
Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 1

Introduction
Many users transitioning to Achronix FPGA technology are familiar with existing FPGA solutions from other
vendors. Although Achronix technology and tools are very similar to existing FPGA technology and tools, there
are some differences. Understanding these differences is necessary to achieving the very best performance and
quality of results (QoR).

This application note discusses the differences in the Achronix Tool Suite, highlighting possibly unfamiliar key
files and methodologies. Further, this application note details the primitive components present in the Achronix
fabric, and how they may differ from, or in many cases are similar to, other vendors.

Finally, this application note reviews the unique features, particularly focused on AI and ML workloads, that are
present in Achronix FPGAs.

Related Documents
This application note is intended to give an overview of any changes that might be encountered when migrating
to Achronix technology. For full details on any of the items described herein, the appropriate user guide or
application note is referenced. Instead of duplicating information, this application note highlights the changes,
and references the appropriate document where the full information can be obtained.

A number of user guides are commonly referred to throughout this document:

 (UG086)Speedster7t Component Library User Guide . Describes all of the Speedster7t FPGA family
silicon elements. Includes descriptions and instantiation templates of the memories, DSP, MLP, NAP and
logic primitives.

 (UG018)Synthesis User Guide . Describes the use of Synplify Pro for synthesis and how to correctly infer
memories and DSP. Also details synthesis constraints and attributes.

 (UG070)ACE User Guide . Details all of the features and usage of the Achronix CAD Environment (ACE).
Details how to create and run projects, and how to analyze and apply advanced techniques for timing
closure.

Migrating to Achronix FPGA
Technology (AN023)
November 11, 2022 Application Note

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086
https://www.achronix.com/documentation/synthesis-user-guide-ug018
https://www.achronix.com/documentation/ace-user-guide-ug070

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 2

Device Migration
The Achronix Speedster®7t FPGA family features a number of devices which are comparable to those from AMD
Xilinx and Intel. The following table serves as a guide to selecting the appropriate alternative device.

Note

The suggested device equivalents below are based on comparable resources for LUTs and DFFs. No
two manufacturers offer parts with exactly the same quantity of components. In addition, the quantity of
larger silicon elements such as memories and DSP blocks may vary significantly. Users are
encouraged to ensure that any device they select has sufficient resources to support their design goals.

Table 1: Equivalent Device Families

Current Vendor Current family Current device Achronix Equivalent

AMD Xilinx

Kintex Ultrascale
KU025 - KU060 Speedster7t AC7t800

KU085 to KU115 Speedster7t AC7t1500

Kintex Ultrascale+
KU3P to KU13P Speedster7t AC7t800

KU15P to KU19P Speedster7t AC7t1500

Virtex Ultrascale
VU065 Speedster7t AC7t800

VU080 to VU125 Speedster7t AC7t1500

Virtex Ultrascale+
VU3P Speedster7t AC7t800

VU5P to VU7P Speedster7t AC7t1500

Intel

Arria 10
GX160 to GX480 Speedster7t AC7t800

GX570 to GX900 Speester7t AC7t1500

Stratix 10
GX400 to GX650 Speedster7t AC7t800

GX850 to GX1100 Speedster7t AC7t1500

For designs that are targeting artificial intelligence or machine learning (AI/ML) markets, the Speedster7t FPGA
family is particularly well suited with its unique blend of machine learning processor (MLP) and 2D network on
chip (2D NoC). If targeting an ASIC solution as the final goal of the design, the Achronix Speedcore™ eFPGA
family enables FPGA flexibility within a system on chip (SoC).

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 3

Silicon Elements

Programmable Fabric
Achronix FPGAs have a familiar array of core silicon components making up the programmable fabric.

Table 2: Programmable Fabric Logic Elements

Many of the core components support similar features, and since the Achronix tool flow uses synthesis from
Synopsys, many designs can be directly ported to the Achronix fabric with little or no RTL modifications.

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 4

1.

2.

