Snapshot User Guide
(UG016)

All Achronix Devices

Achronlx

Data Ac

http://www.achronix.com

Snapshot User Guide (UG016)

Copyrights, Trademarks and Disclaimers

Copyright © 2023 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedster and VectorPath
are registered trademarks, and Speedcore and Speedchip are trademarks of Achronix Semiconductor
Corporation. All other trademarks are the property of their prospective owners. All specifications subject to
change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

Table of Contents

Chapter - 1 OVerVIEW . .. e e e e e 6
Chapter - 2: Snapshot General Description, 7
F oAU oo e 7
I =3 == P 8
THI eI EXAmMIIES .« ..t 8
Names.snapshot File e 10
Chapter - 3: SnapshotInterface ... i e 1
SNAPShOt MaACIOS ..ottt 11
JT A G PN i 11
Snapshot User Port List oo e 12
Snapshot Parameter List e 13
Startup Trigger Parameters e 14
Parameter Impact on Core Logic Utilization i 15
Verilog Template ... o 17
VHD L Template ... e 18
Snapshot Interface with Device Manager 19
OV BTV W ettt e 19
Snapshot Unit Verilog Template e et 20
Instantiation Templateo e 21
Chapter - 4: Snapshot Example (Verilog) ..., 23
OV BV W ettt e e e e 23
Clock Constraints (SDC File)vinit it e e e e 24
Synplify Constraints (SDC File)t e e e 24
EXaMIPle COde: ..o e 25
Chapter - 5: Snapshot Example (VHDL) ...t e e 28
LA =T 1= PP 28
Clock Constraints (SDC File)uiuir i e e e e e e 29
Synplify Constraints (SDC File)o.oint it e 29
EXample COde: 30

www.achronix.com 3

http://www.achronix.com

Snapshot User Guide (UG016)

Chapter - 6: Probing in a Hierarchical Design ..., 33
OV BV W ettt ettt e e 33
Module Declarations e 34
EXAMNIDIE oo e 35
Chapter - 7: Running the Snapshot User Interface 39
Accessing the Snapshot Debuggero i 40
Openthe ACE GUI and Selectthe Projectccoiiiiiiiiiiiiii i 40
Openthe SNapshot DebUBEr ...t e ettt e 40
Configuring the Trigger Pattern ettt 41
Configuring the Trigger MOdeoi i e e ettt e eiiens 41
Configuring Trigger Patterns ... o e ettt e 42
Configuring the Monitor Signals 45
Naming Captured Signal Dataoiii i et et 45
Configuring the Test Stimuli o e 46
Setting Stimuli Values Usingthe Tableo e et 46
Setting Multiple Stimuli Values as a Bus i e e 47
Configuring Advanced Optionsttt e e 48
PrE- G 0T . oo e 48
Trigger Pattern Match Behavior e e 49
USer CloCK FrEQUENCY ...ttt et e e e e et 49
Configure Output File LOCationsiiiii i e e et 49
Collecting Samples of the User DeSigNt eeens 50
UsSiNg the Startup Tri el .ottt et e e e e e 50
Arming the SNapshot DebUBEErttt i e e et 50
Saving/Loading Snapshot Configurationst 51
Running Snapshotin Batch Mode ... i 52
ReVISION HiStOrY ..o e 55

www.achronix.com 4

http://www.achronix.com

Snapshot User Guide (UG016)

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

Chapter - 1. Overview

Snapshot is the real-time design debugging tool for Achronix FPGAs and cores. The Snapshot debugger, which
is embedded in the ACE software, delivers a practical platform to observe the signals of a user design in real-
time. To use the Snapshot debugger, the Snapshot macro must be instantiated inside the user RTL. After
instantiating the macro and programming the device, design debugging can proceed through the Snapshot
Debugger GUI within ACE, or via the r un_snapshot TCL command API.

The Snapshot macro can be connected to any logic signal mapped to the Achronix core, to monitor and
potentially trigger on that signal. Monitored signal data is collected in real time in regular BRAMs, prior to being
transferred to the ACE Snapshot GUI. The Snapshot macro has configurable monitor width and depth, as well as
other configuration parameters, to allow user control over resource usage. The ACE Snapshot GUI interacts with
the hardware via the JTAG interface: interactively specified trigger conditions are transferred to the design, and
collected monitor data is transferred back to the GUI, which displays the data using a built-in waveform viewer.

The following figure shows the components involved in a Snapshot debug session.

Achronix Core

ACE user clock
Snapshot GUI
monitor channel
usB . » JTAG | Snhapshot .
FTDI Device 1 User Logic

VCD | \ macro trigger channel

waveform e !
viewer !) ! stimuli

L——— Bitporter2 ——

Figure 1: Snapshot Overview

3702859-02.2022.07.12

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

Chapter - 2: Snapshot General Description

Features

The Snapshot macro samples user signals in real time, storing the captured data in one or more BRAMs. The
captured data is then communicated through the JTAG interface to the ACE Snapshot GUI.

The implementation supports the following features:

Monitor channel capture width of 1 to 4064 bits of data.
Monitor channel capture depth of 512 to 16384 samples of data at the user clock frequency.
Trigger channel width of 1 to 40 bits.

Supports up to three separate sequential trigger conditions. Each trigger condition allows for the selection
of a subset of the trigger channel, with AND or OR functionality.

Bit-wise support for edge- (rise/fall) or level-sensitive triggers.
The ACE Snapshot GUI allows specification of trigger conditions and circuit stimuli at runtime.

An optional initial trigger condition, specified in RTL parameters, to allow capture of data immediately after
startup, before interaction with the ACE Snapshot GUI.

A stimuli interface, 0 to 512 bits wide, that allows driving values into the Achronix core logic from
Snapshot. Stimulus values are specified with the ACE Snapshot GUI and made available before data
capture.

Optionally, the data capture can include values before the trigger occurred. This "pre-store" amount can
be specified in increments of 25% of the depth.

Captured data is saved to a standard VCD waveform file. The ACE Snapshot GUI includes a waveform
viewer for immediate feedback.

The VCD waveform file includes a timestamp indicating when the Snapshot was taken.

ACE automatically extracts the names of the monitored signals from the netlist, for easy interpretation of
the waveform.

A repetitive trigger mode, in which repeated Snapshots are taken and collected in the same VCD file.
The JTAG interface can be shared with the user design.

A Tcl batch/script mode interface is provided via the r un_snapshot Tcl command

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

Triggers

The Snapshot macro has a trigger channel input featuring a width from 1 to 40 bits. Any subset of these inputs
can be used to trigger a Snapshot. While the set of potential trigger bits is determined at design time, the choice
of actual trigger condition is made at runtime using the ACE Snapshot GUI. All monitor and trigger inputs are
sampled at the rising edge of user _cl k. Trigger conditions are evaluated based on these sampled values.

A trigger condition specifies one of the following for each of the trigger input bits:

® don't-care ("X") — the value of the bit is ignored

® 0 - the bit matches if the input is 0

® 1 —the bit matches if the input is 1

® rising edge ("R") — the bit matches when it changes from 0 to 1 in consecutive samples

¢ falling edge ("F") — the bit matches when it changes from 1 to 0 in consecutive samples
Each bit is evaluated independently to determine whether it is a match or not. The results are then either ANDed
(all bits, except don't-cares, must match at the same time) or ORed (the trigger matches if any bit matches).

A simple state diagram for Snapshot follows. The arm action is initiated from the ACE Snapshot GUI (after
specifying the trigger conditions). When armed, Snapshot waits for the trigger condition to become true. When
triggered, monitor data is collected until the internal buffer is filled. The trigger point is always part of the
Snapshot waveform but, if requested, a certain amount of pre-store data preceding the trigger point is collected
as well. This storage is useful for seeing the events leading up to the trigger occurrence.

Data transfered
to GUI

All data collected Trigger is true

Triggered

3702861-04.2022.07.12
Figure 2: Snapshot Macro State Transitions

Up to three sequential trigger conditions can be specified. Snapshot waits until the first trigger condition
evaluates to true. When that occurs, it waits for the second condition, etc. The earliest time at which the second
trigger can be detected is the clock cycle following the occurrence of the first trigger. The occurrence of the last
condition is the Snapshot trigger point, at which the state changes to "triggered". The final trigger point is always
part of the Snapshot waveform, but whether the earlier triggers are part of the waveform depends on the pre-
store amount.

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

Trigger Examples

0

user_clk

arm ’

3702861-05.2022.07.12

Figure 3: Trigger Example Waveform

This waveform shows two user signals, p and g. The following table provides several examples of trigger
conditions, with the time of the corresponding trigger point. Unless otherwise specified, assume only one trigger
condition is specified, and all unmentioned trigger signals are "X". Snapshot is armed at time t= 1.

Table 1: Trigger Examples

Trigger

trigger2: p=X and g=X

Trigger Condition Point Explanation
=X and a=X 1 The trigger condition with all signals X (don't-care) is always true. This condition
P q is equivalent to "immediate mode" in the Snapshot GUI.
p=0 and g=0 1 The cond|t|.on is already true when Snapshot is armed so that the trigger point is
the arm point.
p=1and g=1 " 3 The trigger point is the time at which the condition becomes true.
p=R and q=R 6 Rising (_edge triggers. AIthciugh p=Roccursatt=2and q=Ratt=3, they only
occur simultaneously at t = 6.
p=R and g=0 2 This condition describes a rising edge of p when g = 0. This occurs at t = 2.
_ _ This condition describes a rising edge of p when g = 1. This occurs att =6: a
p=R and g=1 6 . o _
rising edge of q qualifies as q = 1.
p=1 or g=1 2 This trigger uses an "OR" instead of an "AND" condition.
trigger1: p=1 and g=1 4 Trigger1 occurs at t = 3, then trigger2 occurs at t = 4. The latter is the trigger
trigger2: p=0 and gq=0 point.
trigger1: p=1 and g=1 6 Trigger1 occurs at t = 3, meaning the earliest time for trigger2 is t = 4. Since at
trigger2: p=1 and g=1 that time p = 0, trigger2 only occurs att = 6.
trigger1: p=1 and g=1 4 Although trigger2 is always true, it still must occur after trigger1, so at t = 4, not

att=3.

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

Trigger

Trigger Condition Point

Explanation

Table Notes

1. The trigger point is the time at which the condition becomes true, not the time at which a flop might
sample the condition.

Names.snapshot File

The Snapshot macro connects to the user design with buses i _nonitor,i _trigger,andi_stimuli.
However, it would be cumbersome to debug a design if all signals were referred to as simply i _noni tor[0],

i _nonitor[1], etc. Therefore, during the ACE run_prepare flow step, ACE analyzes the netlist to determine
the user signal names. The result is saved in a Snapshot configuration file, names. snapshot generated in the
<ace_proj ect _dir>/inpl_*/output/ directory. The Snapshot GUI loads this configuration file
automatically if there is an active project.

Because the name extraction occurs after RTL synthesis, sometimes names may have been modified by
Synplify. It might help to use the syn_pr eserve or syn_keep synthesis attributes to prevent names from being
changed. The ACE Snapshot GUI also enables editing of the signal names and has the option to load and save
configuration files.

www.achronix.com 10

http://www.achronix.com

Snapshot User Guide (UG016)

Chapter - 3: Snapshot Interface

Snapshot Macros

There are two variants of the Snapshot macro, ACX_SNAPSHOT and ACX_SNAPSHOT _JTAP_UNI T. Both variants
have the same interface to the user design, but differ in the way they connect to the JTAG interface. Most
designs simply use ACX_SNAPSHOT. However, designs that already use the JTAG TAP controller functions for
other reasons, should use the ACX_SNAPSHOT_JTAP_UNI T instead to allow sharing of the JTAG interface
between Snapshot and the user design. For details on the JTAG TAP controller functions, see the "Speedster7t
JTAG TAP Controller Functions" chapter in the Speedster7t Component Library User Guide (UG086).

The following figure shows the relation between ACX_SNAPSHOT and ACX_SNAPSHOT _JTAP_UNI T, as well as
the interface ports.

ACX_SNAPSHOT

i_user_clk 3

i_monitor /
i_trigger /

e ACX_SNAPSHOT_JTAP_UNIT SRIECLUNENEFSSSSC i
Top-Level ACX_JTAP_INTERFACE - g
Ports o_stimuli_valid
o_jtag_out tdo_bus
o_arm
o_trigger
3702862-01.2022.07.12
Figure 4: Snapshot Macro Block Diagram
JTAG Pins
The JTAG interface pins of ACX_SNAPSHOT map directly to hardware pins. In the user design, these must
connect to top-level ports of the RTL without insertion of IPINs or OPINs.
Table 2: JTAG Pin Description for ACX_SNAPSHOT
Pin Name Direction Type Description
i _jtag_in Input t _JTAG_I NPUT | JTAG input signals.
o_jtag_out Output t _JTAG OUTPUT | JTAG output signals.
ACX_SNAPSHOT _JTAP_UNI T has the same user interface as ACX_SNAPSHOT, but allows the sharing of the
JTAG interface with the user design through the JTAG TAP controller functions.
www.achronix.com 11

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086

Snapshot User Guide (UG016)

Table 3: JTAP Pin Description for ACX_SNAPSHOT_JTAP_UNIT

Pin Name Direction Type Description
i jtap_bus |Input t_JTAP BUS !nput from ACX_JTAP_I| NTERFACE shared with other ACX_JTAP_UNI T
instances.
. . Input matching the o_t do_bus output of an ACX_JTAP_UNI T instance
i _tdo_bus |Input wire - L
to allow the chaining of units (tie low when not used).
o tdo bus | Outout ir Output to drive i _t do_bus of ACX_JTAP_UNI T or
00 utpu wire ACX_JTAP_| NTERFACE.

