
Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 1

Introduction
A Speedster®7t FPGA is configured at startup using a supplied bitstream containing the user design and the
configuration of the interface subsystems in the I/O ring within the FPGA. After this configuration stage, the
FPGA enters user mode and begins to operate with the user design.

During operation, it can be necessary to subsequently access, and in some instances modify, the configuration
registers of the I/O ring. This action is required to enable or disable channels, check status of a block, or to
reconfigure to a new data rate or data format. Examples include:

Memory controller training

SerDes or PCS link-up

PCIe enumeration

Bar support

To monitor the status and modify the configuration, the user design must have access to the subsystem
configuration registers.

Within the Speedster device, the configuration and status registers (CSR) form part of the global address map.
This map is detailed in "Chapter - 6: Speedster7t NoC Address Mapping" of the Speedster7t Network on Chip

, and is broken down into particular memory spaces. These spaces can be accessed User Guide (UG089)
through a number of mechanisms. This application note describes how to access the global address map using
the Speedster FPGA JTAG port, via the ACE Tcl console.

Memory Map
Each device has its own global memory map. The following table details the memory map for Speedster
AC7t1500 and AC7t1550 devices. The NoC uses the most significant bits (MSB) in the address to identify the
destination space of a transaction. As can be see in the table below, there are several memory spaces, each
performing a different function.

Runtime Programming of
Speedster FPGAs (AN025)
June 22, 2021 Application Note

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 2

1.

Table 1: AC7t1500 and AC7t1550 Global Address Map

Address
Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 … 0

Destination

PCIe 1 ID Memory Address

DDR4 0 1 Memory Address

GDDR6 0 0 0 0 0 Ctrl ID Memory Address

NAP 0 0 0 1 0 0 0 NAP Column NAP Row Memory Address

CSR
Space 0 0 1 0 0 0 0 0 Target ID IP ID Memory

Address

FCU 0 0 1 1 0 0 0 0 0 0 0 0 FCU Address

Programming Mechanisms
The Speedster device can be programmed using either a .hex file or a .jam file. However, in order to use the Tcl

, the device must be programned using a .hex file.API (see page 6)

Note

When designing a board with the Achronix Speedster FPGA, include an LED to monitor the
signal to ensure that the bitstream is properly downloaded to the device.FCU_CONFIG_USER_MODE

Programming Using a .hex File
Speedster FPGA devices can be programmed using a .hex file by following these steps:

Enter the Programming and Debug perspective in ACE using either the Programming and Debug
Perspective toolbar icon as shown in the figure below or by selecting Window → Open Perspective →

.Programming and Debug

Figure 1: The Programming and Debug Perspective Toolbar Icon

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 3

2.

3.

4.

In the Tcl Console, enter the command . The connected Speedster jtag::get_connected_devices
device ID is returned if the device is properly connected to the system.

Figure 2: Verifying the Connected Device

After verifying that the device is connected to the system, set the variable to the device ID jtag_id
returned by the command as shown.jtag::get_connected_devices

Figure 3: Setting the Variable to the ID of the Connected Devicejtag_id

(Optional) Open a JTAG connection with the device using the command.ac7t1500::open_jtag

Figure 4: Opening a JTAG Connection

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 4

5.

6.

Download the .hex file to the device using the ac7t1500::program_hex_file <path to hex
 command. This command also automatically runs the command if the port is not file> open_jtag

already open making the preceding step optional.

Figure 5: Downloading a Bitstream to the AC7t1500ES0 Device

Note

When a JTAG connection with the device is opened, it remains open until it is closed. It is not
required to close and reopen a new connection before downloading a bitstream if the JTAG
connection is already open.

Close the JTAG connection with the command.ac7t1500::close_jtag

Figure 6: Closing the JTAG Connection

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 5

1.

2.

1.

Warning

There are two groups of commands that can be used to open and close the JTAG port. These are:

jtag::open

jtag::close

<device namespace>::open_jtag

<device namespace>::close_jtag

<device namespace>::program_hex_file

The commands use a static variable, to track whether the <device_namespace> jtag_port_open
JTAG port is already open. When the above commands are mixed, for example opening the port with

, and subsequently using to program the device, the jtag::open ac7t1500::program_hex_file
 variable goes out of sequence. The following error is reported:jtag_port_open

Cannot open a new connection to FT5YI791. A JTAG connection to FT5YI791 is already open. Please
call jtag::close to free up the connection.
0

To avoid this error, it is recommended that the above command groups are not mixed.