Interface Subsystems
A standout feature of the Achronix Speedster7t FPGA family is the inclusion of hard interface subsystems
located within the I/O ring. These subsystems eliminate the need to implement soft IP versions of the same
cores, also eliminating the accompanying effort to implement, possibly integrate with high-speed SerDes, and to
close timing. In addition, the use of soft IP cores consumes valuable FPGA fabric, thereby reducing the effective
usable size of the FPGA.

The following table compares the hard interface subsystems available with Achronix Speedster7t FPGAs and
those from other leading vendors.

Table 3: Interface Subsystems

Feature Achronix Intel AMD Xilinx

 Speedster7t Arria 10 Stratix
10 Ultrascale Ultrascale+

PCIe (2) Gen5 ×16 Gen3 ×8 Gen3
×16 Gen3 ×8 Gen3 ×16 / Gen4 ×8

Ethernet Up to 4 × 400G
100G (soft
core) (1) 100G Up to 9× 100G Up to 12× 100G

GDDR6 Up to 8 memories, 512
Gbps each memory No No No No

DDR4 72-bits at 3.2G bps/pin DDR4 2400 DDR4
2400

DDR4 2400
(LogiCORE soft IP) (1)

DDR4 2666
(LogiCORE soft IP) (1)

Serdes
(2) Up to 112 Gbps Up to 25

Gbps
Upto 58
Gbps Up to 30 Gbps Up to 32 Gbps

HBM No Yes Yes No Yes

2D NoC Yes No No No No

Table Notes

Functions are implemented in soft core logic; there is no equivalent hard IP available in the device.
For both PCIe and the SerDes, Achronix supports the very latest available standards/data rates, which
exceed what is currently available from other vendors.

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 5

Tool Migration
The Achronix Tool Suite is comprised of two tools:

Synopsys Synplify Pro – for synthesis

Achronix ACE – for place and route, configuration and debugging

This arrangement differs from other vendors that combine the synthesis stage within their tools. Achronix have
chosen Synopsys as their partner for synthesis as they are the recognized market leaders in this field. Synplify
Pro is widely used throughout the FPGA industry for synthesis, often being used in preference to the built-in
synthesis flow available in other FPGA tool chains.

Both tools have their own user guides which are recommended reading for a full understanding of the capability
of each tool:

 (UG018)Synthesis User Guide

 (UG070)ACE User Guide

The two tools are tightly integrated, with a well established transfer of information between the tools as illustrated
in the following figure.

Figure 1: Synplify Pro and ACE Tool Flow

http://www.achronix.com
https://www.achronix.com/documentation/synthesis-user-guide-ug018
https://www.achronix.com/documentation/ace-user-guide-ug070

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 6

1.

Feature Comparison
The combined Achronix Tool Suite supports all of the features expected from a fully-fledged, mature, CAD
environment.

Table 4: Tool Flow Feature Comparison between FPGA Vendors

Feature Achronix Intel AMD Xilinx

Verilog, SystemVerilog and VHDL synthesis (1) Yes Yes Yes

Memory and DSP inferencing(1) Yes Yes Yes

Pre-synthesis RTL technology browser (1) Yes Yes No

Synthesis-only constraints and directives (1) Yes Yes Yes

Post-synthesis schematic viewer (1) Yes Yes Yes

GUI-based project creation Yes Yes Yes

IP configuration wizards Yes Yes Yes

I/O pin layout wizard Yes Yes Yes

Timing driven place and route Yes Yes Yes

SDC timing constraints Yes Yes Yes

Placement constraints (elements and regions) Yes Yes Yes

Virtual pins Yes Yes Yes

Floorplanner Yes Yes Yes

Post-route netlist hierarchy browser Yes Yes Yes

Post-route schematic browser No Yes Yes

Graphical display of critical timing paths Yes Yes Yes

Multiple bitstream formats Yes Yes Yes

Bitstream programming and download Yes Yes Yes

On-chip logic analyzer and debugger Yes Yes Yes

All functions available through Tcl script flow Yes Yes Yes

Table Notes

Supported by Synopsys Synplify Pro for Achronix.