Snapshot User Port List

The Snapshot user-side interface consists of the pins that connect directly to the user design to be monitored.
This interface is identical for ACX_SNAPSHOT and ACX_SNAPSHOT _JTAP_UNI T.

Table 4: Pin Descriptions of Snapshot Macro

Pin Name

Type

Description

i _nonitor[MONI TOR_ W DTH- 1: 0]

Input

1-4064 bit monitor channel. These input signals can be any signal present in the user
design. They are captured when a trigger occurs and their values are stored in the
output VCD waveform file.

i _trigger[TRIGGER_W DTH- 1: 0]

Input

1-40 bit trigger channel. These inputs can be used to trigger a capture event (the
trigger condition is specified at runtime using these signals). This input is used and
must be connected to the user design logic if the STANDARD TRI GGERS parameter is
set to 0. If STANDARD_TRI GGERS is set to 1, the inputi _tri gger is ignored, and the
Snapshot trigger detect logic is connected internally to i _noni t or [TRI GGER_W DTH-
1:0].

i _user_clk

Input

User clock (same as user design clock). All monitor and trigger inputs are sampled at
the rising edge of this clock. This clock must be running for Snapshot to work, and the
design must meet timing with respect to this clock.

o_stimuli[STIMLI_WDTH 1: 0] ()

Output

0-512 bits of test stimuli. The value of this bus can be driven via the Snapshot GUI
when arming Snapshot. These signals can be used as test inputs to the user design.
The outputs o_st i mul i are only valid when o_sti nul i _val i d is high. At other
times they can change arbitrarily.

o_stimuli_valid®

Output

Asserted high when the signals o_st i mul i are valid and stable. The signal o_st i mu
I'i _vali d is raised just before a Snapshot capture is started and remains high at
least until all data has been captured. This signal is de-asserted and reasserted again
before the next Snapshot capture. The user design can detect the rising edge of 0_st i
mul i _val i d to determine when new input stimuli are available.

o_armV

Output

Asserted high when Snapshot starts waiting for the trigger condition. This signal
asserts at least ARM_DELAY cycles after o_sti nmul i _val i d to give the user design
time to react to the stimuli.

www.achronix.com 12

http://www.achronix.com

Snapshot User Guide (UG016)

Pin Name Type Description

The output o_t ri gger is rarely used. It asserts | NPUT_PI PELI NI NG high + 5 cycles

.) Output after the trigger condition occurs. This signal is provided as an optional trigger for

o_trigger P external instruments, for example, an oscilloscope. No OQUTPUT_PI PELI NI NGis
added.
Table Notes
1. These outputs are in the i _user _cl k domain and can be used in the design under test (DUT) to create desired events to be
observed.

Snapshot Parameter List

These parameters define the size and functionality of Snapshot.

Table 5: Parameter Definitions

Parameter Default Value Defined Value
Field provided to help distinguish Snapshot logic instances in
DUT_NANE none_speci fi ed different designs. This string is printed in the Snapshot log file

whenever a Snapshot capture is taken. Maximum length is 128
characters.

MONI TOR W DTH

40

Monitor channel width. Sets the number of signals to be monitored
by Snapshot. The valid range is 1-4064 bits.

MONI TOR_DEPTH

1024

The number of consecutive data samples (user _cl k cycles) in a
single Snapshot, captured from the i _noni t or bus. Valid values
range from 512—-16384. The implementation rounds this number up
as required by the supported BRAM sizes.

TRI GGER_W DTH

40

Trigger channel width. The valid range is 1-40 bits.

NUM TR GGERS

The maximum number of sequential triggers to compile into the
Snapshot circuit. Setting this parameter to a lower number
decreases the Achronix core logic resources needed for Snapshot.
During a Snapshot debug session, up to NUM_TRI GGERS
sequential triggers may be configured. Valid values range from 1—
3.

STANDARD_TRI GGERS

If the STANDARD TRI GGERS parameter value is set to 1, then the
i _trigger inputisignored, and instead i _noni t or

[TRIGGER_W DTH- 1: 0] is used as trigger signals. If the
STANDARD_TRI GCGERS parameter value is set to 0, then the

i _trigger[TRIGGER W DTH 1: 0] inputis used as trigger
signals.

STI MJLI _W DTH

20

Number of stimuli output to the user design. The valid range is 0—
512 bits.

www.achronix.com 13

http://www.achronix.com

Snapshot User Guide (UG016)

Parameter Default Value Defined Value

Adds the specified number of pipeline stages to the i _noni t or
andi _trigger signals to enable fasteri _user _cl k speeds.
I NPUT_PI PELI NI NG . - - i
- 3 This parameter has no effect on the collected data (the . vcd file),
or on the point where the trigger occurs.

Adds the specified number of pipeline stages to the o_arm
o_stinmuli,ando_stimuli_valid outputs to enable faster
OUTPUT_PI PELI NI NG 0 i _user _cl k speeds. This parameter has no effect on the
collected data (the . vcd file), or on the point where the trigger
occurs.

Delay between assertion of o_stinuli _val i dand o_arm The
o_ar moutput signal indicates when Snapshot begins waiting for
ARM DELAY 1 the trigger condition. This signal asserts at least ARM_DELAY
cycles after o_sti mul i _val i d to allow the user design time to
react to the stimuli.

When set to 1, both edge-sensitive (rise/fall) and level-sensitive (1
/0) trigger conditions may be used during a Snapshot debug
ENABLE_EDGE _TRI GGERS | 1 session. When set to 0, only level-sensitive trigger conditions may
be used. Setting to 0 decreases the Achronix core logic resources
needed for Snapshot.

Startup Trigger Parameters

Normally, trigger conditions are specified via the ACE Snapshot GUI prior to taking a capture. However, that
makes it hard to observe conditions that occur immediately after startup. As an alternative, an initial trigger
condition can be specified using parameters. When | NI TI AL_TRI GGER is set, Snapshot is armed immediately
after startup and waits for the initial trigger condition. The ACE Snapshot GUI has a separate startup trigger
button to collect the captured data.

Since initial triggers have virtually no circuit overhead, they are enabled by default with a don't-care trigger. With
these defaults, the startup trigger button collects data from the start of user mode (or as close to the start as
possible). Snapshot requires a number of clock cycles to initialize before it can collect data or detect trigger
conditions. For Speedcore instances, this delay is three cycles if MONI TOR_DEPTH < 1024; otherwise it is six
cycles. Signals are not monitored during those few cycles unless | NPUT_PI PELI NI NGis used. If

| NPUT_PI PELI NI NGis at least 3 (for small depth) or 6 (for larger depth), data is collected from the start of user
mode.

Table 6: Snapshot Startup Trigger Parameters

Default

Parameter Defined Value
Value

Enables a startup trigger condition. Set the other | NI TI AL_* parameters to
specify the trigger condition. When | NI TI AL_TRI GGERis 1, Snapshot

I NI TI AL_TRI GGER 1 automatically arms immediately after startup. If | NI TI AL_TRI GGERis 0, the
I NI TI AL_* parameters are ignored, and Snapshot waits in the Idle state
until Snapshot is armed via the ACE GUI or Tcl interface.

www.achronix.com 14

http://www.achronix.com

Snapshot User Guide (UG016)

Parameter LTS Defined Value
Value
Number of sequential triggers to use for the startup trigger. Valid range is
INETEAL_NUM TR GGERS | 1 from 1 to NUM_TRI GCGERS.
I NI TI AL_TRI GGERL is specified as a sequence of characters with one
character per trigger bit, similar to the binary value specified for a bus in the
ACE GUI:
"0" for level 0
I NI TI AL_TRI GGERL Xs 1" forlevel 1
R" for rising edge
"F" for falling edge
"X" for don't care
For example, if TRI GGER_W DTHis setto 5, | NI TI AL_TRI GGERL could be
set to "11XR0" to define the trigger pattern.
Specifies the second startup trigger using the same format as
I NI TI AL_TRI GGERL. Snapshot waits for | NI TI AL_TRI GGER2 after
I NETEAL_TRI GGER2 Xs I NI TI AL_TRI GGERL has occurred. This parameter is ignored if
I' NI TI AL_NUM TRI GGERS < 2.
Specifies the third startup trigger using the same format as
| NI TI AL_TRI GGER3 Xs I NI TI AL_TRI GGERL. Snapshot waits for | NI TI AL_TRI GGER3 after

I NI TI AL_TRI GGER2 has occurred. This parameter is ignored if
I' NI TI AL_NUM TRI GGERS < 3.

I NI TI AL_USE_AND 1

When set to 1, the | NI TI AL_TRI GGERL pattern matches the input trigger
data if ALL of the trigger bits match the trigger pattern (AND logic). When set
to 0, the I NI TI AL_TRI GGERL pattern matches the input trigger data if ANY
of the trigger bits matches the trigger pattern (OR logic). In both cases, don't-
care bits (marked "X") are ignored. However, if all | NI TI AL_TRI GGERL bits
are "X" (don't-care), this parameter must be set to 1.

I NI TI AL_USE_AND 2

Similar to | NI TI AL_USE_AND_1, but for I NI TI AL_TRI GGER2.

| NI TI AL_USE_AND 3

Similar to | NI TI AL_USE_AND_1, but for I NI TI AL_TRI GGERS.

I NI TI AL_PRE_STCRE

Amount of pre-store data to cache and output prior to the trigger event. Valid
values are 0 (no pre-store), 1 (25% pre-store), 2 (50% pre-store), and 3 (75%
pre-store). If the startup trigger occurs before | NI TI AL_PRE_STORE clock
cycles have occurred, by necessity, less pre-store data is collected.

Parameter Impact on Core Logic Utilization

Based on defaults, the logic utilization for the Verilog Snapshot example (see page 23) is as follows:

www.achronix.com 15

http://www.achronix.com

Snapshot User Guide (UG016)

Utilization Details

(

Cell Name Instances | Sites | Utilization
ALUSE 15 1725800 | 0.010%
ERAM Total 2 2580 0.080% \
BRAM72K_SDP 2)
BUS_DFF Total 0 45080 0.000%
BUS_MLUX4 0 48080 0.000%
CLEDIV 0 256 0.000%
CLEGATE 0 128 0.000%
CLESWITCH 0 125 0.000%
110 Pin Total 11 64466 | 0.020%
Clock Pin Total 2 G948 0.220%
CLE_IPIN Total 2 560 0.360%
trunk 1 258 0.390%
mini-trunk 0 240 0.000%
branch 0 G4 0.000%
CLE_COPIM Total 0 338 0.000%
mini-trunk 0 a0 0.000%
branch 0 256 0.000%
Data Pin Total 9 63570 0.010%
IFIM Total 7 31756 0.020%
OPIN Tofal 2 3304 | 0010%
DFF Tofal (see notes) 1105 1352400 | 0.080%
general purpose DFFs {a) 1079 1382400 | 0.050%
DFFE 33
DFFME 433
DFFM 15
DFFR |
DFF 556
inaccessible (b) 28
LMUX2 22 1382400 | 0.000%
LRAMMILP Total (see notes) 0 2580 0.000%
general purpose LRAMs/MLPs (a) | 0 2580 0.000%
inaccessible (b) 0
"LUT Total (see notes) 534 691200 |0.080%
general purpose LUTs (a) 504
pass-through sites (b) 30
k. virtual 10 LUTs {c) 0
MUx2 0 345500 | 0.000%

Figure 5: Verilog Example Utilization Details

www.achronix.com

16

http://www.achronix.com

Snapshot User Guide (UG016)

An estimate of the number of gates required based on these parameters:
® The number of BRAMs/BRAMFIFOs must be sufficient to store MONI TOR_W DTH x MONI TOR_DEPTH bits.

® |nput pipelining consumes roughly (MONI TOR_W DTH + TRI GGER_W DTH) x | NPUT_PI PELI NI NG flip-
flops.

® OQutput pipelining consumes roughly STI MJLI _W DTH x OQUTPUT_PI PELI NI NG flip-flops.

® The trigger circuit requires roughly NUM TRI GGERS x 5 x TRI GGER_W DTH flip-flops. The number of flip-
flops can be reduced by setting NUM_TRI GGERS to 1 or 2, by reducing the width, or by disabling edge
triggers. Edge triggers account for roughly 40% of the trigger circuit.

Note

(1]

For high-speed circuits, input or output pipelining might be required to meet performance.

Verilog Template

/1 - MONI TOR_DEPTH will be rounded up to the next val ue supported by

/1 this inplenmentation.

/1 - 1f STANDARD TRIGGERS is 1, the i_trigger input is ignored and instead
/1 i_monitor[TRIGGER WDTH - 1 : 0] are used as trigger signals.

/[l - Stimuli are valid only when o_stinuli_valid is true; at other tines

/1 o_stimuli are not stable.

/1 - o_armindi cates when Snapshot starts waiting for the trigger condition.
/1 Thi s happens at | east ARM DELAY cycles after o_stimuli_valid, to give
/1 the user design time to react to the stimuli.

/1 - INPUT_PIPELINING is added to i _nmonitor and i_trigger, to make it easier
/1 to collect high-frequency signals fromvarious |ocations. Likew se,

I/ QUTPUT_PIPELINING is added to o_stimuli, o_stimuli_valid, and o_arm

/1 Not e that these paraneters have *no inpact* on the collected data

/1 (the ved file) or on the point where the trigger occurs.

/1l - To set a startup trigger condition, set INNTIAL_TRIGGER to 1, then

I set the INITIAL_ paraneters to specify the trigger condition.

/1 INI TIAL_TRI GGERL is a sequence of characters "0", "1", "R', "F", "X', one
/1 character per bit, simlar to the binary value specified for a bus

/1 in the ACE GUI .

/1 - The o_trigger output is seldomused. It goes high INPUT_PIPELINING + 5
/1 cycles after the trigger condition occurred. This signal is provided

Il as a trigger for external equiprment such as a scope. No out put

/1 pipelining is added.