If this error occurs, it can be resolved with either of the following commands:

jtag::close

set jtag_port_open 1

The latter command, indicates to the commands that the JTAG port is already <device namespace>
open.

Programming Using a .jam File
Speedster FPGA devices can be programmed using a .jam file by following these steps:

Select the window in the perspective.Download Programming and Debug

Figure 7: Selecting the Download Window

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 6

2.

3.

Use the bitstream from the active implementation (default) or manually select the bitstream by clicking
.Manual Selection

Figure 8: Manually Selecting a .jam File

Download the bitstream to the device by clicking the button.Run 'PROGRAM'

Figure 9: Downloading the Bitstream to the FPGA

Note

All of the commands above refer to the AC7t1500 device and use the namespace. When ac7t1500
targeting the AC7t1550 device, it is necessary to change the namespace of the commands to

. See below for namespace details.ac7t1550

Tcl Register Dictionary
For access via JTAG, using the ACE Tcl console, ACE has a built in API with access mechanisms to each of the
device memory areas.

Namespaces
There is a specific Tcl namespace for the API to each device. Therefore each command listed below must be
prefixed with its respective device namespace. For example, to read from a in the named register (see page 12)
AC7t1500 device, the command must be used and, likewise, to read from an ac7t1500::csr_read_named
AC7t1550 device named register, the command must be used. ac7t1550::csr_read_named

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 7

Dictionary Token Hierarchy
The following explains how a very large memory space (2 bits) is broken down into logical areas, which are 42

represented by tokens that can be used to navigate to an individual register.

The AC7t1500 and AC7t1550 use a unified memory space to include the following registers:

Configuration and status registers (CSR)

FPGA control unit (FCU) registers

NoC access point (NAP) registers

Registers providing access to the GDDR6, DDR4 and PCI memory areas

This 42-bit address can be accessed from many different locations, including from the FCU, the PCIe and from
an individual NAP in the design.

The AC7t1500/AC7t1550 memory map, which uses the top address bits to divide the space into the major areas,
is detailed below. A function description is provided for each area.

Top Level Memory Map
The following table is based on the above and uses color coding to indicate the memory map (see page 1)
hierarchical address spaces.

Table 2: Top Level Memory Map Color Coding

Color Token Level

 1

 2

 3

 4

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 8

Table 3: Top Level Memory Map

Address
Bit

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2 … 0 Description

Destination

PCIe 1 I
D Memory Address

Allows logic inside the
device to access the
memory space outside
the device via the
selected PCIe
Controller. Writes into
the host controller
memory space.

DDR4 0 1 Memory Address

Provides access to the
memory space within
the attached external
DDR device.

GDDR6 0 0 0 0 0 Ctrl ID

C
H
I
D

Memory Address

Provides access to the
memory space within
the attached external
GDDR devices. Some
GDDR devices might
not be populated.

NAP 0 0 0 1 0 0 0 NAP
Column

NAP
Row Memory Address

Provides access to any
address map attached
to an individual map.
The 28-bits of Memory
Address are output
from the
NAP_MASTER to the
fabric design attached
to that NAP.

CSR Space 0 0 1 0 0 0 0 0 Target ID IP ID Memory
Address

Provides access to the
configuration and
status registers. Each
part of the device (hard
IP, eNoC, PLLs etc)
has its own Target ID.

FCU 0 0 1 1 0 0 0 0 0 0 0 0 FCU Address Provides access to the
FCU register space.

Token Hierarchy Levels
The Tcl Test Scripts API uses a Tcl dictionary whereby all locations in the memory map are identified with
multilevel text tokens making it easier to find an address without requiring hand computation. The token hierarchy
levels are described below.