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 7

Code Changes
As previously highlighted, the Achronix FPGA architecture has a great deal of commonality with other vendor
architectures, sharing many similar silicon primitives. In addition, as Achronix has partnered with Synopsys to
provide front-end synthesis capabilities to the Achronix Tool Suite, few if any RTL changes should be needed
when transitioning from other vendors.

For the regular RLB feature set such as LUTs and DFFs, if inferred as would normally be the case, then no
changes should be necessary. In addition, with normal inferencing, Synplify Pro takes advantage of the
dedicated ALU within the RLB structure, generating efficient math and counter operations.

If memories and DSPs have been inferred using regular inference templates, Synplify Pro infers and generates
the appropriate memory or MLP part. RTL changes should only be necessary when a design has directly
instantiated memory or DSP parts, or where parts with particular data or address widths are required.

The table below details the different macro names and key features of the larger silicon primitives such as block
memory, DSP and shift registers. For designs that directly instantiate these parts, it is necessary to either
instantiate the Achronix equivalent (examples are given later in this document), or replace the direct instantiation
with an inference template (which aides in code portability).

Table 5: Equivalent Silicon Macros

Primitive Feature Achronix Intel AMD Xilinx

Block Memory

Name BRAM72K M20K BRAM36

Organization (widest data bus) 144 × 512 40 × 512 72 × 512

Max address wdth (bits) 14 14 15

Max data width (bits) 144 40 36

Byte write enables Yes Yes Yes

Cascade paths to build larger memory arrays Yes No Yes

SDP Yes Yes Yes

TDP No Yes Yes

DSP

Name DSP64 DSP DSP48E

A input (bits) 18 27 27

B input (bits) 27 27 27

Register file set Yes Yes No

Other inputs No No C & D

Input and output cascade paths Yes Yes Yes

Result (bits) 64 64 48

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 8

1.

2.

3.

Primitive Feature Achronix Intel AMD Xilinx

Shift Register

Name LRAM4K – SRL16

Width 72 – 1

Depth 32 – 16

For lower-level silicon primitives (e.g., I/O ports and global buffers), AMD Xilinx, in particular, requires the use of
dedicated components. These components are effectively wrappers around the respective primitives, setting the
appropriate constraints. For designs that make use of these wrappers, it is necessary to convert the RTL. In
general, the Achronix flow does not require proprietary wrappers. Instead, the flow uses general RTL to define
wires or signals for the appropriate I/O or buffer, then specifies the operation of that I/O or buffer by using
constraints specified in the I/O Designer tool flow. This approach is more aligned to that of Intel FPGAs as
detailed in the following table.

Table 6: Equivalent Silicon Primitives

Function Achronix Part (1) Intel Equivalent AMD Xilinx

Single input
Wire/signal in RTL. Wire/signal in RTL.

IBUF

Single output OBUF

Global clock network Wire/signal in RTL, assign to clock
network.

Wire/signal in RTL assignment to global
signal. BUFG

Input global buffer per I/O
standard

Wire/signal in RTL, I/O assignment,
assign to clock network.

wire/signal, I/O assignment, global signal
assignment.

IBUFG_<io
standard>

Input per I/O standard Wire/signal and I/O assignment.

Wire/signal and I/O assignment.

IBUF_<io
standard>

Bidirectional I/O per I/O
standard. Wire/signal and I/O assignment. (2) IOBUF_<io

standard>

Output from global buffer
per I/O standard.

Wire/signal and I/O assignment.

OBUFG_<io
standard>

Output per I/O standard. OBUF_<io
standard>

Differential I/O buffer Wire/signal and I/O assignment. (3) Wire/signal and I/O assignment, _n signal
created. IBUFDS/OBUFDS

16-bit shift register LRAM2K / LRAM4K AUTO_SHIFT_REGISTER_RECOGNITION SRL16

Table Notes

Within ACE, I/O assignment uses the I/O Designer tool flow. This tool sets all I/O standards, pin locations and directions.
For bidirectional pins, the input, output and output enable wires are presented to the user logic.
For differential pins, only the single input or output wire is presented to the user logic.