/1 - SNAPSHOT _MODE is used for devel opnent.

“defaul t _nettype none
“timescale 1 ps / 1 ps
nodul e ACX_SNAPSHOT #(
| ocal param i nt eger max_dut _nane_chars = 128,

paraneter [8*max_dut_nane_chars-1 : 0] DUT_NAME = "none_specified",

paraneter integer MONI TOR W DTH = 40, I >=1

paraneter integer MONI TOR DEPTH = 1024, /1 1024 .. 16384

paraneter integer TRI GGER W DTH = 40, /1 1..40

paraneter integer NUM TRI GGERS = 3, /1 1..3

paraneter bit STANDARD TRI GGERS = 1, /1 use i_monitor instead of i_trigger
paraneter integer STIMJLI_WDTH = 20, /] <= 512

paraneter integer |NPUT_PIPELIN NG = 3, /1 for i_nonitor and i_trigger

www.achronix.com 17

http://www.achronix.com

Snapshot User Guide (UG016)

paraneter integer OUTPUT_PI PELI NI NG = 0, /1 for o_stimuli(_valid) and o_arm
paraneter integer ARM DELAY = 1, /1 between o_stinuli_valid and o_arm
paranmeter bit ENABLE EDGE TRI GGERS = 1
paraneter bit IN TIAL_TRI GGER = 0, /] set startup trigger condition
paranmeter [1:0] INITIAL_NUM TRIGGERS = 1, // 1..NUM TRI GGERS
parameter [8*TRIGGER WDTH 1 : 0] INITIAL_TRI GGERL = { TRI GGER_W DTH{ 8' h58}},
paranmeter [8*TRIGGER WDTH 1 : 0] INITIAL_TRI GGER2 = { TRI GGER_W DTH{ 8' h58} },
paranmeter [8*TRIGGER WDTH 1 : 0] INITIAL_TRI GGER3 = { TRI GGER_W DTH{ 8' h58} },
parameter bit INITIAL_USE AND 1 = 1, // 1 =AND, 0 = OR
parameter bit INITIAL_USE AND 2 = 1
paraneter bit INITIAL_USE_AND 3 = 1,
parameter [1:0] INITIAL_PRE_STORE = 1, /1 0, 1, 2, 3 (=0, 25% 50% 75%
paraneter integer SNAPSHOT MODE = 0O
) (
/1 jtag connections, nust be connected to top-level ports
input wre t_JTAGINPUT i_jtag_in
output wire t_JTAG QUTPUT o_jtag_out,
// signals to/fromuser design
input wre i _user_clk,
input wire [MONNTOR WDTH 1 : 0] i _monitor,
input wire [TRIRGGER WDTH 1 : 0] i _trigger, // if ! STANDARD TRI GGERS
output wire [STIMILI_WDTH 1 : 0] o_stinmuli
output wire o_stimuli_valid,
output wire o_arm
output wire o_trigger [/ for external devices
)
VHDL Template
conponent ACX_SNAPSHOT i s
generic (
DUT_NAME string = "none_specified";
MONI TOR_W DTH nat ur al = 40; .- >=1
MONI TOR_DEPTH nat ur al = 1024, -- 1024 ... 16384
TRI GGER_W DTH nat ur al = 40; -- 1 ... 40
NUM_TRI GGERS natural := 3; -- 1, 2, 3
STANDARD TRI GGERS: std_logic := "'1'; -- use "i_nonitor" instead of "i_trigger"
STI MJLI _W DTH nat ur al = 20; -- <= 512
I NPUT_PI PELI NI NG nat ur al = 3 -- FOR i _nonitor AND i_trigger
QUTPUT_PI PELI NI NG natural := 0; -- FOR o_stinmuli(_valid) AND o_arm
ARM DELAY nat ur al =1, -- BETWEEN o_stinmuli_valid AND o_arm
ENABLE EDGE_TRI GGERS : std_logic :="'1";
I NI TI AL_TRI GGER std_logic :="'0"; -- SET STARTUP TRI GGER CONDI TI ON

I NI TI AL_NUM_TRI GGERS

std_l ogi c_vector
NUMBER OF CHARACTERS SHOULD BE TRI GGER_W DTH - - -
VALI D CHARACTERS ARE X, 0, 1, R, AND F ---

(1 dowmnto 0) := "01"; -- 1, 2, 3

I NI TI AL_TRI GGERL string 1= " XXOXKXKKIKXKIIIIHIIIIHKIIIHKIIIHKIXXKK
INI TI AL_TRI GGER2 string 1= " XXOOKKKIKKIIHKKIIIKIIIHKIIIKIIIKKIXKXK
I NI TI AL_TRI GGER3 string 1= " XXOOKKIKIIKIIIHKIIIHKIIIHKIIIHKIIIKK
I NI TI AL_USE_AND 1 std_logic : ='1; =--1=AND 0= OR
I NI TI AL_USE_AND 2 std_logic : ='1; --1=AND 0= OR
I NI TI AL_USE_AND 3 std_logic : ='1; =--1=AND 0= COR

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

I NI TI AL_PRE_STORE : std_logic_vector (1 downto 0) := "00"; -- 0O, 1, 2, 3 (=0,
25% 50% 75%
SNAPSHOT _ MODE : natural := 0 -- reserved
)
port (--- JTAG connections, nust be connected to TOP-LEVEL ports ---
i _jtag_in . in std_logic_vector (7 downto 0);
o_jtag_out : out std_logic_vector (1 downto 0);

--- SIGNALS to/from USER DESI GN ---

i _user_clk :in std_logic;
i _nmonitor :in std_logic_vector (MONITOR WDTH 1 downto 0);
i _trigger :in std_logic_vector (TRIGGER WDTH 1 downto 0);
o_stimuli : out std_logic_vector (STIMILI_WDTH 1 downto 0);
o_stimuli_valid : out std_logic;
o_arm : out std_logic;

o_trigger : out std_logic

)i

end comnponent ;

Snapshot Interface with Device Manager

Overview

The ACX_DEVI CE_MANAGER component can provide automatic control of the device IP components such as
GDDR6 and DDR4, where the hardened control is complex for typical production systems. A more detailed
description of the ACX_DEVI CE_MANAGER component is provided in the "Speedster7t Device Manager" section
of the Speedster7t Soft IP User Guide (UG103).

Sharing the JTAG Interface with Snapshot

The ACX_DEVI CE_MANAGER component is independent of the Snapshot debug tool and used to observe signals
in a design, but also uses the JTAG interface to interact with ACE. The component has two ports (o_j t ap_bus
andi _t do_bus) that pass the JTAG signals through so that the interface can be shared. The

ACX_SNAPSHOT _JTAP_UNI T component has matching ports (i _j t ap_bus and o_t do_bus) that should be
connected to the ACX_DEVI CE_MANAGER as shown in the following figure.

Caution!

1. ltis necessary to use the ACX_SNAPSHOT _JTAP_UNI T when using the ACX_DEVI CE_MANAGER.
The ACX_SNAPSHOT component cannot be used in this instance.

2. o_jtap_bus is not a simple wire, but instead, is type t _JTAP_BUS. This type must be used in
the wire declaration. When connected in this manner, Snapshot operates normally but with the
caveat in the following point (This caveat may change in future versions of ACE).

3. To use Snapshot, the ACE JTAG connection must be closed using the
<devi ce_nanespace>: : cl ose_jt ag Tcl command. This is because Snapshot establishes its
own connection to the JTAG driver in a different way, and the driver cannot have both
connections open simultaneously. When a Snapshot has been taken, the connected JTAG
interface can be opened again with <devi ce_nanmespace>: : open_j t ag, to allow use of Tcl
commands via JTAG. The JTAG connection can be opened and closed repeatedly without
affecting the running design.

www.achronix.com 19

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103

Snapshot User Guide (UG016)

i_start o_status[31:0]

monitor signals

i_clk
ACX_DEVICE_MANAGER \ /

top-level i_jtag_in e =
ports of
user design | o_jtag_out

ACX_SNAPSHOT_JTAP_UNIT i_tdo_bus

i_tdo_bus o_tdo_bus

111268564-05.2022.07.12

Figure 6: Sharing the JTAG Connection Between ACX_DEVICE_MANAGER and
Snapshot

Snapshot Unit Verilog Template

The following example shows the ACX_SNAPSHOT _JTAP_UNI T template to be used in conjunction with the
ACX_DEVI CE_MANACER

/1 ACX_SNAPSHOT _JTAP_UNIT has the sanme paraneters and user inputs and outputs
/1 (i_nonitor etc.) as ACX _SNAPSHOT (see above), but ACX SNAPSHOT connects

/1 directly to the JTAG pins, whereas ACX SNAPSHOT_JTAP_UNI T connects to an
/1 instance of ACX_ JTAP_I NTERFACE instead. The latter is used to share

/] the JTAP/JTAG interface with other parts of the user design.

“defaul t _nettype none
“timescale 1 ps / 1 ps
(* syn_hier="hard" *)
modul e ACX_SNAPSHOT _JTAP_UNI T #(
| ocal param i nt eger nmax_dut _nane_chars = 128,

paraneter bit [8*max_dut_nanme_chars-1 : 0] DUT_NAME = "none_specified",
paraneter integer MONI TOR WDTH = 40, Il >=1

paraneter integer MONI TOR _DEPTH = 1024, /1 512 .. 16384

paraneter integer TRI GGER W DTH = 40, /1 1..40

paraneter integer NUM TRI GGERS = 3, /1 1..3

paraneter bit STANDARD TRI GGERS = 1, /1 use i_nonitor instead of i_trigger
paraneter integer STIMJLI_WDTH = 20, /Il <= 512

paraneter integer |NPUT_PIPELIN NG = 3, /1 for i _nmonitor and i _trigger
paraneter integer OUTPUT_PI PELI NI NG = 0, /1 for o_stimuli(_valid) and o_arm
paraneter integer ARM DELAY = 1, /1 between o_stinuli_valid and o_arm

paraneter bit ENABLE EDGE TRI GGERS = 1,

paranmeter bit INTIAL_TRI GGER = 1, /] set startup trigger condition
paraneter bit [1:0] INITIAL_NUM TRIGGERS = 1, // 1..NUM TRI GGERS

paraneter bit [8*TRIGGER WDTH-1 : 0] INITIAL_TRI GGERL = { TRI GGER_W DTH{ 8' h58} },
parameter bit [8*TRIGGER WDTH 1 : 0] INITIAL TRIGGER2 = {TRI GGER W DTH{8' h58}},
paraneter bit [8*TRIGGER WDTH-1 : 0] INITIAL_TRI GGER3 = { TRI GGER W DTH{ 8' h58} },
paraneter bit IN TIAL_USE AND 1 = 1, // 1 =AND, 0 =OR

paraneter bit INITIAL_USE AND 2 = 1,

paraneter bit INITIAL_USE_AND 3 = 1,

paraneter bit [1:0] INITIAL_PRE STORE =1, // 0, 1, 2, 3 (= 0, 25% 50% 75%

paraneter bit [5:0] UNIT_ID = 0, /1 for jtap sharing; O is reserved for Snapshot
paraneter integer SNAPSHOT _MODE = 0

) (

www.achronix.com 20

http://www.achronix.com

Snapshot User Guide (UG016)

/1 jtap connections
var t_JTAP_BUS i _jtap_bus,
i _tdo_bus,

i nput
i nput

Wi

re

output wire

o_tdo_bus,

/1 signals to/from user design

i nput
i nput
i nput
out put
out put
out put
out put

)

Wi

£ 2222 s

re
re
re
re
re
re
re

[MONI TOR W DTH-1 :
[TRIGGER W DTH-1 :
[STIMILI _WDTH1 :

Instantiation Template

The following example shows how the ACE-generated device manager template can be utilized in a design with

snapshot:

0]
0]
0]

I
I
11

from ACX_JTAP_| NTERFACE
from nei ghbor ACX_JTAP_UNIT (or 1'b0)
to ACX_JTAP_I NTERFACE or next ACX_JTAP_UNIT

user _cl k,
noni t or,
trigger, // if ! STANDARD TRI GGERS

o_stimuli,

o_stimuli_valid,

o_arm

o_trigger [/ for external devices

“include "speedster 7t/ conmon/ speedst er 7t _snapshot _v3. sv"

nmodul e top_| evel

(

/1 JTAG Interface
input t_JTAGINPUT i_jtag_in,

decl aration

output t_JTAG OQUTPUT o_jtag_out,
decl aration
/1 User Design
i nput i_clk
)
/1 signals for shared JTAG bus
wire t _JTAP_BUS j tap_bus;
wre tdo_bus;

/1 Other ADM signals

logic [32 -1:0]

devi ce_manager _test # ()
i _acx_devi ce_manager

(

/1 JTAG Interface
.i_jtag_in (i_jtag_in),

decl aration

.i_tdo_bus (tdo_bus),

not used, this input

.0_jtag_out (o_jtag_out),

decl aration

.0_jtap_bus (jtap_bus),
(or other JTAG conponents)

/'l User
.i_clk

Desi gn
(i _clk),

adm st at us;

/1

/1

/1
/1

11

I

/1

shoul d be tied to 1'b0

/1

/1

/1

Shoul d be connected to top-level ports with the sane

Shoul d be connected to top-level ports with the sane

100 MHz dock input for Device Manager bl ock.

shared JTAG bus
tieto O if unused

Status fromthe ADM

Shoul d be connected to top-level ports with the sanme
Pass-through the JTAG bus to connect to Snapshot. If
Shoul d be connected to top-level ports with the sane

Pass-through of the JTAG bus to connect to Snapshot

100 MHz C ock input for Device Manager bl ock.

www.achronix.com

21

http://www.achronix.com

Snapshot User Guide (UG016)

.i_start (1'b1),
this signal is tied to 1'bil,

necessary.
.0_status (adm st at us)

)

ACX_SNAPSHOT _JTAP_UNIT #(....)

