
www.achronix.com

Design Flow User Guide
(UG106)

All Achronix Devices

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 2

Copyrights, Trademarks and Disclaimers
Copyright © 2023 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedster and VectorPath
are registered trademarks, and Speedcore and Speedchip are trademarks of Achronix Semiconductor
Corporation. All other trademarks are the property of their prospective owners. All specifications subject to
change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Achronix Semiconductor Corporation
2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 3

Table of Contents

Chapter - 1: Introduction . 6

Chapter - 2: Overview of Interface Subsystems . 7
Clock I/O Banks, PLLs, and Advanced PLL Subsystems . 8

GPIO Bank Subsystem . 10

Chapter - 3: Interface Subsystem and Core IP Flow . 13
Overview . 13

IP and the Tool Flow . 13

Design Flow Steps . 16
Generating the I/O Ring Files . 16

Incorporating Signals Traveling Between the I/O Ring and Core . 18

Chapter - 4: Working with Constraints . 19
Types of Constraints . 19

Using Constraints . 20
Synplify Pro . 20

ACE . 22

Chapter - 5: Pin Naming/Mapping . 24

Chapter - 6: Evaluating Warnings and Errors . 26
I/O Ring and Core IP Generation . 26

Resolving Warnings and Errors in I/O Ring Generation . 27

Chapter - 7: Simulating the I/O Ring . 29
Simulation Support Files Created During I/O Ring Subsystem Generation 29

I/O Ring to Core Connections in Hardware Versus Simulation . 30

I/O Ring Modeling . 31

Device Simulation Model . 35
Description . 35

Selecting the Required DSM . 35

Version Control . 37

Example Design . 38

Chip Status Output . 40

Bind Macros . 40

Direct-Connect Interfaces . 42

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 4

Direct-Connect Interfaces . 42

Clock Frequencies . 46

Configuration . 49

SystemVerilog Interfaces . 52

Installation . 54
Packages . 54

ACE Integration . 55

Standalone . 55

Environment Variables . 55
ACE_INSTALL_DIR . 55

ACX_DEVICE_INSTALL_DIR . 56

Revision History . 57

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 5

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 6

Chapter - 1: Introduction
This user guide provides details on the Achronix design flow and toolchain. It covers transforming a user design
from RTL to a bit file, explains the generation of hard IP, and demonstrates the effective mapping of these
components to each other and to the device inputs and outputs. In-depth information is provided about design
constraints and simulation for the Input and Ouput Ring (IORing) IP. Additionally, the guide addresses common
warnings and errors, offering insights into their potential causes and solutions. Finally, pin mapping is covered to
show the relationship between the different device orientations displayed by ACE.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 7

Chapter - 2: Overview of Interface Subsystems
The I/O ring surrounds the core of the device, and is composed of various interface subsystems that represent
high-speed data interfaces along with general purpose I/O (GPIO), clocks and resets. Since the I/O ring
surrounds the core, it is the only way that signals can enter and exit the device. As such, the subsystem
associated with the signal (e.g., Clock I/O Bank for clock signals, GPIO Bank for GPIO data, etc.) must be used
in order to route signals into and out of the core. See the following figure for a visual representation of the
interface subsystems surrounding the core in the Speedster®7t AC7t1500 FPGA. Placement and number of
subsystems may vary for other devices in the family.

Figure 1: Speedster7t AC7t1500 FPGA Top-Level Block Diagram

Note

The I/O ring does not exist in Speedcore™ eFPGAs.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 8

Clock I/O Banks, PLLs, and Advanced PLL Subsystems
In most cases, the first step in configuring the I/O ring is to add a Clock I/O Bank and a PLL or an Advanced PLL.
Clock I/O Banks allow defining the clock I/O which can then be used as the reference clock to a PLL or an
Advanced PLL or bypassed through an Advanced PLL. Devices in the Speedster7t family have up to 16 PLLs
and Advanced PLLs that can be used for clock generation and are located in the corners of the device. Some
features of the PLLs and Advanced PLLs are:

PLLs are fractional-N divide and spread-spectrum.

PLLs can be used to drive low-skew, high-speed clocks to nearby I/O, the global clock network, and
interface clocks in the FPGA core.

Each PLL can generate up to four output clocks with a total of 32 clocks able to route on the global clock
network.

Clock signals can be phase shifted using a DLL.

In each corner, there is one initator DLL with eight responders available for clock phase shifting. This
arrangement allows for one reference clock and up to eight synchronized clocks that can be phase shifted
based on the reference clock frequency.

I/O signals with in their name are primarily for single-ended clocks. They are marked as having both msio
p and n sides, and can be used in either differential or single-ended mode.

I/O signals with in their name are for differential clocks but do support single-ended clocks refio
incoming on their p-side.

Note

Advanced PLLs are comprised of the standard PLL core but expose more options for customization (e.
g., the first divider stage is customizable in the Advanced PLL but not in the standard PLL). The
hardware itself is shared for both subsystems. This means that both a standard PLL and an Advanced
PLL cannot exist at the same placement specification (for PLLs and Advanced PLLs, the placement
specification designates the corner and which of the four PLLs in that corner are used). To be clear,
PLLs and Advanced PLLs can co-exist in the same corner but cannot share the same placement
specification.

Clocks must enter through a Clock I/O Bank. Clock I/O can support multiple I/O standards including LVCMOS 15,
HSTL15 I, HSTL15 II, and SSTL15 I. These standards can be set when the clock I/O is configured, as shown in
the following example:

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 9

1.

2.

Figure 2: Clock I/O Standards

Note

Other I/O subsystems and user RTL designs reference PLL and Advanced PLL outputs by their I/O
.Instance Name

The reference clock for a PLL or Advanced PLL can come from:

An incoming, external clock from a Clock I/O Bank:

The incoming signal must be in the same corner as the PLL or Advanced PLL (designated by NE,
NW, SE, or SW) as designated by value (see example, above).Placement
Clock I/O Bank signals cannot directly route to other corners.

Another PLL or Advanced PLL (considered PLL):cascading

PLL cascading can occur within the same corner and adjacent corners that are populated with
PLLs. Not all corners are populated on all devices. For example: a PLL in the SW corner could
route to a PLL or Advanced PLL in the NW and SE corners of the device, but not diagonally across
to a PLL or Advanced PLL in the NE corner (see example, below).

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 10

1.

2.

Figure 3: Clocking Topology Options Example

Most subsystems require selecting a reference clock. There are a few options regarding where this reference
clock can be sourced from, though ultimately a PLL or Advanced PLL is used in all scenarios. The reference
clock can be sourced from the following:

The synthesized output of a PLL or Advanced PLL (most common configuration).

An Advanced PLL using the inner or outer bypass mode (specific to the Advanced PLL, and cannot be
used on a standard PLL):

Inner bypass – sends the reference clock to of the Advanced PLL outputs (unless any are in the all
outer bypass mode). The choice of reference clock is limited to a pre-determined Clock I/O that
varies with the Advanced PLL value.Placement
Outer bypass – the outputs of Advanced PLLs are associated with a specific Clock I/O. The outer
bypass forwards the incoming signal from the associated Clock I/O directly to the Advanced PLL
output, bypassing the Advanced PLL reference clock.

For more information on clocking, see the . (UG083)Speedster7t Clock and Reset Architecture User Guide

GPIO Bank Subsystem
Table 1: GPIO Banks per Device

Device Number of
GPIO Banks

AC7t1500 6

AC7t800 2

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-clock-and-reset-architecture-user-guide-ug083

Design Flow User Guide (UG106)

www.achronix.com 11

1.

2.

3.

1.

2.

1.

Each GPIO Bank has 12 pins — 8 for data, 2 for clock, and 2 for auxiliary signals. Some features of the GPIO
Bank include:

All types of GPIO Bank pins can be configured as differential

Data and auxiliary pins can be registered

Option to select the clock edge used to sample input data or drive output data. This option only applies
when the signal is registered.

When signals are registered, there are three choices for the reset source: Internal Reset from FCU, Global
Reset from I/Os, or Local Reset From Core

Supports certain HSTL, HSUL, LVCMOS, and SSTL standards

Table 2: GPIO Bank Pin Utilization

Pin
Type Purpose Supported

Directions

Data (1) Data only.
Input
Output
Inout

Clock (2)

Clocks for the TX and/or RX GPIO register stages.
Core clocking.
SerDes clocking associated with the GPIO Bank. If the value is higher SerDes Ratio
than 1, the SerDes is used in conjunction with the GPIO Bank. When this is the case,
the configuration options are used to set up the SerDes.GPIO Bank

Input
Output

Auxiliary While intended for signals that do not frequently toggle (eg: resets), auxiliary pins may also
be used for data.

Input
Output
Inout

Table Notes

The SerDes used for GPIO is slower than the raw SerDes.
If options 1 or 3 are used, the Network-on-Chip (NoC) must also be instantiated.

Note

A clock is needed when is checked, is checked, and/or the Rx Register Mode Tx Register Mode
 is higher than 1. The clock is selected by and can come from SerDes Ratio Bank Clock Signal Name

the expected options (PLLs, Advanced PLLs, Advanced PLL in bypass) as well as the GPIO Bank clock
pins. The clock supplies the GPIO Bank associated SerDes (if is set higher than 1) and SerDes Ratio
the Rx and/or Tx registers, if used. In some cases, the NoC might need to be instantiated.

The GPIO Bank reset can come from 3 sources:

Internal Reset from the FCU: – the FCU drives the reset. When entering user mode, the FCU releases
the reset. This is the only option if the GPIO Bank is not registered. Choose this option for simplicity in that
hardware automatically performs the function. However, the disadvantage is that, unlike the other two
options, this option does not give the user design control over the reset.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 12

2.

3.

Global Reset from I/Os: – a global reset track driven by a Clock I/O Bank input drives the reset. Choose
this option to control the reset from an external source.

