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Abstract—Deployments of machine learning networks with
auto-regressive critical paths, or recurrence, often poorly utilize
AI accelerator hardware. Such networks, like those used in
Automatic Speech Recognition, must run with low latency and
deterministic tail-latency for at-scale real time applications. In
this paper we present an overlay architecture for an inference
engine which is then implemented on a Speedster7t FPGA. The
Speedster7t is an AI optimized device from the Achronix Semi-
conductor Corporation. We demonstrate potential high utilization
rates for the type of network considered. Specifically, we describe
a double clocking method that achieves a clock frequency at
74.7% of the rated frequency of the Machine Learning Processor
blocks in the Speedster device. We show that the device can
achieve 36.4 TOPS on a standard set of AI benchmarks and
show that it can achieve circa 60% of the device headline
efficiency in a range of scenarios. We then highlight the benefit
of this architecture for low latency real time applications such
as Automatic Speech Recognition.

I. INTRODUCTION

Since 2019, a new generation of AI optimised FPGA devices
have been released by major FPGA device manufacturers. The
Versal family from Xilinx and the Intel Stratix 10 NX device
both contain hardened compute engines specifically targeted to
AI workloads. Most recently Achronix Semiconductor Corpo-
ration have launched their AI optimised Speedster7t family,
also containing hardened compute engines that specifically
target AI workloads. As AI becomes prevalent in all domains,
the need to deploy AI on FPGAs has led to architectural
innovation, focusing on adding sufficient compute to support
the core matrix multiplication operations at the heart of all
deep neural network processing, whilst enabling flexible use
of FPGA fabric to enable the wide range of other operations
required in AI processing. FPGAs have historically been used
in embedded devices, consumer products, automotive and
telecommunications equipment. Now, FPGAs are also being
used in the data center for AI inference acceleration at scale,
as demonstrated by Microsoft’s Project Brainwave [1], SK
Telecom [2] and Kuaishou [3]. These deployments are being
used for low latency real time deployments, where the FPGA
architecture supports efficient processing at low batch sizes,
enabling AI to be used where latency affects user experience,
such as conversational AI services. Using FPGAs for these
deployments provides a cost effective alternative to AI infer-
ence ASICs, while maintaining advantages of flexible software
programming that better tracks fast moving AI development.

In this paper we discuss the features of the latest AI
optimised FPGA device from Achronix, the Speedster7t, and
how this can be used effectively for real time applications
such as Automatic Speech Recognitin (ASR). We describe an

overlay architecture that can achieve highly efficient use of
the FPGA and we provide a set of benchmark results for core
compute metrics GEMV and MLP AI operations. Finally we
compare achieved TOPS and memory bandwidth figures to
the headline performance figures of the device to highlight
achievable efficiency when deployed for AI workloads.

II. SPEEDSTER7T DEVICE FEATURES FOR AI

When considering an FPGA device for AI inference, key
features of relevance are the numerical precision supported
by the device, the amount of available compute and the
specification of high speed memory interfaces. These factors
combined affect the overall quality and performance that
can be achieved for networks of interest. In this section we
describe the features of the Speedster7t that are used for AI
inference, and at the end of the section we discuss how these
features are combined to determine the capability of the device
for low latency AI inference.

A. Machine Learning Processor block

The Speedster7t1500 FPGA contains 2560 Machine Learn-
ing Processor blocks in the device. These hardened silicon
components can run at up to 750 MHz, providing a total
headline TOPS figure of 61.44 TOPS at INT8. The Machine
Learning Processor contains integrated Block RAM and Multi-
ply Accumulate circuitry. This enables maximum performance
to be achieved, as all high bandwidth data flows are kept
within the Machine Learning Processor block, vastly reducing
the routing overhead on the FPGA when moving weights
and activations into the compute elements of the device.
The Machine Learning Processor block includes a cascade
path between adjacent blocks to share memories and data for
weights or activation data and implementation of efficient data
structures such as systolic array architectures.

The architecture of the Machine Learning Processor block
is shown in Figure 1.

B. Speedster7t Numerical Precision

Quantizing models for inference is a widely used technique,
in which compute operations are carried out in a format
which is less computationally expensive. This approach has
been applied to a wide variety of models including BERT
[4], ResNet and GNMT [5], and sees adoption in widely
recognised machine learning benchmarks [6].