X_snapshot

(
.i_jtap_bus (jtap_bus),
.i_tdo_bus (1' bO),
.0_tdo_bus (tdo_bus),

ot her Snapshot ports ...

)

endnodul e : top_| evel

/1 A high input starts the Device Manager.
/] but it can also be tied to a PLL |ock signal

/'l Progress indication, error status,

/!l Tieto 1'b0 if not used

al arns

I'n nost cases

if

www.achronix.com

22

http://www.achronix.com

Snapshot User Guide (UG016)

Chapter - 4: Snapshot Example (Verilog)

Overview

The following is a complete example of a simple user design with Snapshot. The user design consists of two
counters and has the following features:

® counter_a[7: 0] countsfromOtolimt_a repeatedly

® [imt_a[7:0] can be set dynamically with the Snapshot stimuli
® counter_b[15: 0] 16-bit counter (wraps around)

® Features external reset or can be reset via Snapshot stimuli

In order to use the Snapshot logic in a user design, the technology-specific Snapshot Verilog file from the
Achronix libraries must be included:

“include "speedster<technol ogy>/ cormon/ speedst er <t echnol ogy>_snapshot _v3. sv"
Where <t echnol ogy> is replaced with the target technology library name (e.g., Speedster7t).

Note

The path described above is also applicable for Speedcore devices.

Two clocks are required by the Snapshot macro:
® | user_cl k —this clock is provided by the user design to sample the user design signals.

® JTAG clock — used to communicate between the host and the Snapshot macro. This signal is part of the
i _jtag_ininput.

Snapshot evaluates triggers and collects data at the rate of the user _cl k, whose frequency must be declared in
the SDC file.

The design must meet timing with respect to the user _cl k. Even if timing failures in the user design are
deemed acceptable, their existence might hide timing failures in the Snapshot logic. Instead, "acceptable" timing
failures must be made explicit with exceptions in the SDC file. If the Snapshot logic itself does not meet timing,
consider increasing the | NPUT_PI PELI NI NGand OQUTPUT_PI PELI NI NG parameters.

The JTAG clock (i _j t ag_i n[0]) for Snapshot must be declared as a 25 MHz clock (period 40 ns). It is
recommended that this frequency is also specified during synthesis, otherwise Synplify may over-optimize this
slow logic.

1. Instantiate the Snapshot macro in the user design, as shown in the following example, and connect it to
the signals that may need to be observed.
2. Synthesize the design with Synplify and run it through the ACE flow to generate a bitstream.

3. When the Achronix device has been programmed with the bitstream, use the Snapshot debugger tool
from the ACE GUI or in batch mode via the ACE Tcl interface.

www.achronix.com 23

http://www.achronix.com

Snapshot User Guide (UG016)

The design requires a clock input, typically generated by a PLL. The PLL instance and corresponding reference
clock pad must be specified with the IP Configuration Perspective in the ACE GUI.

Note

When the user design is run through the ACE place-and-route flow, a Snapshot configuration file is
generated in <ace_proj ect _dir>/<acti ve_i npl _di r>/ out put / nanes. snapshot . This file
@ contains all of the signal names connected to Snapshot (automatically extracted from the user design),
along with monitor, trigger, stimuli width settings based on the user RTL, and clock frequency based on
the user SDC constraints, etc. This file is automatically loaded in the Snapshot debugger view in the
ACE GUI to configure Snapshot whenever the active implementation in the ACE session changes.

Clock Constraints (SDC File)

Both the JTAG TCK clock and the Snapshot user clock must be defined in the user SDC clock constraints:

Snapshot JTAG cl ock: 25MHz
create_clock -period 40 [get_ports {i_jtag_in[0]}] -name tck
set _cl ock_groups -asynchronous -group {tck}

User design clock; exanple: 100MHz

set cl k_period 10

create_clock -period $clk_period [get_ports i_clk] -name clk
set _cl ock_groups -asynchronous -group {cl k}Exanple Verilog RTL

Synplify Constraints (SDC File)

Synplify requires the output clock from the Snapshot unit to be defined explicitly. If the clock is not defined, then
Synplify creates an auto-generated clock assigned to the project default frequency.

JTAG CLK_| PI N pass-through:

When usi ng ACX_SNAPSHOT

create_clock [get_pins x_snapshot.x_jtap_interface.x_acx_jtap.clk_ipin_tck/dout] -period 40 -nane
tck_core

set _cl ock_groups -asynchronous -group {tck_core}

When using ACX_SNAPSHOT JTAP_UNIT with ADM the clock conmes fromthe ADM
create_clock -nane tck_core \
[get _pins x_acx_dev_ngr.x_dev_ngr. u. u. genbl k2\.x_acx_jtap_i nterface.x_acx_jtap
cl k_i pin_tck.dout] \
-period 40
set _cl ock_groups -asynchronous -group {tck_core}

www.achronix.com

24

http://www.achronix.com

Snapshot User Guide (UG016)

Example Code:

/] Copyright (c) 2021 Achronix Sem conductor Corp.
/1 Al R ghts Reserved.
“include "speedster7t/comon/ speedster 7t _snapshot_v3. sv"

“timescal e 1ps/ 1ps

nmodul e snapshot _exanpl e (
/] jtap ports:
input t_JTAG INPUT i_jtag_in,
output t_JTAG OQUTPUT o_jtag_out,

/] user design ports:
input wre i_clk

)

/********** CI OCk **/

wire clk =i_clk;

/********** SterUlI **/

/1 Snapshot stimuli are only valid when stinuli_valid is high.
wire stimuli_valid,
reg [2:0] stimuli_valid_d = "'0; // for edge detection/stretching

al ways @ posedge cl k)
begin

stimuli_valid_d <= (stimuli_valid_d << 1) | stinmuli_valid;
end

/********** reset **[

wire do_reset; // set via stimuli[8] (active-high)

/1 at stimuli_valid edge, do_reset is (active-high) reset
reg reset_n = 1;
al ways @ posedge cl k)
begin
if (stimuli_valid & !stimuli_valid_d[2])
reset_n <= !do_reset;
el se
reset_n <= 1'bl;
end

/********** user C|rCU|t ***/

/1 The main user design consists of two counters.

/1 counter_a : 8-bit counter with configurable period. The period is set
/1 by setting limt_a via the Snapshot stinmuli[7:0]. Default
/1 limt_a = 62 (hence counter_a has default period 63).

/1 counter_b : 16-bit counter

reg [7:0] Iimt_a = 62;

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

reg [7:0] counter_a = 0; // counts O..limt_a
reg [15:0] counter_b = 0;

al ways @ posedge cl k)
begin
if (!reset_n)
begi n
counter_a <= 0;
counter_b <= 0;
end
el se
begi n
if (counter_a == linmit_a)
counter_a <= 0;
el se
counter_a <= counter_a + 1;
counter_b <= counter_b + 1;

end
end
wire [7:0] limt_a in; // set via stimuli; if not 0, value for limt_a
al ways @ posedge cl k)
begin
if (stimuli_valid & limt_a_in!=0)
limt a<=limt_a_in;
end

/********** snapshot ***/

| ocal param i nteger MONI TOR W DTH = 38;

| ocal param i nteger MONI TOR_DEPTH = 2000; // will be rounded up

| ocal param TRI GGER_ W DTH = MONI TOR_W DTH < 40? MONI TOR_ W DTH : 40;
wire [MONITOR WDTH 1 : O] nonitor;

wre arm

assign nonitor = {
count er_b,
count er_a,
limt_a,
arm
stimuli_valid,
reset_n

}s

/1 stimuli[7:0] : wap-around value (limt_a) for counter_a

/1 stimulil[8] . when set to 1, resets counter_a and counter_b
| ocal param STI MJLI _"W DTH = 9;

wire [STIMILI_WDTH 1 : 0] stimli;

assign {
do_reset,
limt_a in
} = stimuli;

ACX_SNAPSHOT #(
. DUT_NAME(" snapshot _exanpl e"),
. MONI TOR_W DTH(MONI TOR_W DTH) , /1 1..4080
. MONI TOR_DEPTH(MONI TOR_DEPTH), // 1..16384

www.achronix.com

26

http://www.achronix.com

Snapshot User Guide (UG016)

. TRI GGER_W DTH(TRI GGER_W DTH) ,
. STANDARD_TRI GGERS(1) ,
. STI MULI _W DTH(STI MULI _W DTH) ,
. I NPUT_PI PELI NI N&(3) ,
. QUTPUT_PI PELI Nl NG(0) ,
. ARM DELAY(2)

) x_snapshot (
i _jtag_in(i_jtag_in),
.0_jtag_out(o_jtag_out),

.i_user_clk(cl k),
.i_monitor(monitor),

/1
I
I
11
11
I

1..40

use i _monitor[39:0] as trigger input
0..512

for i_nonitor and i_trigger

for o_stimuli(_valid) and o_arm
between o_stinuli_valid and o_arm

i _trigger(), // not used if STANDARD TRI GGERS = 1

.o_stimuli(stinuli),
.o_stimuli_valid(stinmuli_valid),
.o_arm(arm,
.o_trigger()

)

endnodul e

www.achronix.com

27

http://www.achronix.com

Snapshot User Guide (UG016)

Chapter - 5: Snapshot Example (VHDL)

Overview

The following is a complete example of a simple user design with Snapshot for VHDL users. The user design
consists of a single counter and has the following feature:

® counter[7: 0] counts from 0 to xX'FF and then wraps around continuously

In order to use the Snapshot logic in a user design that is in VHDL, the technology-specific Snapshot Verilog file
from the Achronix libraries must be included in the Synplify Pro project file:

add_file -verilog "$ACE_ | NSTALL_DI R/ li brari es/ speedst er 7t/ cormon
/ speedst er <t echnol ogy>_snapshot _v3. sv"

Where $ACE_| NSTALL_DI Ris the local path to your ACE installation, and <t echnol ogy> is replaced with the
target technology library name (e.g., Speedster7t).

Note

The path described above is also applicable for Speedcore devices.

Two clocks are required by the Snapshot macro:
® | _user_cl k — provided by the user design to sample the user design signals.

® JTAG clock — used to communicate between host and Snapshot macro. This signal is part of the
i _jtag_ininput.

Snapshot evaluates triggers and collects data at the rate of the user _cl k, whose frequency must be declared in
the SDC file.

The design must meet timing with respect to user _cl k. Even if timing failures in the user design are deemed
acceptable, their existence might hide timing failures in the Snapshot logic. Instead, "acceptable" timing failures
must be made explicit with exceptions in the SDC file. If the Snapshot logic itself does not meet timing, consider
increasing the | NPUT_PI PELI NI NGand OUTPUT_PI PELI NI NG parameters.

The JTAG clock (i _j tag_i n[0]) for Snapshot must be declared as a 25 MHz clock (period 40 ns). It is
recommended that this frequency is also specified during synthesis, otherwise Synplify may over-optimize this
slow logic.

1. Instantiate the Snapshot macro in the user design, as shown in the following example, and connect it to
the signals that may need to be observed.
2. Synthesize the design with Synplify and run it through the ACE flow to generate a bitstream.

3. When the Achronix device has been programmed with the bitstream, use the Snapshot debugger tool
from the ACE GUI or in batch mode via the ACE TCL interface.

www.achronix.com 28

http://www.achronix.com

Snapshot User Guide (UG016)

The design requires a clock input, typically generated by a PLL. The PLL instance and corresponding reference
clock pad must be specified with the IP configuration perspective in the ACE GUI.

Note

When the user design is run through the ACE place-and-route flow, a Snapshot configuration file is
generated in <ace_proj ect _dir>/<acti ve_i npl _di r>/ out put / nanes. snapshot . This file
@ contains all of the signal names connected to Snapshot (automatically extracted from the user design),
along with monitor, trigger, stimuli width settings based on the user RTL, and clock frequency based on
the user SDC constraints, etc. This file is automatically loaded in the Snapshot debugger view in the
ACE GUI to configure Snapshot whenever the active implementation in the ACE session changes.

Clock Constraints (SDC File)

Both the JTAG TCK clock and the Snapshot user clock must be defined in the user SDC clock constraints:

Snapshot JTAG cl ock: 25MHz
create_clock -period 40 [get_ports {i_jtag_in[0]}] -name tck
set _cl ock_groups -asynchronous -group {tck}

User design clock; exanple: 100MHz

set cl k_period 10

create_clock -period $clk_period [get_ports i_clk] -name clk
set _cl ock_groups -asynchronous -group {cl k}Exanple Verilog RTL

Synplify Constraints (SDC File)

Synplify does not know that clocks pass through the CLK | PI N cells, so their outputs must be declared explicitly,
otherwise Synplify simply assumes all clocks are 200MHz.