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 9

Memory
Embedded memories in all architectures can be both inferred and instantiated. For inferencing, Synplify Pro
supports the familiar memory template constructs. If directly instantiating memory, as the port functions are very
similar, it is a simple task to convert from one vendor instantiation to another. An example is given below of
instantiating an AMD Xilinx memory, configured as 32 × 1024 SDP with output register, followed by the same
configuration using an Achronix memory.

AMD Xilinx Memory Instantiation

 RAM36E2 #(

 .READ_WIDTH_A (36), // Does not support a value of 32

 .READ_WIDTH_B (36), // Does not support a value of 32

 .WRITE_WIDTH_A (36), // Does not support a value of 32

 .WRITE_WIDTH_B (36), // Does not support a value of 32

 .DOA_REG (1),

 .DOB_REG (1)

) i_bram (

 .CLKBWRCLK (write_clk),

 .ENBWREN (write_enable),

 .WEBWE (write_byte_enable), // [7:0]

 .ADDRBWRADDR (write_addr),

 .ADDRENA (1'b1),

 .DINBDIN (write_data_in), // [31:0]

 .DINPBDINP (4'h0),

 .CLKARDCLK (read_clk),

 .ADDRARDADDR (read_addr),

 .ADDRENB (1'b1),

 .ENARDEN (read_enable),

 .REGCEB (1'b1),

 .RSTREGB (reset_n),

 .DOBDO (read_data), // [31:0]

);

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 10

Achronix Memory Instantiation

 ACX_BRAM72K_SDP #(

 .read_width (32),

 .write_width (32),

 .outreg_enable (1'b1),

 .outreg_sr_assertion ("clocked")

) i_bram (

 .wrclk (write_clk),

 .wren (write_enable),

 .we (write_byte_enable), // [17:0]

 .wraddr ({write_addr[9:0], 4'h0}), // Must be left-

justified.

 .wrmsel (1'b0),

 .din (write_data_in), // [31:0]

 .rdclk (read_clk),

 .rdaddr ({read_addr[9:0], 4'h0}), // Must be left-justified

 .rdmsel (1'b0),

 .rden (read_enable),

 .outreg_ce (1'b1),

 .outreg_rstn (reset_n),

 .outlatch_rstn (1'b1),

 .dout (read_data), // [31:0]

 .sbit_error (),

 .dbit_error ()

);

DSP
Similar to memories, DSP blocks can either be inferred or instantiated. For inference, Synplify Pro recognizes
many of the commonly used constructs and infers the appropriate arithmetic block. Alternatively, if DSP blocks
have been directly instantiated, it is possible to migrate the instantiation to an Achronix equivalent. The
equivalent instantiations for a 27 × 18 multiplier with one stage of pipelining are shown below.

Note

For the purposes of clarity, parameters that are left at their default values, and unused outputs have
been removed from the examples below

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 11

AMD Xilinx DSP Instantiation

 // Default parameters ignored in instantiation

 DSP48E2 #(

 .A_INPUT ("DIRECT"), // A input from A port

 .B_INPUT ("DIRECT"), // B input from B port

 .P_REG (1) // One output register

) i_dsp (

 .CLK (i_clk),

 .ALUMODE (4'h0), // Basic multiplication

 .CARRYINSEL (3'b000), // No carry

 .INMODE (5'b00000), // Use A/B inputs to multiplier

 .OPMODE (9'b0), // Do not use W, X, Y or Z

multipliers

 .A ({{2{ain[26]}}, a_in}), // Sign extend 27-bit input

 .ACIN (30'h0), // Not used

 .B (b_in), // [17:0]