The quantization process includes one or both of:
1) Reducing the number of bits of the datatype. e.g. use 8

bits instead of 32 bits.



Fig. 1. MLP Architecture on Achronix Speedster7t FPGA

Fig. 2. Block Floating Point Quantization Format

2) Using a less expensive format. e.g. use integer instead
of floating-point.

Quantizing to integers is a popular choice for AI inference.
Running inference at INTX (most often INT8) is widely used
for deployment including for models from the domains of
Machine Translation [7], Automatic Speech Recognition [8],
Computer Vision [9] and NLP embeddings [5].

Formats other than INTX and FP16 are becoming more
widely used as hardware vendors accommodate them. For
example, BrainFloat16 is supported by Google TPUs and
Intel Xeon CPUs. Recently, Block Floating Point formats
have been demonstrated by Microsoft [10], enabling networks
to retain accuracy with a post training quantization flow,
and more efficient hardware computation. The block floating
point formats share a single exponent value across a block
of mantissa values, typically 8 or 16. This scheme provides
improved dynamic range over fixed-point arithmetic with
accuracy approaching that of traditional floating point, but
compute efficiency equivalent to integer processing. Figure 2
illustrates the Block Floating Point format.

The Achronix Speedster7t FPGA can support a range of nu-
merical formats due to its fully fracturable integer MAC within
the Machine Learning Processor blocks on the FPGA. The
Machine Learning Processor supports operations in INT16,

INT8 or INT4 multiplications. The addition of the floating
point MAC enables the device to support floating point formats
fp16, fp24 and bf16. Combining both MACs enables use of
Block Floating Point formats of arbitrary block sizes, enabling
the device to implement BFP16 and BFP12 formats, among
others. Table I shows the achievable TOPS for supported
numerical formats and the associated memory compression
factor. In this paper we refer to BFP16 with a block size of 8
and BFP12 with a block size of 16.

# Format Headline TOPS S7t1500 Memory Compression Factor
(relative to fp32)

fp24 7.68 1.33
fp16 7.68 2
bf16 7.68 2
INT16 15.36 2
BFP16 61.44 3.56
INT8 61.44 4
BFP12 122.88 7.11
INT4 122.88 8

TABLE I
COMPUTE CAPABILITY OF SPEEDSTER7T1500 AT DIFFERENT NUMERICAL 

FORMATS

As well as improving compute efficiency, l ower precision 
formats also reduce the memory bandwidth requirements of 
an inference platform, which for memory bound processing 
and low latency applications can lead to a linear improvement 
in performance.

C. GDDR6 memory

The BRAMs included in the Machine Learning Processor 
blocks of the Speedster7t provide a total on chip memory 
resource of 195 Mbits, sufficient to hold an AI model of under 
24 MBytes at INT8 in persistent on chip storage. When neural 
network sizes exceed that threshold, model parameters need 
to be stored in larger external memories. In the case of the 
Speedster7t, the device supports external GDDR6 memory of 
up-to 32 GB in size. The GDDR6 memory is shown in Fig-
ure 3. This enables much larger models to be processed, with 
a bandwidth of 4 Tb/s available to move model parameters 
onto the device, to support low latency processing.

To understand the performance capability of a device for 
AI inference, it is important to consider both compute per-
formance and memory performance in combination. This is 
particularly important for understanding performance limita-
tions for low latency deployments or for where networks are 
memory intensive. Some examples include real time streaming 
ASR and transformer model architectures. CNNs typically 
require low memory bandwidth, even at small batch sizes and 
so inference solutions for CNNs are not optimized for high 
bandwidth memory.

D. Hardened Network On Chip

Having a large external memory bandwidth is only useful if 
model parameters can be moved into the compute engines on 
the device without losing efficiency. The Speedster7t contains 
a hardened 2D Network on chip (2D-NoC) capable of trans-
porting 20 Tb/s across the FPGA. This enables data to be



Fig. 3. External interfaces of Achronix Speedster7t FPGA

Fig. 4. 2D-NoC in Achronix Speedster7t FPGA

moved from external memory into compute engines and across
the fabric without limiting compute access to external memory
bandwidth. Moreover this 2D-NoC reduces the need to use
fabric routing for the purposes of data movement, leaving
routing resource free in the fabric and enabling better timing
results.