JTAG CLK_| PI N pass-t hrough:
create_clock [get_pins x_snapshot.x_jtap_interface.x_acx_jtap.clk_ipin_tck/dout] -period 40 -nane

tck_core
set _cl ock_groups -asynchronous -group {tck_core}

www.achronix.com 29

http://www.achronix.com

Snapshot User Guide (UG016)

Example Code:

The Snapshot macro should be instantiated in the user design, as shown in the following example, and
connected to the signals that may need to be observed. Declaring the component ACX_SNAPSHOT is required for
Synplify to recognize the Verilog macro.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_| ogi c_unsigned. all;

entity snapshot _exanple is

port (
i jtag_in : in std_logic_vector(7 downto 0);
o_jtag_out : out std_|logic_vector(1l downto 0);
i_clk :in std_logic);

end snapshot _exanpl e;
architecture rtl of snapshot_exanple is
constant MONI TOR_ WDTH : integer := 8;

conponent ACX_SNAPSHOT i s

generic (

DUT_NAME : string;

MONI TOR_W DTH : natural;

MONI TOR_DEPTH : natural;

TRI GGER_W DTH : natural;

NUM_TRI GGERS : natural;

STANDARD_TRI GGERS : std_logic;

STI MULI _W DTH : natural;

I NPUT_PI PELI NI NG : natural;

OUTPUT_PI PELI NI NG : natural;

ARM DELAY : natural;

ENABLE_EDGE_TRI GGERS : std_| ogi c;

I NI TI AL_TRI GGER : std_l ogic;

I'NI TIAL_NUM TRI GGERS : std_l ogic_vector(1 downto 0);

I NI TI AL_TRI GGERL : string(MONI TOR WDTH 1 downto 0);

I NI TI AL_TRI GGER2 : string(MONI TOR WDTH 1 downto 0);

I NI TI AL_TRI GGER3 : string(MONI TOR WDTH 1 downto 0);

INITIAL_USE_AND 1 . std_logic;

I NI TI AL_USE_AND 2 . std_l ogic;

I NI TI AL_USE_AND 3 : std_logic;

I NI TI AL_PRE_STORE : std_logic_vector(1 downto 0);

SNAPSHOT _ MODE : natural);

port (
i _jtag_in :in std_logic_vector(7 dowmnto 0);
o_jtag_out : out std_logic_vector(l downto 0);
--- SIGNALS to/from USER DESI N - - -
i _user_clk :in std_logic;
i _nonitor :in std_logic_vector(MONITOR WDTH 1 downto 0);
i _trigger :in std_logic_vector(MONITOR WDTH 1 downto O);
o_stimuli : out std_logic_vector(19 downto 0);
o stimuli_valid : out std_logic;
o_arm : out std_Ilogic;
o_trigger : out std_logic);

end conponent;

www.achronix.com 30

http://www.achronix.com

Snapshot User Guide (UG016)

si gnal counter : std_logic_vector(MONITOR WDTH 1 downto 0);

signal reset : std_logic :="'0";

signal reset_pipe : std_logic_vector(8 dowmto 0) := (others => "'1");
begi n

acx_snapshot _i : ACX_SNAPSHOT

generic map(

DUT_NAME => "none_specified",
MONI TOR_W DTH => MONI TOR_W DTH,
MONI TOR_DEPTH => 1024,

TRl GGER_W DTH => MONI TOR_W DTH,
NUM TRI GGERS > 3,

STANDARD_TRI GGERS = '1",

STI MULI _W DTH => 20,

I NPUT_PI PELI NI NG => 3,

QUTPUT_PI PELI NI NG => 0,

ARM DELAY =1

ENABLE_EDGE TRI GGERS => '1',

I'NI TI AL_TRI GGER

= '1'

I'NI TI AL_NUM_TRI GGERS => "01",
-- NUMBER OF CHARACTERS SHOULD BE TRI GGER_W DTH.
-- VALID CHARACTERS ARE X, 0, 1, R AND F.

I'NI TI AL_TRI GGERL
I'NI TI AL_TRI GGER2

I NI TI AL_TRI GGER3
I'NI TI AL_USE_AND 1
INI TI AL_USE_AND 2
I NI TI AL_USE_AND 3
I NI TI AL_PRE_STORE
SNAPSHOT _MODE

)

port map (
--JTAG Connecti ons
i_jtag_in =>
o_j tag_out =>
-- SIGNALS to/from
i _user_clk =>
i _nmonitor =>
i _trigger =>
o_stimuli =>
o_stimuli_valid =>
o_arm =>
o_trigger =>

)

=> XXX

i _jtag_in,
o_jtag_out,
USER DESI GN

i _clk,
counter,
(others=>'0"),
open,

open,

open,

open

-- sinple counter for snapshot to nonitor

process(i _cl k)

begin
if(rising_edge(i_clk)) then
if(reset = '1') then
counter <= (others=>'0");
el se
counter <= counter + x"1";
end if;
end if;

end process;

www.achronix.com

31

http://www.achronix.com

Snapshot User Guide (UG016)

-- self reset
process(i _cl k)
begin

if(rising_edge(i_clk)) then
reset _pipe <= reset_pipe(7 dowmnto 0) & '0';
reset <= reset _pipe(8);
end if;
end process;

end rtl;

www.achronix.com

32

http://www.achronix.com

Snapshot User Guide (UG016)

Chapter - 6: Probing in a Hierarchical Design

Overview

Snapshot provides the ability to probe signals deep within a hierarchical design without the need to modify every
level of RTL, i.e., pulling the signals though the hierarchy up to the top level.

A special macro allows defining which signals are to be probed within the deeply-embedded module. These
probe points are then matched at the top-level module where Snapshot is instantiated. Synplify or ACE
(depending on usage) aligns the deeply embedded and top-level signals, providing access to the embedded
signals without the need to explicitly route them to the top level through multiple levels of RTL.

This method uses modules ACX_PROBE_CONNECT and ACX_PROBE_PQO NT. There are two options for using
these modules:

1. Provide a user-defined tag to associate an ACX PROBE_PQO NT with an ACX_PROBE_CONNECT

2. Provide a hierarchical pin name (with wildcards) to associate pins with an ACX_PROBE_CONNECT

When the selected association is provided, monitor the ACX_ PROBE_CONNECT output with Snapshot.

Generally, the method with tags is preferred, because it is often hard to determine the full hierarchical name of a
pin. The pin name method is useful for tapping a signal from a macro that cannot be edited (for example, probing
inside the library macros or third-party IP).

Note

@ The method providing user-defined tags uses Synplify syn_hyper sour ce and syn_hyper _connect
instances. Error messages might refer to those terms.

www.achronix.com 33

http://www.achronix.com

Snapshot User Guide (UG016)

Module Declarations

nodul e ACX_PROBE_PO NT #(
paraneter integer width = 1, // set to input width
paraneter tag = "" /1 set to unique string
) (
input [width-1:0] din
)

endnodul e

An ACX_PROBE_PQO NT takes as input one or more signals that must be observed with Snapshot. The
ACX_PROBE_PQO NT is instantiated in the hierarchy at the point where these signals are available.

nodul e ACX_PROBE_CONNECT #(
paraneter integer width = 1, // nust match wi dth of source
paraneter tag = "", /1 must match tag of source
paraneter pin = "", /1 "instance/pin" or "instance/bus", wildcards allowed
paraneter nust_connect = 1'bl // whether m ssing source is error or warning

) (
out put [wi dth-1:0] dout

)

endnodul e

The output of an ACX_PROBE_CONNECT instance is monitored with Snapshot. This instance can be created in
the same module as the ACX_SNAPSHOT instance. The software uses the tag string to find a matching
ACX_PROBE_PO NT, then replaces both modules with a direct connection between the input of the
ACX_PROBE_PO NT and the output of the ACX_PROBE_CONNECT.

Alternatively, for cases where it is not possible to insert an ACX PROBE_PO NT, an ACX_PROBE_CONNECT can
be used with a hierarchical pin name instead of a tag. The ACE fi nd command can be useful when determining
hierarchical names.

www.achronix.com 34

http://www.achronix.com

Snapshot User Guide (UG016)

Example

The following code is similar to the design shown in Verilog Snapshot example (see page 23), but places the
two counters (the user design) inside a separate module, count er s. Compare this to a module designed to
compute some function (al | _zer o in this example) without necessarily exposing the counters themselves. But
during debugging, counter values must be observed to verify correctness. Rather than adding ports to expose
the counters, possibly for many levels of hierarchy, probe points can be used instead.

As mentioned, using probe points with tags is preferred, but for the sake of the example, a probe point was only
placed on count er _a. The pin name is used to identify count er _b.

Nested Module Wth Local Counters

“tinescal e 1ps/ 1ps
nodul e counters (

input wre i _clk,
input wre i _rst_n,
input wre [7:0] i_limt_a,
output wire o_all _zero

)

/********** user CIrCUIt ***/

/1 The main user design consists of two counters.
/] counter_a : 8-bit counter with configurable period.
/1 counter_b : 16-bit counter

/1 The main user design consists of two counters.

/1 counter_a : 8-bit counter with configurable period. The period is set
/1 by setting limt_a via the Snapshot stimuli. Default

I limt_a = 62 (hence counter_a has default period 63).

/1 counter_b : 16-bit counter

0; // counts O..i _limt_a
0;

reg [7 : O] counter_a
reg [15 : 0] counter_b

al ways @ posedge i _cl k)
begin
if ('i_rst_n)
begi n
counter_a <= 0;
counter_b <= 0;
end
el se
begi n
if (counter_a == i_limt_a)
counter_a <= 0;
el se
counter_a <= counter_a + 1;
counter_b <= counter_b + 1;
end
end

assign o_all_zero = (counter_a == 0 && counter_b == 0);

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

/********** probe pOl nts for Snapshot **/

ACX_PROBE_PO NT #(
.wi dth(8),
.tag("counter_a")

) probe_counter_a (
.din(counter_a)

K

endnodul e // counters

At the top level where Snapshot is instantiated, matching ACX_PROBE_CONNECT instances are created that use

the same tags. For count er _b, the pin name method is used to create the connection. While count er _a and
count er _b are seemingly driven by ACX_PROBE_CONNECT, internally they are connected to the actual

counters.

Top- Level Mbdule Wth Snapshot

/1 Copyright (c) 2021 Achronix Sem conductor Corp.

/1 Al R ghts Reserved.

“include "speedster 7t/ conmon/ speedst er 7t _snapshot _v3. sv"

“tinescal e 1ps/1ps
nmodul e snapshot _counter (
/1 jtag ports:

input wire jtag_input_tp i _jtag_in,
output wire jtag output_tp o_jtag_out,

/1 user design ports:

input wre i_clk,
input wre i_pll_lock
/********** Snapshot Stl ITUlI ***/

/1 Snapshot stimuli are only valid when stimuli_valid =1

wire stimuli_valid,

reg stimuli_valid_d = 1'b0; // for edge detection

al ways @ posedge i _cl k)
begin

stimuli_valid d <= stinuli_valid;

end

/********** reset **/

/1l Use a counter to assert rst_n for sonme nunber of cycles at startup.

/1 If restart_rst_count =
| ocal param i nteger reset_

1, restart the counter.
cycles = 20;

| ocal paraminteger rst_count_width = $cl og2(reset_cycles);

reg [rst_count_width-1 :
reg rst_n;

wire restart_rst_count;
wire restart;

0] rst_count = { rst_count_w dth {1' b0} };

www.achronix.com

36

http://www.achronix.com

Snapshot User Guide (UG016)

al ways @ posedge i _cl k)
begin
if (restart_rst_count)
rst_count <= { rst_count_width {1' b0} };
else if (!rst_n && i_pll _lock)
rst_count <= rst_count + 1'bil;

rst_n <= (rst_count >= reset_cycles);
end

/1 set 'restart' via Snapshot stinmuli to cause a reset
assign restart_rst_count = (restart & stimuli_valid & !stinmuli_valid_d);

*kkhkkkkkk kK H 3 R R R R R R R R R R R R R R R R R SR R R SRR R R R R R R R R EEREEEEEEEEE RS
/ counter limt /

reg [7:0] limt_a = 62;

wire [7: 0] limt_ain; // set via stimuli: if not 0, value for limt_a
al ways @ posedge i _cl k)
begin
if (stimuli_valid & limit_a_in!=0)
limt _a<=limt_a_in;
end

/********** user CerUIt ***/

wire all_zero;

counters x_counters (
Li_clk(i_clk),
Li_rst_n(rst_n),
di_limt_a(limt_a),
.o_all _zero(all _zero)

K

/********** SnapShOt ***[

| ocal param i nt eger MONI TOR_W DTH
| ocal param i nt eger MONI TOR_DEPTH

36;
4000; // will be rounded up

wire [MONNTOR WDTH 1 : 0] nonitor;
wire arm

wire [7:0] counter_a;
ACX_PROBE_CONNECT #(
.width(8),
.tag("counter_a")
) probe_counter_a (
. dout (counter_a)

)

wire [15:0] counter_b;
ACX_PROBE_CONNECT #(
.wi dth(16),
.pin("*.counter_b*/q")
) probe_counter_b (

www.achronix.com

37

http://www.achronix.com

Snapshot User Guide (UG016)

. dout (count er _b)

K

assign nonitor = {
count er_b,
counter _a,
limt_a,
all _zero,
arm
stimuli_valid,
rst_n

b

| ocal param i nteger STIMJLI_WDTH = 9;
wire [STIMILI_WDTH1 : 0] stinmuli;

assign {
restart,
limt_ain
} = stimli;

ACX_SNAPSHOT #(
. DUT_NAME(" snapshot _counter"),
. MONI TOR_W DTH(MONI TOR_W DTH) ,
. MONI TOR_DEPTH(MONI TOR_DEPTH) ,
. TRI GGER_W DTH(MONI TOR_W DTH < 40? MONI TOR_W DTH : 40),
. STI MULI _W DTH(STI MJLI _W DTH) ,
. ARM DELAY(3)
) x_snapshot (
.i_jtag_in(i_jtag_in),
.0_jtag_out(o_jtag_out),

.i_user_clk(i_clk),
.i_monitor(monitor),
.i_trigger(), // not used if STANDARD TRI GGERS = 1
.o_stimuli(stinuli),
.o_stimuli_valid(stinmuli_valid),
.o_arm(arm,
.o_trigger()
)

endnodul e // snapshot _counter

www.achronix.com

38

http://www.achronix.com

Snapshot User Guide (UG016)

Chapter - 7: Running the Snapshot User Interface

Warning!

The JTAG connection must be configured before using the snapshot debugger.

ACE interacts with the FPGA using the JTAG interface through a Bitporter2 pod or FTDI FT2232H
device. This JTAG interface must be properly configured in ACE before using the Snapshot Debugger
view. The configuration is managed using the Configure JTAG Connection preference page, which is
easily accessible by clicking the (&) Configure JTAG Interface button in the Snapshot Debugger
view. See Configuring the JTAG Connection for more details.