 .BCIN (18'h0), // Not used

 .C (48'h0), // Not used

 .D (27'h0), // Not used

 .CARRYIN (1'b0), // No carry

 .CARRYCASCIN (1'b0), // Not used

 .PCIN (48'h0), // Not used

 .RSTA (1'b0), // No input register

 .RSTB (1'b0), // No output register

 .RSTC (1'b0), // No input register

 .RSTD (1'b0), // No output register

 .RSTP (i_reset), // Reset output register

 .P (dsp_dout[47:0]) // Output vector

);

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 12

Achronix DSP Instantiation

 // Default parameters ignored in instantiation

 DSP64 #(

 .dout_del (1'b1), // Add register to DSP output

 .sel_addsub_a (2'b00), // Mult output, sign extended

 .sel_addsub_b (1'b0), // 1'b0 = registered dout

 .sel_mult_a (2'b00), // 2'b00 = select A input

 .sel_mult_b (2'b00), // 2'b00 = select B input

 .sel_48_dout (1'b1), // Select 48-bit output

) i_dsp (

 .clk (i_clk),

 .a (a_in), // [26:0]

 .b (b_in), // [17:0]

 .sub (1'b0), // Add not subtract

 .cin (1'b0), // No carry

 .load (1'b0), // No preload

 .rnd (1'b0), // No rounding

 .mshift (1'b0), // No bit shift

 .reg_addr (3'b000), // Register file not used

 .ce_dout (1'b1), // Enable output register

 .ce_multout (1'b1), // Enable multiplier output

 .rstn_a (1'b0), // No input register

 .rstn_b (1'b0), // No output register

 .rstn_addsub (1'b0),

 .rstn_addsub_a (1'b0),

 .rstn_dout (i_reset), // Reset output register

 .rstn_cascade (1'b0), // No cascade register

 .rstn_multout (1'b1),

 .dout (dsp_dout[44:0]),

 .cout (),

 .over_pos (dsp_dout[47]),

 .over_neg (dsp_dout[46]),

 .match (dsp_dout[45]), // 48-bit output

 .fwdi_casc (64'b0),

 .fwdi_dout (64'b0),

 .fwdi_cin (1'b0),

 .fwdi_match (1'b0),

 .revi_casc (64'b0),

 .revi_dout (32'b0)

);

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 13

1.

Constraints
Both Synplify Pro and ACE support the industry-standard SDC file format for constraints. In addition, both tools
support standard Tcl interfaces for scripting complex constraint processes. Further, each tool, similar to most
other tools, support their own constraint file format where tool-specific constraints can be added.

File Structure
Alongside RTL, the other key project source files are the constraint files, specifying both timing (for Synthesis
and Place and Route), physical constraints (such as I/O standards), and placement constraints (I/O pins or
placement regions). Within the Achronix tool flow, these constraint functions are separated into multiple files,
each with their own application. This structure is in keeping with all other vendors that recommend, as a
minimum, timing and physical constraints should be in separate files. However, it is recognized that many
projects do combine all constraints into a single file. Details below are provided to assist in the conversion of
constraints into their appropriate files.

Table 7: Constraint File Types and Applications

Tool Extension Application Intel Equivalent AMD Xilinx Equivalent

Synplify

.sdc Synthesis timing constraints. .sdc
.xdc with property
USED_IN_SYNTHESIS(1)

.fdc
Synthesis physical constraints
and attributes. .qsf project file

ACE

.sdc
Place-and-route timing
constraints. .sdf

.xdc with property
USED_IN_IMPLEMENTATION(1)

.pdc
Place-and-route physical
constraints and attributes. .qsf project file.

Table Notes

For AMD Xilinx files, if no property is specified, the constraint files are used for both synthesis and
implementation.

Warning!

It is not possible to use the same SDC file for both Synplify Pro and ACE as the hierarchical path and
separator characters differ between the tools. It is necessary to create two files, one for each tool.

