Change in the verilog example section

Changed to in "jtag pins" section.jtap_bus_tp t_JTAP_BUS

Changed the JTAG input pins to the newer JTAG pins in the VHDL
interface.
Added Snapshot interface with Device Manager section under Snapshot
interface.
Updated examples of :probe_connect

Changed to .pin("*.counter_b[*]:q") .pin("*.counter_b*
 as advised./q")

Changed the verilog example top module from to snapshot_counter sna
 to be in sync with the rest of the naming.pshot_example

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com 56

Version Date Description

Added a snapshot example VHDL section.
Updated the screenshots in Running Snapshot Interface (see page 39)
page.
Updated the Block Diagram to include FTDI Device & Bitporter 2 in:

Snapshot User Guide (see page 5) main page.
Running Snapshot Interface (see page 39) page.

http://www.achronix.com

	Overview
	Snapshot General Description
	Features
	Triggers
	Trigger Examples

	Names.snapshot File

	Snapshot Interface
	Snapshot Macros
	JTAG Pins
	Snapshot User Port List
	Snapshot Parameter List
	Startup Trigger Parameters
	Parameter Impact on Core Logic Utilization
	Verilog Template
	VHDL Template
	Snapshot Interface with Device Manager
	Overview
	Sharing the JTAG Interface with Snapshot

	Snapshot Unit Verilog Template
	Instantiation Template

	Snapshot Example (Verilog)
	Overview
	Clock Constraints (SDC File)
	Synplify Constraints (SDC File)
	Example Code:

	Snapshot Example (VHDL)
	Overview
	Clock Constraints (SDC File)
	Synplify Constraints (SDC File)
	Example Code:

	Probing in a Hierarchical Design
	Overview
	Module Declarations

	Example

	Running the Snapshot User Interface
	Accessing the Snapshot Debugger
	Open the ACE GUI and Select the Project
	Open the Snapshot Debugger

	Configuring the Trigger Pattern
	Configuring the Trigger Mode
	Single
	Immediate
	Repetitive

	Configuring Trigger Patterns
	Setting Pattern Values Using the Table
	Setting Multiple Pattern Values as a Bus

	Configuring the Monitor Signals
	Naming Captured Signal Data

	Configuring the Test Stimuli
	Setting Stimuli Values Using the Table
	Setting Multiple Stimuli Values as a Bus

	Configuring Advanced Options
	Pre-Store
	Trigger Pattern Match Behavior
	User Clock Frequency
	Configure Output File Locations

	Collecting Samples of the User Design
	Using the Startup Trigger
	Arming the Snapshot Debugger

	Saving/Loading Snapshot Configurations
	Running Snapshot in Batch Mode

	Revision History