Local Reset from the Core: – the user design drives the reset from the core fabric direct-connect
interface. Choose this option to control the reset from the core. The advantage compared to Global Reset
from I/Os is that there is no additional external device required to control the reset since it is coming from
the core.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 13

1.

2.

Chapter - 3: Interface Subsystem and Core IP Flow

Overview
Achronix offers two types of IP:

Core IP ("soft IP") – refers to the fabric core or, the configurable logic of the FPGA. In essence, IP located
in the fabric of the device.

Interface Subsystems ("hard IP") – part of the I/O ring surrounding the core, and includes pins, GPIO,
PLLs, memory interfaces, and other hard IP implemented in the surrounding silicon. Hence the term, "I/O
ring".

IP and the Tool Flow
The tool flow varies depending on which type of IP is being used even though both processes begin in ACE. If
using Core IP, the user synthesis run must include the output products of the IP generation (e.g., HDL and
constraints, if any are generated).

Note

Interface subsystems are not synthesized in Synplify Pro because ACE contains the boundary timing
information between the I/O ring and the Core. However, constraints from interface subsystems are
often useful as part of synthesis because they define things that otherwise would need to be specified
by the user (i.e., clocks are defined as part of the PLL configuration process). In addition, signals
traveling between the I/O ring and Core must be included in the top-level user RTL port list.

Typical tool flow is illustrated in the following flow chart:

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 14

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 15

1.

2.

3.

a.

b.

c.

d.

e.

4.

Figure 4: IP Flow

All Interface Subsystems and Core IP can be configured in ACE using the IP Configuration perspective:

Figure 5: IP Configuration Perspective

Key views to keep in mind while working with either IP type are highlighted above and described as follows:

IP Libraries – create a new instance of an interface subsystem or Core IP.

IP Diagram – shows a block diagram of the interface subsystem or Core IP currently being viewed.

I/O Designer – this view is actually a collection of views as follows:

I/O Utilization – shows a summary of interface subsystem utilization.

I/O Package Diagram – shows a diagram of color-coded package balls (hover the cursor over a ball
for more detailed information).

I/O Pin Assignment – details pin assignment information between the I/O ring and external world,
including port name (and its remapped name, if renamed), bank location, package ball, pad/macro
site name (for debugging in the fullchip simulation hierarchy), and more.

I/O Core Pin Assignment – details pin assignment information between the I/O ring and Core,
including signal name (and its remapped name, if renamed), direction, data type, Core pin name,
and more.

I/O Layout Diagram – shows a basic block diagram of the device with I/O ring subsystems shown in
green, and can be dragged-and-dropped to other locations that match the subsystem (e.g., PLLs
can be dragged-and-dropped to other PLL sites).

IP Problems – details warning and errors associated with I/O ring subsystems and Core IP.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 16

1.

Design Flow Steps
Generating the I/O Ring Files
Using the IP Configuration Perspective, follow these steps to generate I/O ring subsystems:

Configure each I/O ring subsystem by double-clicking the desired subsystem in the view as IP Libraries
shown in the image, above. Upon initial selection of an I/O ring subsystem, choose the save location for
the file (the file holds the subsystem configuration information). A common practice is to .acxip .acxip
create a directory called at the same level as the ACE project, and store all of the files acxip .acxip
there as illustrated below.

Figure 6: New IP Configuration Dialog – I/O Ring Example

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 17

2.

3.

4.

After saving all the .acxip files, click the button in any of the I/O ring subsystem configuration Generate
windows to initiate the generation process for all configured subsystems. A common practice is to create a
directory called at the same level as the ACE project, and then store all generated I/O ring ioring
subsystem there as illustrated below.

Figure 7: Generate I/O Ring Design Files Dialog

While each subsystem has a file associated with it, other files are also generated as part of the I.acxip
/O ring flow. In particular, multiple SDC files that cover different PVT points and simulation support files
are created. It is recommended to select to add the generated files relevant to the Add to active project
ACE project (as opposed to generated files that support simulation). This action adds the following files:

<project>_ioring.sdc: – constraints for clock definitions of clocks traveling from the I/O ring
to the core

<project>_ioring_timing_delays_<speedgrade_voltage_temp_corner>.sdc: –
constraints for timing delays on signals traveling between the I/O ring to the core

<project>_ioring.pdc: – constraints for pin placement for signals traveling between the I/O
ring to the core

<project>_ioring_util.xml: – used for bitstream generation

<project>_ioring_bitstream*.hex: – the file associated with each interface .hex
subsystem is taken and combined to produce two of these files (<proj>_ioring_bitstream0.

 and) which are used as part of the final bitstream hex <proj>_ioring_bitstream1.hex
generation for the ACE project

See the section for information on other constraints that should Working with Constraints (see page 19)
be added by the user.
See the section for the generated files used to support Simulating the the I/O Ring (see page 29)
simulation.

At this point, the I/O ring files have been generated and added to the project. The next step is to
incorporate signals traveling between the I/O ring and core.

Note

Interface subsystems are not instantiated in RTL.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 18

1.

2.

Incorporating Signals Traveling Between the I/O Ring and Core
During place-and-route, ACE connects signals going to/from the I/O ring and core by name-matching the I/O ring
signal to the top-level user RTL port list. In other words, the top-level user RTL port list should include the signal
names going to/from the I/O ring and core. This typically includes the following signals:

Clock signals going to core

PLL lock signals

GPIO signals

Direct connect interface (DCI) signals of GDDR6, DDR4, PCIe, Ethernet, and Raw SerDes

Note

To know which signals need to be in the top-level RTL port list, refer to the I/O Core Pin
 tab or the file.Assignment /ioring/<project>_user_design_port_list.svh

The file is a portlist from the core perspective (i.<project>_user_design_port_list.svh
e., PLL outputs going to the core are listed as inputs). ACE is expecting to see the ports listed in
this file as part of the portlist in the top-level RTL file.

When the signals have been added to the port list, synthesize the RTL in Synplify Pro to generate the
netlist.

Add the netlist to the ACE project used to create the interface subsystems and continue with place-and-
route/bitstream generation. Using the same project that generated the subsystems is convenient because
the relevant I/O ring files have already been added.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 19

Chapter - 4: Working with Constraints

Types of Constraints
Three types of constraints files are used in the Synplify/ACE flow as shown in the following table:

Table 3: Synplify Pro and ACE Flow Constraint File Types

File Type Used in
Synplify

Used
in

ACE
Description

Synopsys Design
Constraint (SDC) Yes Yes Only used for timing constraints. While SDC files are normally capable of

also constraining power and area, the ACE flow differs in this regard.

FPGA Design
Constraint (FDC) Yes No

Used for non-timing and non-placement constraints (e.g., global or local
attributes on an object, when using the define_attribute statement, and
compile points).

Placement
Design
Constraint (PDC)

No Yes Used for placement constraints (region, routing, etc.) and ACE-specific
commands.

Warning

The syntax of SDC constraints can vary between Synplify Pro and ACE. While the main command is
typically the same, command options and field order may differ.

SDC files and a PDC file are created as part of the I/O ring generation. These files hold all constraints necessary
for the I/O ring, including constraints at the boundary between the I/O ring and core. The generated SDCs
constrain I/O ring timing, whereas the generated PDCs have constraints that define which signals correspond to
which boundary pins in hardware. Some user-defined constraints might be necessary. For example:

Clock relationships (e.g., false paths, multicycle paths, asynchronous relationships, and clock groups).
Clocks are assumed to be related unless defined otherwise.

Design-specific placement constraints (e.g., region locking and NAP placement)

Caution

User-created PDCs should be placed the generated placement constraints.below

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 20

1.

2.

3.

Using Constraints
Synplify Pro
At minimum, an SDC file with basic timing constraints should be included. This file can often be used in ACE as
well as Synplify Pro, though syntax may change for some options as synthesis constraints tend to be a subset of
place-and-route constraints. Certain characters (e.g., "{ }" and "[]") should be escaped for the constraint to be
read by both Synplify Pro and ACE. FDC files can also be included to define non-timing and non-placement
constraints. Since placement occurs in ACE, the PDC file created during I/O ring generation is not used in
Synplify Pro.

See the example below for escaping "[]" characters allowing both Synplify Pro and ACE to use a single
 constraint:set_input_delay

Special Character Escaping Example for Constraints

Example for ACE only:

set_input_delay -clock sys_clk -min 1.0 [get_ports din[*]]

Example for both ACE and Synplify Pro:

set_input_delay -clock sys_clk -min 1.0 [get_ports din\[*\]]

Synplify Pro constraints with the form tend to directly affect synthesis, whereas constraints syn_<constraint>
with a different syntax are typically passed to the netlist but are not applied during synthesis. There are three
ways to apply constraints:

In RTL before the object declaration (Verilog 2001 style). In this case, there must be a comma separator
for multiple entries.

In RTL after the object declaration. In this case:

The keyword must appear before the constraint.synthesis

Do NOT place a comma separator between multiple entries.

In an FDC file. FDC files can be manually generated, or edited through the Synplify Pro constraint editor.
Normally used for project-wide attributes.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 21

See the example below for applying constraints both before and after the object declaration. In the example,
 prevents and from being optimized away during synthesis. syn_preserve coeff_buf_pre coeff_buf

 is passed to the netlist and is used to prevent optimization of both objects during place-and-route in must_keep
ACE.

Applying Constraints in RTL

// Buffering coefficients across the die

// Using two layers

(* must_keep=1, another_attribute=1 *) reg [2:0] coeff_buf_pre [3:0] /* synthesis syn_preserve=1

syn_maxfan=1 */;
(* must_keep=1, another_attribute=1 *) reg [2:0] coeff_buf [3:0] /* synthesis syn_preserve=1

syn_maxfan=9 */;

// Using one assignment

always @(posedge clk)

begin
 coeff_buf_pre <= {4{coeff_sel}};

 coeff_buf <= coeff_buf_pre;
end

See the example below for setting project-wide constraints in an FDC file. In this case, wide MUXes are enabled
through and the maximum number of registers that can be mapped to an inferred RAM syn_acx_mux41_opt
(400 in this case) through .syn_max_memsize_reg

Setting Constraints Through an FDC

Enable wide muxes

define_global_attribute {syn_acx_mux41_opt} {1}

Set size of registers to infer memories

define_global_attribute {syn_max_memsize_reg} {400}

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 22

1.