Supported SDC Commands
The following SDC standard commands are supported by both Synplify Pro and ACE within their respective .sdc
files:

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 14

all_clocks set_clock_latency

all_inputs set_clock_uncertainty

all_outputs set_data_check

create_clock set_disable_timing

create_generated_clock set_false_path

get_cells set_input_delay

get_clocks set_input_transition

get_fanout set_load

get_nets set_max_delay

get_pins set_min_delay

get_ports set_multicycle_path

set_clock_groups

Non-SDC Attributes
Non-timing attributes such as physical placement, I/O specifications or synthesis directives differ between tool
chains. The table below details some of the common attributes and directives and their equivalents.

Table 8: Non-SDC Attributes and Directives

Function Achronix (1) Intel AMD Xilinx

 Synplify Pro ACE

Place I/O pin – set_placement chip_pin PACKAGE_PIN

Force signal to be
flop enable syn_useenables – direct_enable DIRECT_ENABLE

Prevent register
duplication syn_replicate – dont_replicate DONT_TOUCH

Prevent register
retiming syn_retime – dont_retime DONT_TOUCH

Prevent register
merging syn_preserve must_keep dont_merge

KEEP/
DONT_TOUCH

FSM enumeration
encoding syn_encoding – enum_encoding (VHDL) fsm_encoding

Full case
statement full_case – full_case (Verilog) full_case

(Verilog)

Prevent synthesis
optimization syn_keep must_keep keep KEEP

Maximum fanout syn_maxfan fanout_limit maxfan max_fanout

Multiplier style syn_dspstyle – multstyle mult_style

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 15

1.

Function Achronix (1) Intel AMD Xilinx

Prevent logic
optimization syn_keep must_keep noprune DONT_TOUCH

Case statement
as parallel case parallel_case – parallel_case parallel_case

Prevent redundant
logic optimization syn_preserve must_keep preserve DONT_TOUCH

RAM style syn_ramstyle – ramstyle ram_style

ROM style syn_romstyle – romstyle rom_style

Enumerator
encoding syn_enum_encoding – syn_encoding fsm_encoding

Disable/enable
synthesis for
portions of the
code

synthesis_on/ or off
/translate_on off

– translate_on/off translate_on/
off

Implement I/O
register in I/O
block

syn_useioff syn_useioff useioff IOB

Specify Verilog
version -vlog_std – verilog_input_version

HDL file property
in project

Specify VHDL
version

set_option -
vhdl<version>

– vhdl_input_version
HDL file property
in project

Table Notes

Synthesis-only directives are executed by Synplify Pro. Other non-synthesis directives are executed by
ACE. For certain functions, it is necessary to apply directives to both tools.

Search Considerations

SDC Versus Tcl Find
Depending on the constraint file type, different commands should be used when searching for and assembling
collections of objects.

.sdc files – the SDC commands such as , should be used.get_pins get_ports

.fdc /.pdc files – the Tcl command should be used.find

Hierarchical Paths
One area where tools can differ is in the separators and nomenclature used for hierarchical paths. The
respective paths to an object are shown below.

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 16

Synplify hierarchical path

i_top_level.i_module_instance.gb_generate_loop\[0\].i_generated_instance.pin

ACE hierarchical path

i_top_level.i_module_instance.gb_generate_loop_0__i_generated_instance/pin

The key differences are:

Generated blocks – for a Verilog generate loop, within Synplify Pro, this is expressed as
. For ACE this is expressed as generate_loop_block_name[index].i_generated_instance

generate_loop generate_loop_block_name_index__i_generated_instance

Note

In the ACE expression, there is a double underscore after .index

Pins – for the pin on a module, Synplify uses the same "." separator as used for the hierarchy. For
example, , ACE uses the "/" separator for pins only, hence: .i_my_block.pin i_my_block/pin

Note

When searching for pins, especially when using the SDC command as a search into an get_pins
SDC timing command (, etc.), it is usually necessary to specify the pins of create_generated_clock
the lowest level primitive rather than pins midway down the hierarchy. For example:

set_generated_clock -name clk_div2 -divide_by 2 -source [get_ports clk_in] [get_pins

i_top_level.i_my_clock_block/clk_div_2] // Incorrect

set_generated_clock -name clk_div2 -divide_by 2 -source [get_ports clk_in] [get_pins

i_top_level.i_my_clock_block.i_CLKDIV/clk_out] // Correct

Character Escape Sequences
In many tools it is necessary to use the escape character, "\", before reserved characters in an SDC or Tcl
command. These sequences can then vary between a direct single-line constraint, creating a variable to be
reused in later constraints, and creating a Tcl loop of constraints. The required escape sequences are shown
below.