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 9

Level 1
The top level spaces each have their own token i.e., PCIE_SPACE, DDR4_SPACE, GDDR6_SPACE,
NAP_SPACE, CSR_SPACE. These spaces, and their associated tokens can be determined using the command

iteratively.get_dict_spaces

Note

The FCU does not currently have a dictionary space, as the FCU BFM is used for this simulation flow
and the FCU BFM does not contain the FCU registers.

Level 2
The available level 2 tokens vary dependent upon the top level space selected. The available tokens are shown
in the console outputs below, along with the commands to find these tokens.

Note

Every level 2 area has a "BASE" token. This returns the address at the base (offset = 0) of that address
space.

Print to the console the list of memory space keys in the dictionary

set top_level_spaces [get_dict_spaces]

foreach space $top_level_spaces {

 ac7t1500::get_dict_spaces $space

}

Console output

Level 1 tokens

Available dictionary spaces at the top level are CSR_SPACE NAP_SPACE PCIE_SPACE DDR4_SPACE

GDDR6_SPACE

Level 2 tokens per Top level space

Available dictionary spaces for CSR_SPACE are BASE GDDR_0 GDDR_1 GDDR_2 GDDR_3 GDDR_4 GDDR_5

GDDR_6 GDDR_7 CLK_NE CLK_NW CLK_SE CLK_SW GPIO_S GPIO_N DDR4 ETHERNET_0 ETHERNET_1 ENOC_N ENOC_NW

ENOC_NE ENOC_S ENOC_SW ENOC_SE PCIE_0 PCIE_1

Available dictionary spaces for NAP_SPACE are BASE

Available dictionary spaces for PCIE_SPACE are BASE PCIEx8 PCIEx16

Available dictionary spaces for DDR4_SPACE are BASE

Available dictionary spaces for GDDR6_SPACE are BASE GDDR_0 GDDR_1 GDDR_2 GDDR_3 GDDR_4 GDDR_5

GDDR_6 GDDR_7

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 10

1.

2.

Level 3
Level 3 tokens only exist for those spaces which require an additional level. Only the GDDR6 controllers and the
CSR space have a level 3 token:

The GDDR6 space has tokens CH_0 and CH_1 for each channel within the controller

The CSR space has a list of IP ID tokens for the selected IP

An example is given below for the Ethernet_0 IP subsystem. The same command can be used to get the IP ID
spaces for all the level 2 tokens under the CSR_SPACE

Note

The names of the DBI registers for each PCIe controller can be listed using the get_dict_spaces
command as shown in the example below. These registers cannot be accessed with any csr_xxxx
command because they are indirect registers that are read and written via 4 DBI registers that provide
the indirection. Instead:

Source the file.pcie_utils.tcl

Use the and functions to read and write pcie_utils::dbi_read pcie_utils::dbi_write
these registers respectively.

ac7t1500::get_dict_spaces CSR_SPACE PCIE_0 CORE_REGS

Command to get Ethernet_0 IP ID spaces, (level 3)

ac7t1500::get_dict_spaces CSR_SPACE ETHERNET_0

Console output

Available dictionary spaces for CSR_SPACE ETHERNET_0 are QUAD_PCS_0 QUAD_PCS_1 QUAD_MAC_0

QUAD_MAC_1 400G_PCS_0 400G_MAC_0 400G_MAC_1 CFG_EIU

Level 4
Level 4 tokens only apply to the CSR space, and these are the actual register names. An additional feature
allows a wildcard to be used on this level to filter the potentially long list of register names returned for certain
areas. An example is given below.

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 11

Command to get ENOC_NE registers. Note that there is only one IP ID space, so this defaults to

BASE_IP

ac7t1500::get_dict_spaces CSR_SPACE ENOC_NE BASE_IP

Console output

The register names for CSR_SPACE ENOC_SW BASE_IP are BASE CL1_CSR_CFG0 CL1_CSR_CFG1 CL2_CSR_CFG