Snapshot is the real-time design debugging tool for Achronix FPGAs. Snapshot, which is embedded in the ACE
software, delivers a practical platform to evaluate the signals of a user design in real-time and optionally send
stimuli to the user design.

To utilize the snapshot debugger tool, the snapshot macro must be instantiated inside the RTL for the design
under test (DUT). After instantiating the macro and programming the device, the design can be debugged in the
ACE GUI using the Snapshot Debugger view and the VCD Waveform Editor, found within the Programming and
Debug perspective.

Achronix Core

ACE » user clock
Snapshot GUI
monitor channel
UsB . JTAG Snapshot ;
FTDI Device p > User Logic
VCD | € f macro trigger channel &
wayeform b :
VlinyeEr | | stimuli
Lo—— Bitporter2 ———d 1

3702869-02.2022.07.12

Figure 7: Snapshot Communication with the Snapshot Debugger View within ACE
When instantiated in a design, the Snapshot macro can be used to interface with
any logic mapped to the Achronix FPGA core. The Snapshot macro provides a JTAG
/JTAP interface to control/observe debug logic mapped to the core. This interface
allows the ACE Snapshot Debugger view, which drives the JTAG interface, to
control/observe the signals associated with the debug logic.

Within the ACE GUI, the Snapshot Debugger view allows configuring an embedded Snapshot Debugger core,
interactively arm the core, and generate a VCD waveform output of the collected samples. By default, the
generated VCD waveform output is displayed in the ACE editor area using the VCD Waveform Editor. The VCD
output can also be read into a third-party waveform viewer.

At a high level, to utilize Snapshot, first:

1. Instantiate the Snapshot macro ACX_SNAPSHOT in the user design.
2. Set the required constraints in the . sdc files.

3. Synthesize the design.

4. Place and route the design in ACE.

www.achronix.com 39

http://www.achronix.com

Snapshot User Guide (UG016)

5. Generate the Bitstream for the design in ACE.

6. Configure the ACE JTAG connection to the FPGA (see Configuring the JTAG Connection)
7. Program the Achronix device with the Bitstream.

® Use of the ACE GUI Download view is documented in the section Playing a STAPL File

(Programming a Device)

® Use of the acx_st apl _pl ayer executable on the command-line is documented in the JTAG

Configuration User Guide (UG004)

When these prerequisite steps are complete, the ACE GUI Snapshot Debugger view allows the evaluation

/interaction with the running design in real-time.

The following sections further explain Snapshot and provide a guide through the process.

Accessing the Snapshot Debugger
Open the ACE GUI and Select the Project

Open the ACE GUI tool, and load or activate the selected project in the Projects View as shown below. See:

® Loading Projects,
® Setting the Active Implementation

® Working with Projects and Implementations

@ ACE - Achronix CAD Environment - Version snapshot_example->impl_1 (ACTt1500E50)
File Edit Actions Window Help

3| & (@ LMo S e 0

(% Projects 22 = 0O || [options 2 | B Multiprocess

C2EE I RRE S %S

Project: snapshot_example
viE snapshot_example

Implementation: impl_1

(= Metlists
(= Constraints » Design Preparation
=P » Advanced Design Preparation
1% impl_1
} Place and Route
} Report Generation
» Timing Analysis
%Flnw 3 = DP| § = 8 » Bitstream Generation
~ [&Y Prepare » FPGA Download

[m] & Run Prepare

[] & Run Estimated Timing Analysis

[] & Generate Pre-Placed Simulation MNetlist
~ [m] & Place and Route

A Run Sign-off Timing Analysis

[& Generate Final Simulation Metlist
~ W]) FPGA Programming

A Generate Bitstream

[& FPGA Download

C\projects\achronix\snapshot_example\ace\snapshot_example.aceprj

-- Build 369189 -- Date
ALl rights reserved.

. -- all messages Logged in file C:/Users/Labadmin/.achronix/ace_2822 12 @3 12 38 38.log, created at
& Run Post-Route Timing Analysis INFO: License ace-v1.@ on server cad2? (1966 of 2008 licenses gvailable). Running on SJC-LAB33 (x64).

[®] & Post-Process Design cmd> restore_project "C:/projects/achronix/snapshot_example/ace/snapshot_example.acxprj”

[m] & Run Place £l Tel Console 22 =g Progress

[] & Run Post-Placement Timing Analysis -- ACE -- Achronix CAD Environment -- Version

[E] A& Run Route -- (c) Copyright 20886-2822 Achronix Semiconductor Corp.
~ [m] &) Design Completion

[®] & Run Final DRC Checks cmd>

- O x
Q
= 0
BEE § =0

an

Figure 8: ACE Tool Load Project

www.achronix.com

40

http://www.achronix.com

Snapshot User Guide (UG016)

Open the Snapshot Debugger

Click the toolbar button to change to the (&) Programming and Debug Perspective as described in the Working
with Perspectives section. The Snapshot Debugger view should be visible by default, as shown below. If not,
select Window — Show View — Snapshot Debugger from the main menu bar.

The Snapshot Debugger view should have automatically loaded the default Snapshot configuration file for the
project, generated when the design ran through place and route, located in <ace_proj ect _dir >

/ <active_inpl _dir>/output/nanes. snapshot . If the file loaded, the correct signal names from the user
design appear in the Trigger Channels, Monitor Channels, and Stimuli tables. If the file did not automatically
load, click the (|7) Load Snapshot Configuration toolbar button in the Snapshot Debugger view to browse to
the location of the preferred *. snapshot configuration file, or manually enter the signal names, channel widths,
etc. to match the design.

(@ ACE - Achronix CAD Environment - Version - snapshot_example-»impl_1 (ACTtS00ES0) - O x
File Edit Actions Window Help

&| (@ in @ E S J Q
%5 Snapshot Debugger 52 | % Download Q0 ®| > |5 ¢ = Ol E optons 52 | B Multiprocess =g

~ Trigger Conditions (o)

Set up the conditions to trigger the capture of data on the monitor channels.

Project: snapshot_example

Implementation: impl_1

Trigger Made Single e » Design Preparation
Number of Sequential Triggers | 3 v e e
Trigger Channel Width 38 - S PEce s e
Trigger Channels b Report Generation

Channel Trigger1 Trigger2 Trigger3 Signal Name ~ » Timing Analysis

0 X X X reset n » Bitstream Generation

| X X X stimuli_valid

2 X X X x_snapshot.arm Ll

3 X X X limit_a[0]

4 X X X limit_a(1]

5 X X X limit_a[2]

6 X X X limit_a[3]

7 x X X limit_a[4]

8 X X X limit_a(3]

9 X X X limit_a[6] v

Load Signal Names From Active Project | | Resct Signal Names

» Monitor Channels Bl Tl Console 3 B & = O

» Stimuli -- ACE -- Achronix CAD Environment -- Version -- Build 362185 -- Date
« Advanced Options -- (c) Copyright 2086-2022 Achronix Semiconductor Corp. ALL rights reserved.

Configure log and output file locations, and advanced options INFO: License ace-v1.@ on server cad2 (1966 of 2888 licenses available). Running on SJC-LAB33 (x84).

Pre-5t 0% v
re-stors ’ cnd> restore_project "C:/projects/achronix/snapshot_example/ace/snapshot_example.acxpri”
Trigger 1 Select cmd>

@ Select Using AND (O Select Using OR

Trigger 2 Select
@ Select Using AND () Select Using OR
Triaaer 3 Select il [24

sMofS12M |}

Figure 9: Snapshot Debugger View

Configuring the Trigger Pattern

Note

The Trigger Channel signal names are automatically configured to the correct values when the names.

@ snapshot file is loaded. The nanes. snapshot file is generated during design preparation (the Run
Prepare Flow Step), which contains the user design signal names connected to Snapshot, along with
the trigger width and the maximum number of sequential triggers.

Configuring the Trigger Mode

The Trigger Mode option allows the user to select the trigger mode to use when the Arm action is run.

www.achronix.com 41

http://www.achronix.com

Snapshot User Guide (UG016)

Single

The default trigger mode is Single, which means the trigger conditions are programmed in to the
ACX_SNAPSHOT macro and then the GUI waits for a single trigger event to occur which matches those trigger
conditions, and then a single VCD file is recorded. This option arms Snapshot and captures data only once.

Immediate

If Imnmediate trigger mode is selected, pressing the Arm button results in the same behavior as Single trigger
mode, except that all 3 trigger patterns are treated as "Don't Care" (X's) so that the trigger event will occur as
soon as the Arm button is pressed. This mode is useful to quickly capture the state of the running design without
waiting for any trigger pattern to be met.

Repetitive

If Repetitive trigger mode is selected, the trigger conditions are programmed in to the ACX_SNAPSHOT macro
and samples are captured repetitively until the upper limit of trigger event records is reached. When Repetitive
trigger mode is selected, an additional set of repetitive trigger mode options will appear to allow the user to
configure the number of sequential times Snapshot should be armed repetitively using the configured trigger
conditions, and the way in which the output VCD files are managed. This mode is useful when the trigger
conditions do not narrow in on the exact data pattern and the pattern you intend to observe occurs sporadically at
the trigger conditions. You can let the repetitive trigger mode run for a long period of time, taking several capture
records at the trigger conditions, to help find the pattern you are interested in. The user can optionally cancel the
remaining Snapshot session once the desired data is captured.

The repetitive trigger Record Limit setting determines how many times (number of records) the GUI will
repeatedly Arm the Snapshot debugger and capture samples. The user may set this to automatically run
Snapshot up to 128 times.

The repetitive trigger VCD Record Limit setting determines how many Snapshot records to capture in a single
VCD file. This essentially concatenates the VCD files from consecutive runs of Snapshot (records) into a single
VCD file. The VCD file waveform contains a set of virtual signals to indicate the system timestamp at which each
Snapshot record was captured. The user may concatenate up to 10 Snapshot records in a single VCD file.

If the Overwrite VCD File option is selected, the VCD Waveform File name specified in the Advanced Options
section will be used to store the output VCD file. The file will be overwritten with the new VCD file each time the
VCD record limit is reach. If the Overwrite VCD File option is not selected, then multiple VCD files will be written
out and a unique VCD record number will be added to the VCD Waveform File name specified in the Advanced
Options section for each VCD. For example, if you set the Record Limit to 8 and set the VCD Record Limit to 2,
and set the VCD Waveform file path the "./snapshot.vcd", then Snapshot would output 4 VCD files to "
/snapshot1.ved", "./snapshot2.ved", "./snapshot3.ved", "./snapshot4.ved", each containing 2 Snapshot capture
records.

Configuring Trigger Patterns

The Snapshot Debugger can be configured to use a Trigger Channel Width of 1 to 40 bits. The value entered in
the Snapshot Debugger View must match the value of the TRIGGER_WIDTH parameter set on the
ACX_SNAPSHOT module in the user design RTL. (This will be the width of the i_trigger bus.)

The Snapshot Debugger is capable of handling one to three sequential trigger patterns. The post-trigger data is
sampled once the last trigger pattern in the sequence is matched.

The user may specify the number of desired sequential trigger patterns using the Number of Sequential
Triggers option in the Snapshot Debugger View. If 1 is selected, Trigger 2 and Trigger 3 are ignored. If 2 is
selected, Trigger 3 is ignored and Snapshot will trigger when Trigger 1 is matched, followed (on any subsequent
clock) by a match on Trigger 2. If 3 is selected, then Snapshot will trigger after a match on Trigger 1, followed (on
any subsequent clock) by a match on Trigger2, followed (on any subsequent clock) by a match on Trigger3.

www.achronix.com 42

http://www.achronix.com

Snapshot User Guide (UG016)

Each sequential trigger is hooked up to the trigger channels on the Snapshot Debugger core. The LSb of the
trigger pattern is hooked to trigger channel 0, and the MSB is hooked to upper most trigger channel bit
(TRIGGER_WIDTH - 1).

Each sequential trigger is made up of three parts: the pattern mask, the edge mask, and the don't care mask. In
the Snapshot Debugger View, these 3 masks are combined for ease of use into a single trigger pattern value,
which allows each bit to be specified as X (don't care), R (rising edge), F (falling edge), 0 (level 0), or 1 (level 1).
The trigger pattern defines the trigger channel signal conditions that are required to detect a match. If a given
trigger channel value is set to X (don't care), then this trigger channel is ignored when computing a match. If a
given trigger channel value is set to R (rising edge), then this trigger channel is is evaluated as a match when a
rising edge of this signal is seen by Snapshot. If a given trigger channel value is set to F (falling edge), then this
trigger channel is is evaluated as a match when a falling edge of this signal is seen by Snapshot. If a given
trigger channel value is set to 1 (level 1), then this trigger channel is is evaluated as a match as long as this
signal's level is seen as a 1 by Snapshot (it is not edge sensitive). If a given trigger channel value is set to 0
(level 0), then this trigger channel is is evaluated as a match as long as this signal's level is seen as a 0 by
Snapshot (it is not edge sensitive).

Warning!

If any active Trigger is configured with as all X's (don't care), the trigger pattern will be a match on the
first clock cycle that trigger is evaluated.

The values within a trigger pattern may cause a trigger match event either by AND'ing or OR'ing. If AND'ing, then
all signal values not masked (set to X) must match their pattern for the trigger match event to occur. If OR'ing,
then the trigger match event will occur if any of the non-masked (not set to X) signal values match the specified
pattern. The AND/OR configuration is set per sequential trigger using the Select using AND or Select using OR
radio buttons. This selection can be different for each sequential trigger.

In the "Trigger Channels" table of the Snapshot Debugger View, the trigger patterns can be viewed and edited.