Direct Single-Line Constraint
Synplify Pro – use escape character

[get_pins i_top_level.i_module_instance.gb_generate_loop\[0\].i_generated_instance.pin\[0\]]

ACE – no escape character needed

[get_pins i_top_level.i_module_instance.gb_generate_loop_0__i_generated_instance.pin[0]

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 17

Variable Used in Multiple Constraints
Synplify – need escape character to be present in string. So escape both the escape and reserved characters

set target_pin "i_top_level.i_module_instance.gb_generate_loop\\\[0\\\].i_generated_instance.

pin\\\[0\\\]"

ACE – escape the reserved character in the string

set target_pin "i_top_level.i_module_instance.gb_generate_loop_0__i_generated_instance\/pin\[0\]"

Tcl Loop to Apply Constraint to Multiple Pins
Synplify

for {set index 0} {$index < 4} {incr index} {

 create_generated_clock -name my_clk_\\\$index -source [get_ports clk_in] [get_pins

i_top_level.i_pll.clock_output\\\[$index\\\]]

}

ACE

for {set index 0} {$index < 4} {incr index} {

 create_generated_clock -name my_clk_\\\$index -source [get_ports clk_in] [get_pins

i_top_level.i_pll.clock_output\[$index\]]

}

Synplify FPGA Design Constraints (FDC)
The FDC file format is supported by Synplify Pro for any non timing-related constraints. Using FDC, groups of
instances can be selected and specific synthesis constraints applied to those instances without having to modify
the original RTL. The example below shows three common FDC operations.

Example 1
Example of how to change the available resources in the target device:

define_global_attribute syn_allowed_resources {blockmults=0}

Example 2
Example of how setting a soft compile point using wildcards supports the compile point changing name on each
run:

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 18

foreach inst [c_list [find -hier -view oc_avr_hp_cm4*]] {

 define_compile_point $inst -type {soft}

}

Example 3
Example of ensuring RAMs only inferred for sufficiently large register sets:

define_global_attribute {syn_max_memsize_reg} {2048}

ACE Placement Constraints (PDC)
The PDC file format is supported by ACE for any non timing-related constraints. Using PDC, groups of instances
can be placed, I/O locations and placement regions defined, and specific clock or I/O parameters applied. The
example below shows three common PDC operations.

Example 1
Fix a pin location:

set_placement -fixed -batch {p:clk} {d:i_user_06_00_trunk_00[7]}

Example 2
Limit the fanout on a net:

set_property fanout_limit 10 [find {*bist_enable_reg1*\[0\]*} -nets] -warning

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 19

Achronix Enhancements
In addition to supporting the regular silicon components that users are accustomed to, the Speedster7t FPGA
family has two unique features which make it particularly suitable for AI/ML or any other form of accelerator
application.

2D Network on Chip
The 2D network on chip (2D NoC) is a two-dimensional dedicated network for high-speed data transmission
which is placed above the FPGA fabric. The 2D NoC enables high-speed data transfer from the FPGA fabric to
either the dedicated interface subsystems on the device (GDDR6, DDR4, PCIe Gen5 or 400G Ethernet) or to
other points on the die. This one features greatly reduces congestion and solves many of the current FPGA data
transfer issues i.e., congestion, timing closure or resource utilization.

http://www.achronix.com

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 20

Figure 2: Speedster7t 2D Network on Chip

Access between the 2D NoC and the FPGA fabric uses network access points (NAPs). These NAPs use the
industry-standard AXI4 interface, enabling easy reuse of any existing IP to communicate directly to the 2D NoC.