2.

Common Usage: Limiting Fanout and Preventing Optimization
Limiting fanout is particularly useful when a design is failing timing and contains nets with a high fanout. Higher
fanout nets tend to be more difficult to route, and as a result are a common source of timing failures. One
solution to this problem is using along with and . works syn_maxfan syn_preserve must_keep Syn_maxfan
on ports, nets, or register outputs by creating a duplicated tree for routing. and Syn_preserve must_keep
function to prevent optimization in Synplify and ACE, respectively.

In the example below, prevents the flops from being merged, with being passed in syn_preserve must_keep
the netlist to perform the same function in ACE.

Setting Constraints to Limit Fanout

// Buffering coefficients across the die

// Using two layers:

(* must_keep=1 *) reg [2:0] coeff_buf_pre [3:0] /* synthesis syn_preserve=1 syn_maxfan=1 */;

(* must_keep=1 *) reg [2:0] coeff_buf [3:0] /* synthesis syn_preserve=1 syn_maxfan=9 */;

// Using one assignment:

always @(posedge clk)

begin
 coeff_buf_pre <= {4{coeff_sel}};

 coeff_buf <= coeff_buf_pre;
end

Note

syn_maxfan can be ignored under certain conditions.

For more extensive information on Synplify attributes, within Synplify Pro select . Within the Help → Help Topics
 tab, select .The also contains helpful Contents Attribute Reference Manual (UG018)Synthesis User Guide

information on constraints.

ACE
All ACE projects contain both SDC and PDC files as a result of I/O ring generation and/or user creation.

There are two ways to add ACE constraints:

Added directly to an entity as part of the synthesis flow. These attributes are passed into the netlist
created from synthesis.

Added in a constraint file used in ACE. Recall that FDCs are only used in Synplify, so this would be a PDC
or SDC file.

If constraints are added as part of the synthesis flow, it is good practice to check that they were applied by
reviewing the netlist or by using the Synplify Technology Viewer. To do so through the Technology Viewer, select
the Technology View in Synplify → Select the object of interest → Right-click and select → Since the Properties
Technology Viewer shows the generated netlist, check that the constraint in question has the expected value.

If added through a constraint file in ACE, a good practice is to check for the existance of an object before
applying the attribute. This is because remapping/renaming can change the expected name of the object.

http://www.achronix.com
https://www.achronix.com/documentation/synthesis-user-guide-ug018

Design Flow User Guide (UG106)

www.achronix.com 23

For more information on ACE constraints, see the . (UG070)ACE User Guide

Common Usage: Preventing Optimization
To prevent optimization, can be applied to instances or nets to prevent them being optimized away. must_keep
See for an example.Common Usage: Limiting Fanout and Preventing Optimization (see page 22)

Common Usage: Limiting Fanout
Fanout can be limited either globally or by net. If a global fanout limit is desired, it can be set through the ACE
GUI by first enabling by selecting . Then, specify Options → Advanced Design Preparation → Fanout Control
the global fanout limit for all nets via , or the limit for critical nets via . Fanout Limit Fanout Limit for Critical Nets
If it is instead preferred, set the global limit through the Tcl Console, either directly or as in Achronix example
designs through the ace_options.tcl file (under /src/constraints), using to turn on set_impl_option

 and set (or) as follows:fanout_control fanout_limit critical_fanout_limit

Global Fanout Limit Example

Enables fanout limit control
set_impl_option -project "<project_name>" -impl "<implementation_name>" "fanout_control" "1"

Sets the global fanout limit

set_impl_option -project "<project_name>" -impl "<implementation_name>" "<fanout_limit |

critical_fanout_limit>" "<number_to_limit_fanout_to>"

To set the fanout limit for a specific net:

Specific Net Fanout Limit Example

Enables fanout limit control
set_impl_option -project "<project_name>" -impl "<implementation_name>" "fanout_control" "1"

Sets the fanout limit for a specific net
set_property fanout_limit <fanout_limit_number> <net>

Observe that while limiting fanout in this way is a constraint in that it constrains the design, it is not actually set in
a constraint file. Instead, it is set as an implementation option for the project.

For more information on ACE constraints, see the . (UG070)ACE User Guide

http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070
https://www.achronix.com/documentation/ace-user-guide-ug070

Design Flow User Guide (UG106)

www.achronix.com 24

Chapter - 5: Pin Naming/Mapping
The orientation of Achronix Speedster7t FPGAs varies depending on the view in ACE. When observed in the I/O
Layout Diagram view, the perspective is from that of a bare die placed flat with the substrate down. The I/O
Package Diagram view is from the perspective of the die having been flipped horizontally and bonded to the
package. The I/O Pin Assignment table (shown below) lists a given along with its signal , its Port Name Direction

 which corresponds to the I/O Package Diagram view orientation, its which corresponds Ball Name Bump Name
to the I/O Layout Diagram view orientation, and its which is a unique name identifying the final connector on Ball
the package which bonds to the circuit board and remains constant regardless of the view. Interface Subsystems
follow the orientation of the I/O Layout Diagram view.

Note

Many prefer to identify a given port by its , which is remains consistent between circuit boards and Ball
the views in ACE.

Figure 8: ACE I/O Pin Assignment Table

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 25

The following example shows how a given clock pin appears in the I/O Layout Diagram view. The Bump Name
in the table above corresponds to this view:

Figure 9: I/O Layout Diagram View Example

The following example shows the same pin in the I/O Package Diagram view. The in the table above Ball Name
corresponds to this view:

Figure 10: I/O Package Diagram View Example

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 26

Chapter - 6: Evaluating Warnings and Errors

I/O Ring and Core IP Generation
I/O ring and Core IP file warnings and errors appear in the IP Problems view as shown below. All IP and interface
subsystems must be warning and error free before any of their files can be generated.

Figure 11: IP Problems View Example

The item corresponds to the file named in the column which is edited through the IP configuration Property File
view of each interface subsystem or Core IP. The problem is indicated in the field.Summary
Within the Configuration Overview for an interface subsystem or Core IP (see the following example), an icon
appears to the left of most fields indicating the validity of its value. The green checkmark () indicates there
are no problems with the value in the field. A warning () or error () icon appears when the field value has
one or more problems. A descriptive tooltip appears (as shown) with a summary of the warning or error from the
IP Problems view when the cursor is placed over one of the problem indicators.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 27

1.

2.

Figure 12: Core IP Configuration Overview Example

Resolving Warnings and Errors in I/O Ring Generation
Clicking a warning or error icon in the Configuration Overview (or clicking the description of the warning or error
itself in the IP Problems view) opens the box highlighted in the example below as part of the IP Problems view.

Observe that the signal in the IP Diagram view is highlighted in yellow and the warning icon appears to noc_clk
its left in both the Configuration Overview and the IP problems view, visually indicating the issue. In this example,
the problem could be one of two possibilities:

The clock has a different name but the correct frequency. In this scenario, either select the desired clock
from the listbox or rename the clock to in its PLL or Advanced NoC Reference Clock Name noc_clk
PLL configuration view. Otherwise, create a new clock.

The clock has the correct name but incorrect frequency. The highlighted box of the IP Problems view
indicates that the Speedster7t AC7t1500ES0 NoC reference clock must be 200.0 MHz. In this scenario,
correct the frequency of the clock in its PLL or Advanced PLL configuration view. Otherwise, create a new
clock.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 28

Figure 13: IP Problems View Detail Description Box Example

Common sources of warnings and errors include:

Having a clock with incorrect frequency

Attempting to use SerDes lanes that are already occupied by another subsystem

Attempting to route PLLs or Advanced PLLs to certain subsystems on the other side of the device

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 29

1.

2.

Chapter - 7: Simulating the I/O Ring

Simulation Support Files Created During I/O Ring Subsystem
Generation
As part of I/O ring generation, several files that support simulation are created. These files, along with the user
design and the Device Simulation Model (DSM), are key to simulating Achronix devices. This section describes
the simulation support files and the modes of the DSM.

The I/O ring can be simulated with either of the two main DSM modes:

Full-chip Bus Functional Model (BFM) – offers compromised cycle accuracy in I/O ring models with higher
simulation speed.

Full-chip Register Transfer Level (RTL) – offers cycle-accurate models of the I/O ring but with lower
simulation speed.

A third simulation mode, Standalone, is not part of the DSM and therefore does not include I/O ring models.
Instead, Standalone exclusively simulates the core.

Tip

A reference design is recommended as a starting point for simulating user designs and significantly
reduces the time required to set up simulation.

As part of the I/O ring generation process, files are created supporting I/O ring simulation. While the file .acxip
associated with each subsystem is not directly used in simulation, it is the basis for producing the files that
support simulation of interface subsystems. These files are described in the following table.

Table 4: Interface Subsystem Simulation Files

File Description

<proj>_sim_defines.f
Includes defines needed to set global clocks and resets in the I/O
ring. Must be included in the simulation file list.

<proj>_user_design_port_bindings.
svh

Binds signal names in the RTL for signals traveling between the core
and the I/O ring to core pins (i.e., a user-renamed I/O ring port

 is a named version of a hardware port from the core, e.g., clk_in
, and must be bound so that it can i_user_06_00_trunk_00[31]

be properly connected by the tool). See the Device Simulation Model
 section for more details.(see page 35)

<proj>_user_design_port_list.svh

A list of ports used to connect signals traveling to and from the core
and I/O ring from the perspective of the core (i.e., PLL outputs going
to the core would be listed as inputs). Must be included in the top-
level RTL port list.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 30

File Description

<proj>_user_design_signal_list.
svh

Same as above but uses “logic” declaration. Can be included in the
test bench.