Setting Pattern Values Using the Table

For each channel, a value of X (don't care), R (rising edge), F (falling edge), 0 (level 0), or 1 (level 1) can be
specified via a pull-down menu under each "Trigger" column as shown below.

www.achronix.com 43

http://www.achronix.com

Snapshot User Guide (UG016)

Trigger Channels
Channel Trigger1 Trigger 2 Trigger3 Signal Name =
] X x X reset_n -
1 X X X stimuli_valid 1
2 X X X arm M
3 X - X X limit_a[0]
4 X X X limit_a[1]
5 2 X X limit_a[2]
] R X X limit_a[3]
7 F X X limit_a[4]
8 X X X limit_a[5]
9 X X X limnit_a[&] o

Load Signal Mames From Active F'ro_iect] lﬂeset Signal Mames

Figure 10: Trigger Channels Setting Example

Setting Multiple Pattern Values as a Bus

The Assign Bussed Values Dialog wizard allows assigning a value to multiple signals from the Snapshot
Debugger view "Trigger Channels" or "Stimuli Channels" tables as a bus. After configuring the bus in the dialog,
the values of each signal are propagated to all the selected signals in the Snapshot Debugger View. There are 2
ways to launch this dialog to allow bus assignment of values:

1. With your mouse, left click to select a single row in the Snapshot Debugger View table which has a
bussed signal name (i.e. din[2]). Then right mouse click to edit the Value by Bus. This method will
automatically find all the other bits in the bus with the same signal name (i.e. din[0], din[1], din[2], etc.) and
open the dialog to allow editing of the entire bus of signals.

2. With your mouse, hold CTRL or SHIFT and left click to select multiple rows in the Snapshot Debugger
View table. Then right mouse click to edit the Value by Selection. This method will open the dialog to
allow editing of all selected signals as a bussed value.

www.achronix.com 44

http://www.achronix.com

Snapshot User Guide (UG016)

F N 7 B
.3 Assign Bussed Values L@ﬂj .3 Assign Bussed Values l_lﬂlﬂ
Bus Value Assignment Bus Value Assignment
This wizard allows you to autormnatically configure This wizard allows you to automatically configure
the value of a bussed signal. the value of a bussed signal.
Binary Value 10100011 Binary Value | X1ROF
Hex Value a3 Hex Value "
Decimal Value 163 Decimal Value 7
Bit Value Signal Name Bit Value Signal Name
0 1 limit_a[0] l 1] F reset_n
1 1 limit_a[1] 1 0 stirnuli_valid |
2 1] limit_a[2] 2 R arm
3 0 limit_a[3] 3 1 limit_a[0]
4 0 lirnit_a[4] 4 X lirnit_a[1]
g 1 limit_a[5]
6 0 limit_a[6]
7 1 limit_a[7]
@ [Finish] [Cancel] @ [Finish] [Cancel
.

Figure 11: Assign Bussed Values Dialog Example

See Assign Bussed Values Dialog for more information on this dialog.

Configuring the Monitor Signals

Note

The Monitor Signals are automatically configured to the correct values when the nanes. snapshot file

©@ isloaded. The file is generated during design preparation (the Run Prepareflow Step) which contains
the user design signal names connected to Snapshot, along with the monitor width and number of
samples.

The value of Monitor Channel Width in the SnapShot Debugger view must be configured to match the value of
the MONI TOR_W DTH parameter of the ACX_SNAPSHOT instance inside the RTL of the design being debugged
(this is the width of the i _noni t or bus).

The value of Number of Samples in the SnapShot Debugger view should be configured to match the value of
the MONI TOR_DEPTH parameter of the ACX_SNAPSHOT instance inside the RTL of the design being debugged. If
the value in the GUI does not match the value in the RTL, the value from the RTL is used and a warning is
entered into the Snapshot log file.

Naming Captured Signal Data

Custom signal names for each channel can be entered under the Signal Name heading within the "Monitor
Channels" table. The signal/bus names in the table are then used as labels on the captured signal data in the
VCD waveform output, and are visible in the VCD Waveform Editor.

Multiple signals can be combined into a bus by selecting multiple rows in the "Monitor Channels" table, right-
clicking a selected signal row to bring up a popup context menu, and selecting (Iz) Assign Bus Name from the
context menu to bring up the Assign Bussed Signal Names dialog. After configuring the bus in the dialog, the bus
name and indices are propagated to all the previously-selected signals.

www.achronix.com 45

http://www.achronix.com

Snapshot User Guide (UG016)

To select a contiguous range of rows:

1. Select the first signal.
2. hold the Shift key and select the last signal.

To select a non-contiguous set of rows:

1. Select the first signal.
2. While holding down the Ctrl key, select the other signals.

Signal names may be returned to their defaults by clicking the Reset Signal Names button under the "Monitor
Channels" table.

Note

Reset Signal Names resets all signal names in the table at once, not just the currently selected rows
/signals.

@ The Load Signal Names From Active Project button loads the nanes. snapshot file generated
during design preparation (the Run Prepare flow step) which renames all signals with their project-
specific names, and also loads the project-specific default settings for monitor width, user clock
frequency, default . | og and . vcd file path, etc.

Configuring the Test Stimuli

The stimuli channel signal names are automatically configured to the correct values when the nanes.
snapshot file is loaded. The nanes. snapshot file is generated during design preparation (the Run

© Prepare Flow Step), which contains the user design signal names connected to Snapshot, along with
the stimuli width.

Snapshot has the capability to send 0 to 512 bits of test stimuli (the ACX_SNAPSHOT macro output signal
o_sti mul i) tothe Design Under Test (DUT). This data is sent once per arming session, is only valid while the
o_stimuli_valid signalis high.

This o_sti nul i output is optional, and need not be connected to the DUT — it may safely be left floating when
Snapshot is used to only read signals.

The value of Stimuli Channel Width in the SnapShot Debugger view must be configured to match the value of
the STI MULI _W DTH parameter of the ACX_SNAPSHOT instance inside the RTL of the design being debugged
(this is the width of the o_st i nul i bus).

In the Stimuli Channels table of the Snapshot Debugger View, the stimuli values can be viewed and edited.

Setting Stimuli Values Using the Table

For each channel, an output value of 0 (level 0), or 1 (level 1) can be specified via a pull-down menu under the
Value column as shown.

www.achronix.com 46

http://www.achronix.com

Snapshot User Guide (UG016)

Stimuli Channels

Channel Value Signal Mame

] dut_stirmuli[0]
a dut_stirmuli[1]
] dut_stimuli[2]
] dut_stimuli[3]
dut_stimuli[4]
0 dut_stirmuli[5]
dut_stirnuli[&]
dut_stimuli[7]

reset_n

[B I R T N =
=
1

’ Lead Signal Mames From Active Prﬂject] ’ Feset Signal Marmes

Figure 12: Stimuli Channels Value Setting Example

Setting Multiple Stimuli Values as a Bus

The Assign Bussed Values Dialog wizard allows assigning a value to multiple signals from the SnapShot
Debugger view Stimuli Channels table as a bus. After configuring the bus in the dialog, the values of each
signal are propagated to all the selected signals in the SnapShot Debugger View. There are two ways to launch
this dialog to allow bus assignment of values:

1. Left click to select a single row in the SnapShot Debugger View table which has a bussed signal name (i.
e.,din[2]).
Right click to edit the Value by Bus. This method automatically finds all other bits in the bus with the
same signal name (i.e., di n[0] , di n[1], di n[2], etc.) and opens the dialog to allow editing of the entire
bus of signals.

2. Hold CTRL or SHIFT and left click to select multiple rows in the SnapShot Debugger View table.
Right click to edit the Value by Selection. This method opens the dialog to allow editing of all selected
signals as a bussed value.

www.achronix.com 47

http://www.achronix.com

Snapshot User Guide (UG016)

-
i3 Assign Bussed Values E@ﬂ

Bus Value Assignment
This wizard allows you te automatically configure
the value of a bussed signal,
Binary Value 10100011
Hex Value a3
Decimal Value 163
Bit Value Signal Mame |
0 1 limit_a[0]
1 1 limit_a[1] Il
2 0 limit_a[2]
3 0 limit_a[3] |
4 0 limit_a[4]
5 1 limit_a[5]
6 0 limit_a[6]
7 1 limit_a[7]
L
|
@ [Finish] ’ Cancel

Figure 13: Assigned Bus Values Dialog Wizard Example

See Assign Bussed Values Dialog for more information on this dialog.

Configuring Advanced Options

Pre-Store

In the Snapshot Debugger View, the Pre-Store setting configures the portion of samples that are collected
before the trigger, and (indirectly) how many are collected after the trigger.

For example, assume that Snapshot is configured to use a monitor depth of 1024 samples. See the table below:

www.achronix.com 48

http://www.achronix.com

Snapshot User Guide (UG016)

Table 7: Effect of "Pre-store' on samples collected before and after the trigger event

"Pre-Store" value | Samples collected before trigger Samples collected after trigger
0% 0 1024
25% 256 768
50% 512 512
75% 768 256

When a Pre-Store value other than 0% is selected, the . vcd file contains a signal snapshot _pr e_st or e that
transitions (goes low) at the point where the (last sequential) trigger event occurred. Thus, the trigger event may
easily be found without needing to actually count the samples.

Trigger Pattern Match Behavior

The values within a trigger pattern may cause a trigger match event either by AND'ing or OR'ing. If AND'ing, then
all signal values not masked (set to X) must match their pattern for the trigger match event to occur. If OR'ing, the
trigger match event occurs if any of the non-masked (not set to X) signal values match the specified pattern. The
AND/OR configuration is set per sequential trigger using the Select using AND or Select using OR radio
buttons. This selection can be different for each sequential trigger.

User Clock Frequency

The Frequency field must be configured to match the the user _cl k frequency in the target user design, which
typically matches the timing constraint set in the SDC file of the design being debugged. The value from the user
design SDC file is set automatically in the names. snapshot file when an active implementation is available.
The frequency value entered in the Snapshot GUI (or . snapshot configuration file) determines the time (in
picoseconds) for all signals shown in the captured VCD file. All samples are captured at the rising edge of the
Snapshot user _cl k signal.

Configure Output File Locations

The final Snapshot configuration steps specify the locations of the output files which contain the log messages
and sample data collected by Snapshot.

File Paths Relative To Chooses whether the Log File and Waveform File paths are understood to be relative
to the Active Project directory or to the Working Directory (this only matters when the file paths provided are
relative paths, and not absolute paths).

Log File configures the file name and path for the log file generated by the Snapshot Debugger run. The
associated Browse button provides a directory/file selection dialog for the selection of a location different than
the default (the defaultis <acti ve_i npl _di r>/1 og/ snapshot . | og, or if there is no Active Project and
Implementation, <user _hone>/ snapshot . | og). If an error occurs during setup or while reading back the
sample information, the Snapshot log file contains the error messages.

Waveform File configures the file name and path for storing downloaded sample waveform information from the
SnapShot Debugger core in VCD format. The Browse button allows for the selection of a location different than
the default (the defaultis <acti ve_i npl _di r >/ out put/ snapshot . vcd, or if there is no active
implementation, <user _hone>/ snapshot . vcd).

www.achronix.com 49

http://www.achronix.com

Snapshot User Guide (UG016)

Collecting Samples of the User Design
Using the Startup Trigger

The Startup Trigger feature requires that the initial startup trigger parameters are configured on the
ACX_SNAPSHOT macro to enable the Startup Trigger feature, and that the Arm Snapshot action has not been
executed since the bitstream has been programmed. By clicking the (%) Capture Startup Trigger button, the
Snapshot Debugger view connects to the running ACX_SNAPSHOT circuit over JTAG and waits for the startup
trigger condition to be met, retrieves the trace buffer contents, and outputs a VCD file. This feature is useful to
capture trigger events that happen very soon after the Achronix FPGA enters user mode. When the (Q) Arm
Snapshot button is clicked, the startup trigger conditions and any existing trace buffer contents are cleared. The
Startup Trigger feature may only be used once after programming the bitstream.

Arming the Snapshot Debugger

When all the fields in the Snapshot Debugger view are configured, and the design is running on the target
device, Snapshot is ready to be armed.

Select the Arm button (or the (€3) Arm Snapshot button in the SnapShot Debugger view toolbar), and the ACE
Snapshot Debugger sends the configuration data (including the optional stimulus) to the ACX_SNAPSHOT circuit
running on the Achronix device, waits for the trigger condition(s) to be met, retrieves the trace buffer contents,
and outputs a VCD file as well as a LOG file.

When Armed, Snapshot begins to analyze the already-executing design in real-time.

The Snapshot log file and Snapshot waveform file are populated with the captured results, and the files are
opened in ACE (the log file opens in an ACE text editor, while the waveform (. vcd) file opens in the ACE VCD
waveform editor). If an error occurs during Snapshot Debugger configuration or while reading back the sampled
information (trace buffer), the Snapshot log file contains the relevant error messages, and the Snapshot
waveform file is not created/updated.

The (I8) Cancel button aborts the Snapshot arming process. The Snapshot log file is updated, but the
Snapshot waveform file is not created/updated if the cancel button is clicked. Cancel is useful if accidentally
sending in trigger conditions that are never matched.