In addition, the 2D NoC can be used to send data directly between interface subsystems. For example, the PCIe
subsystem can directly populate the GDDR6 or DDR4 memories without consuming any of the FPGA fabric at
all, This capability also saves the designer the time and effort of creating and trying to close timing between
these high-speed interfaces as would be required with other devices. In total, the 2D NoC can support a
throughput of greater than 20 Tbps.

The 2D NoC is fully described in the , and Achronix further (UG089)Speedster7t Network on Chip User Guide
provides a dedicated 2D NoC reference design along with multiple other reference designs that use the 2D NoC
to communicate directly with each of the hard interface subsystems within a Speedster7t FPGA.

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 21

Machine Learning Processor
The machine learning processor (MLP) is a powerful math block optimized for AI/ML math operations. Each MLP
can have up to 32 multipliers, ranging from 3-bit integer to 24-bit floating point, supported natively in silicon. The
MLP is optimized to support vector and matrix math with integrated memories and register files to allow for easy
reuse of coefficients, kernels or intermediate results. The result is that real-world applications running on a
Speedster7t FPGA can achieve 8600 images per second using the Resnet-50 algorithm.

Full details of the MLP can be found in the and (UG086)Speedster7t Component Library User Guide
. In addition, Achronix provides multiple reference (UG088)Speedster7t Machine Learning Processor User Guide

designs demonstrating functions such as dot product, matrix vector math and 2D convolutions using the MLP.

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086
https://www.achronix.com/documentation/speedster7t-machine-learning-processor-user-guide-ug088
https://www.achronix.com/documentation/speedster7t-machine-learning-processor-user-guide-ug088

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 22

Conclusion
As can be seen, there is a clear flow to migrate user designs to an Achronix FPGA. Achronix FPGAs support
many familiar components, and for designs that require high data throughput, dedicated interface hard IP, or AI
/ML math capabilities, they are further boosted by the unique MLP and 2D NoC capabilities. In addition, these
devices are supported by a mature and comprehensive tool flow that offers the rich feature set required to
develop and debug today's complex FPGAs.

To get started designing with Achronix solutions, visit .Getting Started with Achronix

Revision History

Version Date Description

1.0 19 Nov 2020 Initial Achronix release.

1.1 11 Nov 2022 Updated device table and references to pre-AMD Xilinx.

http://www.achronix.com
https://www.achronix.com/getting-started-achronix

Migrating to Achronix FPGA Technology (AN023)

November 11, 2022 www.achronix.com 23

Website: www.achronix.com
E-mail : info@achronix.com

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Achronix Semiconductor Corporation

Copyright © 2022 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedster and VectorPath are registered trademarks,
and Speedcore and Speedchip are trademarks of Achronix Semiconductor Corporation. All other trademarks are the property of their
prospective owners. All specifications subject to change without notice.

Notice of Disclaimer
The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor Corporation does not give
any representations or warranties as to the completeness or accuracy of such information and shall have no liability for the use of the
information contained herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the information
contained herein at any time and without notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at
http://www.achronix.com/legal.

http://www.achronix.com

	Introduction
	Related Documents

	Device Migration
	Silicon Elements
	Programmable Fabric
	Interface Subsystems

	Tool Migration
	Feature Comparison

	Code Changes
	Memory
	AMD Xilinx Memory Instantiation
	Achronix Memory Instantiation

	DSP
	AMD Xilinx DSP Instantiation
	Achronix DSP Instantiation

	Constraints
	File Structure
	Supported SDC Commands
	Non-SDC Attributes
	Search Considerations
	SDC Versus Tcl Find
	Hierarchical Paths
	Character Escape Sequences
	Direct Single-Line Constraint
	Variable Used in Multiple Constraints
	Tcl Loop to Apply Constraint to Multiple Pins

	Synplify FPGA Design Constraints (FDC)
	Example 1
	Example 2
	Example 3

	ACE Placement Constraints (PDC)
	Example 1
	Example 2

	Achronix Enhancements
	2D Network on Chip
	Machine Learning Processor

	Conclusion
	Revision History