<proj>_sim_config.svh
Calls configuration functions for any subsystems using full-chip RTL.
Must be included in the test bench.

<proj>_ioring_bitstream*_<block>.
txt

For each subsystem instance that generates a configuration file, the
above file calls these config files when the subsystem is set *.svh
to full-chip RTL by a define.

Additionally, there are specific defines used to indicate which subsystems to use in full RTL mode. These defines
are specified as (e.g.,). See the <subsystem_name>_FULL +define+GDDR6_2_FULL Supported Simulation

 table for more information.Flow Types (see page 32)

I/O Ring to Core Connections in Hardware Versus Simulation
The file holds the list of ports used to connect signals traveling to and from the core <proj>_port_list.svh
and I/O ring (see the previous section for a list of simulation support files created during I/O ring subsystem
generation). In hardware, these connections are made between the programmable core and the periphery
containing the interface subsystems. In simulation, those connections are formed with the support of the DSM.
To compare hardware and simulation:

For hardware – when generating interface subsystems, a prompt appears requesting to add some files
created as part of that process to the ACE project. Among these files are file(s) for IP .acxip
configuration. This file enables ACE to not only generate a bitstream to configure the respective IP, but
also to name the applicable connections to the programmable core. These connections become top-level
ports which are connected to the user design netlist during place and route.

For simulation – a testbench instantiating and connecting to the top-level RTL file is used. Connecting
these top-level ports in the user design to the appropriate named ports within the DSM, which is
instantiated in the testbench, is key. To accomplish this, one of the files created during the I/O ring
generation process, , contains includes that associate <proj>_user_design_port_bindings.svh
each port by name in the top-level port list with its corresponding hardware pin on the DSM, including
Direct Connect Interface (DCI) connections. This method binds each port in the user design to one on the I
/O ring model in the DSM. Alternately, each DCI connection System Verilog interface allows users to
interact with subsystems, including their DCI connections. See the Device Simulation Model (see page 35
 section for more information.)

Note

I/O ring subsystems do use RTL wrappers in either hardware or simulation. In both cases, the I/O not
ring communicates with the user design in the core through the top-level port list. Unlike previous
simulation environments that might have required instantiating the individual RTL wrappers containing
the selected IP directly into the testbench, the DSM contains models of all IP within the device. Only a
single instance of a DSM is required to simulate all functions of a device.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 31

1.

2.

Here are a few port binding examples:

`ACX_BIND_USER_DESIGN_PORT(ddr4_clk, i_user_04_00_mt_00[0])

`ACX_BIND_USER_DESIGN_PORT(ddr4_clk_alt[0], i_user_05_00_mt_00[0])
`ACX_BIND_USER_DESIGN_PORT(ddr4_clk_alt[1], i_user_07_00_mt_00[0])

`ACX_BIND_USER_DESIGN_PORT(ddr4_rstn, i_user_07_00_lut_13[18])

I/O Ring Modeling
Two main options exist when simulating:

Core Modeling Method: Whether RTL, gate-level post-synthesis, or gate-level post-route. The method is
determined by the type of file(s) used:

Design RTL files for an RTL simulation

A post-synthesis netlist for a gate-level post-synthesis simulation

A post-route netlist for a gate-level post-route simulation

I/O Ring Modeling Method: Whether full-chip BFM or full-chip RTL as described in the following table.
The default model is full-chip BFM, although defines can be used to change the model to standalone or
full-chip RTL. The standalone model only simulates the core and is not a mode in the DSM.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 32

1.

2.

3.

1.

2.

1.

2.

3.

4.

5.

There are 3 types of simulation flows supported. While simulation of the core is unaffected them, they differ in
how the I/O ring subsystems are modeled:

Table 5: Supported Simulation Flow Types

Model Speed Cycle accuracy Other notes

Standalone Fastest Not cycle accurate

Standalone is not part of the DSM. Instead, simplified models must be
constructed by the user.
NAP-to-NAP, NAP-to-subsystem, and any subsystems (including PLLs,
memory interfaces, etc.) need to be modeled in the testbench. A
specific model of a NAP connected to an external memory exists, but
for other NAP functions, models must be constructed by the user. For
example, NAP-to-NAP and NAP-to-subsystem must be modeled
because NAPs are not connected to the NoC in this mode. See Special

 for more detail.Treatment For Simulating NAPs (see page 33)
Enabled by and not +define+ACX_SIM_STANDALONE_MODE
instantiating the DSM during simulator compilation.

Full-Chip BFM Medium
Cycle accurate for
NoC, near cycle accurate
for other subsystems

This mode uses a model of the full chip, with cycle-accurate 2D NoC
(2D NoC is RTL modeled). There are BFMs for all the hardened
interfaces around the NoC. These BFMs have representative delays,
allowing this mode to offer near cycle-accurate simulations. This mode
does not require the interface subsystems to perform initialization and
calibration steps, offering a quicker simulation time compared to a full
cycle-accurate simulation.
This is the default mode of the DSM. No steps are necessary to enable
it.

Full-Chip RTL Slowest

Cycle accurate for
RTL modeled subsystems,
near cycle accurate for
BFM modeled subsystems

RTL models are used and, if desired, a cycle-accurate model of any
necessary external component (such as a memory). This configuration
gives a fully cycle-accurate simulation representing the final silicon
operation. For most of these simulations, it is necessary to configure
the relevant subsystems using the provided configuration files. As
these simulations are using the full RTL of the subsystem, they run
slower than the BFM equivalent simulations, while offering complete
timing accuracy.
Which subsystems use full RTL models and which use BFM models
can be selected using define statements (e.g., setting

 uses the full RTL model for GDDR6_2).+define+GDDR6_2_FULL

To obtain the encrypted RTL of the GDDR6, DDR4, or PCIe
subsystems, a second licensed simulation package is required. Please
contact Achronix Support to arrange licensing and access to this
package.
I/O ring subsystems not using full-chip RTL default to full-chip BFM. In
this way, full-chip BFM and full-chip RTL can be mixed.
Enabled by during simulator +define+ACX_<HARD_IP>_FULL
compilation. Must be defined for each subsystem for which RTL
modeling is desired. See the table below for more information.

The subsystems that can use the full-chip RTL model are shown in the table below, and represent the
 part of . For more information on how to use ACX_<HARD_IP>_FULL +define+ACX_<HARD_IP>_FULL

 to enable the RTL model of an I/O ring subsystem and runtime programming scripts, see the +define+
Reference Design Simulation section at the end of any reference design document.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 33

1.

2.

Table 6: Simulation RTL defines

Module (1) Define

GDDR6 controller 0 ACX_GDDR6_0_FULL

GDDR6 controller 1 ACX_GDDR6_1_FULL

GDDR6 controller 2 ACX_GDDR6_2_FULL

GDDR6 controller 3 ACX_GDDR6_3_FULL

GDDR6 controller 4 ACX_GDDR6_4_FULL

GDDR6 controller 5 ACX_GDDR6_5_FULL

GDDR6 controller 6 ACX_GDDR6_6_FULL

GDDR6 controller 7 ACX_GDDR6_7_FULL

DDR4 controller ACX_DDR4_FULL

Ethernet subsystems (both) ACX_ETHERNET_FULL

PCIe Controller 0 (×8) ACX_PCIE_0_FULL

PCIe controller 1 (×16) ACX_PCIE_1_FULL

GPIO North block ACX_GPIO_N_FULL

GPIO South block ACX_GPIO_S_FULL

All SerDes lanes ACX_SERDES_FULL

All PLLs and Clock Generators (2) ACX_CLK_NW_FULL, ACX_CLK_NE_FULL, ACX_CLK_SW_FULL,
ACX_CLK_SE_FULL

Table Notes

Locations and names of each of the interface subsystems are visible using the ACE IP Configuration
perspective, and selecting the I/O layout diagram.
All four defines, one for each corner, must be defined together. Due to shared entities, it is not possible to
only define a subset of PLLs and clock generators for RTL simulation.

Special Treatment For Simulating NAPs
I/O ring subsystems communicate with the core through the 2D NoC and NAPs in the core, or through a Direct
Connect Interface (DCI) directly from the subsystem to the core. NAPs are the connection point between the 2D
NoC and the core for all I/O ring subsystem signals not using DCI connections.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 34

The 2D NoC exists in both the I/O ring and above the core, communicating to the core below it through NAPs.
However, there are no 2D NoC ports in the file. To facilitate simulation, ACE <proj>_port_list.svh
establishes the NoC-to-NAP connections for simulation through NAP binding macros in the case of full-chip BFM
and full-chip RTL simulations, or bind statements in the case of standalone simulation.

To summarize the difference between the hardware and simulation flows for using NAPs:

In hardware, NAPs are enabled in the RTL using NAP macros, and ACE makes the connections between
the NoC and NAPs during place-and-route.

In simulation, the NAP macros exist in the user RTL, but an additional binding macro (in the case of full-
chip BFM and full-chip RTL simulations) or bind statement (in the case of standalone simulation) for each
NAP is added to the testbench. In the case of full-chip BFM or full-chip RTL, the NAP binding macro
requires that the location of each NAP for a simulationmust be set by the user. Both the bind statement
and bind macro should be set in the testbench.

Caution!

The NoC coordinates used to bind any NAP must match the same coordinates in the ACE project .pdc
file in order to ensure consistency between simulation and hardware.