The 2D-NoC is shown in Figure 4.

III. AN AI OVERLAY ARCHITECTURE FOR THE
SPEEDSTER7T

In order to benchmark the Speedster7t family, we create an
AI inference overlay design for the Speedster7t1500 device

Fig. 5. The MAU Core Architecture on Achronix Speedster7t FPGA

running on a Bittware S7t-VG6 VectorPath PCIe Accelerator
Card. The overlay is built using the Myrtle.ai programmable
MAU Accelerator® architecture. The MAU Core is a pro-
grammable processing engine for deep neural networks, that
overlays the FPGA fabric to provide a flexible and run time
configurable inference engine. We place 4 MAU Cores, opti-
mized for the Achronix Speedster7t1500 FPGA onto the card
and use this to demonstrate achieved utilization and timing
results.

The design uses 4 MAU Accelerator® Cores, with each core
containing 512 Machine Learning Processor (MLP) blocks to
form the central dot product circuit required in all machine
learning inference. The full design uses 80% of all available
MLPs for dot product compute, with the remaining 20% used
either for additional compute operations and non linearities,
or as block rams only.

The design is implemented using BFP16 format, as defined
in Figure 2. This uses a mantissa size of 8 bits and an 8
bit exponent with a block size of 8. This gives good model
accuracy and can be applied to models after training, without
loss of network accuracy, simplifying the user flow of the
architecture overlay.

We floorplan the MAU Accelerator® Cores in the Achronix
ACE® software to ensure that a high level of logic utilization
can be achieved, whilst retaining a high clock frequency.

The overlay architecture has a headline TOPS capability of
36.4 TOPS, which is 59.2% of the Headline INT8 compute
capability of the FPGA fabric. This high efficiency figure is
enabled by use of a double clocking scheme to enable the
MLP blocks to run at 560MHz, 74.7% of the 750MHz rated
Fmax of these components, while implementing all logic in
fabric at 280MHz.

The architecture of the Achronix Speedster7t FPGA opti-
mized MAU Accelerator® Core is shown in Figure 5. This
has all the required functionality to implement AI benchmarks
for GEMV and Multi-layer Perceptron (MLP) operations.

A. Double clocking scheme for Machine Learning Processors

A double clocking scheme is used to clock the Machine Learn-
ing Processor blocks in the FPGA. This allows the hardened
silicon components to run at a higher clock frequency than
the fabric, achieving an operating point close to the design



Fig. 6. Double Clocking Scheme for MAU Core Architecture on Achronix
Speedster7t FPGA

specification of these blocks. This is possible due to the tight
coupling of BRAM and MAC elements within the Machine
Learning Processor block, that enables data transfer of weights
into the MAC via dedicated routing within the block. This
dedicated routing between BRAM and MAC for transferring
weights in the Machine Learning Processor carries 177 Tb/s,
16 times that on the activation input.

The dot product circuit at the centre of the MAU Acceler-
ator® Core multiplies together a 256x256 matrix and a 256
vector. The matrix is typically used for weights and the vector
for the activations. The activation vector is held constant over
8 cycles on the 560 MHz clock domain, while the weights are
read from the BRAM that is tightly-coupled to the MAC and
change every cycle. The Machine Learning Processor blocks
are arranged in 16 columns of 32, cascaded so that each
column computes two BFP16 dot products of size 256.

The activation vector is distributed to the Machine Learning
Processor blocks by the activation fanout component, which
also handles delaying the activations to align with the partial
sums travelling up the cascade between Machine Learning
Processor blocks. The indices for the weights to be read from
the BRAMs are fed at the bottom of the column, and the dot
product results are output at the top of the column. The output
is on the 560 MHz domain, with values on adjacent clock
cycles concatenated and transferred to the 280 MHz domain
by a logic deserializer.

The Machine Learning Processor blocks are floorplanned to
two outer columns in each core, reserving the central column
for use by other elements of the design and network specific
operations. This can be seen in the layout in Figure 7.

B. Use of 2D Network on Chip

The 2D Network on Chip (2D-NoC) is used to move data
around the design, reducing the need for fabric routing re-
source to be used for data movement. The 2D-NoC is used
to move inference data between CPU and FPGA, via the
PCIe interface; to move weights between GDDR6 and MAU
Accelerator® Cores at runtime, enabling large networks to be
stored in off chip memory; and to move inference data between
MAU Accelerator® Cores on the chip, enabling data to passed

Fig. 7. Floorplan of dot product circuit on Achronix Speedster7t FPGA

between cores implementing different layer operations, or
splitting matrix operations across cores.