CL3_CSR_CFG CL4_CSR_CFG RIIU_CSR_0_CFG_ACCESS_ENABLE RIIU_CSR_1_CFG_ACCESS_ENABLE

RIIU_CSR_2_CFG_ACCESS_ENABLE RIIU_CSR_3_CFG_ACCESS_ENABLE CLK_RST_TOP_CSR_INOC_31_0

CLK_RST_TOP_CSR_INOC_63_32 CLK_RST_TOP_CSR_INOC_95_64 UNNAMED_0x30 CLK_RST_TOP_CSR_INTERNAL_31_0

CLK_RST_TOP_CSR_INTERNAL_63_32 CLK_RST_TOP_CSR_INTERNAL_95_64 UNNAMED_0x44

CLK_RST_TOP_CSR_INTERNAL_CSR_STATUS CLK_RST_TOP_CSR_USER_MODE

Variables under the ACE Tcl Console
When running in the ACE Tcl console, there are two Tcl variables used by the script; one mandatory and one
optional. Both can be set in the Tcl console window before running a script:

To set a Tcl variable

set jtag_id ACP1234X

To clear a Tcl variable

unset jtag_id

To find out what value a variable is set to

puts $jtag_id

Table 4: Tcl Script Variables

Variable
Name Mandatory Description

jtag_id Yes
Must be set before scripts are run. Must match the JTAG ID value of the particular
programming pod. These are the same variables used directly in the JTAG Tcl
Commands

quiet_script No
If set to any value other than 0, calls and jtag::apb_write() jtag::apb_read()
without the -print option. This allows for scripts to run cleanly without excessive console
logging.

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 12

Dictionary API Commands

Table 5: Dictionary API Commands

Command Arguments Function Comments

Interrogate the Dictionaries

get_dict_spaces

None
Returns the
top address
map spaces.

PCIE_SPACE, DDR4_SPACE, GDDR6_SPACE,
NAP_SPACE, CSR_SPACE.

<level 1 token>

Returns the
level 2 tokens
under the top
level space.

See list of available tokens under level 2.

<level 1 token>
<level 2 token>

Returns a list
of level 3
tokens. If
using
CSR_SPACE,
these are the
CSR IP areas
under the
specific IP.

See level 3 token descriptions.

CSR_SPACE
<IP name> <IP
area>

Return a list
of CSR
registers
under the
specific IP
and IP ID.

Returns register names. Note : Can be a long list.

CSR_SPACE
<IP name> <IP
area> <register
name>

Get entry for
specified
register
name.

Returns an entry consisting of:{addr[23:0]
reg_size default_value}

get_csr_reg_name <address>
<value>

Reverse
dictionary
lookup.

Given the address (must be 11 hex digits), returns
the tokens that specify that address.
For example, given 08091340264, returns:
get_csr_reg_name() success. The
address 08091340264 equates to
CSR_SPACE DDR4 PHY MICRORESET

Named CSR Register Accesses

csr_write_named

CSR_SPACE
<IP name> <IP
area> <register
name> <value>

Write to the
selected
register.

Value is treated as hex with or without leading '0x'.

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 13

Command Arguments Function Comments

csr_reset_named

CSR_SPACE
<IP name> <IP
area> <register
name>

Reset the
selected
register to its
default value.

Default value is stored in dictionaries.

csr_read_named

CSR_SPACE
<IP name> <IP
area> <register
name>

Read the
selected
register.

Function returns register read (under ACE).

csr_verify_named

CSR_SPACE
<IP name> <IP
area> <register
name> <value>

Verify the
selected
register is
equal to
value.

When run outside of ACE, function always returns
0. The optional argument [expected value] is used
in simulation only.

csr_read_all_regs_named
CSR_SPACE
<IP name> <IP
area>

Read all the
registers in an
IP area.

Prints register name to console while reading the
register.

csr_set_bits_named

CSR_SPACE
<IP name> <IP
area> <register
name>
<low_bit>
<high_bit>

Set bits
[high_bit:
low_bit] to
1'b1 in the
selected
register.

Performs a read-modify-write on the register. To
set a single bit, assign = .high_bit low_bit

csr_clear_bits_named

CSR_SPACE
<IP name> <IP
area> <register
name>
<low_bit>
<high_bit>

Clear bits
[high_bit:
low_bit] to
1'b0 in the
selected
register.