If using Repetitive trigger mode, Snapshot repetitively executes the arm action for the number of records
specified, or until the cancel button is clicked. See Configuring the Trigger Pattern for details on the Repetitive
Trigger feature.

www.achronix.com 50

http://www.achronix.com

Snapshot User Guide (UG016)

) ACE - Achronix CAD Environment - Version - snapshot_example->impl_1 (AC7t1500E50) - o x
File Edit Actions Window Help
3| g PFEHEE@SIRe: 2
%5 Snapshot Debugger 52 @ Q = | |8 § = O 2 snepshotlog | = snapshotved 5T =0
Tigger Mode Single v A
o g & e &
Number of Sequential Tiggers |3 v
Name Value ~ ~
Trigger Channel Width S e I= counter a[7:0] 20 T 7= [16 [Tc [1d [1= [7 [20 [21 [22 [25 [24 [25 [26 [27 [26 [29 [2= [2b | 2c [2d [2= |
Trigger Channels - counteral7] O
- counterals] 0
Channel Trigger1 Tigger2 Tigger3 Signal Name ~ — comter o) |1
1 0 X X counter_a[0] o counteraldl 0
12 X X 1 counter_a[1] o countera3] 0
[E! x 1 X counter_a[2] - counter a2l D —
14 x X X counter_a[3] o counterall] 0 [| I [I |
B x x x counter_ald] - counteral0] 0 1 1 1 1 . 1 1. 1 1 17T
16 X X X counter_a[3] I counter b[15:.. 015b 01550155 [0157 0758 [0758 [015a [015b [015¢ [015d 015 0T5¢ [0160 [0T61 [0162 [0763 [0164 0165 [0166 [0167 [0T68 [0163 [(
7 X X X counter_s[6] - counter b{15] D |
18 x X X counter_a[7] - counterb14] 0 ‘ .
19 x x X counter_b{0] - counter b[13] 0 v||l] < ‘ %
2 X X X counter_b[1] v
U .
Load Signal Names From Active Project | | Reset Signal Names Move Up Add.. Left: 0000000340 th e = Right: ~ 0000000362 tk
Move Down Remeve Marker: 0000000347 tk Cursor: 0000000340 tk
» Monitor Channels
» Stimuli Waveform | File Preview
+ Advanced Options E] Tcl Console 52 B §=O0
Configure log and output file locations, and advanced options - - - -
-- ACE -- Achronix CAD Environment -- Version -- Build 369189 -- Date
Pre-Store 0% - -~ (c) Copyright 2806-2022 Achronix Semiconductor Corp. ALL rights reserved.
] -~ all messages Logged in file C:/Users/labadmin/.achronix/ace 2022 12 09 15 51 36.log, created at on
Trigger 1 Select INFG: License ace-vi.@ on server cad2 (1968 of 2000 licenses available). Ruaning on SJC-LAB33 (x64).
@ Select Using AND O Select Using OR
cnd> restore project "C:/projects/achronix/snapshot_example/ace/snapshot_example.acxpri”
Trigger 2 Select >
@ Select Using AND (O Select Using OR
Trigger 3 Select
@ Select Using AND (O Select Using OR .
< >
IMof5I2M |:

Figure 14: Snapshot Debugger Arming Example

Saving/Loading Snapshot Configurations

An existing known-good Snapshot configuration (the collection of settings in the Snapshot Debugger View) may
be re-used at a later date, or in batch mode.

Snapshot configurations may be saved to a Snapshot configuration file (with the . snapshot file extension)
using the (|z7*) Save SnapShot Configuration button found in the Snapshot Debugger view toolbar.

These Snapshot configurations may then be loaded later by using the (|27) Load SnapShot Configuration
button, found in the Snapshot Debugger view toolbar.

Note

Previously saved Snapshot configuration files are necessary to run Snapshot in Batch mode.

www.achronix.com 51

http://www.achronix.com

Snapshot User Guide (UG016)

When a user design containing the ACX_SNAPSHOT macro completes the flow step Run Prepare, a
nanmes. snapshot configuration file is automatically generated. This file contains harvested information
from the design including the monitor width, monitor depth, monitored signal names, trigger width,
maximum number of triggers, trigger signal names, stimuli width, stimuli signal names, and user clock
frequency. When an active project and implementation is available, the Snapshot Debugger view
automatically loads the implementation nanes. snapshot file to pre-populate the relevant fields of the
view. When generated, the file contains only a subset of a complete Snapshot configuration, and thus a
generated nanes. snapshot file should not be used to drive Snapshot in batch mode via Tcl.

The names.snapshot configuration file can be loaded as a starting point to map the Snapshot RTL
configuration into the Snapshot Debugger View. The Snapshot settings can be further customized and
saved as custom Snapshot configuration files for later use.

Running Snapshot in Batch Mode

It is also possible to run Snapshot from ACE in batch mode. To do so, use the TCL command r un_snapshot .
Note that r un_snapshot requires the use of a previously-saved Snapshot configuration file (. snapshot), and
allows some values to be overridden from the TCL commandline. See the r un_snapshot command in the TCL
Command Reference section for further details.

The Snapshot configuration file may be edited manually in a text editor, or by configuring the Snapshot Debugger
view in the ACE GUI and saving the Snapshot configuration.

Exanpl e Snapshot Configuration File

#Snapshot Configuration File

#Tue Sep 12 13:52:54 PDT 2017
files_relative_to_project=1
frequency=322. 0
log_file=./inpl_1/1og/snapshot.| og
noni t or _chO0. nanme=reset _n

nmoni tor _chl. nane=stinuli_valid

nmoni t or _ch10.
noni tor_ch11.
nmoni t or _ch12.
nmoni t or _ch13.
noni tor _ch14.
nmoni t or _ch15.
nmoni t or _ch16.
noni tor_ch17.
nmoni t or _chl18.
nmoni t or _ch19.

name=limt_a[7]

nane=count er _a[0]
name=count er _a[1]
name=count er _a[2]
nane=count er _a[3]
name=count er _a[4]
name=count er _a[5]
nanme=count er _a[6]
name=count er _a[7]
name=count er _b[0]

noni t or _ch2. nane=arm

nmoni t or _ch20.
nmoni t or _ch21.
noni t or _ch22.
noni t or _ch23.
noni t or _ch24.
nmoni t or _ch25.
noni t or _ch26.
nmoni t or _ch27.
nmoni t or _ch28.
noni t or _ch29.

name=count er _b[1]
name=count er _b[2]
name=count er _b[3]
nane=count er _b[4]
name=count er _b[5]
name=count er _b[6]
nane=count er _b[7]
name=count er _b[8]
name=count er _b[9]
nanme=count er _b[10]

www.achronix.com

http://www.achronix.com

Snapshot User Guide (UG016)

noni tor_ch3. name=limt_a[0]

noni t or _ch30.
nmoni t or _ch31.
noni t or _ch32.
nmoni t or _ch33.
nmoni t or _ch34.

name=count er _b[11]
name=count er _b[12]
nanme=count er _b[13]
name=count er _b[14]
name=count er _b[15]

noni tor_ch4. name=limt_a[1]

nmoni tor _ch5. nane=limt_a[2]

nmoni tor_ch6. nane=limt_a[3]

noni tor_ch7. name=limt_a[4]

nmoni tor_ch8. nane=limt_a[5]

nmoni tor_ch9. nane=limt_a[6]

noni t or _w dt h=38

num sanpl es=4096

numtriggers=3

pre_store=0%
repetitive_trigger.overwite_vcd=0
repetitive_trigger.record_|imt=10
repetitive_trigger.vcd_ record_limt=10
snapshot _ver si on=3
stinuli=110010100

stimuli_chO. nane=sti nmuli[0]
stinuli_chl. name=stinulil[1]
stimuli_ch2. name=stimuli[2]
stimuli_ch3. nane=stinuli[3]
stimuli_ch4. nane=stinuli[4]
stimuli_ch5. name=stimuli[5]
stimuli_ch6. nane=sti nmuli[6]
stimuli_ch7.nane=stinmuli[7]
stimuli_ch8. name=do_reset
stimuli_ch9. nane=stimnuli_ch9
stimuli_w dth=9

tri gger L=XX00000OOKXKXIKK00 1 1.0 10 1 XXXXXXXXKXX
triggerl.sel ect_using_and=1
tri gger 2=XXXXXXKXKXKKKL 1 1 1 RO0 0 XXXXXXXKXXXX
trigger2.select_using_and=1
tri gger 3=XXIIIIKIKF XIXIKIXIXIIKHXHKHKKXK
trigger3.sel ect_using_and=1
trigger_chO. nane=reset_n
trigger_chl. name=stinuli_valid

trigger_chl0.
trigger_chill.
trigger_chl2.
trigger_chl3.
trigger_chl4.
trigger_chil5s.
trigger_chlé.
trigger_chl7.
trigger_chils.
trigger_chl9.

narme=limt_a[7]

nanme=count er _a[0]
name=count er _a[1]
name=count er _a[2]
name=count er _a[3]
name=count er _a[4]
name=count er _a[5]
nanme=count er _a[6]
nane=count er _a[7]
name=count er _b[0]

trigger_ch2. name=arm

trigger_ch20.
trigger_ch2l.
trigger_ch22.
trigger_ch23.
trigger_ch24.
trigger_ch25.
trigger_ch26.
trigger_ch27.

nane=count er _b[1]
name=count er _b[2]
name=count er _b[3]
nanme=count er _b[4]
name=count er _b[5]
name=count er _b[6]
name=count er _b[7]
name=count er _b[8]

www.achronix.com

53

http://www.achronix.com

Snapshot User Guide (UG016)

trigger_ch28. nane=count er _b[9]
trigger_ch29. name=count er _b[10]
trigger_ch3.name=limt_a[0]
trigger_ch30. nanme=count er _b[11]
trigger_ch31l. name=count er _b[12]
trigger_ch32. name=count er _b[13]
trigger_ch33. name=count er _b[14]
trigger_ch34. name=count er _b[15]
trigger_ch4.name=limt_a[1]
trigger_ch5. name=limt_a[2]
trigger_ch6. name=limt_a[3]
trigger_ch7.name=limt_a[4]
trigger_ch8. name=limt_a[5]
trigger_ch9. name=limt_a[6]
trigger_node=Singl e

trigger_w dt h=38
vcd_file=./inpl_1/out put/snapshot.vcd

www.achronix.com

54

http://www.achronix.com

Snapshot User Guide (UG016)

Revision History

Version

Date

Description

1.0

05 Apr 2013

Initial Achronix release.

11

17 Apr 2013

Updated module name to ACX_SNAPSHOT.

1.2

12 Jul 2016

Modified name of document to not be Speedster22i specific.

1.3

17 Jul 2016

Ported document to Confluence and re-drew figures.
Modified monitor/trigger bus widths to the original 36-bit variants.

Put in information on multiple Snapshot instances through a single JTAG
port and the new feature to display bus values in timing waveforms.

1.4

02 Aug 2016

Included section on Probing in a Hierarchical Design (see page 33).
Updated parameter list and corrected wording in various sections.

2.0

24 Sep 2017

Extensive reworking and updating of the content to reflect newly available
features as part of the Snapshot version 3 release, including startup trigger,
edge triggering, repetitive trigger mode, configurable monitor and stimuli
widths.

2.1

23 Oct 2018

Snapshot General Description: (see page 7) Minor updates to the Triggers
(see page 8) section.

Snapshot Interface (see page 11): Corrections to the parameter table and
additional descriptions.

3.0

18 Apr 2023

Changedjtag_input_tptot JTAG INPUT andjtag_output _tptot_
JTAG _QUTPUT
® Change in the verilog interface on "snapshot interface" page.
® Change in the "jtag pins" section on "snapshot interface" page.
® Change in the verilog example section
Changed jtap_bus_tptot_JTAP_BUS in "jtag pins" section.
Changed the JTAG input pins to the newer JTAG pins in the VHDL
interface.

Added Snapshot interface with Device Manager section under Snapshot
interface.

Updated examples of pr obe_connect :
® Changed. pin("*.counter_b[*]:qg") to.pin("*.counter_b*
/") as advised.

Changed the verilog example top module from snapshot _count er to sna
pshot _exanpl e to be in sync with the rest of the naming.

www.achronix.com 55

http://www.achronix.com

Snapshot User Guide (UG016)

Version

Date

Description

® Added a snapshot example VHDL section.

® Updated the screenshots in Running Snapshot Interface (see page 39)
page.

® Updated the Block Diagram to include FTDI Device & Bitporter 2 in:
® Snapshot User Guide (see page 5) main page.
® Running Snapshot Interface (see page 39) page.

www.achronix.com

56

http://www.achronix.com

	Overview
	Snapshot General Description
	Features
	Triggers
	Trigger Examples

	Names.snapshot File

	Snapshot Interface
	Snapshot Macros
	JTAG Pins
	Snapshot User Port List
	Snapshot Parameter List
	Startup Trigger Parameters
	Parameter Impact on Core Logic Utilization
	Verilog Template
	VHDL Template
	Snapshot Interface with Device Manager
	Overview
	Sharing the JTAG Interface with Snapshot

	Snapshot Unit Verilog Template
	Instantiation Template

	Snapshot Example (Verilog)
	Overview
	Clock Constraints (SDC File)
	Synplify Constraints (SDC File)
	Example Code:

	Snapshot Example (VHDL)
	Overview
	Clock Constraints (SDC File)
	Synplify Constraints (SDC File)
	Example Code:

	Probing in a Hierarchical Design
	Overview
	Module Declarations

	Example

	Running the Snapshot User Interface
	Accessing the Snapshot Debugger
	Open the ACE GUI and Select the Project
	Open the Snapshot Debugger

	Configuring the Trigger Pattern
	Configuring the Trigger Mode
	Single
	Immediate
	Repetitive

	Configuring Trigger Patterns
	Setting Pattern Values Using the Table
	Setting Multiple Pattern Values as a Bus

	Configuring the Monitor Signals
	Naming Captured Signal Data

	Configuring the Test Stimuli
	Setting Stimuli Values Using the Table
	Setting Multiple Stimuli Values as a Bus

	Configuring Advanced Options
	Pre-Store
	Trigger Pattern Match Behavior
	User Clock Frequency
	Configure Output File Locations

	Collecting Samples of the User Design
	Using the Startup Trigger
	Arming the Snapshot Debugger

	Saving/Loading Snapshot Configurations
	Running Snapshot in Batch Mode

	Revision History