Each core has 16 Network Access Points (NAP) for loading
weights from GDDR6, these provide up to 1.12 Tb/s at 280
MHz, which is greater than the available 1 Tb/s available
memory bandwidth allocated to each core. This ensures that
maximum performance can be achieved for memory bound
networks and low latency operating scenarios. Each core has
16 NAP Slave connections spread over 4 hNoC rows.

For host-to-core and core-to-core data transfers, the design
has 2 NAP Master and 2 NAP Slave connections per core.
This provides a data bandwidth of 143.36 Gbps between cores.
This is sufficient for most operations to be transferred between
cores, with the exception of very small matrix computations.

# Resource Utilization Percentage Utilization
MLP 2, 400 93.8%
BRAM 2, 368 92.5%
LUT 57, 510 8.3%
DFF 182, 887 13.2%
NAP Master 8 10.0%
NAP Slave 72 90.0%

TABLE II
RESOURCE UTILIZATION OF MAU ACCELERATOR® CORE OVERLAY

C. Device Utilization

The utilization of the device for the accelerator overlay is as
shown in Table II. This shows that a very high utilization
of Machine Learning Processor blocks and BRAM is used
to achieve high AI computation, while only requiring a low
resource use of LUTs and DFFs in the fabric. This allows
room for additional functions to be implemented in fabric,



Fig. 8. Throughput of key AI Benchmarks on Achronix S7t-VG6 VectorPath
Accelerator Card. Results were measured on a C2 speed-grade device at 560
MHz. Labels show utilization as a percentage of the headline performance of
the MAU Accelerator®.

and it reduces the routing congestion in the fabric, leading to
higher achievable clock frequencies in the fabric.

IV. AI BENCHMARKING RESULTS

A. Methodology

We benchmark two simple operations on the Speedster7t to
give an indication of what performance can be achieved for
AI networks. We implement a GEMV benchmark and a Multi-
layer Perceptron (MLP) benchmark. The GEMV demonstrates
performance for operations that are central to all AI bench-
marks.

The GEMV-N benchmark computes Ax + y, where A is
a square matrix of dimension N , and x and y are N -vectors.
The MLP-N benchmark computes a 5-layer Multi-layer Per-
ceptron, where each layer is defined as layeri(xi) = Wixi+bi

where Wi is a N × N square matrix. Each layer feeds into
the following, xi+1 = layeri(xi), and x0 is the input.

We use hardware cycle counters to measure time to compute
a particular benchmark and infer throughput from steady-state
measurements. We do not time the data transfer between CPU
and FPGA, as this would dominate the processing time for
these very small benchmark operations. All benchmarks are
run with constants persisted in BRAMs after initially being
loaded from external GDDR6 memory.

B. Compute Performance

Figure 8 shows high performance across various sizes of
matrix for both GEMV and MLP. Benchmarks are parallelized
across four cores, so Batch 4 means one inference running
independently on each core. For Batch 20 results, each core
is running 5 pipelined inferences. The overlay architecture is
used to 100% efficiency for GEMV benchmarks, where the
matrix is divisible by 512.

C. Achieved Roofline Performance

Considering an acceleration platform for low latency and real
time applications, Figure 9 shows the achieved roofline per-
formance for the Achronix Speedster7t1500 device. Networks
with an arithmetic intensity of over 70 operations/byte can

Fig. 9. Achronix Roofline P erformance a nd R NN-T o perating p oint, using 
headline memory bandwidth

be implemented at 36.4 TOPS on the device. The RNN-T 
operating point is used as an example to highlight processing 
needs of an accelerator processing the MLPerf RNN-T ref-
erence model in a streaming deployment at batch size 8 and 
80ms chunk size.

V. CONCLUSION

This paper demonstrates the new AI optimised FPGA from 
Achronix, the Speedster7t1500, is able to achieve 59.2%
efficiency and 36.4 TOPS when applied to key AI benchmarks. 
The AI optimized architecture enables a high compute clock 
frequency, and the high external memory bandwidth positions 
this device well for low-latency workloads.
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