Does a read-modify-write on the register. To clear
a single bit, assign = .high_bit low_bit

Based CSR Register Accesses
These functions rely on a stateful Tcl flow; the base addresses must first be set before the functions may make calls
using the based address. These functions are for scripts focused on a single IP block, and save repeatedly entering
the same values.

csr_named_base
CSR_SPACE
<IP name> [IP
area]

Set the
arguments to
be the stateful
base address
values.

Supports 2 to 3 arguments. If the IP_AREA is not
specified, the stateful IP ID variable is set to
BASE_IP (=0).

csr_write_based <register name>
<value>

Write to the
selected
register.

The value is treated as hex with or without leading
'0x'.

csr_reset_based <register name>

Reset the
selected
register to its
default value.

Default value stored in dictionaries.

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 14

Command Arguments Function Comments

csr_read_based <register name>
Read the
selected
register.

Function returns register read (under ACE).

csr_verify_based <register name>
<value>

Verify the
selected
register is
equal to
value.

When run outside of ACE, the function always
returns 0.

Individual CSR Access

csr_named_addr

CSR_SPACE
<IP name> <IP
area> [register
name]

Returns base
address of
the space.

3 to 4 arguments supported. Address returned is
the base address of the arguments provided. If all 4
arguments are provided, address is the full register
address.

noc_write <address>
<value>

Write to any
location in the
address map.
(*)

Address must be 42-bit hex (11 characters). Value
can be up to 32-bit hex. If is csr_named_addr
used to obtain the base address, this function can
be used by just adding on the offsets to known
registers.

noc_read <address>

Read from
any location
in the address
map.(*)

Address must be 42-bit hex (11 characters). If
 is used to obtain the base csr_named_addr

address, this function can be used by just adding
on the offsets to known registers.

noc_verify <address>
<value>

Read and
verify the
result from
any location
in the address
map.(*)

Address must be 42-bit hex (11 characters). If
 is used to obtain the base csr_named_addr

address, this function can be used by just adding
on the offsets to known registers.

set_bits_addressed
<address>
<low_bit>
<high_bit>

Set bits
[high_bit:
low_bit] to
1'b1 in the
selected
address.

Performs a read-modify-write on the address
location. To set a single bit, assign = high_bit

.low_bit

clear_bits_addressed
<address>
<low_bit>
<high_bit>

Clear bits
[high_bit:
low_bit] to
1'b0 in the
selected
address.

Performs a read-modify-write on the address
location. To clear a single bit, assign = high_bit

.low_bit

NAP Access
These commands access the NAP address space (not the CSR address space).

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 15

Command Arguments Function Comments

nap_axi_write

NAP_SPACE
<NAP column>
<NAP row>
<address>
<value>

Create an AXI
write from the
selected NAP.

Address and data are only 32-bits wide. Address is
the AXI write address (awaddr) which does not
relate to selecting the NAP, obtained with column
and row. Data is relocated to the appropriate byte
lane selected by the address, in the 256-bit output
from the NAP.

nap_axi_read

NAP_SPACE
<NAP column>
<NAP row>
<address>

Create an AXI
read at the
selected AXI
NAP.

Address and data are only 32-bits wide. Address is
the AXI read address (araddr) which does not
relate to selecting the NAP, obtained with column
and row. Read data is relocated to the appropriate
byte lane, selected by the address, in the 256-bit
input from the NAP.

nap_axi_verify

NAP_SPACE
<NAP column>
<NAP row>
<address>
<value>

Create an AXI
read at the
selected NAP.
Compare the
read value
against the
expected
value.

Address and data are only 32-bits wide. Address is
the AXI read address (araddr) which does not
relate to selecting the NAP, obtained with column
and row. Read data is relocated to the appropriate
byte lane, selected by the address, in the 256-bit
input from the NAP.