For more information on NAPs, see the and the DSM section (UG089)Speedster7t Network on Chip User Guide
below. For more information on how to run each type of simulation on the different supported simulators, see the

. (UG072)Simulation User Guide

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089
https://www.achronix.com/documentation/simulation-user-guide-ug072
https://www.achronix.com/documentation/simulation-user-guide-ug072

Design Flow User Guide (UG106)

www.achronix.com 35

Device Simulation Model
Many designs require a simulation overlay named the Device Simulation Model (DSM). This package combines
the full Register Transfer Level (RTL) of the Network on Chip (NoC) with Bus Functional Models (BFMs) of the
interface subsystems that surround the NoC and FPGA fabric. This combination of true RTL for the NoC and
models for the interface subsystems allows developing designs within a fast responsive simulation environment,
while achieving cycle-accurate interfaces from the NoC, and representative cycle responses from the hard
interface subsystems. This simulation environment allows a designer to iterate rapidly to develop and debug their
design.

Description
The DSM provides full RTL code for the NoC, combined with BFMs of the surrounding interface subsystems. The
structure is wrapped within a SystemVerilog module named per device, i.e., ac7t1500. Instantiate one instance of
this module within the top-level testbench.

In addition, the DSM provides binding macros such that binding between elements of a design and the same
elements within the device is possible. For example, the design might instantiate a NoC access point (NAP). It is
then necessary to bind this NAP instance to the NAP in the correct location within the NoC by using the

, , , `ACX_BIND_NAP_SLAVE `ACX_BIND_NAP_MASTER `ACX_BIND_NAP_HORIZONTAL
 or macro, whichever is appropriate for the design.`ACX_BIND_NAP_VERTICAL `ACX_BIND_NAP_ETHERNET

Similarly, it is necessary to bind between the ports on the design and the Direct-Connection Interface (DCI) for
the interface subsystem. Each DCI within the device is connected to a SystemVerilog interface. This interface
can then be directly accessed from the top-level testbench, and signals assigned between the SystemVerilog
interface and the ports on the design.

Selecting the Required DSM

DSM Utility Package
There is a DSM package for each device, with each DSM representing the specific features of that device. It is
therefore necessary to select the correct DSM within a simulation testbench. Selection of the correct DSM is
achieved by including the appropriate DSM utility package. The package then creates macros and functions to
access the appropriate DSM. The utility package defines the macro , which is then used to ACX_DEVICE_NAME
instantiate and refer to the DSM. The following DSM utility packages are available.

Table 7: DSM Utility Packages

Device DSM Utility Package ACX_DEVICE_NAME

AC7t1500ES0 ac7t1500_utils.svh ac7t1500

AC7t1500 ac7t1500_utils.svh ac7t1500

AC7t800ES0 ac7t800_utils.svh ac7t800

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 36

Device Specific Simulation Files
To allow for reusable code, the Achronix simulation flow creates a macro for each device, of the form

 The appropriate macro is present in simulation, (and synthesis), when ACX_DEVICE_<full device name>.
the appropriate ACE library file is included in the project. These ACE library files are located within the

 file. The <ACE_INSTALL_DIR>/libraries/device_models/<full device name>_simmodels.sv
following table lists the available files, and the device specific macro that each creates.simmodels.sv

Table 8: Simulation Model Files and Defines

Device Simulation Model File ACX_DEVICE Macro

AC7t1500ES0 AC7t1500ES0_simmodels.v ACX_DEVICE_AC7t1500ES0

AC7t1500 AC7t1500_simmodels.v ACX_DEVICE_AC7t1500

AC7t800ES0 AC7t800_simmodels.v ACX_DEVICE_AC7t800ES0

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 37

Instantiate DSM Utility Package
Using the device specific macros, it is possible to create a general DSM instantiation that can be used for
multiple devices. In the following example, the ACX_DEVICE_xxxx macro is used to select the appropriate DSM
utility package. The macros subsequently created by the package are then used to select the appropriate DSM.

 // Include the appropriate DSM utility file which defines the appropriate macros

 // If an unsupported device is selected, then compilation will fail
`ifdef ACX_DEVICE_AC7t1500ES0

 `include "ac7t1500_utils.svh"
`elsif ACX_DEVICE_AC7t1500

 `include "ac7t1500_utils.svh"
`elsif ACX_DEVICE_AC7t800ES0

 `include "ac7t800_utils.svh"
`endif

 // Instantiate the DSM
 // ACX_DEVICE_NAME is defined in the DSM utility file for the selected device

 // Connect the chip_ready signal
 `ACX_DEVICE_NAME `ACX_DEVICE_NAME (

 .FCU_CONFIG_USER_MODE (chip_ready),
);

Version Control
The DSM is version controlled. Within a release, new functions might be added and older functions might be
deprecated or replaced. The release is indicated both in the package name (ACE_<major>.<minor>.

 and in the file placed in the root directory of the package.<patch>_DSM_sim_<update>.zip/tgz) readme

To ensure that the correct version of the DSM is used, a task must be included within the design testbench to
confirm the version compatibility. This function should be instantiated as follows:

 // The ACX_DEVICE_NAME macro is defined for each DSM within its appropriate utility package

 initial begin
 // Ensure correct version of DSM is being used

 // This design requires 9.0.0.0 as a minimum
 `ACX_DEVICE_NAME.require_version(9, 0, 0, 0);

 end

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 38

1.

2.

3.

4.

require_version() Task
The require_version task has four arguments. In order:

Major Version – Matches the major version of the release

Minor Version – Matches the minor version of the release

Patch – Matches the patch version of the release (optional)

Update – Matches the update number of the release (optional)

If either patch or update is not specified, then these arguments should be set to 0. For example, for the 8.5
release, the arguments would be set as 8,5,0,0.

Note

The values can be expressed either as numbers (0-9) or as strings ("0"–"9") or as letters ("a/A", "b/B"),
with the letters "a" and "b" representing alpha or beta releases. When deciding on the priority of a
release, a number represents a more recent release than a letter; therefore, 8.3.alpha (defined as 8,3,"
a",0) precedes the full 8.3 release (designated as 8,3,0,0).

Example Design
An example structure of a user testbench, instantiating both the DSM and the user design under test is shown in
the following . This example shows the macros required for the slave NAPs, and the diagram (see page 38)
DCIs for two instances of the GDDR6 subsystem. For other forms of NAPs, or for other DCI types, such as DDR,
consult the and tables.Bind Macros (see page 41) DSM Direct-Connect Interfaces (see page 43)

Figure 14: Example Simulation Structure

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 39

In the previous example, there are two NAPs, and . In addition, there are two direct-connect my_nap1 my_nap2
interfaces, and . In the top-level, testbench bindings are made between the NAPs in the my_dc0_1 my_dc0_2
design and the NAPs within the device using the ACX_BIND_NAP_SLAVE macro. This macro supports inserting
the coordinates of the NAP within the 2D NoC in order that the simulation is aligned with physical placement of
the NAP on silicon.

The DCIs are ports on the user design. These ports are assigned to the appropriate signals within the device
direct-connect SystemVerilog interface.

The Verilog code to instantiate the example, based on using the Speedster7t AC7t1500 FPGA, follows.

 // --

 // Instantiate the DSM
 // --

 // Connect the chip ready port
 // Note : All DSM ports are defined, so can be directly connected if required

 `ACX_DEVICE_NAME `ACX_DEVICE_NAME(.FCU_CONFIG_USER_MODE (chip_ready));

 // Set the verbosity options on the messages
 // Use the inbuilt set_verbosity() task.

 initial begin
 `ACX_DEVICE_NAME.set_verbosity(2);

 end

 // --
 // Bind NAPs

 // --
 // Bind my_nap1 to location 4,5

 `ACX_BIND_NAP_AXI_SLAVE(dut.my_nap1,4,5);
 // Bind my_nap2 to location 2,2

 `ACX_BIND_NAP_AXI_SLAVE(dut.my_nap2,2,2);

 // --

 // Connect to DC interfaces
 // --

 // Create signals to attach to direct-connect interface
 logic my_dc0_1_clk;

 logic my_dc0_1_awvalid;
 logic my_dc0_1_awaddr;

 logic my_dc0_1_awready;

 logic my_dc0_2_clk;
 logic my_dc0_2_awvalid;
 logic my_dc0_2_awaddr;
 logic my_dc0_2_awready;

 // Connect signals to gddr6_xx_dc0 interface within ac7t1500 device

 // Inputs to device
 assign `ACX_DEVICE_NAME.gddr6_xx_dc0.awvalid = my_dc0_1_awvalid;

 assign `ACX_DEVICE_NAME.gddr6_xx_dc0.awaddr = my_dc0_1_awaddr;

 // Outputs from device
 assign my_dc0_1_awready = `ACX_DEVICE_NAME.gddr6_xx_dc0.awready;

 // Connect signals to gddr6_xx_dc0 interface within ac7t1500 device
 // Inputs to device

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 40

 assign `ACX_DEVICE_NAME.gddr6_yy_dc0.awvalid = my_dc0_2_awvalid;

 assign `ACX_DEVICE_NAME.gddr6_yy_dc0.awaddr = my_dc0_2_awaddr;

 // Outputs from device
 assign my_dc0_2_awready = `ACX_DEVICE_NAME.gddr6_yy_dc0.awready;

 // --

 // Remember to connect the clock!
 // --

 assign my_dc0_1_clk = `ACX_DEVICE_NAME.gddr6_xx_dc0.clk;
 assign my_dc0_2_clk = `ACX_DEVICE_NAME.gddr6_yy_dc0.clk;

Note

When using bind macros, the column and row coordinates of the target NAP can be specified. To
ensure consistency between simulation and silicon, add matching placement constraints to the ACE
placement file, for example:.pdc

In simulation
`ACX_BIND_NAP_AXI_SLAVE(dut.my_nap1,4,5);

In place and route
set_placement -fixed {i:my_nap} {s:x_core.NOC[4][5].logic.noc.nap_s}

set_verbosity() Task
Alongside specifying the required simulation package version and instantiating the device, the verbosity of the
messages that are output from the device simulation model can be controlled. These levels are controlled by the

 task. Refer to the previous code sample for an example showing how to call this function.set_verbosity

The verbosity levels are defined in the following table.