GDDR6 and DDR4 Memory Access
To write direct into the GDDR memory arrays. To access the GDDR CSR registers, use the CSR commands. The
controllers have completed initialization and training for these reads and writes to be successful.must

memory_write

GDDR6_SPACE
<controller>
<channel>
<address>
<value>

Write to the
selected
GDDR
memory
space

Controller is one of {GDDR_0 to GDDR_7}.
Channel is one of {CH_0 CH_1}.
Address is up to a 33-bit hex field.
Value is up to a 32-bit hex field.

memory_read

GDDR6_SPACE
<controller>
<channel>
<address>

Read from
the selected
GDDR
memory
space

Controller is one of {GDDR_0 to GDDR_7}.
Channel is one of {CH_0 CH_1}.
Address is up to a 33-bit hex field.
Returned value is 32-bit hex.

memory_write
DDR4_SPACE
<address>
<value>

Write to the
selected
DDR4
memory
space

Address is up to a 40-bit hex field
Value is up to a 32-bit hex field

memory_read DDR4_SPACE
<address>

Read from
the selected
DDR4
memory
space

Address is up to a 40-bit hex field
Returned value is 32-bit hex

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 16

Command Arguments Function Comments

Delay or Wait
Use this to insert a wait into your command file. When run under ACE, there is approximately 1ms minimum between
commands.

wait_us <wait value
(decimal)>

Add a wait of
uS to the
simulation
command file

Requires a decimal not hex value.
As ACE Tcl console commands are measured in
milliseconds, only if the value exceeds 1000 (>
1ms) is there an associated ACE command. The
wait is always added in simulation.

wait_ns <wait value
(decimal)>

Add a wait of
nS to the
simulation
command file

Requires a decimal not a hex value. Wait is based
on the FCU BFM cfg_clk. By default this is 250MHz
(4ns). Therefore any delay is in multiples of 4ns. If
the cfg_clk frequency is changed, the delays scale
accordingly to match the new clock period. This
command is only truly applicable to simulation as
the time between JTAG commands to the FCU in
hardware is on the order of tens of microseconds.
As ACE Tcl console commands are measured in
milliseconds, only if the value exceeds 1000000 (>
1ms) is there an associated ACE command. The
wait is always added in simulation.

Programming
Running under ACE only.

program_hex_file

<hex filename
(with extension)
> [<optional
arguments>]

Programs a
hex file. This
operation
opens the jtag
port and
leaves it
open.

Optional arguments are:
-encrypted : Encrypted hex file
-do_not_enter_user_mode : Do not enter user
mode after programming, stay in configuration
mode. This holds most of the IORing IPs in reset.
To use Windows backslashes, enclose the
filename and path in {} i.e., program_hex_file
{C:\home\me\my_dir\test\my_hex.hex}

Note

All commands above must be prefixed with the respective device namespace. For example,
program_hex_file: or .ac7t1500::program_hex_file ac7t1550::program_hex_file

(*) Excludes FCU registers. ACE has specific commands to access the FCU registers (see Speedster7t
 for details). In addition, when used in a simulation flow, these (UG094)Configuration User Guide

commands require the FCU BFM. FCU registers are only available in simulation when using the FCU RTL.

Caution!

If an invalid read or write is encountered while using the API as shown below, the bitstream must be
reprogrammed and the command run again.

The valid bit was never received. Hardware indicates invalid read data at APB address: 0422fff0000

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-configuration-user-guide-ug094
https://www.achronix.com/documentation/speedster7t-configuration-user-guide-ug094

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 17

Revision History

Version Date Description

1.0 23 Aug 2021 Initial release.

http://www.achronix.com

Runtime Programming of Speedster FPGAs (AN025)

June 22, 2021 www.achronix.com 18

Website: www.achronix.com
E-mail : info@achronix.com

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Achronix Semiconductor Corporation

Copyright © 2021 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and ACE are trademarks of
Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks are the property of their respective owners. All
specifications subject to change without notice.

Notice of Disclaimer
The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor Corporation does not give
any representations or warranties as to the completeness or accuracy of such information and shall have no liability for the use of the
information contained herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the information
contained herein at any time and without notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at
http://www.achronix.com/legal.

http://www.achronix.com

	Introduction
	Memory Map
	Programming Mechanisms
	Programming Using a .hex File
	Programming Using a .jam File

	Tcl Register Dictionary
	Namespaces
	Dictionary Token Hierarchy
	Top Level Memory Map
	Token Hierarchy Levels
	Level 1
	Level 2
	Level 3
	Level 4

	Variables under the ACE Tcl Console
	Dictionary API Commands

	Revision History