Table 9: Verbosity Levels

Verbosity Level Description

0 Print no messages.

1 Print messages from initiator and responder interfaces only.

2 Print messages from level 1 and from each NoC data transfer.

3 Print messages from level 2, port bindings and NoC performance statistics.

Chip Status Output
From initial simulation start, the device operates similarly to its silicon equivalent with an initialization period when
the device is in reset. In hardware this occurs during configuration as the bitstream is loaded. After this
initialization period, the device asserts the signal to indicate that it has entered user FCU_CONFIG_USER_MODE
mode, whereby the design starts to operate.

It is suggested that the top-level testbench monitor and delay drive stimulus into the FCU_CONFIG_USER_MODE
device until this signal is asserted (shown in the previous example by use of a testbench signal).chip_ready

Bind Macros

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 41

1.

Bind Macros
The following bind statements are available.

Table 10: Bind Macros

Macro Arguments (1) Description

ACX_BIND_NAP_HORIZONTAL
user_nap_instance,

, noc_colunm noc_row
To bind a horizontal streaming NAP, instance

.ACX_NAP_HORIZONTAL

ACX_BIND_NAP_VERTICAL
user_nap_instance,

, noc_colunm noc_row
To bind a vertical streaming NAP, instance

.ACX_NAP_VERTICAL

ACX_BIND_NAP_AXI_MASTER
user_nap_instance,

, noc_colunm noc_row
To bind an AXI initiator NAP, instance

.ACX_NAP_AXI_MASTER

ACX_BIND_NAP_AXI_SLAVE
user_nap_instance,

, noc_colunm noc_row
To bind an AXI responder NAP, instance

.ACX_NAP_AXI_SLAVE

ACX_BIND_NAP_ETHERNET
user_nap_instance,

, noc_colunm noc_row
To bind an Ethernet NAP instance,

.ACX_NAP_ETHERNET

Table Notes

user_nap_instance is relative to the testbench, not to the top of the simulation. Normally
 would be of the form .user_nap_instance DUT.<hierarchical_path_to_nap>

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 42

Direct-Connect Interfaces
Within the device, the non-NAP connections between the high-speed interface subsystems (such as GDDR,
DDR, PCIe, Ethernet and SerDes) and the fabric are known as Direct-Connect Interfaces (DCI). These are
comprised of:

Additional data ports in the case of the memory interfaces (AXI)

Dedicated data interfaces for PCIe (CII) and Serdes (raw mode)

Status and control for Ethernet

For full details of each of the subsystem DCI ports, refer to the appropriate interface subsystem user guide.

Connecting from the user design to the DCI ports involves one of two methods:

Connecting directly using the interfaces built into the DSM

Using an ACE generated port binding file

Suggested Flows
In general, the direct connection to the DSM ports is used at the commencement of a project, when an ACE
project might not yet have been developed. The decision can be made later in the process to use the ACE
bindings file. Both methods achieve the same objective; connecting the DUT IO ports to the appropriate locations
within the DSM.

Direct connect method – makes use of SystemVerilog interfaces. Therefore, it is possible to add additional
features such as protocol checking and performance measurements into these interfaces.

ACE port binding method – assists with confirming consistency of the DUT ports as presented to ACE
(from both the netlist and the ACE generated IP files). This flow can be used to help debug any port
naming mismatches prior to committing to place and route.

The two methods are detailed as follows.

DSM DC Interfaces
The DSM has a SystemVerilog interface for each DCI port. The available interfaces are listed in the following
table.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 43

1.

Table 11: DSM Direct-Connect Interfaces

Subsyste
m Interface Name Physical Location(1) GDDR6

Channel
SystemVerilog Interface

Type
Data
Width

Address
Width

GDDR6 gddr6_1_dc0 West 1 0 t_ACX_AXI4 512 33

GDDR6 gddr6_1_dc1 West 1 1 t_ACX_AXI4 512 33

GDDR6 gddr6_2_dc0 West 2 0 t_ACX_AXI4 512 33

GDDR6 gddr6_2_dc1 West 2 1 t_ACX_AXI4 512 33

GDDR6 gddr6_5_dc0 East 1 0 t_ACX_AXI4 512 33

GDDR6 gddr6_5_dc1 East 1 1 t_ACX_AXI4 512 33

GDDR6 gddr6_6_dc0 East 2 0 t_ACX_AXI4 512 33

GDDR6 gddr6_6_dc1 East 2 1 t_ACX_AXI4 512 33

DDR ddr4_dc0 South – t_ACX_AXI4 512 40

Ethernet ethernet_0_dc North West – t_ACX_ETHERNET_DCI – –

Ethernet ethernet_1_dc North East – t_ACX_ETHERNET_DCI – –

PCIe pciex8_dc_cii North West – t_ACX_CII – –

PCIe pciex16_dc_cii North East – t_ACX_CII – –

PCIe pciex16_dc_master North East – t_ACX_AXI4 512 42

PCIe pciex16_dc_slave North East – t_ACX_AXI4 512 40

Serdes serdes_eth0_q0_dc North West – t_ACX_SERDES_DCI 128 –

Serdes serdes_eth0_q1_dc North West – t_ACX_SERDES_DCI 128 –

Serdes serdes_eth1_q0_dc North East – t_ACX_SERDES_DCI 128 –

Serdes serdes_eth1_q1_dc North East – t_ACX_SERDES_DCI 128 –

Table Notes

Physical orientation West to East is with regards to viewing the die in floorplan view within ACE. The die is actually rotated
about its vertical axis when packaged. Therefore, an interface shown on the floorplan, and listed in this table, as being on the
West is physically on the East side of the device when located on the PCB. The North to South orientation is not affected and
matches with this table, the ACE view, and the device on board.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 44

Note

Not all interfaces are available in all devices. Please consult the appropriate device datasheet to
understand which interfaces are present in the selected device.

Direct Connect to DSM Interfaces
To connect to any of these interfaces, create a signal in the testbench, and connect it as a port on the DUT. Also,
connect the signal to the DSM, using the DSM instance name, the interface name from the DSM Direct-Connect

 table, and the element name.Interfaces (see page 43)

The following example shows how to connect the and signals for a GDDR AXI interface.awready awvalid

// Declare the signals in the testbench

// Note : In order to switch between port binding file and direct connect easily, the signal
// names must match the DUT IO port names.

logic dut_awready;
logic dut_awvalid;

// Connect to the DSM GDDR_1, DC port 0.
// awready is an output from the DSM, and an input to the DUT
assign dut_awready = `ACX_DEVICE_NAME.interfaces.gddr6_1_dc0.awready;
// awvalid is an input to the DSM, and an output from the DUT
assign `ACX_DEVICE_NAME.interfaces.gddr6_1_dc0.awready = dut_awvalid;

// Instantiate the DUT
 my_design DUT (

 .dut_awready (dut_awready),

 .dut_awvalid (dut_awvalid),

);

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 45

1.

2.

3.

4.

5.

6.

Port Binding File to DSM Interfaces
To use the port binding file, configure the following in the testbench:

Create an ACE project (a netlist is not required at this stage).

Configure all interface subsystem IP.

Generate the subsystem IP files, including a file named
.<design_name>_user_design_port_bindings.svh

Declare the signals in the testbench. The signal names must be the same as the port names on the DUT
since these are the names that the port binding file uses.

Include the port binding file in the testbench.

Instruct the DSM to set all its DC Interfaces to be in monitor mode only. The latter is important because
without this, the DSM drives the ports from the fabric to the subsystems in addition to the DUT driving the
same ports via the binding file. This situation can lead to unresolved signals and simulation failure. The
DSM DC interfaces are set to monitor mode when the define

 is enabled.ACX_DSM_INTERFACES_TO_MONITOR_MODE

Note

In the Achronix reference design flow the generated subsystem IP files are saved to the /src/ioring
directory rather than the default directory./src/ace/ioring_design

The define must be included in the simulation command ACX_DSM_INTERFACES_TO_MONITOR_MODE
line, so that it is present when the DSM is compiled. It cannot be included in the user testbench as this
is compiled the DSM.after
In the provided Achronix reference design flow, is ACX_DSM_INTERFACES_TO_MONITOR_MODE
defined in the and /sim/<simulator>/system_files_bfm.f /sim/<simulator>

 files./system_files_rtl.f

The following example shows how to connect all of the DUT ports using the port binding file.

system_files_bfm.f

Description : DSM full-chip BFM simulation filelist

Set whether the DSM DCI interfaces are set to monitor mode only
+define+ACX_DSM_INTERFACES_TO_MONITOR_MODE

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 46

Testbench

// In the testbench
// Declare ALL the DUT signals

logic dut_awready, dut_awvalid ;

// Include the port binding file
`include "../../src/ioring/my_design_user_design_port_bindings.svh"

// Instantiate the DUT

 my_design DUT (

 .dut_awready (dut_awready),
 .dut_awvalid (dut_awvalid),

);

Dual Mode Connections to DSM Interfaces
Because there is a define required for the port binding method, this define can be used within the testbench to
toggle between the two connection methods. This allows support for both flows, and switching between them
simply by enabling or disabling the define. An example of a testbench which supports both methods follows.

// Declare the signals in the testbench
// Note : In order to switch between port binding file and direct connect easily, the signal

// names must match the DUT IO port names.

logic dut_awready;
logic dut_awvalid;

// The options below support connect to the DSM DC ports either by using the ACE generated

// port binding file, or else using the DSM DC Interfaces.
`ifdef ACX_DSM_INTERFACES_TO_MONITOR_MODE

 `include "../../src/ioring/my_design_user_design_port_bindings.svh"
`else

 assign dut_awready = `ACX_DEVICE_NAME.interfaces.gddr6_1_dc0.awready;
 assign `ACX_DEVICE_NAME.interfaces.gddr6_1_dc0.awready = dut_awvalid;
`endif

// Instantiate the DUT
 my_design DUT (

 .dut_awready (dut_awready),

 .dut_awvalid (dut_awvalid),

);

Clock Frequencies
In addition to binding to the interfaces, it is possible to control the frequencies of the clocks generated by these
interfaces. For design integrity, the clock frequencies set within simulation should match the desired design
operating frequencies. For design implementation, the frequencies are configured within the ACE IO Designer
tool. For simulation, the function is provided.set_clock_period

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 47

The following example shows setting the GDDR6 East 1 controller to an operating frequency of 1 GHz (suitable
for 16 Gbps operation). Because the DC interface operates at half the controller frequency, it is configured for
500 MHz.

Using this method, first ensure that the simulation operates at the correct frequencies. Second, ensure that each
subsystem is able to operate at a different frequency, if required.

// Set default GDDR6 clock frequency to 1000 ps = 1GHz

localparam GDDR6_CONTROLLER_CLOCK_PERIOD = 1000;

// Configure the NoC interface of GDDR6 E1 to 1GHz
`ACX_DEVICE_NAME.clocks.set_clock_period("gddr6_5_noc0_clk", GDDR6_CONTROLLER_CLOCK_PERIOD);

// Configure the DC interface of GDDR6 E1 to 500MHz, (double the period of the NoC interface)
`ACX_DEVICE_NAME.clocks.set_clock_period("gddr6_5_dc0_clk", GDDR6_CONTROLLER_CLOCK_PERIOD*2);

Note

The function is within the DSM. This model has a default timescale value of 1ps. set_clock_period
Therefore, the specified clock period is applied in picoseconds, irrespective of the timescale value of the
calling module.

The following clock frequency interfaces are available.

Table 12: Clock Frequency Interfaces

Subsystem Interface Name Physical Location (1) GDDR6 Channel

GDDR6 gddr6_0_noc0_clk West 0 NoC 0

GDDR6 gddr6_0_noc1_clk West 0 NoC 1

GDDR6 gddr6_1_noc0_clk West 1 NoC 0

GDDR6 gddr6_1_noc1_clk West 1 NoC 1

GDDR6 gddr6_2_noc0_clk West 2 NoC 0

GDDR6 gddr6_2_noc1_clk West 2 NoC 1

GDDR6 gddr6_3_noc0_clk West 3 NoC 0

GDDR6 gddr6_3_noc1_clk West 3 NoC 1

GDDR6 gddr6_4_noc0_clk East 0 NoC 0

GDDR6 gddr6_4_noc1_clk East 0 NoC 1

GDDR6 gddr6_5_noc0_clk East 1 NoC 0

GDDR6 gddr6_5_noc1_clk East 1 NoC 1

GDDR6 gddr6_6_noc0_clk East 2 NoC 0

GDDR6 gddr6_6_noc1_clk East 2 NoC 1

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 48

1.

2.

Subsystem Interface Name Physical Location (1) GDDR6 Channel

GDDR6 gddr6_7_noc0_clk East 3 NoC 0

GDDR6 gddr6_7_noc1_clk East 3 NoC 1

GDDR6 gddr6_1_dc0_clk West 1 DCI 0

GDDR6 gddr6_1_dc1_clk West 1 DCI 1

GDDR6 gddr6_2_dc0_clk West 2 DCI 0

GDDR6 gddr6_2_dc1_clk West 2 DCI 1

GDDR6 gddr6_5_dc0_clk East 1 DCI 0

GDDR6 gddr6_5_dc1_clk East 1 DCI 1

GDDR6 gddr6_6_dc0_clk East 2 DCI 0

GDDR6 gddr6_6_dc1_clk East 2 DCI 1

DDR ddr4_noc0_clk South NoC –

DDR ddr4_dc0_clk South DCI –

PCIe pciex16_clk Gen5 PCIe ×16 –

PCIe pciex16_dc_clk Gen5 PCIe ×16 DCI –

PCIe pciex8_clk Gen5 PCIe ×8 –

Ethernet ethernet_ref_clk Ethernet reference clock (2) –

Ethernet ethernet_ff0_clk Ethernet FIFO 0 clock (2) –

Ethernet ethernet_ff1_clk Ethernet FIFO 1 clock (2) –

Configuration cfg_clk System wide configuration clock –

Table Notes

Physical orientation West to East is with regards to viewing the die in floorplan view within ACE. The die is actually rotated
about its vertical axis when packaged. Therefore, an interface shown on the floorplan, and listed in this table, as being on the
West is physically on the East side of the device when located on the PCB. The North to South orientation is not affected and
matches with this table, the ACE view, and the device on board.
The Ethernet clocks are common to both Ethernet subsystems. In simulation they must be set to operate from the same clock
frequencies.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 49

Configuration
A number of the interface subsystems require configuration at power-up. In the physical device, this configuration
would be performed by the bitstream pre-programming the relevant configuration registers. Within the simulation
environment, there are tasks that can read configuration files and apply those files to the relevant interface
subsystem. An example of applying a configuration is shown in the following code snippet.

// -------------------------

// Configuration
// -------------------------

// Call function within device to configure the registers

// By using fork-join, the two configurations will be run in parallel, configuring both
// Ethernet blocks. This saves overall simulation time.

// Both blocks are configured the same, hence the use the same file
initial

begin
 fork

 `ACX_DEVICE_NAME.fcu.configure("ethernet_cfg.txt", "ethernet0");
 `ACX_DEVICE_NAME.fcu.configure("ethernet_cfg.txt", "ethernet1");

 join
end

Startup Sequence
While the task is processing the configuration (including waiting for any polling to return a fcu.configure()
valid value), the is not asserted. This behavior mirrors that where the device Chip Status Output (see page 40)
only enters user mode when configuration is completed.

The simulation testbench can issue configuration processes as shown in the previous code snippet, and when
the Chip Status Output is asserted, the testbench knows the device is correctly configured. The testbench can
then proceed to apply the necessary tests.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 50

1.

2.

3.

fcu.configure() Task
The task has the following arguments:fcu.configure

fcu.configure (<configuration filename>, <interface subsystem name>);

The following interface subsystem names are supported:

Table 13: Configuration Subsystem Names

Subsystem Interface Subsystem Name (1) Physical Location (3)

GDDR6 gddr6_0 West 0

GDDR6 gddr6_1 West 1

GDDR6 gddr6_2 West 2

GDDR6 gddr6_3 West 3

GDDR6 gddr6_4 East 0

GDDR6 gddr6_5 East 1

GDDR6 gddr6_6 East 2

GDDR6 gddr6_7 East 3

DDR ddr4 South

Ethernet ethernet0 North

Ethernet ethernet1 North

GPIO North gpio_n North

GPIO South gpio_s South

PCIe ×8 pcie_0 North

PCIe ×16 pcie_1 North

All subsystems full(2) –

Table Notes

The interface subsystem name is case insensitive.
When using the subsystem name, the full 42-bit address is required in the configuration file. When selecting an individual full
subsystem, only the 28-bit address is required. Refer to for details.Configuration File Format (see page 51)
Physical orientation West to East is with regards to viewing the die in floorplan view within ACE. The die is actually rotated
about its vertical axis when packaged. Therefore, an interface shown on the floorplan, and listed in this table, as being on the
West is physically on the East side of the device when located on the PCB. The North to South orientation is not affected.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 51

Configuration File Format
The configuration file has the following format:

--

Configuration file
Supports both # and // comments

--

A comment line
// Another comment line

Format is <cmd> <addr> <data>

Commands are
 "w" - write

 "r" - read
 "v" - read and verify

 "d" - Wait for the number of cycles in the data field.
 The address field is unused

Address is either 28-bit, (7 hex characters), or 42-bit, (11 hex characters).
28-bits supports the configuration memory space of an single interface subsystem

42-bits supports the full configuration memory space

Data is 32-bit, (8 hex characters).

For reads, put 0x0 for the data

For verify put the expected data value

Examples

Writes
w 00005c0 76543210

w 0000014 00004064

Reads

r 00005c0 00000000
r 0000014 00000000

Verify
v 00005c0 76543210

v 0000014 00004064

Wait for 50 cycles
d 0000000 00000032

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 52

Address Width
The address width varies according to the requirements of the file:

When addressing an individual subsystem, only the lower 28 bits of the address field are used. The higher
14 bits are derived from the subsystem name.

When addressing the full configuration memory space (interface subsystem name is set to), then 42 full
bits of the address space are required. In this mode, the FCU confirms that bits [41:34] of the address field
are set to 8'h20, which aligns with the NoC global memory map plus control and status register (CSR)
memory area. In this mode, the one configuration file can address multiple interface subsystems. See the

 for more details. (UG089)Speedster7t Network on Chip User Guide

Parallel Configuration
The task is defined as a SystemVerilog automatic task allowing it to be re-entrant and run in fcu.configure()
parallel. Therefore, it is possible to program multiple interface subsystems in parallel using a fork - join
construct. Refer to the reference design testbench for examples of this parallel programming.

SystemVerilog Interfaces
The following SystemVerilog interfaces are defined, and are used for DCI assignments.

Note

The following interface is only available in the simulation environment. For code that must be
synthesized, define custom SystemVerilog interfaces, or use one of the interfaces predefined within the
reference designs.

interface t_ACX_AXI4

 #(DATA_WIDTH = 0,
 ADDR_WIDTH = 0,

 LEN_WIDTH = 0);

 logic aclk; // Clock reference
 logic awvalid; // AXI Interface

 logic awready;
 logic [ADDR_WIDTH -1:0] awaddr;

 logic [LEN_WIDTH -1:0] awlen;
 logic [8 -1:0] awid;

 logic [4 -1:0] awqos;
 logic [2 -1:0] awburst;

 logic awlock;
 logic [3 -1:0] awsize;

 logic [3 -1:0] awregion;
 logic [3:0] awcache;

 logic [2:0] awprot;
 logic wvalid;

 logic wready;
 logic [DATA_WIDTH -1:0] wdata;

 logic [(DATA_WIDTH/8) -1:0] wstrb;
 logic wlast;

 logic arready;
 logic [DATA_WIDTH -1:0] rdata;

 logic rlast;
 logic [2 -1:0] rresp;

http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089

Design Flow User Guide (UG106)

www.achronix.com 53

 logic rvalid;

 logic [8 -1:0] rid;
 logic [ADDR_WIDTH -1:0] araddr;

 logic [LEN_WIDTH -1:0] arlen;
 logic [8 -1:0] arid;

 logic [4 -1:0] arqos;
 logic [2 -1:0] arburst;

 logic arlock;
 logic [3 -1:0] arsize;

 logic arvalid;
 logic [3 -1:0] arregion;

 logic [3:0] arcache;
 logic [2:0] arprot;

 logic aresetn;
 logic rready;

 logic bvalid;
 logic bready;

 logic [2 -1:0] bresp;

 logic [8 -1:0] bid;

 modport initiator (input awready, bresp, bvalid, bid, wready, arready, rdata, rlast, rresp,

rvalid, rid,

 output awaddr, awlen, awid, awqos, awburst, awlock, awsize, awvalid,

awregion,

 bready, wdata, wlast, rready, wstrb, wvalid,
 araddr, arlen, arid, arqos, arburst, arlock, arsize, arvalid,

arregion);

 modport responder (output awready, bresp, bvalid, bid, wready, arready, rdata, rlast, rresp,

rvalid, rid,

 input awaddr, awlen, awid, awqos, awburst, awlock, awsize, awvalid,

awregion,

 bready, wdata, wlast, rready, wstrb, wvalid,
 araddr, arlen, arid, arqos, arburst, arlock, arsize, arvalid,

arregion);

 modport monitor (input awready, bresp, bvalid, bid, wready, arready, rdata, rlast, rresp,

rvalid, rid,
 awaddr, awlen, awid, awqos, awburst, awlock, awsize, awvalid,

awregion, awprot, awcache,

 bready, rready, wstrb, wvalid, wdata, wlast,
 araddr, arlen, arid, arqos, arburst, arlock, arsize, arvalid,

arregion, arprot, arcache);
endinterface : t_ACX_AXI4

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 54

Installation
Packages

Base versus RTL
Due to licensing conditions, there are two different DSM packages available:

Base – this package contains the full cycle-accurate simulation model of the device core (including NoC,
NAPs, Ethernet and GPIO subsystems). Further, the package contains BFM simulation models of the
GDDR, PCIe and DDR4 interface subsystems. These BFM models support representative timings of their
respective subsystems, but deliver significantly faster simulation times. Any data transfers from these
interface subsystems to the NoC use the cycle-accurate NoC, further enhancing the timing accuracy.

RTL – this package adds the full cycle-accurate models of the PCIe, GDDR and DDR4 cores. Using these
models provides full cycle accuracy of the complete systems. However, simulation times are increased
significantly. This package is license controlled. To obtain this package, send a support request to

 requesting the DSM RTL package. When licensing conditions are met, a link to support@achronix.com
download the individual watermarked version of the package is sent.

Note

The Base DSM for each device is included within ACE from version 8.5 onwards. The installation
details that follow are only required for installing the RTL package, or when using older versions of ACE
prior to version 8.5

Naming
There is a DSM package per device, available for both Linux and Windows. The base packages are named

 for Linux andACE_<DSM version>_<device>_DSM_base_Sim_overlay.tgz ACE_<DSM
for Windows. For example:version>_<device>_base_Sim_overlay.zip

ACE_8.3.3_ac7t1500_DSM_base_sim_overlay.tgz – this is the base DSM overlay for the
Speedster7t ac7t1500 FPGA, targeted for Linux. The DSM (not ACE) version is 8.3.3.

Similarly, the RTL packages are named and ACE_<DSM version>_<device>_DSM_RTL_Sim_overlay.tgz
ACE_<DSM version>_<device>_DSM_RTL_Sim_overlay.zip.

Note

The version number in the DSM package is the DSM version, not the ACE version. There is not
necessarily a new DSM release per ACE release. Therefore, it is possible to use an older DSM release
with a newer ACE release. For example, DSM 8.3.3 may be used with ACE 8.5.

Download
The base DSM packages are included within all ACE releases from 8.5 onwards. Ensure when installing ACE
that the relevant DSM archive is expanded and installed into the following listed locations.

Due to the previously detailed , RTL packages are obtained by sending a licensing conditions (see page 54)
support request to .support@achronix.com

Any package is only required to be installed once, the package is common for all designs targeting the selected
device.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 55

1.

2.

3.

4.

ACE Integration

Upgrading an Existing Installation
If a version of the DSM package was previously installed into ACE, it is recommended to first delete the existing
DSM package before upgrading to ensure the integrity of the new installation.

To delete an existing package:

Navigate to , (or the relevant device directory).<ACE_INSTALL_DIR>/system/data/AC7t1500

Remove the directory./sim

Return to the root of the ACE installation.

Proceed with the following instructions for first installation.

First Installation
The recommended installation method is to merge the contents of the package into the current ACE installation.
The package contains a root directory . The contents of this folder should be merged with the selected /system
ACE installation folder./system

Warning

The contents of the simulation package consist of files that are not present in the base ACE installation
for ACE versions prior to 8.5. These files should not replace or overwrite any existing files. However, if
an earlier version of the simulation package has already been downloaded, then select "overwrite" to
ensure the latest version of the simulation files are written to the ACE installation.

Standalone
In certain instances it might not be possible to modify an existing ACE installation. In these cases, it is possible to
install the package separately and to simulate using files from both this simulation package and the existing
simulation files within ACE.

To install as standalone, simply uncompress the package to a suitable location.

Note

All reference designs are configured for the simulation package to be integrated within ACE. If the
standalone method is selected, the necessary environment variables in the reference design makefiles
must be edited.

Environment Variables
The locations of both ACE and the simulation package are controlled by two environment variables. For all
reference designs, these two variables must be set before simulating.

ACE_INSTALL_DIR
The environment variable must be set to the directory location of the , or ACE_INSTALL_DIR ace ace.exe
executable. This variable is used by both simulation and synthesis to locate the correct device library files.

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 56

ACX_DEVICE_INSTALL_DIR
The optional environment variable is used to select the DSM files. It should be set ACX_DEVICE_INSTALL_DIR
to the path, including the base directory, of the device files within the DSM package.

When installed in ACE integration mode, the following setting should be used (with the Speedster7t AC7t1500
FPGA as an example):

ACX_DEVICE_INSTALL_DIR = $ACE_INSTALL_DIR/system/data/AC7t1500

When installed as standalone, the following setting should be used, (with the Speedster7t AC7t1500 FPGA as an
example):

ACX_DEVICE_INSTALL_DIR = <location of standalone package>/system/data/AC7t1500

Note

For simulation, it is only necessary to set the variable if the DSM is not ACX_DEVICE_INSTALL_DIR
installed in ACE integration mode. In all the supplied designs, the simulation makefiles define

 as shown for ACE integration mode. This definition takes precedence ACX_DEVICE_INSTALL_DIR
over any local environment variable. If using a supplied simulation makefile, override the definition of

 in the make flow invocation as follows, (with the Speedster7t AC7t1500 ACX_DEVICE_INSTALL_DIR
FPGA as an example):
> make ACX_DEVICE_INSTALL_DIR=<location of standalone package>/system/data
/AC7t1500

http://www.achronix.com

Design Flow User Guide (UG106)

www.achronix.com 57

Revision History

Version Date Description

1.0 07 Oct 2022 Initial Achronix release.

1.1 18 Oct 2023 Remove references to end-of-life devices.

http://www.achronix.com

	Introduction
	Overview of Interface Subsystems
	Clock I/O Banks, PLLs, and Advanced PLL Subsystems
	GPIO Bank Subsystem

	Interface Subsystem and Core IP Flow
	Overview
	IP and the Tool Flow

	Design Flow Steps
	Generating the I/O Ring Files
	Incorporating Signals Traveling Between the I/O Ring and Core

	Working with Constraints
	Types of Constraints
	Using Constraints
	Synplify Pro
	Common Usage: Limiting Fanout and Preventing Optimization

	ACE
	Common Usage: Preventing Optimization
	Common Usage: Limiting Fanout

	Pin Naming/Mapping
	Evaluating Warnings and Errors
	I/O Ring and Core IP Generation
	Resolving Warnings and Errors in I/O Ring Generation

	Simulating the I/O Ring
	Simulation Support Files Created During I/O Ring Subsystem Generation
	I/O Ring to Core Connections in Hardware Versus Simulation
	I/O Ring Modeling
	Special Treatment For Simulating NAPs

	Device Simulation Model
	Description
	Selecting the Required DSM
	DSM Utility Package
	Device Specific Simulation Files
	Instantiate DSM Utility Package

	Version Control
	require_version() Task

	Example Design
	set_verbosity() Task

	Chip Status Output
	Bind Macros
	Direct-Connect Interfaces
	Suggested Flows
	DSM DC Interfaces
	Direct Connect to DSM Interfaces
	Port Binding File to DSM Interfaces
	Dual Mode Connections to DSM Interfaces

	Clock Frequencies
	Configuration
	Startup Sequence
	fcu.configure() Task
	Configuration File Format
	Address Width
	Parallel Configuration

	SystemVerilog Interfaces

	Installation
	Packages
	Base versus RTL
	Naming
	Download

	ACE Integration
	Upgrading an Existing Installation
	First Installation

	Standalone

	Environment Variables
	ACE_INSTALL_DIR
	ACX_DEVICE_INSTALL_DIR

	Revision History

